
A unified weighting framework for evaluating nearest neighbour classification

Oliver Urs Lenza,b,∗, Henri Bollaertb, Chris Cornelisb

aLeiden Institute of Advanced Computer Science, Leiden University, Leiden, 2333 CA, The Netherlands
bDepartment of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, 9000, Belgium

Abstract

We present the first comprehensive and large-scale evaluation of classical (NN), fuzzy (FNN) and fuzzy
rough (FRNN) nearest neighbour classification. We standardise existing proposals for nearest neighbour
weighting with kernel functions, applied to the distance values and/or ranks of the nearest neighbours of a
test instance. In particular, we show that the theoretically optimal Samworth weights converge to a kernel.
Kernel functions are closely related to fuzzy negation operators, and we propose a new kernel based on
Yager negation. We also consider various distance and scaling measures, which we show can be related to
each other. Through a systematic series of experiments on 85 real-life classification datasets, we find that
NN, FNN and FRNN all perform best with Boscovich distance, and that NN and FRNN perform best with
a combination of Samworth rank- and distance-weights and scaling by the mean absolute deviation around
the median (r1), the standard deviation (r2) or the semi-interquartile range (r∗∞), while FNN performs best
with only Samworth distance-weights and r1- or r2-scaling. However, NN achieves comparable performance
with Yager- 12 distance-weights, which are simpler to implement than a combination of Samworth distance-
and rank-weights. Finally, FRNN generally outperforms NN, which in turn performs systematically better
than FNN.

Keywords:
classification, fuzzy nearest neighbours, fuzzy negation, fuzzy rough nearest neighbours, kernels, nearest
neighbours, weighting

1. Introduction

Nearest neighbours (NN) [1] is one of the oldest and most widely used classification algorithms. Despite
the development of other successful classifiers, it remains an attractive option in many settings due to its
simplicity [2] and good performance for many problems, especially when decision boundaries are irregular
[3]. NN and its variants are applied in such diverse domains as healthcare [4, 5, 6], agriculture [7, 8], geology
[9, 10], industry [11, 12, 13] and natural language processing [14, 15, 16], and have also been adapted to big
data settings [17, 18, 19].

While NN is a relatively simple algorithm, it still requires setting a few hyperparameters. Even in its
most basic form, we need to choose a distance measure and a method to rescale the attributes of the dataset.
In addition, it is generally advisable to choose the number of neighbours k ≥ 1 on which predictions are
based. Moreover, there have been many proposals in the literature to weigh the contribution of the k nearest
neighbours of a test record differently.

In principle, it is possible to resolve these choices for any given problem by picking the combination of
hyperparameter values that performs best on cross-validated training data. However, in practice, it is often

∗Corresponding author at: Leiden Institute of Advanced Computer Science, Leiden University, 2333 CA Leiden, The
Netherlands.

Email addresses: o.u.lenz@liacs.leidenuniv.nl (Oliver Urs Lenz), henri.bollaert@ugent.be (Henri Bollaert),
chris.cornelis@ugent.be (Chris Cornelis)

more convenient to focus these efforts on the value k, and set the other hyperparameters to values that are
known to be good enough. To aid this approach, it would be useful to have an idea which choices generally
perform better than others.

Building on the traditional form of (weighted) NN described above, some authors have proposed further-
reaching modifications that incorporate fuzzy set theory: fuzzy nearest neighbours (FNN) [20] and fuzzy
rough nearest neighbours (FRNN) [21]. FNN operates in a similar way to NN, but uses fuzzified class
membership degrees of training records, while FRNN models each decision class as a fuzzy set, and calculates
the membership degrees of a test record in these fuzzy sets. Like NN, these algorithms require a choice of
distance measure, scale, number of neighbours k and weighting scheme.

While there has been no shortage of new ideas for NN variants, it remains largely unclear which proposals
work better in practice. The goal of this paper is to address this. Concretely, our contributions are the
following:

• We present a comprehensive overview of the different weighting proposals for NN, FNN and FRNN in
the literature.

• We establish a common weighting framework in terms of kernel functions that unifies these proposals.

• In particular, we prove that the theoretically optimal rank-weights identified by Samworth [22] converge
to a specific kernel function as k increases.

• We show that kernel functions are closely related to fuzzy negation operators. In particular, the
weights proposed by Gou et al. [23] correspond to Sugeno negation. Inspired by this, we propose our
own weighting kernel based on Yager negation, which has a distinct contour from existing weighting
proposals.

• We introduce the concept of the Minkowski p-radius rp of a dataset, and show that r2 and r∞ are,
respectively, the standard deviation and the half-range, two commonly used measures of dispersion.
We propose that r1, the mean absolute deviation around the median, should also be considered as a
scaling measure, in particular because it is less sensitive to outliers.

• We conduct a large-scale experiment on 85 real-life classification datasets, comparing distance and
scaling measures and weighting kernels. To the best of our knowledge, this is the first large-scale
evaluation of all NN weighting proposals, and the first direct comparison of FRNN with NN and FNN.

In Section 2, we present an overview of the literature on nearest neighbour classification variants. Next,
we present our own proposals in Section 3. We then describe our experimental setup (Section 4) and present
the results (Section 5), before concluding (Section 6).

2. Background

In this section, we briefly review the existing literature on nearest neighbour weighting, as well as previous
experimental comparisons.

2.1. Weighted nearest neighbour classification
In the early literature, nearest neighbour prediction (Fig. 1) arose as a form of non-parametric (or

distribution-free) statistical estimation, and was generally referred to as such. It was first formally presented
in 1951 for classification, by Fix & Hodges [1]. The idea to weigh the contribution of neighbours differently
was initially proposed for regression, perhaps first by Watson [24], Royall [25] and Shepard [26]. This was
inspired by an earlier idea to estimate the value of a density function in a point as a weighted sum, with
weights corresponding inversely to the distances to the sample observations [27]. Dudani [28, 29] appears to
have been the first to propose weighted nearest neighbours for classification.

We can formally define weighted nearest neighbour classification as follows. Let d be a distance measure
and k a positive integer, then the score for a decision class C and a test record y is:

2

?

Figure 1: Illustration of NN classification with k = 3. The class scores of a test record are calculated on the basis of its k
nearest training records.

∑
i≤k|xi∈C

si

/∑
i≤k

si , (1)

where xi is the ith nearest neighbour of y in the training set X (according to d), and si the weighted vote
assigned to xi, which remains to be defined. In practice, all proposals define si in terms of the distance
di between y and xi and/or the rank i. We will refer to these strategies as, respectively, distance- and
rank-weighting. We recover classical unweighted nearest neighbour classification by choosing constant si,
e.g. si = 1.

For rank-weighting, there have been proposals that let the weights depend linearly on the rank [25,
28, 29, 30], quadratically [30, 31], reciprocally linearly [32], and according to the Fibonacci sequence [33].
Relatively recently, Samworth [22] has established theoretically optimal weights:

si =
1

k

(
1 +

m

2
− m

2k
2
m

(
i1+

2
m − (i− 1)1+

2
m

))
, (2)

where m is the dimensionality of the attribute space.
Proposals for distance-weighting have included weights that depend linearly on distance [24, 28, 29],

reciprocally linearly [28, 29] and reciprocally quadratically [26]. Inspired by the work of Shepard [34], Zavrel
[35] has proposed Laplacian weights of the form e−di .

The linear distance-weights given by Dudani [28, 29] take the following form:

si =

dk − di
dk − d1

k > 1;

1 k = 1.

(3)

For these weights, Dudani demonstrated a lower classification error than unweighted NN on a synthetic
dataset. However, Bailey and Jain [36] subsequently showed that this was due to the fact that Dudani had
counted all ties as errors, and that when these are resolved instead (e.g. by randomly choosing a class), the

3

performance of weighted and unweighted NN was similar on the synthetic dataset. Moreover, Bailey and
Jain also proved that the asymptotic classification error of unweighted NN is minimal among all possible
weighted variants of NN. This in turn elicited a response by Macleod et al. [37], who argued that there exist
finite classification problems where some distance-weighted variants of NN do have lower error. In order
to demonstrate this, they used the following modified weights, which address the fact that in (3), the kth
weight is always 0 (if k > 1):

si =

dk − di + dk − d1

2(dk − d1)
k > 1;

1 k = 1.

Another modification of Dudani’s linear weights was proposed by Gou et al. [23]:

si =
dk − di
dk − d1

· dk + d1
dk + di

Finally, Gou et al. [32] have proposed a weighting scheme that combines the linear distance-weights of
Dudani with reciprocal rank-weights:

si =
dk − di
dk − d1

· 1
i

2.2. Kernel weighting
Nearest neighbour prediction is closely related to another form of non-parametric estimation, in which

the prediction for a test record is a weighted sum of training values (e.g. [38]). The weights are determined
by a so-called kernel function that is applied to the distances between the test record and the training
records. By choosing a decreasing kernel function, nearby training records receive greater weight, and by
choosing a kernel function with finite support, the prediction is effectively limited to neighbours within a
fixed distance, although the number of neighbours will generally vary for different test records.

There have been several proposals to extend the use of kernel functions to nearest neighbour-weighting.
A very early proposal by Royall [25] applies a linear (or triangular) kernel to the scaled rank i

k , while Altman
[31] suggests the use of a quadratic kernel. Both Wilson & Martinez [39, 40] and Hechenbichler & Schliep
[41] apply kernel functions to nearest neighbour distances, rescaled to values in [0, 1] by dividing by the kth
distance. In addition to constant and linear kernels, Wilson & Martinez use Laplacian and Gaussian kernels,
while Hechenbichler & Schliep consider a biquadratic kernel a 7→ 15

16 (1− a2)2.

2.3. Fuzzy nearest neighbour classification
There have been many proposals to modify nearest neighbour classification with fuzzy set theory [42].

The most prominent of these is the fuzzy nearest neighbours (FNN) classifier (Fig. 2) of Keller et al. [20].
It defines the membership of a test record y in the decision class C as

∑
i≤k

ui · 1/d2/(q−1)
i

/∑
i≤k

1/d
2/(q−1)
i , (4)

for a choice of q > 1, where di is the distance between y and its ith nearest neighbour xi, and ui is the class
membership of xi in C. Keller et al. proposed two different options for ui. Either ui can be chosen to be
the crisp class membership of xi in C, or it can be fuzzified as follows:

ui =

{
0.51 + 0.49 · nC(xi)/k if xi ∈ C;

0.49 · nC(xi)/k if xi /∈ C;
, (5)

where nC(xi) is the number of neighbours of xi that belong to C, from among its k nearest neighbours.
The original motivation for FNN given by Keller et al. was twofold. Firstly, by providing class scores

(4) rather than a crisp prediction that the test record y belongs to one class or another, FNN expresses

4

?

Figure 2: Illustration of FNN classification with k = 3. The class scores of a test record are calculated on the basis of its k
nearest training records, whose class memberships are first fuzzified on the basis of their own k nearest training records.

the ‘strength’ of its class membership. Secondly, FNN lets the contribution of the nearest neighbours of y
depend both on their distance to y and, when using the fuzzified class membership (5), on how ‘typical’ they
are for a given decision class. However, the ability to provide class scores does not actually set it apart from
classical NN (1). Likewise, we saw in Subsection 2 that there is a long tradition of letting the predictions of
NN depend on the distance of the neighbours of y. In Subsection 3.4, we will further analyse how FNN is
related to NN.

2.4. Fuzzy rough nearest neighbour classification
A more fundamentally different proposal has come in the form of fuzzy rough nearest neighbour (FRNN)

classification (Fig. 3), originally proposed by Jensen & Cornelis [21]. This is based on fuzzy rough sets
[43], a fuzzified variant of rough sets [44]. For each decision class C, we define two fuzzy sets, its upper
approximation C and its lower approximation C, as well as their mean, and the membership of a test record
y in any one of these can be used as a class score. A weighted variant of fuzzy rough sets was first introduced
by Cornelis et al. [45], and we use here the updated formulation of FRNN presented in [18].

Let d be a distance measure and k a positive integer, then the membership of a test record y in C and
C is defined, as, respectively:

C(y) :=
∑
i≤k

wi · (1− d+i)/
∑
i≤k

wi;

C(y) :=
∑
i≤k

wi · d−i /
∑
i≤k

wi,

where d+i and d−i are the ith nearest neighbour distance of y in, respectively, C and X \ C, and wi is a
weight which depends on the rank i and which remains to be defined.

Previous proposals for w have included weight vectors that are constant [45] or that depend linearly [46],
reciprocally [47] or exponentially [45] on the rank i (see [48] for an overview).

5

?

Figure 3: Illustration of FRNN classification with k = 3. The class scores of a test record are calculated on the basis of its
k nearest training records within each decision class (upper approximation) as well as its k nearest training records in the
complement of each decision class (lower approximation).

FRNN was originally proposed by Jensen & Cornelis [21] in reaction to a previous proposal by Sarkar
[49] to modify FNN with a so-called fuzzy rough ownership function. In contrast to the proposal by Sarkar,
FRNN is not a modification of FNN, but uses the core concepts of the upper and lower approximation from
fuzzy rough set theory to obtain classification scores. However, a common motivation for both proposals
is the observation (originally by Sarkar) that the class membership values produced by FNN automatically
sum to one, and that it therefore cannot identify situations where we do not have enough information to
make a reliable prediction for the test record y, i.e. when y doesn’t particularly resemble any of the training
records. In such a situation, FRNN predicts low upper approximation values and high lower approximation
values for all decision classes.

2.5. Previous experiments
Despite the extensive literature on NN classification, there have only been a small number of experimental

evaluations of weights and distances.
Working with 18 synthetic and real-life datasets, Wettschereck [50] found that reciprocally linear distance-

weights clearly outperform unweighted NN for Euclidean distance, and that there is no clear difference
between Euclidean and Boscovich distance. Zavrel [35], using cosine distance, additionally considered linear
and Laplacian weights, but only linear weights clearly outperformed unweighted NN. Hechenbichler & Schliep
[41] only evaluated linear and biquadratic weights, on a small number of datasets, without drawing any firm
conclusions. However, we note that they appear to obtain generally better results for Boscovich than for
Euclidean distance. Gou et al. [23], using Euclidean distance, found that their proposal outperforms both
unweighted NN and linear distance-weights on twelve real-life datasets. Finally, the weights proposed by
Gou et al. [23] also came out on top, along with linear and reciprocally quadratic distance-weights, in the
extensive evaluations of time series classification conducted by Geler et al. [51, 52].

6

Table 1: Kernel functions f , with a ∈ [0, 1], λ ∈ (−1,∞), p ∈ (0,∞), and m the number of features.

Name f(a) Used in

Fuzzy negations

Linear 1− a [24, 25, 28, 30, 39, 41, 46]

Quadratic 1− a2 [30, 31]

Biquadratic (1− a2)2 [41]

Samworth 1− a
2
m [22]

Sugeno-λ 1−a
1+λ·a [23]

Yager-p (1− ap)
1
p

Other proper kernels

Constant 1 [1, 39, 41, 45]

Laplace e−a [35, 39]

Gauss e−a2/2 [39]

Improper kernels

Reciprocally linear 1
a

[28, 20, 32, 47]

Reciprocally quadratic 1
a2 [26, 20]

3. Proposals

In this section, we will discuss our novel proposals. These include a universal framework for nearest
neighbour weighting for both NN and FRNN, a new weight type inspired by fuzzy Yager negation, an
analysis of FNN, and a characterisation of scaling measures that relates them to distance measures.

3.1. Kernels
In order to make nearest neighbour weighting easier to evaluate, we adopt a standardised representation

based on kernel functions, inspired by the proposals discussed in Subsection 2.2.
The term kernel is used in various contexts for several related but distinct concepts. The type of kernel

that we are interested in, from the statistical and signal processing literature, is a function on the real line
that is symmetric around 0 as well as maximal around 0, such that it can be used to amplify values around
0 through multiplication. When such a kernel function has finite support, e.g. on [−1, 1], it can be used
more specifically as a window function to filter out all values outside this range.

In the context of nearest neighbour weighting, all ranks and distance values are non-negative, and the
weights are distributed over a finite range, limited by the kth rank or nearest neighbour distance. Therefore,
all weight types that we will consider can be covered by the following more restricted definition of a kernel:

Definition 1. A (proper) kernel is a decreasing function f : [0, 1] −→ R≥0. A normalised kernel is a kernel
with f(0) = 1. An improper kernel is a decreasing function f : (0, 1] −→ R≥0 with lima→0 f(a) = ∞. For a
proper or improper kernel f , we write fk

i = f(i
k+1).

Note that any proper kernel can be normalised through division by f(0), such that f(0) = 1 and the
range of f becomes [0, 1]. An improper kernel is improper precisely because it cannot be normalised in this
way.

7

0.0 0.2 0.4 0.6 0.8 1.0
a

Kernel
Constant
Linear
Quadratic
Biquadratic
Laplace
Gauss

0.0 0.2 0.4 0.6 0.8 1.0
a

Samworth kernel

Dimensionality (m)
1
2
4
8
256

0.0 0.2 0.4 0.6 0.8 1.0
a

Sugeno kernel

-0.75
-0.5
0
1
2

0.0 0.2 0.4 0.6 0.8 1.0
a

Yager kernel

p
4
2
1
0.5
0.25

Figure 4: Proper kernel functions, expressed in terms of a ∈ [0, 1]. In order to visualise the different weight that they place
on smaller and larger values, we have rescaled each kernel by a constant, such that each kernel covers the same area on the
interval [0, 1]. As the resulting absolute values are essentially arbitrary, we have deliberately left the vertical axis unmarked.

8

A distinct concept from fuzzy set theory is that of a fuzzy negation (or fuzzy complement) [53], which
generalises the ordinary negation from classical logic that sends 0 to 1 and 1 to 0:

Definition 2. A fuzzy negation is a decreasing function f : [0, 1] −→ [0, 1] with f(0) = 1 and f(1) = 0.

While these two concepts have different origins, we see that a fuzzy negation is in fact the same thing
as a normalised kernel f which satisfies f(1) = 0. Conversely, we can view proper and improper kernels as
a loose form of fuzzy negation. This correspondence allows us to interpret the effect of applying a kernel
not just as placing greater weight on the contribution of nearby neighbours, but also as converting distance
values into similarity values.

In the following subsections, we will redefine NN and FRNN classification in terms of kernel functions.
The kernels used in this paper are listed in Table 1 and the proper kernels are visualised in Fig. 4.

3.2. NN
Using the definition of a kernel function allows us to state the following generalised definition for weighted

nearest neighbour classification:

Definition 3. Let d be a distance measure, k a positive integer, and w and s choices of kernel functions.
Then the score for a decision class C and a test record y is:

∑
i≤k|xi∈C

wk
i · s(d∗i)

/∑
i≤k

wk
i · s(d∗i)

 ,

where xi is the ith nearest neighbour of y in the training set X (as determined by d), di the corresponding
distance and d∗i := di/dk.

We adopt the following conventions to resolve specific edge cases:

• If dk = 0 (and therefore di = 0 for all i ≤ k), we stipulate d∗i := di = 0.

• If d1 = dk (and therefore d∗i = 1 for all i ≤ k) and if s(1) = 0, we stipulate s(d∗i) := 1 for all i.

• If s is an improper kernel, and d∗i = 0 for some i, we stipulate s(d∗i) := 1 for all such i and s(d∗i) := 0
for all other i.

When w is constant, we recover NN with distance-weights, when s is constant, we recover NN with
rank-weights, and when both w and s are constant, we recover unweighted NN. In addition, in all three
edge cases listed above, we also effectively revert to performing unweighted classification with (part of) the
nearest neighbours of y.

We will now show how this incorporates existing weighting proposals. Firstly, note that both in the
original equation for NN (1), and in (3), we rescale each class score by the total sum of the weights.
Therefore, we do not require that weights sum to 1. Moreover, multiplying all weights by a positive constant
produces identical class scores. We will use the proportionality symbol ∝ to indicate that two sets of weights
only differ by a positive constant factor. Thus, the linear distance-weights proposed by Dudani [28] can be
simplified as follows:

si =
dk − di
dk − d1

∝ dk − di
dk − d1

· dk − d1
dk

= 1− d∗i .

We see that Dudani’s linear weights are equivalent to applying a linear (or triangular) kernel in our revised
definition. In fuzzy set theory, this is the original fuzzy negation introduced by both Łukasiewicz [54] and
Zadeh [55].

9

In a similar way, we can simplify the weight types proposed by Gou et al. [23]:

si =
dk − di
dk − d1

· dk + d1
dk + di

∝ dk − di
dk − d1

· dk + d1
dk + di

· dk − d1
dk + d1

· 1

dk

=
1− d∗i
1 + d∗i

.

(6)

We will call this the Sugeno-1 kernel, because it is in fact an instance of fuzzy Sugeno negation [56], with
λ = 1:

a 7−→ 1− a

1 + λa

Weights that depend reciprocally linearly or reciprocally quadratically on nearest neighbour distance
result from a straightforward application of an improper kernel, since, respectively,

si =
1

di
∝ dk

di
=

1

d∗i
,

and

si =
1

d2i
∝ d2k

d2i
=

1

(d∗i)
2 .

We can also simplify the weight types proposed by Macleod et al. [37]:

si =
dk − di + dk − d1

2(dk − d1)

∝ dk − di + dk − d1
2(dk − d1)

· 2(dk − d1)

dk

= 2− d∗i − d∗1.

However, the resulting function still depends on d1. That means that we can use this function to calculate
distance-weights, but it does not generalise to a kernel that we could also apply to rank-weights.

The only remaining distance-weights that cannot be rewritten into a kernel function are the Laplace
weights e−di proposed in [35]. Note that these are not homogeneous, i.e. the weighting depends on the
absolute scale of the distances, which is arguably undesirable. However, we can consider the Laplace kernel
e−d∗

i .
Similarly, most types of rank-weights proposed in the literature can be obtained by applying a kernel

function to i
k+1 . For the Samworth weights, if we fix a particular value k > 0, and write h = 1

k+1 (for
reasons of space), we can define the following kernel function fk such that fk(i

k+1) is the ith weight as in
(2):

fk(a) =
1

k

(
1 +

m

2
− m

2k
2
m

(
(a/h)1+

2
m − (a/h− 1)1+

2
m

))
.

fk is proportional to 2k
m+2 · fk, and we have the following lemma:

Lemma 1.
lim
k→∞

2k

m+ 2
· fk = 1− a

2
m .

10

Proof.

lim
k→∞

2k

m+ 2
· fk

= lim
k→∞

1− m

m+ 2
· 1

k
2
m

(
(a/h)1+

2
m − (a/h− 1)1+

2
m

)
= 1− m

m+ 2
· lim
k→∞

(a/h)1+
2
m − (a/h− 1)1+

2
m

k
2
m

= 1− m

m+ 2
· lim
k→∞

h1+ 2
m

h1+ 2
m

(a/h)1+
2
m − (a/h− 1)1+

2
m

k
2
m

= 1− m

m+ 2
· lim
k→∞

a1+
2
m − (a− h)1+

2
m

h · k2/m

(k+1)2/m

= 1− m

m+ 2
· lim
h→0

a1+
2
m − (a− h)1+

2
m

h

= 1− m

m+ 2
·
(
1 +

2

m

)
a

2
m (*)

= 1− a
2
m ,

where (∗) is the polynomial rule for derivation.

Accordingly, we call 1− a
2
m the Samworth kernel.

The only rank-weights that can not be obtained by applying a kernel function are the Fibonacci weights
from [33], because their relative distribution depends on k.

By reformulating both distance-weights and rank-weights in terms of a kernel function, we obtain a single
unique way to characterise all the different weight types. In addition, this representation makes it clear that
we could also choose to apply e.g. the Sugeno-1 kernel to obtain rank-weights, or the Samworth kernel to
obtain distance-weights, even though they were originally proposed for, respectively, distance-weights and
rank-weights. Furthermore, we could choose to apply both rank- and distance-weights at the same time, as
in the proposal by Gou et al. [32], which can be realised by combining a reciprocally linear rank-kernel and
a linear distance-kernel.

3.3. Yager weights
In the previous section we found that two weighting proposals from the literature correspond, respectively,

to classical and Sugeno negation. There is a third type of fuzzy negation that is frequently encountered in
the literature, with the following form:

a 7−→ (1− ap)
1
p ,

for some p > 0. This is generally known as Yager negation, because it was proposed by Higashi & Klir [53]
to accompany other operators introduced by Yager [57].

Just like classical and Sugeno negation, Yager negation can be used for nearest neighbour weighting.
Specifically, we propose to use Yager negation with p = 1

2 , because the resulting contour is quite different
from that of the existing weighting proposals, except the Samworth kernel for larger values of m (Fig. 4).

3.4. FNN
Recall that in the original proposal of FNN (Subsection 2.3), there were two possible values for ui. When

ui is chosen crisply, (4) simplifies to

∑
i≤k|xi∈C

1/d
2/(q−1)
i

/∑
i≤k

1/d
2/(q−1)
i .

11

In other words, FNN becomes equivalent to NN classification (1), with

si = 1/d
2

q−1

j ,

for some q > 1. When q = 3 and q = 2, we obtain, respectively, reciprocally linear and reciprocally quadratic
distance-weights.

Therefore, we will continue with the fuzzy variant of ui (5). In that case, (4) becomes:

∑
i≤k

ui · si

/∑
i≤k

si

=

 ∑
i≤k|xi∈C

0.51 · si +
∑
i≤k

0.49 · nC(xi)/k · si

/∑
i≤k

si

= 0.51 ·
∑

i≤k|xi∈C

si

/∑
i≤k

si + 0.49 ·
∑
i≤k

nC(xi)/k · si

/∑
i≤k

si

Thus, in this variant, the FNN class score is the weighted average of two components. The first component
is, again, NN, while the second component is NN with fuzzified class membership. This second component
can be rewritten as:

∑
i≤k

nC(xi)/k · si

/∑
i≤k

si

=
1

k

∑
i,j≤k|xij∈C

si

/∑
i≤k

si

where xij is the jth neighbour of the ith neighbour of y. In effect, this is also NN, with class scores that
are on the one hand diluted (being based not just on the class scores of the k nearest neighbours of y, but
also on the class scores of their k nearest neighbours) and on the other hand concentrated (because nearby
neighbours will more frequently appear as neighbours of neighbours). The net effect of this on classification
performance remains to be evaluated experimentally, but it is hard to see how this reduces the influence of
‘atypical’ training records, the original stated motivation for FNN.

3.5. FRNN
The upper and lower approximations of FRNN can similarly be rewritten using kernel functions:

Definition 4. Let d be a distance measure and k a positive integer, w a choice of kernel function and s a
choice of fuzzy negation. Then the score for a decision class C and a test record y is:

C(y) :=
∑
i≤k

wk
i · s(min(d+i /d

+
∗ , 1))

/∑
i≤k

wk
i ;

C(y) :=
∑
i≤k

wk
i · (1− s(min(d−i /d

−
∗ , 1)))

/∑
i≤k

wk
i ,

where d+i and d−i are the ith nearest neighbour distance of y in, respectively, C and X \ C, and d+∗ and d−∗
are to be defined.

d+∗ and d−∗ determine cutoff values — all larger distances are mapped to the minimum degree of similarity,
typically 0. These cutoff values have to be constant across decision classes and test records, to allow for a

12

Table 2: Real-life Classification Datasets from the UCI Repository for Machine Learning. n: number of records; c: number of
classes; m: number of attributes; IR: imbalance ratio.

Dataset n c m IR Dataset n c m IR

accent 329 6 12 2.5 mfeat 2000 10 649 1.0
acoustic-features 400 4 50 1.0 miniboone 130 064 2 50 2.6
ai4i2020 10 000 2 6 28.5 new-thyroid 215 3 5 3.5
alcohol 125 5 12 1.0 oral-toxicity 8992 2 1024 11.1
androgen-receptor 1687 2 1024 7.5 page-blocks 5473 5 10 31.6
avila 20 867 12 10 38.7 phishing-websites 11 055 2 30 1.3
banknote 1372 2 4 1.2 plrx 182 2 12 2.5
bioaccumulation 779 3 9 4.3 pop-failures 540 2 18 10.7
biodeg 1055 2 41 2.0 post-operative 87 2 8 2.6
breasttissue 106 6 9 1.3 qualitative-bankruptcy 250 2 6 1.3
ca-cervix 72 2 19 2.4 raisin 900 2 7 1.0
caesarian 80 2 5 1.4 rejafada 1996 2 6824 1.0
ceramic 37 4 34 1.4 rice 3810 2 7 1.3
cmc 1473 3 9 1.6 seeds 210 3 7 1.0
codon-usage 13 011 20 64 25.5 segment 2310 7 19 1.0
coimbra 116 2 9 1.2 seismic-bumps 2584 2 18 14.2
column 310 3 6 1.9 sensorless 58 509 11 48 1.0
debrecen 1151 2 19 1.1 sepsis-survival 110 204 2 3 12.6
dermatology 358 6 34 2.2 shuttle 58 000 7 9 560.8
diabetes-risk 520 2 16 1.6 skin 245 057 2 3 3.8
divorce 170 2 54 1.0 somerville 143 2 6 1.2
dry-bean 13 611 7 16 2.3 sonar 208 2 60 1.1
ecoli 332 6 7 6.3 south-german-credit 1000 2 20 2.3
electrical-grid 10 000 2 12 1.8 spambase 4601 2 57 1.5
faults 1941 7 27 3.9 spectf 267 2 44 3.9
fertility 100 2 9 7.3 sportsarticles 1000 2 59 1.7
flowmeters 361 4 44 1.7 sta-dyn-lab 6248 2 244 9.5
forest-types 523 4 9 1.8 tcga-pancan-hiseq 801 5 20 531 1.9
gender-gap 3145 2 15 7.9 thoraric-surgery 470 2 16 5.7
glass 214 6 9 3.6 transfusion 748 2 4 3.2
haberman 306 2 3 2.8 tuandromd 4464 2 241 4.0
hcv 589 2 12 9.5 urban-land-cover 675 9 147 2.2
heart-failure 299 2 12 2.1 vehicle 846 4 18 1.1
house-votes-84 435 2 16 1.6 warts 180 2 8 2.0
htru2 17 898 2 8 9.9 waveform 5000 3 21 1.0
ilpd 579 2 10 2.5 wdbc 569 2 30 1.7
ionosphere 351 2 34 1.8 wifi 2000 4 7 1.0
iris 150 3 4 1.0 wilt 4839 2 5 17.5
landsat 6435 6 36 1.7 wine 178 3 13 1.3
leaf 340 30 14 1.2 wisconsin 683 2 9 1.9
letter 20 000 26 16 1.0 wpbc 138 2 32 3.9
lrs 527 7 100 12.6 yeast 1484 10 8 11.6
magic 19 020 2 10 1.8

13

proper comparison of class scores. If we choose values that are too small, min(d+i /d
+
∗ , 1) and min(d−i /d

−
∗ , 1)

become equal to 1 for many test records and many values of i, and we lose information. If we choose values
that are too large, min(d+i /d

+
∗ , 1) and min(d−i /d

−
∗ , 1) are generally close to 0, and we do not make full use

of the profile of the kernel s. Therefore, as a compromise, we calculate d+k and d−k of all training records,
for all decision classes, and take d+∗ and d−∗ to be the respective maxima of these values.

Note that unlike NN, FRNN cannot be used with constant distance-weights, because this would equalise
all class scores. Instead, the default choice is linear distance-weights, in which case the double negation
(1−s(di)) in the lower approximation simplifies to di. In addition, the exponentially decreasing rank-weights
that have occasionally been proposed in the literature have a very limited usefulness, as the contribution of
each additional value quickly becomes insignificant, and, eventually, impossible to compute.

3.6. Distance and scaling measures
Three distance measures that are frequently used with nearest neighbour classification are Euclidean,

Boscovich (or city-block) and Chebyshev (or maximum) distance. These can be viewed, respectively, as the
special cases p = 2, p = 1 and p → ∞ of the Minkowski p-distance between two points x, y ∈ Rm (for some
m ≥ 1):

|y − x|p :=

∑
i≤m

|yi − xi|p
 1

p

.

In order to obtain a comparable contribution from all attributes, these must be rescaled to a common
scale. This can be done by taking a measure of dispersion, and dividing each attribute by this measure, such
that it becomes 1 for each attribute. Two common choices are the standard deviation and the half-range
of each attribute. These can be linked to the concept of Minkowski p-distance by defining the Minkowski
p-centre and p-radius of a dataset:

Definition 5. Let X = (x1, x2, . . . , xn) be a univariate real-valued dataset. The Minkowski p-radius rp of
X is defined as:

rp(X) := min
z∈R

 1

n

∑
i≤n

|xi − z|p
 1

p

,

while the Minkowski p-centre of X is the corresponding minimising value for z (not necessarily unique for
p ≤ 1).

The standard deviation and half-range of a dataset are r2 and r∞, while the corresponding 2-centre
and ∞-centre of a dataset are its mean and its midrange. The 1-centre of a dataset is its median, and the
corresponding measure of dispersion r1 that it minimises is the mean absolute deviation around the median.
Thus, r1 is another measure of dispersion that we can use to scale attributes with.

A potential advantage of r1-scaling over r2-scaling is its reduced sensitivity to outliers, as r1 only depends
linearly on outliers, rather than quadratically like r2. In turn, both measures are much less sensitive to
outliers than r∞, which is completely determined by the most extreme outlier. An alternative way to obtain
a measure of dispersion that is less sensitive to outliers is to explicitly ignore peripheral values. Specifically,
we will consider the semi-interquartile range r∗∞, which is the half-range of the central 50% of all values.

4. Experimental setup

To evaluate NN, FNN and FRNN classification, we will use 85 numerical real-life datasets from the
UCI repository for machine learning (Table 2). We perform 5-fold cross-validation, and calculate the mean
area under the receiver operating characteristic (AUROC) as a measure of the discriminative ability of each
classifier. For FRNN, this requires normalising class scores such that they sum to 1. To compare two

14

alternatives, we calculate the p-value from a one-sided Wilcoxon signed-rank test. Where appropriate, we
also apply the Holm-Bonferroni method [58] to correct for family-wise error.

For all of NN, FNN and FRNN, we optimise k through leave-one-out validation, evaluating all values up
to a certain value kmax. For FRNN, we also choose between the upper, lower or mean approximation based
on validation AUROC.

Determining the best validation procedure for hyperparameter selection is a surprisingly complex issue.
As estimators of the test set score, validation procedures suffer from both bias and variance. Compared
to e.g. 10-fold cross-validation, leave-one-out validation has lower bias, but can have higher variance when
the model is unstable [59], which depends on the classification procedure, the evaluation measure and the
structure of the dataset, in particular the amount of outliers [60]. Complicating things further, a validation
procedure that is worse for estimating prediction performance can still, somewhat counter-intuitively, be
better for selecting the optimal hyperparameter values, and vice-versa [59].

In our case, there are three particular reasons that justify the use of leave-one-out validation. Firstly,
nearest neighbour classification is very stable [61]. Secondly, the optimal value of the hyperparameter that
we optimise (k) is likely influenced by the dataset size, so it is advantageous that the internal training set
size of leave-one-out validation (n − 1) is nearly the same as that of the full training set (n). And thirdly,
leave-one-out validation can be performed very efficiently for nearest neighbour algorithms, by executing
a single (k + 1)-nearest neighbour query on the training set and deleting every match between a training
record and itself.

In addition to the use of leave-one-out validation, there is a second reason why k can be optimised very
efficiently: we do not need to perform a new nearest neighbour query for every value of k that we want
to evaluate. Instead, we only need to perform a single kmax-nearest neighbour query, after which we can
evaluate all values of k from kmax to 1 by iteratively deleting all (k + 1)-nearest neighbour distances.

Because larger datasets may require larger values of k, we let kmax depend logarithmically on the training
set size n. In order to ensure high model quality, we set kmax = 100 log n. For our largest dataset, skin, this
means that kmax = 1219 in each fold.

5. Results

In this section, we will present the results of our experiments. To start with, we will evaluate distance
measures, scaling measures and weight types, but restrict ourselves to the weight types that have previously
been proposed in the literature. We will then ask whether these results can be further improved upon by
using the Yager- 12 weights that we have proposed.

5.1. NN
We first consider the effect of the distance on classification performance. We find that for all types of

scaling and all weight types, Boscovich distance leads to significantly better performance than Euclidean
(p < 0.0031) and Chebyshev (p < 2.0 · 10−9) distance. For this reason, we will only consider Boscovich
distance for the rest of our analysis.

Next, we have a look at the different kernels. First we compare using each kernel for distance-weights
versus rank-weights, for each type of scaling. With three exceptions, we find that distance-weights lead
to significantly better classification performance than rank-weights (p < 0.0019). The exceptions are the
reciprocal and Laplace kernels, for which the difference is not or only weakly significant and to which
we return below, as well as the Gaussian kernel, for which the difference is only weakly significant with
r∞-scaling (p = 0.26).

Among the distance-weights, the Samworth kernel significantly outperforms all other kernels (Table 3),
with three exceptions. The difference with respect to the biquadratic and reciprocally quadratic kernel is
only weakly significant with, respectively, r2- and r∗∞-scaling. Moreover, with r∞-scaling, the biquadratic
kernel is actually slightly better than the Samworth kernel on our data, but we will see below that r∞-scaling
is suboptimal. Finally, we also find that Samworth distance-weights outperform reciprocal (p < 0.0048) and
Laplace (p < 6.2 · 10−6) rank-weights across scaling measures.

15

Table 3: One-sided p-values, Samworth distance-weights vs other distance-weights, for NN with Boscovich distance, in terms
of AUROC. Holm-Bonferroni family-wise error correction applied to each column.

Samworth vs. . . Scaling
r1 r2 r∞ r∗∞

Constant < 0.0001 < 0.0001 < 0.0001 < 0.0001
Quadratic 0.00051 0.00016 < 0.0001 < 0.0001
Gauss < 0.0001 < 0.0001 < 0.0001 < 0.0001
Laplace < 0.0001 < 0.0001 < 0.0001 < 0.0001
Linear 0.00016 0.00030 0.00048 < 0.0001
Macleod < 0.0001 < 0.0001 < 0.0001 < 0.0001
Biquadratic 0.014 0.11 0.71 0.042
Reciprocally linear 0.0012 0.00016 < 0.0001 < 0.0001
Reciprocally quadratic 0.038 0.020 0.046 0.059
Sugeno-1 0.0068 0.0036 0.029 0.00036

Table 4: One-sided p-values, various scalings vs r∞-scaling, for NN with Boscovich distance and Samworth distance- and
rank-weights, in terms of AUROC. Holm-Bonferroni family-wise error correction applied.

Test p

r2 vs r∞ 0.00044
r1 vs r∞ 0.023
r∗∞ vs r∞ 0.023

Samworth distance-weights also significantly outperform the combination of linear distance-weights and
reciprocal rank-weights proposed by Gou et al. [32] for all scaling types (p < 0.044) except r∞, where the
difference is only weakly significant (p = 0.13). However, our general formula for NN classification also
allows for other combinations. Indeed, we find that Samworth distance-weights are outperformed by the
combination of Samworth distance-weights and Samworth rank-weights (p < 0.040).

Finally, when we consider the different measures of dispersion that can be used to normalise a dataset
through rescaling, we find that r1, r2 and r∗∞ do not significantly outperform each other for the combination
of Samworth distance- and rank-weights, while they all outperform r∞ (Table 4). For other weight types,
we obtain comparable results.

5.2. FNN
For FNN, we consider reciprocally linear and reciprocally quadratic distance-weights, as well as Samworth

distance-weights and a combination of Samworth rank- and distance-weights, since we found in the previous
Subsection that these latter two perform well for classical NN.

As with NN, FNN performs significantly better with Boscovich distance than with either Euclidean
(p < 0.025) or Chebyshev (p < 8.3 · 10−7) distance.

Unlike NN, it is not clear that Samworth distance-weights perform better than reciprocally linear or
reciprocally quadratic weights (Table 5). Furthermore, the combination of Samworth rank- and distance-
weights actually performs worse than Samworth distance-weights alone for r1 (p = 0.032) and r∞ (p =
0.000078) scaling, while for r2- and r∗∞-scaling, the difference is not significant. We have weak evidence that
with FNN, r1-scaling leads to better performance than r2-scaling, and that in turn both are preferable over
r∞- and r∗∞-scaling (Table 6).

5.3. FRNN
For FRNN, we evaluate the different types of rank-weights proposed in the literature, corresponding

to the constant, linear and reciprocal kernel, in combination with linear distance-weights. In addition, we
evaluate Samworth rank- and distance-weights, motivated by their excellent performance with NN.

16

Table 5: One-sided p-values, Samworth distance-weights vs other distance-weights, for FNN with Boscovich distance, in terms
of AUROC. Holm-Bonferroni family-wise error correction applied to each column.

Samworth vs. . . Scaling
r1 r2 r∞ r∗∞

Reciprocally linear 0.028 0.17 0.012 0.68
Reciprocally quadratic 0.34 0.32 0.18 0.69

Table 6: One-sided p-values, comparing the scaler in each row against the scaler in each column, for FNN with Boscovich
distance and Samworth distance-weights, in terms of AUROC. Holm-Bonferroni family-wise error correction applied to each
row.

r2 r∞ r∗∞

r1 0.19 0.14 0.14
r2 0.21 0.21
r∞ 0.98

Table 7: One-sided p-values, Samworth vs linear distance-weights, for FRNN with Boscovich distance and various rank-weights
and scalings.

Rank-kernel Scaling
r1 r2 r∞ r∗∞

Constant < 0.0001 < 0.0001 < 0.0001 < 0.0001
Linear < 0.0001 < 0.0001 < 0.0001 < 0.0001
Reciprocally linear 0.082 0.12 0.061 0.0061
Samworth 0.0012 0.00019 0.00043 < 0.0001

Table 8: One-sided p-values, Samworth rank-weights vs other rank-weights, for FRNN with Boscovich distance and Samworth
distance-weights. Holm-Bonferioni correction applied in each column.

Samworth vs. . . Scaling
r1 r2 r∞ r∗∞

Constant 0.18 0.0033 0.089 0.0048
Linear 0.18 0.074 0.73 0.32
Reciprocally linear 0.18 0.022 0.15 0.057

Table 9: One-sided p-values, various scalings vs r∞-scaling, for FRNN with Boscovich distance and Samworth distance- and
rank-weights, in terms of AUROC. Holm-Bonferroni family-wise error correction applied.

Test p

r2 vs r∞ 0.0078
r1 vs r∞ 0.060
r∗∞ vs r∞ 0.060

17

Table 10: One-sided p-values, NN vs FNN with Boscovich distance and various distance kernels and scalings, in terms of
AUROC.

Distance-kernel Scaling
r1 r2 r∞ r∗∞

Reciprocally linear < 0.0001 < 0.0001 < 0.0001 < 0.0001
Reciprocally quadratic < 0.0001 < 0.0001 < 0.0001 < 0.0001
Samworth < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 11: One-sided p-values, FRNN vs NN, Boscovich distance and Samworth rank- and distance-weights.

Scaling
r1 r2 r∞ r∗∞

0.021 0.0092 0.0052 0.049

Here we also find that Boscovich distance leads to higher AUROC than Euclidean (p < 0.00085) and
Chebyshev (p < 6.2 · 10−10) distance for all combinations of kernels and scaling measures.

The traditional choice for distance-weights is to use a linear kernel, but we find that the Samworth
kernel performs better, although the difference is only weakly significant in combination with reciprocal
rank-weights (Table 7).

Likewise, Samworth rank-weights appear to be the best choice, but the advantage over other kernels is
only weakly significant (Table 8).

As with NN, the measures of dispersion r1, r2 and r∗∞ do not significantly outperform each other, but
do outperform r∞, although even this latter fact is only weakly significant (Table 9).

5.4. NN vs FNN vs FRNN
In Subsection 5.2, we observed that FNN performs best on our data with Samworth distance-weights,

but that the difference with respect to reciprocally linear and reciprocally square distance-weights is not
significant for all scaling-types. However, when we compare FNN to NN, we find that for all three kernels,
NN performs significantly better (Table 10).

For both NN and FRNN, we obtained the best results with a combination of Samworth distance- and
rank-weights. When we compare NN and FRNN against each other, we find that FRNN performs better
(Table 11).

Table 12 lists the mean AUROC achieved with NN, FNN and FRNN for each dataset with r2-scaling
(the results are comparable for the other scaling types). Fig.5 illustrates the increase in performance for NN
and FRNN due to the various hyperparameter choices proposed in this paper.

5.5. Yager- 12 weights
Finally, we consider the results of the Yager- 12 kernel that we have proposed. When we equip NN with

both Yager- 12 distance- and rank-weights, this performs slightly better on our data than Samworth distance-
and rank-weights, but the difference is not significant (p < 0.25 across scaling measures). Interestingly, unlike
the Samworth kernel, the Yager- 12 kernel appears to perform about as well when only used for distance-
weights and when used for both distance- and rank-weights. Correspondingly, Yager- 12 distance-weights
perform significantly better than Samworth distance-weights (p < 0.0053). Thus the main advantage of
the Yager- 12 kernel is that it enables comparable performance as the Samworth kernel, but is easier to
implement, because it does not require the addition of rank-weights and because it is not dependent on the
dimensionality of the dataset.

In contrast, for FNN we obtain comparable performance between Samworth and Yager-12 distance-
weights with r1- or r2-scaling, and for FRNN we find that Samworth distance- and rank-weights still perform
significantly better than Yager- 12 distance- and rank-weights (p < 0.050 across scaling measures).

18

Table 12: Mean 5-fold cross-validation AUROC with Boscovich distance, r2-scaling and Samworth distance-weights (FNN) or
both Samworth distance- and rank-weights (NN, FRNN). Bold: highest value (before rounding).

dataset NN FNN FRNN dataset NN FNN FRNN

accent 0.976 0.973 0.971 mfeat 0.999 0.999 1.000
acoustic-features 0.930 0.921 0.938 miniboone 0.962 0.954 0.962
ai4i2020 0.957 0.911 0.954 new-thyroid 0.989 0.985 0.994
alcohol 1.000 1.000 1.000 oral-toxicity 0.888 0.871 0.878
androgen-receptor 0.855 0.847 0.867 page-blocks 0.975 0.966 0.982
avila 0.986 0.979 0.987 phishing-websites 0.996 0.994 0.994
banknote 1.000 1.000 1.000 plrx 0.479 0.442 0.496
bioaccumulation 0.741 0.733 0.755 pop-failures 0.947 0.949 0.941
biodeg 0.926 0.903 0.926 post-operative 0.476 0.478 0.479
breasttissue 0.932 0.902 0.921 qualitative-bankruptcy 1.000 0.995 1.000
ca-cervix 0.949 0.910 0.949 raisin 0.927 0.909 0.925
caesarian 0.708 0.708 0.685 rejafada 0.958 0.950 0.957
ceramic 0.758 0.765 0.800 rice 0.979 0.964 0.979
cmc 0.701 0.627 0.701 seeds 0.991 0.979 0.991
codon-usage 0.969 0.967 0.975 segment 0.998 0.997 0.998
coimbra 0.774 0.760 0.794 seismic-bumps 0.767 0.673 0.773
column 0.919 0.905 0.915 sensorless 1.000 0.999 1.000
debrecen 0.734 0.676 0.734 sepsis-survival 0.700 0.701 0.666
dermatology 0.999 0.998 0.999 shuttle 0.998 0.997 1.000
diabetes-risk 0.998 0.991 0.999 skin 1.000 1.000 1.000
divorce 1.000 1.000 1.000 somerville 0.595 0.561 0.614
dry-bean 0.996 0.994 0.994 sonar 0.959 0.927 0.961
ecoli 0.969 0.947 0.972 south-german-credit 0.789 0.756 0.794
electrical-grid 0.968 0.959 0.968 spambase 0.980 0.977 0.977
faults 0.959 0.950 0.962 spectf 0.841 0.837 0.852
fertility 0.687 0.763 0.647 sportsarticles 0.880 0.861 0.884
flowmeters 0.977 0.961 0.970 sta-dyn-lab 0.994 0.992 0.996
forest-types 0.969 0.958 0.974 tcga-pancan-hiseq 1.000 1.000 1.000
gender-gap 0.704 0.623 0.700 thoraric-surgery 0.624 0.545 0.630
glass 0.942 0.917 0.948 transfusion 0.725 0.689 0.747
haberman 0.681 0.633 0.709 tuandromd 0.997 0.998 0.999
hcv 0.993 0.992 0.994 urban-land-cover 0.973 0.968 0.974
heart-failure 0.867 0.863 0.863 vehicle 0.912 0.887 0.913
house-votes-84 0.984 0.979 0.983 warts 0.907 0.870 0.899
htru2 0.972 0.963 0.977 waveform 0.972 0.971 0.971
ilpd 0.727 0.675 0.734 wdbc 0.989 0.989 0.994
ionosphere 0.942 0.935 0.982 wifi 1.000 0.999 0.999
iris 0.997 0.998 0.997 wilt 0.962 0.940 0.974
landsat 0.990 0.987 0.989 wine 1.000 1.000 1.000
leaf 0.975 0.961 0.975 wisconsin 0.990 0.991 0.996
letter 0.999 0.999 0.999 wpbc 0.589 0.573 0.665
lrs 0.915 0.885 0.899 yeast 0.869 0.860 0.890
magic 0.916 0.893 0.923

19

NN FRNN

A B C D E F A B C D E F

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
RO

C

Figure 5: Violin plots of the distribution of AUROC scores across our selection of datasets, illustrating the cumulative benefit of
choosing optimal hyperparameter values. We start with A: choosing k = 1, Euclidean distance and r∞-scaling, and successively
change this by B: choosing k = 5 with constant weights (unweighted); C: setting k and the approximation type (for FRNN)
through leave-one-out validation; D: choosing Boscovich distance; E: choosing Samworth distance- and rank-weights; and F:
choosing r2-scaling. Dashed lines: median; dotted lines: first and third quartiles.

6. Conclusion

In this paper, we have provided a comprehensive overview of the different weighting variants of NN, FNN
and FRNN classification that have been proposed in the literature. We have proposed a uniform framework
for these proposals and conducted an evaluation on 85 real-life datasets. This allows us to draw the following
conclusions:

• Weighting can be expressed as the application of a kernel function to the distances and/or ranks of the
nearest neighbours of a test record — we have provided an overview of kernel functions that correspond
to existing weighting proposals in the literature.

• In particular, Samworth rank-weights, which have been shown to be theoretically optimal, converge
to a kernel function that depends on the dimensionality of the data, and that can also be applied to
obtain distance-weights.

• On real-life datasets, both NN and FRNN perform better with a combination of Samworth rank-
and distance-weights than with other weight types proposed in the literature, while FNN appears to
perform best with Samworth distance-weights and constant rank-weights.

• However, NN and FNN appear to perform equally well with Yager- 12 weights, a novel weight type
inspired by fuzzy Yager negation. For NN, the Yager-12 kernel offers two practical benefits over the
Samworth kernel: it only needs to be applied to obtain distance-weights (not rank-weights), and it
does not depend on the dimensionality of the dataset. For FRNN, Samworth weights still perform
better.

• Boscovich distance clearly outperforms Euclidean and Chebyshev distance, regardless of other hyper-
parameter choices.

20

• With Samworth and Yager- 12 weights, rescaling attributes by r1 (mean absolute deviation around the
median), r2 (standard deviation) or r∗∞ (semi-interquartile range) produces comparable results, while
these are all better than rescaling by r∞ (half-range).

• Our comparison between NN and FNN with identical distance-weights reveals that in practice, the
fuzzification of class membership degrees in FNN leads to systematically lower performance. In con-
trast, with its more fundamentally different approach, FRNN does generally outperform NN when both
are equipped with their best-performing weighting scheme (Samworth distance- and rank-weights).

We believe that these results serve as a useful baseline for future applications and research. For applica-
tions, we recommend the use of FRNN classification with Samworth rank- and distance-weights, Boscovich
distance, and any one of r1-, r2- or r∗∞-scaling, while k can be optimised through efficient leave-one-out
validation. With the classical NN algorithm, we recommend the same hyperparameter choices, except that
Yager- 12 distance-weights may be substituted and rank-weights omitted.

We suggest that future research should concentrate on identifying even better-performing kernel func-
tions. For this, the contours of the Samworth and Yager- 12 kernels may serve as a useful starting point. In
particular, we hope that in this way the following two questions may be answered:

• Should an optimal kernel depend on the dimensionality of the data? The good performance of the
Samworth kernel suggests that the answer is yes. However, we note that its profile is actually very
similar for typical dimensionalities of 4 ≤ m ≤ 256, so that its variation according to dimensionality
may be far less important than the basic outline of its profile. This is seemingly confirmed by the
relatively strong performance of the Yager- 12 kernel, which has a similar profile.

• For NN, do we need both distance- and rank-weights? The fact that Yager- 12 distance-weights alone
perform as well as a combination of Samworth distance- and rank-weights suggests that with the right
kernel, we can do away with rank-weights.

We hope that any future evaluations of competing proposals will be based on a similar collection of
real-life classification problems to the one that we have assembled, which we have made available for this
purpose.

CRediT authorship contribution statement

Oliver Urs Lenz: Conceptualisation, Software, Formal analysis, Investigation, Data Curation, Writing
— Original Draft. Henri Bollaert: Conceptualisation, Investigation, Writing — Review & editing. Chris
Cornelis: Writing — Review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Data availability

The datasets used in this paper can be downloaded from https://cwi.ugent.be/~oulenz/datasets/
lenz-2024-unified.tar.gz.

21

Acknowledgments

The research reported in this paper was conducted with the financial support of the Odysseus programme
of the Research Foundation – Flanders (FWO).

This publication is part of the project Digital Twin with project number P18-03 of the research pro-
gramme TTW Perspective, which is (partly) financed by the Dutch Research Council (NWO).

We thank Martine De Cock for raising the important question whether NN and FRNN weighting could
be unified, which sparked our inspiration for the present framework.

References

[1] E. Fix, J. Hodges, Jr, Discriminatory analysis — nonparametric discrimination: Consistency properties, Technical report
21-49-004, USAF School of Aviation Medicine, Randolph Field, Texas (1951).

[2] P. Cunningham, S. J. Delany, k-Nearest neighbour classifiers — A tutorial, ACM Comput. Surv. 54 (6), art. no. 128
(2021).

[3] G. James, D. Witten, T. Hastie, R. Tibshirani, J. Taylor, An Introduction to Statistical Learning: with Applications in
Python, Springer, Cham, 2023, pp. 36–39, 164–166.

[4] R. Arian, A. Hariri, A. Mehridehnavi, A. Fassihi, F. Ghasemi, Protein kinase inhibitors’ classification using K-Nearest
neighbor algorithm, Comput. Biol. Chemistry 86, art. no. 107269 (2020).

[5] N. Kour, S. Gupta, S. Arora, A vision-based clinical analysis for classification of knee osteoarthritis, Parkinson’s disease
and normal gait with severity based on k-nearest neighbour, Expert Syst. 39 (6), art. no. e12955 (2022).

[6] S. Shahrestani, A. K. Chan, E. F. Bisson, M. Bydon, S. D. Glassman, K. T. Foley, C. I. Shaffrey, E. A. Potts, M. E. Shaffrey,
D. Coric, J. J. Knightly, P. Park, M. Y. Wang, K.-M. Fu, J. R. Slotkin, A. L. Asher, M. S. Virk, G. D. Michalopoulos,
J. Guan, R. W. Haid, N. Agarwal, D. Chou, P. V. Mummaneni, Developing nonlinear k-nearest neighbors classification
algorithms to identify patients at high risk of increased length of hospital stay following spine surgery, Neurosurgical Focus
54 (6), art. no. E7 (2023).

[7] D. N. Cosenza, L. Korhonen, M. Maltamo, P. Packalen, J. L. Strunk, E. Næsset, T. Gobakken, P. Soares, M. Tomé, Com-
parison of linear regression, k-nearest neighbour and random forest methods in airborne laser-scanning-based prediction
of growing stock, Forestry 94 (2) (2021) 311–323.

[8] F. J. Gomez-Gil, V. Martínez-Martínez, R. Ruiz-Gonzalez, L. Martínez-Martínez, J. Gomez-Gil, Vibration-based moni-
toring of agro-industrial machinery using a k-Nearest Neighbors (kNN) classifier with a Harmony Search (HS) frequency
selector algorithm, Computers and Electronics in Agriculture 217, art. no. 108556 (2024).

[9] M. Martín-Martín, M. Bullejos, D. Cabezas, F. J. Alcalá, Using python libraries and k-Nearest neighbors algorithms to
delineate syn-sedimentary faults in sedimentary porous media, Marine and Petroleum Geology 153, art. no. 106283 (2023).

[10] A. Suleymanov, I. Tuktarova, L. Belan, R. Suleymanov, I. Gabbasova, L. Araslanova, Spatial prediction of soil properties
using random forest, k-nearest neighbors and cubist approaches in the foothills of the Ural Mountains, Russia, Modeling
Earth Systems and Environment 9 (3) (2023) 3461–3471.

[11] M. Aslinezhad, M. A. Hejazi, Turbine blade tip clearance determination using microwave measurement and k-nearest
neighbour classifier, Measurement 151, art. no. 107142 (2020).

[12] J. Konieczny, J. Stojek, Use of the k-nearest neighbour classifier in wear condition classification of a positive displacement
pump, Sensors 21 (18), art. no. 6247 (2021).

[13] S. S. Shijer, A. H. Jassim, L. A. Al-Haddad, T. T. Abbas, Evaluating electrical power yield of photovoltaic solar cells with
k-Nearest neighbors: A machine learning statistical analysis approach, e-Prime — Advances in Electrical Engineering,
Electronics and Energy 9, art. no. 100674 (2024).

[14] U. Khandelwal, A. Fan, D. Jurafsky, L. Zettlemoyer, M. Lewis, Nearest neighbor machine translation, in: Proc. 9th Int.
Conf. Learn. Representations, 2021.

[15] O. Kaminska, C. Cornelis, V. Hoste, Fuzzy rough nearest neighbour methods for aspect-based sentiment analysis, Elec-
tronics 12 (5), art. no. 1088 (2023).

[16] O. Kaminska, C. Cornelis, V. Hoste, Fuzzy rough nearest neighbour methods for detecting emotions, hate speech and
irony, Inf. Sci. 625 (2023) 521–535.

[17] J. Maillo, S. García, J. Luengo, F. Herrera, I. Triguero, Fast and scalable approaches to accelerate the fuzzy k-nearest
neighbors classifier for big data, IEEE Trans. Fuzzy Syst. 28 (5) (2020) 874–886.

[18] O. U. Lenz, D. Peralta, C. Cornelis, Scalable approximate FRNN-OWA classification, IEEE Trans. Fuzzy Syst. 28 (5)
(2020) 929–938.

[19] A. Shokrzade, M. Ramezani, F. A. Tab, M. A. Mohammad, A novel extreme learning machine based kNN classification
method for dealing with big data, Expert Syst. Appl. 183, art. no. 115293 (2021).

[20] J. M. Keller, M. R. Gray, J. A. Givens, A fuzzy k-nearest neighbor algorithm, IEEE Trans. Syst., Man, Cybern. (4) (1985)
580–585.

[21] R. Jensen, C. Cornelis, A new approach to fuzzy-rough nearest neighbour classification, in: Proc. 6th Int. Conf. Rough
Sets Current Trends Comput., 2008, pp. 310–319.

[22] R. J. Samworth, Optimal weighted nearest neighbour classifiers, Ann. Statist. (2012) 2733–2763.
[23] J. Gou, L. Du, Y. Zhang, T. Xiong, et al., A new distance-weighted k-nearest neighbor classifier, J. Inf. Comput. Sci. 9 (6)

(2012) 1429–1436.

22

[24] G. S. Watson, Smooth regression analysis, Sankhyā: Indian J. Statist., Ser. A (1964) 359–372.
[25] R. M. Royall, A class of non-parametric estimates of a smooth regression function., Ph.D. thesis (1966).
[26] D. Shepard, A two-dimensional interpolation function for irregularly-spaced data, in: Proc. 1968 23rd ACM Nat. Conf.,

1968, pp. 517–524.
[27] M. Rosenblatt, Remarks on some nonparametric estimates of a density function, Ann. Math. Statist. (1956) 832–837.
[28] S. A. Dudani, An experimental study of moment methods for automatic identification of three-dimensional objects from

television images, Ph.D. thesis, The Ohio State University (1973).
[29] S. A. Dudani, The distance-weighted k-nearest-neighbor rule, IEEE Trans. Syst., Man, Cybern. 6 (4) (1976) 325–327.
[30] C. J. Stone, Consistent nonparametric regression, Ann. Statist. (1977) 595–620.
[31] N. S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression, Amer. Statistician 46 (3) (1992)

175–185.
[32] J. Gou, T. Xiong, Y. Kuang, A novel weighted voting for k-nearest neighbor rule., J. Comput. 6 (5) (2011) 833–840.
[33] T.-L. Pao, Y.-T. Chen, J.-H. Yeh, Y.-M. Cheng, Y.-Y. Lin, A comparative study of different weighting schemes on

KNN-based emotion recognition in Mandarin speech, in: 3rd Int. Conf. Intell. Comput., 2007, pp. 997–1005.
[34] R. N. Shepard, Toward a universal law of generalization for psychological science, Science 237 (4820) (1987) 1317–1323.
[35] J. Zavrel, An empirical re-examination of weighted voting for k-NN, in: Proc. 7th Belg.-Dutch Conf. Mach. Learn., 1997,

pp. 139–145.
[36] T. Bailey, A. Jain, A note on distance-weighted k-nearest neighbor rules, IEEE Trans. Syst., Man, Cybern. 8 (4) (1978)

311–313.
[37] J. E. Macleod, A. Luk, D. M. Titterington, A re-examination of the distance-weighted k-nearest neighbor classification

rule, IEEE Trans. Syst., Man, Cybern. 17 (4) (1987) 689–696.
[38] M. B. Priestley, M.-T. Chao, Non-parametric function fitting, J. Roy. Statistal Soc.: Ser. B (Methodol.) 34 (3) (1972)

385–392.
[39] D. R. Wilson, Advances in instance-based learning algorithms, Ph.D. thesis, Brigham Young University (1997).
[40] D. R. Wilson, T. R. Martinez, An integrated instance-based learning algorithm, Comput. Intell. 16 (1) (2000) 1–28.
[41] K. Hechenbichler, K. Schliep, Weighted k-nearest-neighbor techniques and ordinal classification, Sonderforschungsbereich

386, paper 399, Ludwig-Maximilians-Universität München, Institut für Statistik (2004).
[42] J. Derrac, S. García, F. Herrera, Fuzzy nearest neighbor algorithms: Taxonomy, experimental analysis and prospects, Inf.

Sci. 260 (2014) 98–119.
[43] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. General Syst. 17 (2-3) (1990) 191–209.
[44] Z. Pawlak, Rough sets, Report 431, ICS PAS (1981).
[45] C. Cornelis, N. Verbiest, R. Jensen, Ordered weighted average based fuzzy rough sets, in: Proc. 5th Int. Conf. Rough Set

Knowl. Technol., 2010, pp. 78–85.
[46] N. Verbiest, C. Cornelis, F. Herrera, Selección de prototipos basada en conjuntos rugosos difusos, in: 16. Congreso Español

sobre Tecnologías y Lógica Fuzzy, 2012, pp. 638–643.
[47] N. Verbiest, Fuzzy rough and evolutionary approaches to instance selection, Ph.D. thesis, Universiteit Gent (2014).
[48] S. Vluymans, N. Mac Parthaláin, C. Cornelis, Y. Saeys, Weight selection strategies for ordered weighted average based

fuzzy rough sets, Inf. Sci. 501 (2019) 155–171.
[49] M. Sarkar, Fuzzy-rough nearest neighbor algorithms in classification, Fuzzy Sets and Systems 158 (19) (2007) 2134–2152.
[50] D. Wettschereck, A study of distance-based machine learning algorithms, Ph.D. thesis, Oregon State University (1994).
[51] Z. Geler, V. Kurbalija, M. Radovanović, M. Ivanović, Comparison of different weighting schemes for the kNN classifier on

time-series data, Knowl. Inf. Syst. 48 (2016) 331–378.
[52] Z. Geler, V. Kurbalija, M. Ivanović, M. Radovanović, Weighted kNN and constrained elastic distances for time-series

classification, Expert Syst. Appl. 162, art. no. 113829 (2020).
[53] M. Higashi, G. J. Klir, On measures of fuzziness and fuzzy complements, Int. J. General Syst. 8 (3) (1982) 169–180.
[54] J. Łukasiewicz, Interpretacja liczbowa teorii zdań, Ruch Filozoficzny 7 (6) (1923) 92–93.
[55] L. A. Zadeh, Fuzzy sets, Information and control 8 (3) (1965) 338–353.
[56] M. Sugeno, Constructing fuzzy measure and grading similarity of patterns by fuzzy integral, Trans. Soc. Instrum. Control

Engineers 9 (3) (1973) 361–368.
[57] R. R. Yager, On a general class of fuzzy connectives, Fuzzy Sets Syst. 4 (3) (1980) 235–242.
[58] S. Holm, A simple sequentially rejective multiple test procedure, Scand. J. Statist. 6 (2) (1979) 65–70.
[59] Y. Zhang, Y. Yang, Cross-validation for selecting a model selection procedure, Journal of Econometrics 187 (1) (2015)

95–112.
[60] Y. Bengio, Y. Grandvalet, No unbiased estimator of the variance of k-fold cross-validation, Journal of Machine Learning

Research 5 (2004) 1089–1105.
[61] O. Bousquet, A. Elisseeff, Stability and generalization, The Journal of Machine Learning Research 2 (2002) 499–526.

23

