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A unified weighting framework for evaluating
nearest neighbour classification

Oliver Urs Lenz, Henri Bollaert and Chris Cornelis

Abstract—We present the first comprehensive and large-scale
evaluation of classical (NN), fuzzy (FNN) and fuzzy rough
(FRNN) nearest neighbour classification. We show that existing
proposals for nearest neighbour weighting can be standardised in
the form of kernel functions, applied to the distance values and/or
ranks of the nearest neighbours of a test instance. Furthermore,
we identify three commonly used distance functions and four
scaling measures. We systematically evaluate these choices on
a collection of 85 real-life classification datasets. We find that
NN, FNN and FRNN all perform best with Boscovich distance.
NN and FRNN perform best with a combination of Samworth
rank- and distance weights and scaling by the mean absolute
deviation around the median (r1), the standard deviaton (r2)
or the interquartile range (r∗∞), while FNN performs best with
only Samworth distance-weights and r1- or r2-scaling. We also
introduce a new kernel based on fuzzy Yager negation, and show
that NN achieves comparable performance with Yager distance-
weights, which are simpler to implement than a combination of
Samworth distance- and rank-weights. Finally, we demonstrate
that FRNN generally outperforms NN, which in turns performs
systematically better than FNN.

Index Terms—classification, fuzzy nearest neighbours, fuzzy
rough nearest neighbours, nearest neighbours, weighting.

I. INTRODUCTION

Nearest neighbour (NN) classification [1] is one of the
oldest and most widely used classification algorithms in the
literature. NN is a relatively simple algorithm, but it still
requires setting a few hyperparameters. Even in its most basic
form, we need to choose a distance measure and a method to
rescale the attributes of the dataset. In addition, it is generally
advisable to choose the number of neighbours k ≥ 1 on
which predictions are based. Moreover, there have been many
proposals in the literature to weigh the contribution of the k
nearest neighbours of a test record differently.

In principle, it is possible to resolve these choices for any
given problem by picking the combination of hyperparameter
values that performs best on cross-validated training data.
However, in practice, it is often more convenient to focus these
efforts on the value k, and set the other hyperparameters to
values that are known to be good enough. To aid this approach,
it would be useful to have an idea which choices generally
perform better than others.

Building on the traditional form of (weighted) NN described
above, some authors have proposed further-reaching modifi-
cations that incorporate fuzzy set theory: fuzzy nearest neigh-
bours (FNN) [2] and fuzzy rough nearest neighbours (FRNN)
[3]. FNN operates in a similar way to NN, but uses fuzzified
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class membership degrees of training records, while FRNN
models each decision class as a fuzzy set, and calculates the
membership degrees of a test record in these fuzzy sets. Like
NN, these algorithms require a choice of distance measure,
scale, number of neighbours k and weighting scheme.

To the best of our knowledge, to date there has not been any
comprehensive and large-scale evaluation of nearest neighbour
classification on real-life datasets. The goal of this paper
is to address this shortcoming. We show that the different
weighting proposals for NN, FNN and FRNN can be restated
in a universal way in terms of kernel functions. In particular,
we prove that the theoretically optimal rank-weights identified
by Samworth [4] converge to a specific kernel function as k
increases. This formulation also allows us to propose our own
kernel function for nearest neighbour weighting, based on the
fuzzy Yager negation.

Having established this common framework, we conduct a
series of systematic experiments on 85 real-life classification
datasets. Our primary focus is on evaluating the different
weighting methods, since this is where there has been most
variation in the literature, but we will also evaluate distance
measures and scaling methods. Finally, we show that FRNN
outperforms NN, which in turn performs better than FNN.

In the next section, we present an overview of the literature
on nearest neighbour classification variants (Section II). Next,
we present our own proposals in Section III. We then describe
our experimental setup (Section IV) and present the results
(Section V), before concluding (Section VI).

II. BACKGROUND

In this section, we briefly review a number of previous
experiments with NN and FRNN classification.

A. Weighted nearest neighbour classification

In the early literature, nearest neighbour prediction arose
as a form of non-parametric (or “distribution-free”) statistical
estimation, and was generally referred to as such. It was
first formally proposed by Fix & Hodges for classification
in 1951 [1]. The idea to weigh the contribution of neighbours
differently was initially proposed for regression, perhaps first
by Watson [5], Royall [6] and Shepard [7]. This was inspired
by an earlier idea to estimate the value of a density function
in a point as a weighted sum, with weights corresponding
inversely to the distances to the sample observations [8].
Dudani [9], [10] appears to have been the first to propose
weighted nearest neighbours for classification.

We can formally define weighted nearest neighbour classifi-
cation as follows. Let d be a distance measure and k a positive
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integer, then the score for a decision class C and a test record
y is:

∑
i≤k|xi∈C

si

/∑
i≤k

si , (1)

where xi is the ith nearest neighbour of y in the training set
X (according to d), and si the weighted vote assigned to xi,
which remains to be defined. In practice, all proposals define
si in terms of the distance di between y and xi and/or the rank
i. We will refer to these strategies as, respectively, distance-
and rank-weighting. We recover classical unweighted nearest
neighbour classification by choosing constant si, e.g. si = 1.

For rank-weighting, there have been proposals that let the
weights depend linearly on the rank [6], [9], [10], [11],
quadratically [11], reciprocally [12], and according to the
Fibonacci sequence [13]. Relatively recently, Samworth [4]
has established theoretically optimal weights:

si =
1

k

(
1 +

m

2
− m

2k
2
m

(
i1+

2
m − (i− 1)1+

2
m

))
, (2)

where m is the dimensionality of the space.
Proposals for distance-weighting have included weights that

depend linearly on distance [5], [9], [10], reciprocally [9], [10]
and reciprocally on the square of the distance [7]. Inspired by
[14], Zavrel [15] has proposed Laplacian weights of the form
e−di .

The linear weights given by Dudani [9], [10] take the
following form:

si =


dk − di
dk − d1

k > 1;

1 k = 1.
(3)

For these weights, Dudani demonstrated a lower classi-
fication error than unweighted NN on a synthetic dataset.
However, Bailey and Jain [16] subsequently showed that this
was due to the fact that Dudani had counted all ties as
errors, and that when these are resolved instead (e.g. by
randomly choosing a class), the performance of weighted
and unweighted NN was similar on the synthetic dataset.
Moreover, the same authors also proved that the asymptotic
classification error of unweighted NN is minimal among all
possible weighted variants of NN. This in turn elicited a
response by Macleod et al. [17], who argued that there exist
finite classification problems where some distance-weighted
variants of NN do have lower error. In order to demonstrate
this, they used the following modified weights, which address
the fact that in (3), the kth weight is always 0 (if k > 1):

si =


dk − di + dk − d1

2(dk − d1)
k > 1;

1 k = 1.

Another modification of Dudani’s linear weights was pro-
posed by Gou et al. [18]:

si =
dk − di
dk − d1

· dk + d1
dk + di

A slightly different approach is taken by Hechenbichler &
Schliep [19], who propose rescaling the k nearest neighbour
distances to values in [0, 1] by dividing by the kth distance,
and then applying a so-called kernel function, a non-increasing
function [0, 1] −→ R, of which they propose several, including
the quartic kernel a 7→ (1 − a2)2. In fact, Royall [6] in his
very early proposal had already taken a similar approach for
rank-weights, by applying such a kernel function to i

k .
Finally, Gou et al. [12] have proposed a weighting scheme

that combines the linear distance-weights of Dudani with
reciprocal rank-weights:

si =
dk − di
dk − d1

· 1
i

B. Fuzzy nearest neighbour classification
There have been many proposals to modify nearest neigh-

bour classification with fuzzy set theory [20]. The most
prominent of these is the fuzzy nearest neighbours (FNN)
classifier of Keller et al. [2]. It defines the membership of
a test record y in the decision class C as

∑
i≤k

ui · 1/d2/(q−1)
i

/∑
i≤k

1/d
2/(q−1)
i ,

for a choice of q > 1, where di is the distance between y and
its ith nearest neighbour xi, and ui is the class membership
of xi in C. Keller et al. proposed two different options for ui.
Either ui can be chosen to be the crisp class membership of
xi in C, or it can be fuzzified as follows:

ui =

{
0.51 + 0.49 · nC(xi)/k if xi ∈ C;

0.49 · nC(xi)/k if xi /∈ C;
,

where nC(xi) is the number of neighbours of xi that belong
to C, from among its k nearest neighbours.

C. Fuzzy rough nearest neighbour classification
A more fundamentally different proposal has come in the

form of fuzzy rough nearest neighbour (FRNN) classification,
originally proposed by Jensen & Cornelis [3]. This is based on
fuzzy rough sets [21], a fuzzified variant of rough sets [22].
For each decision class C, we define two fuzzy sets, its upper
approximation C and its lower approximation C, as well as
their mean, and the membership of a test record y in any one
of these can be used as a class score. A weighted variant of
fuzzy rough sets was first introduced by Cornelis et al. [23],
and we use here the updated formulation of FRNN presented
in [24]. Let d be a distance measure and k a positive integer,
then the score for a decision class C and a test record y is:

C(y) :=
∑
i≤k

wi · (1− d+i )/
∑
i≤k

wi;

C(y) :=
∑
i≤k

wi · d−i /
∑
i≤k

wi,

where d+i and d−i are the ith nearest neighbour distance of
y in, respectively, C and X \ C, and wi is a weight which
depends on the rank i and which remains to be defined.
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Previous proposals for w have included weight vectors that
are constant [23] or that depend linearly [25], reciprocally [26]
or exponentially [23] on the rank i (see [27] for an overview).

D. Previous experiments

Despite the extensive literature on NN classification, there
have only been a small number of experimental studies of
distance-weighted NN. Working with 18 synthetic and real-life
datasets, Wettschereck [28] found that reciprocally weighted
NN clearly outperforms unweighted NN for Euclidean dis-
tance, and that there is no clear difference between Euclidean
and Boscovich distance. In his own comparison, Zavrel [15]
additionally considered linear and Laplacian weights — only
linear weights clearly outperformed unweighted NN. While,
as mentioned above, Hechenbichler & Schliep [19] listed a
number of possible weight kernels, they only evaluated linear
and quartic weights, on a small number of datasets, without
drawing any firm conclusions. However, we note that they
appear to obtain generally better results for Boscovich than
for Euclidean distance.

III. PROPOSALS

In this section, we will discuss our novel proposals. These
include a universal framework for nearest neighbour weighting
for both NN and FRNN, a new weight type inspired by fuzzy
Yager negation, an analysis of FNN, and a characterisation of
scaling measures that relates them to distance measures.

A. Kernels

In order to make nearest neighbour weighting easier to
evaluate, we adopt the following concept of a kernel function,
inspired by the proposals by Hechenbichler & Schliep [19] for
distance-weights, and by Royall [6] for rank-weights.

Definition 1. A kernel is a decreasing function f : [0, 1] −→
R≥0. A standardised kernel is a kernel with f(0) = 1. An
improper kernel is a decreasing function f : (0, 1] −→ R≥0

with lima→0 f(a) = ∞. For a proper or improper kernel f ,
we write fk

i = f( i
k+1 ).

Note that any proper kernel can be standardised through
division by f(0) such that f(0) = 1. Standardised kernels
with f(1) = 0 correspond to fuzzy negations (or complements)
[29].

In the following subsections, we will redefine NN and
FRNN classification in terms of kernel functions. The kernels
used in this paper are listed in Table I, while in Fig. 1 and
Fig. 2 we have displayed the proper kernels.1

1In order to properly visualise the different weight that these kernels place
on smaller and larger values, we have rescaled each kernel by a constant, such
that each kernel function covers the same area on the interval [0, 1]. Because
the resulting absolute values of each kernel are essentially arbitrary, we have
deliberately left the vertical axes of Fig. 1 and Fig. 2 unmarked.

TABLE I
KERNEL FUNCTIONS f , EXPRESSED IN TERMS OF a ∈ [0, 1], WHERE m IS

THE NUMBER OF FEATURES.

Name f(a) Used in

Fuzzy negations

Linear 1− a [5], [6], [9],
[10], [11], [19]

Epanechnikov 1− a2 [11]

Quartic (1− a2)2 [19]

Samworth 1− a
2
m [4]

Sugeno 1−a
1+a

[18]

Yager (1− a
1
2 )2

Other proper kernels

Constant 1 [1]

Laplace e−a [15]

Improper kernels

Reciprocally linear 1
a

[9], [10], [12]

Reciprocally quadratic 1
a2 [7]

B. NN

Using the definition of a kernel function allows us to
state the following generalised definition for weighted nearest
neighbour classification:

Definition 2. Let d be a distance measure, k a positive integer,
and w and s choices of kernel functions. Then the score for a
decision class C and a test record y is:

∑
i≤k|xi∈C

wk
i · s(d∗i )

/∑
i≤k

wk
i · s(d∗i )

 ,

where xi is the ith nearest neighbour of y in the training set
X (as determined by d), di the corresponding distance and
d∗i := di/dk.

We adopt the following conventions to resolve specific edge
cases:

• If dk = 0 (and therefore di = 0 for all i ≤ k), we
stipulate d∗i := di = 0.

• If d1 = dk (and therefore d∗i = 1 for all i ≤ k) and if
s(1) = 0, we stipulate s(d∗i ) := 1 for all i.

• If s is an improper kernel, and d∗i = 0 for some i, we
stipulate s(d∗i ) := 1 for all such i and s(d∗i ) := 0 for all
other i.

When w is constant, we recover NN with distance-weights,
when s is constant, we recover NN with rank-weights, and
when both w and s are constant, we recover unweighted NN.
In addition, in all three edge cases, we also effectively revert to
performing unweighted classification with (part of) the nearest
neighbours of y.
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0.0 0.2 0.4 0.6 0.8 1.0
di

Constant
Linear
Epanechnikov
Laplace
Quartic
Sugeno
Yager

Fig. 1. Proper kernels, rescaled to have common area.

We will now show how this incorporates existing weighting
proposals. Firstly, note that both in the original equation for
NN (1), and in (2), we rescale each class score by the total sum
of the weights. Therefore, we do not require that weights sum
to 1. Moreover, multiplying all weights by a positive constant
produces identical class scores. We will use the proportionality
symbol ∝ to indicate that two sets of weights only differ by
a positive constant factor. Thus, the linear distance-weights
proposed by Dudani [9] can be simplified as follows:

0.0 0.2 0.4 0.6 0.8 1.0
di

1
2
4
8
256

Fig. 2. Samworth kernel for various dimensionalities m, rescaled to have
common area.

si =
dk − di
dk − d1

∝ dk − di
dk − d1

· dk − d1
dk

= 1− d∗i .

We see that Dudani’s linear weights are equivalent to applying
a linear (triangular) kernel in our revised definition. In a similar
way, we can simplify the weight types proposed by Gou et al.
[18]:
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si =
dk − di
dk − d1

· dk + d1
dk + di

∝ dk − di
dk − d1

· dk + d1
dk + di

· dk − d1
dk + d1

· 1

dk

=
1− d∗i
1 + d∗i

.

(4)

For weights that depend reciprocally on nearest neighbour
distance or its square, it is straightforward that

si =
1

di
∝ dk

di
=

1

d∗i
,

and

si =
1

d2i
∝ d2k

d2i
=

1

(d∗i )
2 .

We can also simplify the weight types proposed by
MacLeod:

si =
dk − di + dk − d1

2(dk − d1)

∝ dk − di + dk − d1
2(dk − d1)

· 2(dk − d1)

dk
= 2− d∗i − d∗1.

However, the resulting function still depends on d1. That
means that we can use this function to calculate distance
weights, but it does not generalise to a kernel that we could
also apply to rank weights.

The only distance-weights that cannot be rewritten into a
kernel function are the Laplace weights e−di proposed in
[15]. Note that these are not homogeneous, i.e. the weighting
depends on the absolute scale of the distances, which is
arguably undesirable. However, we can consider the kernel
function e−d∗

i .
Similarly, most types of rank weights proposed in the

literature can be obtained by applying a kernel function to
i

k+1 . For the Samworth weights, if we fix a particular value
k > 0, and write h = 1

k+1 (for reasons of space), we can
define the following kernel function fk such that fk( i

k+1 ) is
the ith weight as in (2):

fk(a) =
1

k

(
1 +

m

2
− m

2k
2
m

(
(a/h)1+

2
m − (a/h− 1)1+

2
m

))
.

fk is proportional to 2k
m+2 · fk, and we have the following

lemma:

Lemma 1.
lim
k→∞

2k

m+ 2
· fk = 1− a

2
m .

Proof.

lim
k→∞

2k

m+ 2
· fk

= lim
k→∞

1− m

m+ 2
· 1

k
2
m

(
(a/h)1+

2
m − (a/h− 1)1+

2
m

)
= 1− m

m+ 2
· lim
k→∞

(a/h)1+
2
m − (a/h− 1)1+

2
m

k
2
m

= 1− m

m+ 2
· lim
k→∞

h1+ 2
m

h1+ 2
m

(a/h)1+
2
m − (a/h− 1)1+

2
m

k
2
m

= 1− m

m+ 2
· lim
k→∞

a1+
2
m − (a− h)1+

2
m

h · k2/m

(k+1)2/m

= 1− m

m+ 2
· lim
h→0

a1+
2
m − (a− h)1+

2
m

h

= 1− m

m+ 2
·
(
1 +

2

m

)
a

2
m (*)

= 1− a
2
m ,

where (∗) is the polynomial rule for derivation.

Accordingly, we call 1− a
2
m the Samworth kernel.

The only rank weights that can not be obtained by applying
a kernel function are the Fibonacci weights from [13], because
their relative distribution depends on k.

By reformulating both distance-weights and rank-weights
in terms of a kernel function, we obtain a single unique way
to characterise all the different weight types. In addition, this
representation makes it clear that we could also choose to
apply e.g. the Sugeno kernel to obtain rank weights, or the
Samworth kernel to obtain distance weights, even though they
were originally proposed for, respectively, distance weights
and rank weights. Furthermore, we could choose to apply both
rank and distance weights at the same time, as in the proposal
by Gou et al. [12], which can be realised by combining a
reciprocal rank-kernel and a linear distance-kernel.

C. Yager weights

In (4), we identified the kernel that corresponds to the
weights proposed by Gou et al. [18]. This kernel is in fact
Sugeno negation [30] with λ = 1:

a 7−→ 1− a

1 + λa

Inspired by this, we also propose to use another type of fuzzy
negation known from the literature as a weighting kernel. This
negation, proposed by Higashi & Klir [29] to accompany other
operators introduced by Yager [31], has the general form:

a 7−→ (1− ap)
1
p

We propose to use it with p = 1
2 , because the resulting contour

is quite different from most other kernels (Fig. 1) except the
Samworth kernel for larger values of m (Fig. 2).

D. FNN

Recall that in the original proposal, there were two pos-
sible values for ui. When ui is chosen crisply, the proposal
simplifies to

∑
i≤k|xi∈C

1/d
2/(q−1)
i

/∑
i≤k

1/d
2/(q−1)
i .

In other words, it is equivalent to NN classification (1), with:

si = 1/d
2

q−1

j ,
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for some q > 1. When q = 3 and q = 2, we obtain, re-
spectively, reciprocal distance-weights and squared reciprocal
distance-weights.

Alternatively, when ui is fuzzy, we have:

∑
i≤k

ui · si

/∑
i≤k

si

=

 ∑
i≤k|xi∈C

0.51 · si +
∑
i≤k

0.49 · nC(xi)/k · si

/∑
i≤k

si

= 0.51 ·
∑

i≤k|xi∈C

si

/∑
i≤k

si + 0.49 ·
∑
i≤k

nC(xi)/k · si

/∑
i≤k

si

Thus, in this variant, the FNN class score is the weighted
average of two components. The first component is, again,
NN, while the second component is NN with fuzzified class
membership. This can be rewritten as:

∑
i≤k

nC(xi)/k · si

/∑
i≤k

si

=
1

k

∑
i,j≤k|xij∈C

si

/∑
i≤k

si

where xij is the jth neighbour of the ith neighbour of y. In
effect, this is one more instance of NN, with class scores that
are on the one hand dilluted (being based not just on the class
scores of the k nearest neighbours of y, but also on the class
scores of their k nearest neighbours) and on the other hand
concentrated (because nearby neighbours will more frequently
appear as neighbours of neighbours).

E. FRNN

The upper and lower approximations of FRNN can similarly
be rewritten using kernel functions:

Definition 3. Let d be a distance measure and k a positive
integer, w a choice of kernel function and s a choice of fuzzy
negation. Then the score for a decision class C and a test
record y is:

C(y) :=
∑
i≤k

wk
i · s(min(d+i /d

+
∗ , 1))

/∑
i≤k

wk
i ;

C(y) :=
∑
i≤k

wk
i · (1− s(min(d−i /d

−
∗ , 1)))

/∑
i≤k

wk
i ,

where d+i and d−i are the ith nearest neighbour distance of
y in, respectively, C and X \ C, and d+∗ and d−∗ are to be
defined.

d+∗ and d−∗ determine cutoff values — all larger distances
are mapped to the minimum degree of similarity, typically
0. These values have to be constant across decision classes
and test records, to allow for a proper comparison of class
scores. If we choose values that are too small, min(d+i /d

+
∗ , 1)

and min(d−i /d
−
∗ , 1) become equal to 1 for many test records

and many values of i, and we lose information. If we choose
values that are too large, min(d+i /d

+
∗ , 1) and min(d−i /d

−
∗ , 1)

are generally close to 0, and we do not make full use of
the profile of the kernel s. Therefore, as a compromise, we
calculate d+k and d−k of all training records, for all decision
classes, and take d+∗ and d−∗ to be the respective maxima of
these values.

Note that unlike NN, FRNN cannot be used with constant
distance-weights, because this would equalise all class scores.
Instead, the default choice is linear distance-weights, in which
case the double negation (1−s(di)) in the lower approximation
simplifies to di. In addition, the exponentially decreasing
rank-weights that have occasionally been proposed in the
literature have a very limited usefulness, as the contribution
of each additional value quickly becomes insignificant, and,
eventually, impossible to compute.

F. Distance and scaling measures

Three distance measures that are frequently used with
nearest neighbour classification are Euclidean, Boscovich (or
city-block) and Chebyshev (or maximum) distance. These can
be viewed, respectively, as the special cases p = 2, p = 1
and p → ∞ of the Minkowski p-distance between two points
x, y ∈ Rm (for some m ≥ 1):

|y − x|p :=

∑
i≤m

|yi − xi|p
 1

p

.

In order to obtain a comparable contribution from all
attributes, these must be rescaled to a common scale. This
can be done by taking a measure of dispersion, and dividing
each attribute by this measure, such that it becomes 1 for each
attribute. Two common choices are the standard deviation and
the range of each attribute. These can be linked to the concept
of Minkowski p-distance by defining the Minkowski p-centre
and p-radius of a dataset:

Definition 4. Let X = (x1, x2, . . . , xn) be a univariate real-
valued dataset. The Minkowski p-radius rp of X is defined
as:

rp(X) := min
z∈R

 1

n

∑
i≤n

|xi − z|p
 1

p

,

while the Minkowski p-centre of X is the corresponding
minimising value for z (not necessarily unique for p ≤ 1).

The standard deviation and half-range of a dataset are r2
and r∞, while the corresponding 2-centre and ∞-centre of a
dataset are its mean and its midrange. The 1-centre of a dataset
is its median, and the corresponding measure of dispersion r1
that it minimises is the mean absolute deviation around the
median. Thus, r1 is another measure of dispersion that we
can use to scale attributes with.

A potential advantage of r1-scaling over r2-scaling is its
reduced sensitivity to outliers, as r1 only depends linearly
on outliers, rather than quadratically like r2. In turn, both
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measures are much less sensitive to outliers than r∞, which
is completely determined by the most extreme outlier. An
alternative way to obtain a measure of dispersion that is less
sensitive to outliers that is sometimes used in the literature is
to explicitly ignore peripheral values, by only considering half
the interquartile range, which we will designate by r∗∞.

IV. EXPERIMENTAL SETUP

To evaluate NN, FNN and FRNN classification, we will
use 85 numerical real-life datasets from the UCI repository
for machine learning (Table II). We perform 5-fold cross-
validation, and calculate the mean AUROC as a measure
of the discriminative ability of each classifier. To compare
two alternatives, we calculate the p-value from a one-sided
Wilcoxon signed-rank test. Where appropriate, we also apply
the Holm-Bonferroni method [32] to correct for family-wise
error.

For all of NN, FNN and FRNN, we optimise k through
leave-one-out validation, which can be performed efficiently
for nearest neighbour classifiers by executing a k + 1-nearest
neighbour query on the training set and eliminating all matches
between a training record and itself. For FRNN, we also
choose between the upper, lower or mean approximation based
on validation AUROC.

V. RESULTS

In this section, we will present the results of our exper-
iments. To start with, we will evaluate distance measures,
scaling measures and weight types, but restrict ourselves to
the weight types that have previously been proposed in the
literature. We will then ask whether these results can be further
improved upon by using the Yager weights that we have
proposed.

A. NN

We first consider the effect of the distance on classification
performance. We find that for all types of scaling and all
weight types, Boscovich distance leads to significantly better
performance than Euclidean (p < 0.0031) and Chebyshev
(p < 1.6·10−9) distance. For this reason, we will only consider
Boscovich distance for the rest of our analysis.

Next, we have a look at the different kernels. First we
compare using each kernel for distance-weights versus rank-
weights, for each type of scaling. With two exceptions, we find
that distance-weights lead to significantly better classification
performance than rank-weights (p < 0.0019). The exceptions
are the reciprocal and Laplace kernels, for which the difference
is not or only weakly significant, and to which we return
below.

Among the distance-weights, the Samworth kernel signif-
icantly outperforms all other kernels (Table III), with three
exceptions. The difference with respect to the quartic and
reciprocally squared kernel is only weakly significant with,
respectively, r2 and r∗∞ scaling. Moreover, with r∞ scaling,
the quartic kernel is actually slightly better than the Samworth
kernel on our data, but we will see below that r∞ scaling
is suboptimal. Finally, we also find that Samworth distance

weights outperform reciprocal (p < 0.0048) and Laplace
(p < 6.2 · 10−6) rank weights across scaling measures.

Samworth distance-weights also significantly outperform
the combination of linear distance-weights and reciprocal
rank-weights proposed by Gou et al. [12] for all scaling types
(p < 0.044) except r∞, where the difference is only weakly
significant (p = 0.13). However, our general formula for
NN classification also allows for other combinations. Indeed,
we find that Samworth distance-weights are outperformed by
the logical combination of Samworth distance-weights and
Samworth rank-weights (p < 0.040).

Finally, when we consider the different measures of disper-
sion that can be used to normalise a dataset through rescaling,
we find that r1, r2 and r∗∞ do not significantly outperform
each other for the combination of Samworth distance- and
rank-weights, while they all outperform r∞ (Table IV). For
other weight types, we obtain comparable results.

B. FNN

For FNN, we will consider reciprocally linear and recipro-
cally squared distance-weights, as well as Samworth distance-
weights and a combination of Samworth rank- and distance-
weights, since we found in the previous Subsection that these
latter two perform well for classical NN.

As with NN, FNN performs significantly better with
Boscovich distance than with either Euclidean (p < 0.025)
or Chebyshev (p < 8.3 · 10−7) distance.

Unlike NN, it is not clear that Samworth distance-weights
perform better than reciprocally linear or reciprocally squared
weights (Table V). Furthermore, the combination of Samworth
rank- and distance-weights actually performs worse than Sam-
worth distance-weights alone for r1 (p = 0.032) and r∞
(p = 0.000078) scaling, while for r2 and r∗∞ scaling, the
difference is not significant.

We have weak evidence that with FNN, r1 scaling leads to
better performance than r2 scaling, and that in turn both are
preferable over r∞ and r∗infty scaling (Table VI).

C. FRNN

For FRNN, we will evaluate the different types of rank-
weights proposed in the literature, corresponding to the con-
stant, linear and reciprocal kernel, in combination with linear
distance-weights. In addition, we evaluate Samworth rank- and
distance-weights, motivated by their excellent performance
with NN.

Here we also find that Boscovich distance leads to higher
AUROC than Euclidean (p < 0.00086) and Chebyshev (p <
6.2·10−10) distance for all combinations of kernels and scaling
measures.

The traditional choice for distance-weights is to use a
linear kernel, but we find that the Samworth kernel performs
better, although the difference is only weakly significant in
combination with reciprocal rank-weights (Table VII).

Likewise, Samworth rank-weights appear to be the best
choice, but the advantage over other kernels is only weakly
significant (Table VIII).
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TABLE II
REAL-LIFE CLASSIFICATION DATASETS FROM THE UCI REPOSITORY FOR MACHINE LEARNING.

Dataset Records Classes Attributes Imbalance ratio Dataset Records Classes Attributes Imbalance ratio

accent 329 6 12 2.5 mfeat 2000 10 649 1.0
acoustic-features 400 4 50 1.0 miniboone 130 064 2 50 2.6
ai4i2020 10 000 2 6 28.5 new-thyroid 215 3 5 3.5
alcohol 125 5 12 1.0 oral-toxicity 8992 2 1024 11.1
androgen-receptor 1687 2 1024 7.5 page-blocks 5473 5 10 31.6
avila 20 867 12 10 38.7 phishing-websites 11 055 2 30 1.3
banknote 1372 2 4 1.2 plrx 182 2 12 2.5
bioaccumulation 779 3 9 4.3 pop-failures 540 2 18 10.7
biodeg 1055 2 41 2.0 post-operative 87 2 8 2.6
breasttissue 106 6 9 1.3 qualitative-bankruptcy 250 2 6 1.3
ca-cervix 72 2 19 2.4 raisin 900 2 7 1.0
caesarian 80 2 5 1.4 rejafada 1996 2 6824 1.0
ceramic 37 4 34 1.4 rice 3810 2 7 1.3
cmc 1473 3 9 1.6 seeds 210 3 7 1.0
codon-usage 13 011 20 64 25.5 segment 2310 7 19 1.0
coimbra 116 2 9 1.2 seismic-bumps 2584 2 18 14.2
column 310 3 6 1.9 sensorless 58 509 11 48 1.0
debrecen 1151 2 19 1.1 sepsis-survival 110 204 2 3 12.6
dermatology 358 6 34 2.2 shuttle 58 000 7 9 560.8
diabetes-risk 520 2 16 1.6 skin 245 057 2 3 3.8
divorce 170 2 54 1.0 somerville 143 2 6 1.2
dry-bean 13 611 7 16 2.3 sonar 208 2 60 1.1
ecoli 332 6 7 6.3 south-german-credit 1000 2 20 2.3
electrical-grid 10 000 2 12 1.8 spambase 4601 2 57 1.5
faults 1941 7 27 3.9 spectf 267 2 44 3.9
fertility 100 2 9 7.3 sportsarticles 1000 2 59 1.7
flowmeters 361 4 44 1.7 sta-dyn-lab 6248 2 244 9.5
forest-types 523 4 9 1.8 tcga-pancan-hiseq 801 5 20 531 1.9
gender-gap 3145 2 15 7.9 thoraric-surgery 470 2 16 5.7
glass 214 6 9 3.6 transfusion 748 2 4 3.2
haberman 306 2 3 2.8 tuandromd 4464 2 241 4.0
hcv 589 2 12 9.5 urban-land-cover 675 9 147 2.2
heart-failure 299 2 12 2.1 vehicle 846 4 18 1.1
house-votes-84 435 2 16 1.6 warts 180 2 8 2.0
htru2 17 898 2 8 9.9 waveform 5000 3 21 1.0
ilpd 579 2 10 2.5 wdbc 569 2 30 1.7
ionosphere 351 2 34 1.8 wifi 2000 4 7 1.0
iris 150 3 4 1.0 wilt 4839 2 5 17.5
landsat 6435 6 36 1.7 wine 178 3 13 1.3
leaf 340 30 14 1.2 wisconsin 683 2 9 1.9
letter 20 000 26 16 1.0 wpbc 138 2 32 3.9
lrs 527 7 100 12.6 yeast 1484 10 8 11.6
magic 19 020 2 10 1.8

TABLE III
ONE-SIDED p-VALUES, SAMWORTH DISTANCE-WEIGHTS VS OTHER

DISTANCE-WEIGHTS, FOR NN WITH BOSCOVICH DISTANCE, IN TERMS OF
AUROC. HOLM-BONFERRONI FAMILY-WISE ERROR CORRECTION

APPLIED TO EACH COLUMN.

Samworth vs. . . Scaling
r1 r2 r∞ r∗∞

Constant < 0.0001 < 0.0001 < 0.0001 < 0.0001
Epanechnikov 0.00051 0.00016 < 0.0001 < 0.0001
Laplace < 0.0001 < 0.0001 < 0.0001 < 0.0001
Linear 0.00016 0.00030 0.00048 < 0.0001
MacLeod < 0.0001 < 0.0001 < 0.0001 < 0.0001
Quartic 0.014 0.11 0.71 0.042
Reciprocally linear 0.0012 0.00016 < 0.0001 < 0.0001
Reciprocally quadratic 0.038 0.020 0.046 0.059
Sugeno 0.0068 0.0036 0.029 0.00036

As with NN, the measures of dispersion r1, r2 and r∗∞
do not significantly outperform each other, but do outperform
r∞, although even this latter fact is only weakly significant
(Table IX).

TABLE IV
ONE-SIDED p-VALUES, VARIOUS SCALINGS VS r∞-SCALING, FOR NN

WITH BOSCOVICH DISTANCE AND SAMWORTH DISTANCE- AND
RANK-WEIGHTS, IN TERMS OF AUROC. HOLM-BONFERRONI

FAMILY-WISE ERROR CORRECTION APPLIED.

Test p

r2 vs r∞ 0.00043
r1 vs r∞ 0.023
r∗∞ vs r∞ 0.023

TABLE V
ONE-SIDED p-VALUES, SAMWORTH DISTANCE-WEIGHTS VS OTHER

DISTANCE-WEIGHTS, FOR FNN WITH BOSCOVICH DISTANCE, IN TERMS
OF AUROC. HOLM-BONFERRONI FAMILY-WISE ERROR CORRECTION

APPLIED TO EACH COLUMN.

Samworth vs. . . Scaling
r1 r2 r∞ r∗∞

Reciprocally linear 0.028 0.17 0.012 0.68
Reciprocally quadratic 0.34 0.32 0.18 0.69
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TABLE VI
ONE-SIDED p-VALUES, COMPARING THE SCALER IN EACH ROW AGAINST
THE SCALER IN EACH COLUMN, FOR FNN WITH BOSCOVICH DISTANCE

AND SAMWORTH DISTANCE-WEIGHTS, IN TERMS OF AUROC.
HOLM-BONFERRONI FAMILY-WISE ERROR CORRECTION APPLIED TO

EACH ROW.

r2 r∞ r∗∞

r1 0.19 0.14 0.14
r2 0.21 0.21
r∞ 0.97

TABLE VII
ONE-SIDED p-VALUES, SAMWORTH VS LINEAR DISTANCE-WEIGHTS, FOR
FRNN WITH BOSCOVICH DISTANCE AND VARIOUS RANK-WEIGHTS AND

SCALINGS.

Rank kernel Scaling
r1 r2 r∞ r∗∞

Constant < 0.0001 < 0.0001 < 0.0001 < 0.0001
Linear < 0.0001 < 0.0001 < 0.0001 < 0.0001
Reciprocally linear 0.082 0.12 0.061 0.0061
Samworth 0.0012 0.00018 0.00043 < 0.0001

D. NN vs FNN vs FRNN

In Subsection V-B, we observed that FNN performs best
on our data with Samworth distance-weights, but that the
difference with respect to reciprocally linear and reciprocally
square distance-weights is not significant for all scaling-types.
However, when we compare FNN to NN, we find that for all
three kernels, NN performs significantly better (Table X).

For both NN and FRNN, we obtained the best results with
a combination of Samworth distance- and rank-weights. When
we compare NN and FRNN against each other, we find that
FRNN performs better (Table XI).

E. Yager weights

We now consider the results of the Yager kernel that we
have proposed.

TABLE VIII
ONE-SIDED p-VALUES, SAMWORTH RANK-WEIGHTS VS OTHER
RANK-WEIGHTS, FOR FRNN WITH BOSCOVICH DISTANCE AND

SAMWORTH DISTANCE-WEIGHTS. HOLM-BONFERIONI CORRECTION
APPLIED IN EACH COLUMN.

Samworth vs. . . Scaling
r1 r2 r∞ r∗∞

Constant 0.18 0.0033 0.089 0.0048
Linear 0.18 0.070 0.72 0.32
Reciprocally linear 0.18 0.022 0.15 0.057

TABLE IX
ONE-SIDED p-VALUES, VARIOUS SCALINGS VS r∞-SCALING, FOR FRNN

WITH BOSCOVICH DISTANCE AND SAMWORTH DISTANCE- AND
RANK-WEIGHTS, IN TERMS OF AUROC. HOLM-BONFERRONI

FAMILY-WISE ERROR CORRECTION APPLIED.

Test p

r2 vs r∞ 0.0078
r1 vs r∞ 0.060
r∗∞ vs r∞ 0.060

TABLE X
ONE-SIDED p-VALUES, NN VS FNN WITH BOSCOVICH DISTANCE AND
VARIOUS DISTANCE KERNELS AND SCALINGS, IN TERMS OF AUROC.

Distance kernel Scaling
r1 r2 r∞ r∗∞

Reciprocally linear < 0.0001 < 0.0001 < 0.0001 < 0.0001
Reciprocally quadratic < 0.0001 < 0.0001 < 0.0001 < 0.0001
Samworth < 0.0001 < 0.0001 < 0.0001 < 0.0001

TABLE XI
ONE-SIDED p-VALUES, FRNN VS NN, BOSCOVICH DISTANCE AND

SAMWORTH RANK- AND DISTANCE-WEIGHTS.

Scaling
r1 r2 r∞ r∗∞
0.021 0.0092 0.0051 0.049

When we equip NN with both Yager distance- and rank-
weights, this performs slightly better on our data than Sam-
worth distance- and rank-weights, but the difference is not
significant (p < 0.25 accross scaling measures). Interestingly,
unlike the Samworth kernel, the Yager kernel appears to
perform about as well when only used for distance-weights
and when used for both distance- and rank-weights. Cor-
respondingly, Yager distance-weights perform significantly
better than Samworth distance-weights (p < 0.0053). Thus
the main advantage of the Yager kernel is that it enables
comparable performance as the Samworth kernel, but is easier
to implement, because it does not require the addition of rank-
weights and because it is not dependent on the dimensionality
of the dataset.

In contrast, for FNN we obtain comparable performance
between Samworth and Yager distance-weights with r1 or
r2 scaling, and for FRNN we find that Samworth distance-
and rank-weights still perform significantly better than Yager
distance- and rank-weights (p < 0.050 across scaling mea-
sures).

VI. CONCLUSION

In this paper, we have provided a comprehensive overview
of the different weighting variants of NN, FNN and FRNN
classification that have been proposed in the literature. We
have proposed a uniform framework for these proposals and
conducted an evaluation on 85 real-life datasets. This allows
us to draw the following conclusions

• Weighting can be expressed as the application of a kernel
function to the distances and/or ranks of the nearest
neighbours of a test record — we have provided an
overview of kernel functions that correspond to existing
weighting proposals in the literature.

• In particular, Samworth rank-weights, which have been
shown to be theoretically optimal, converge to a kernel
function that depends on the dimensionality of the data,
and that can also be applied to obtain distance-weights.

• On real-life datasets, both NN and FRNN perform better
with a combination of Samworth rank- and distance-
weights than with other weight types proposed in the



10

literature, while FNN appears to perform best with Sam-
worth distance-weights and constant rank-weights.

• However, NN and FNN appear to perform equally well
with Yager weights, a novel weight type inspired by
fuzzy Yager negation. For NN, the Yager kernel offers
two practical benefits over the Samworth kernel: it only
needs to be applied to obtain distance weights (not rank
weights), and it does not depend on the dimensionality of
the dataset. For FRNN, Samworth weights still perform
better.

• Boscovich distance clearly outperforms Euclidean and
Chebyshev distance, regardless of other hyperparameter
choices.

• With Samworth and Yager weights, rescaling attributes
by r1 (mean absolute deviation around the median),
r2 (standard deviation) or r∗∞ (interquartile half-range)
produces comparable results, while these are all better
than rescaling by r∞ (half-range).

• Our comparison between NN and FNN with identical
distance-weights reveals that in practice, the fuzzification
of class membership degrees in FNN leads to system-
atically lower performance. In contrast, with its more
fundamentally different approach, FRNN does generally
outperform NN when both are equipped with their best-
performing weighting scheme (Samworth distance- and
rank-weights).

We believe that these results serve as a useful baseline for
future applications and research. For applications, we recom-
mend the use of FRNN classification with Samworth rank-
and distance weights, Boscovich distance, and any one of r1-,
r2- or r∗∞-scaling, while k can be optimised through efficient
leave-one-out validation. With the classical NN algorithm,
we recommend the same hyperparameter choices, except that
Yager distance-weights may be substituted and rank-weights
omitted.

We suggest that future research should concentrate on
identifying even better-performing kernel functions. For this,
the contours of the Samworth and Yager kernels may serve as
a useful starting point. In particular, we hope that in this way
the following two questions may be answered:

• Should an optimal kernel depend on the dimensionality of
the data? The good performance of the Samworth kernel
suggests that the answer is yes. However, we note that its
profile is actually very similar for typical dimensionalities
of 4 ≤ m ≤ 256, so that its variation according to
dimensionality may be far less important than the basic
outline of its profile. This is seemingly confirmed by the
relatively strong performance of the Yager kernel, which
has a similar profile.

• For NN, do we need both distance- and rank- weights?
The fact that Yager distance-weights alone perform as
well as a combination of Samworth distance- and rank-
weights suggests that with the right kernel, we can do
away with rank-weights.

We hope that any future evaluations of competing proposals
will be based on a similar collection of real-life classification
problems to the one that we have assembled, which we have

made available for this purpose.

DATA

The datasets used in this paper can be downloaded from
https://cwi.ugent.be/∼oulenz/datasets/lenz-2024-unified.tar.gz.
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