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Polar Encoding: A Simple Baseline Approach for
Classification with Missing Values

Oliver Urs Lenz, Daniel Peralta, and Chris Cornelis

Abstract—We propose polar encoding, a representation of
categorical and numerical [0, 1]-valued attributes with missing
values to be used in a classification context. We argue that
this is a good baseline approach, because it can be used with
any classification algorithm, preserves missingness information, is
very simple to apply and offers good performance. In particular,
unlike the existing missing-indicator approach, it does not require
imputation, ensures that missing values are equidistant from
non-missing values, and lets decision tree algorithms choose
how to split missing values, thereby providing a practical
realisation of the missingness incorporated in attributes (MIA)
proposal. Furthermore, we show that categorical and [0, 1]-valued
attributes can be viewed as special cases of a single attribute type,
corresponding to the classical concept of barycentric coordinates,
and that this offers a natural interpretation of polar encoding as
a fuzzified form of one-hot encoding. With an experiment based
on twenty real-life datasets with missing values, we show that,
in terms of the resulting classification performance, polar encod-
ing performs better than the state-of-the-art strategies multiple
imputation by chained equations (MICE) and multiple imputation
with denoising autoencoders (MIDAS) and — depending on the
classifier — about as well or better than mean/mode imputation
with missing-indicators.

Index Terms—barycentric coordinates, classification, decision
trees, fuzzy partitions, missingness incorporated in attributes,
missing values, nearest neighbours, one-hot encoding.

I. INTRODUCTION

M ISSING values are a frequent issue in real-life datasets
and a subject of ongoing research [1]–[3]. In the present

paper, we consider what a good baseline approach is for
handling missing values in the context of classification.

Missing values have been extensively studied in the context
of statistical inference. For estimating a parameter value, the
generally accepted approach is to perform multiple imputation
[4], in which one models the posterior distribution of the
values that are missing on the basis of the non-missing values.
By drawing from this distribution, one obtains a sample of
imputed datasets and a corresponding sample of the estimand,
allowing one to estimate the true parameter value and de-
termine the uncertainty of this estimate due to the missing
values. Two popular multiple imputation proposals are multiple
imputation by chained equations (MICE) [5] and multiple
imputation with denoising autoencoders (MIDAS) [6].

The explicit assumption behind multiple imputation is that
the distribution of missing values can be estimated on the basis
of non-missing values (missing at random (MAR)). In contrast,
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the assumption behind the missing-indicator approach [7] is
that missingness is potentially informative (missing not at
random (MNAR)), and that this aspect of the data should
be explicitly represented through binary indicator attributes,
that record for each original attribute whether the value was
missing. If one assumes that missing values are not part of the
‘true’ model, missing-indicators introduce bias [8], and for this
reason they have generally been dismissed in the context of
statistical inference.

In the context of machine learning, and of classification
in particular, model bias is arguably less important than pre-
diction performance. We have previously established, through
the first large-scale evaluation of missing-indicators on real-
life datasets, that these do generally increase classification
performance [9].

For decision trees, missingness is also preserved by the
missingness incorporated in attributes (MIA) approach [10],
which stipulates that the tree construction algorithm should
evaluate two versions of each split, with missing values
included on either side. MIA has been shown to outperform
imputation with or without missing indicators [11].

We conclude from this that missing values are an important
part of a dataset, that should be made available for classifiers
to learn from just like non-missing values. While missing-
indicators can be used for this, there are two aspects that
prevent them from being an ideal baseline approach towards
missing values. Both stem from the fact that missing-indicators
have to be combined with imputation. Firstly, this means that
the practitioner still needs to make a choice — which impu-
tation method to use. And secondly, while missing-indicators
preserve missing values, we will see that to a certain extent,
the imputation still induces the classifier to treat missing values
like their imputed values.

To address this, we introduce in the present paper a new
approach towards missing values called polar encoding, which
can be used with categorical and [0, 1]-scaled numerical at-
tributes. Polar encoding represents missing values without
relying on imputation, leaving it completely up to the classifier
how to learn from missing values. As we will see, polar
encoding is a very simple proposal, but to the best of our
knowledge, it has never been suggested before.

We will proceed by defining polar encoding, and comparing
it against imputation and missing-indicators on the basis of
four criteria that a good baseline approach towards missing
values should satisfy (Section II). Next, we specifically explain
why polar encoding is a good approach for distance-based
(Section III) and decision tree (Section IV) classifiers. In
Section V, we offer additional conceptual motivation for polar
encoding by arguing that it can be seen as a fuzzification of
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Fig. 1. Illustrative example of a [0, 1]-valued attribute for height with missing value, with missing-indicator and polar encoding.

one-hot encoding.
We complement these theoretical arguments in Section VI

with an experimental evaluation of the downstream classifica-
tion performance of polar encoding, by comparing it against
MICE and MIDAS, as well as against missing-indicators
paired with mean/mode imputation, on the basis of twenty
real-life datasets with missing values. Finally, we present our
conclusions in Section VII.

II. POLAR ENCODING AS A GOOD BASELINE APPROACH

We will now present polar encoding1, and discuss why
it is a good baseline approach towards missing values. For
comparison, one-hot encoding [12] is a simple baseline solu-
tion to the related problem of handling categorical attributes
with algorithms that expect numerical input. It preserves the
information encoded in categorical attributes and results in
a dataset that can be fed to any numerical algorithm. Polar
encoding is a similar solution, but for missing values.

For categorical attributes, polar encoding corresponds ex-
actly to one-hot encoding, with missing values represented as
zero vectors. Meanwhile, each [0, 1]-scaled numerical attribute
is converted into a pair of features with the following map2:

x 7−→ ⟨x, 1− x⟩ ,
? 7−→ ⟨0, 0⟩ ,

(1)

where x is any non-missing value, and ? a missing value.
The resulting representation is illustrated by Fig. 1b, which
contrasts with the representation produced by the missing-
indicator approach (Fig. 1a).

We propose that in the context of classification, the qualities
of a good baseline approach towards missing values are
embodied by the following four criteria:

1We have chosen the name polar encoding as a loose analogy to polar
coordinates, because values are encoded in relation to a number of poles:
the origin and the unit vectors ⟨1, 0⟩ and ⟨0, 1⟩ (and higher-dimensional unit
vectors for categorical attributes).

2This is the default form of polar encoding, to be used with (Boscovich)
1-distance and with algorithms not based on distance. We will propose a
separate form of polar encoding to be used with (Euclidean) 2-distance in
Subsection III-B.

Modularity. The baseline approach should be self-
contained. It should result in a complete, numerically encoded
dataset, allowing classification algorithms to be agnostic about
missing values.

Conservatism. The baseline approach should be a faithful
representation of the original dataset. It should presuppose as
little as possible about how missing values contribute to the
learning task.

Simplicity. The baseline approach should be simple to
apply. It should require a minimal amount of computational
effort and no parameter choices by the user.

Performance. The baseline approach should enable good
downstream prediction performance. It should perform well
on average across real-life classification problems.

We may have to accept a certain trade-off between these
criteria. For example, the simplicity and modularity of a good
baseline approach may outweigh slightly lower downstream
performance compared to a vastly more complicated solution.
Conversely, we could accept a less conservative approach as
a good baseline if it combined simplicity and modularity
with superior performance. However, it turns out that in the
context of supervised learning, conservatism, simplicity and
performance appear to go somewhat hand in hand.

Imputation satisfies modularity, as it replaces missing values
with estimates and the resulting complete dataset can be fed
to any classification algorithm. However, by design, it is
not a conservative approach towards missing values, since
it predetermines the contribution of missing values towards
the classification task by replacing them. Most imputation
algorithms are not simple either, requiring substantial amounts
of computation and user input.

Arguably the simplest form of imputation is imputation with
the mean of numerical attributes and the mode of categorical
attributes. Mean/mode imputation is not considered a good so-
lution for statistical inference because it introduces bias. How-
ever, somewhat counterintuitively, it does not necessarily lead
to worse prediction performance in the context of supervised
learning [13]. The reason for this is that missing values can be
informative, and it is precisely because mean/mode imputation
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Fig. 2. Minkowski p-norm unit circles for various values of p.

fails to hide missing values well that this information remains
partially available for prediction algorithms to learn from.

The missing-indicator approach is more conservative than
imputation, because it preserves missing values. It also gener-
ally increases classification performance on real-life datasets
[9]. However, the missing-indicator approach is not maximally
conservative. As it has to be combined with imputation,
it induces classification algorithms towards treating missing
values like their imputed values. For algorithms that are based
on distance, like nearest neighbours algorithms and support
vector machines, the missing-indicator approach represents
a missing value as being closer to its imputed value (e.g.
the mean) than to other values (Fig. 1a). For decision tree
algorithms, missing values will always split together with
their imputed value when the algorithm splits on the original
attribute.

Finally, because MIA lets decision trees choose how to split
missing values, it is a conservative approach. However, it is
not modular, since it requires an adaptation of the prediction
algorithm itself, and because it can only be used with decision
trees.

In contrast to these existing proposals, polar encoding
satisfies all four criteria. Polar encoding is modular, since it
results in a complete, numerical dataset that can be used with
any classification algorithm. It is also simple. Being essentially
a linear transformation of the data, it can be applied quickly
and easily, without the need for any dedicated software. In the
next two sections, we will show that polar encoding is con-
servative. In particular, we will argue that by making missing
values equidistant from non-missing values, polar encoding
does not presuppose their contribution to the classification
problem, and that for decision trees, it is effectively a modular
implementation of MIA. Finally, we will show in Section VI
that the performance of polar encoding is also as good or better
than the alternatives.

III. POLAR ENCODING AND DISTANCE-BASED
CLASSIFIERS

In this section, we will explain how polar encoding ensures
that missing values are equidistant from all non-missing val-
ues, and present a variant proposal for Euclidean distance.

A. Boscovich distance

Recall the general definition of the Minkowski p-norm of a
vector x ∈ Rm, for p ≥ 1:

|x|p :=

∑
i≤m

|xi|p
 1

p

. (2)

The Minkowski p-distance between any two points x, y ∈
Rm is the p-norm of their difference. The p-norm unit sphere
in Rm consists of all points with p-norm equal to 1. For m =
2, this gives us the p-norm unit circles (Fig. 2).

Two values of p are particularly often used in machine
learning. When p = 1, we obtain the Boscovich norm3,
which reduces to

∑
i≤m |xi|, and when p = 2, we obtain

the Euclidean norm4.
Fig. 1b illustrates the application of polar encoding with a

toy example. The key observation to make is that unlike the
missing-indicator approach, the Boscovich distance between a
missing value and any non-missing value is always 1. In fact,
this is a simple consequence of the fact that polar encoding
maps non-missing values onto the non-negative quadrant of
the Boscovich unit circle.

Moreover, with polar encoding, the Boscovich distance be-
tween any two non-missing values x, y ∈ [0, 1] becomes twice
the original distance |x− y|. In other words, the distances
between non-missing values remain essentially unchanged,
except for a scaling factor of 2. The Boscovich distance
between a missing value and non-missing values is 1, which is
exactly half the maximum distance 2 between two non-missing
values, reflecting the fact that we do not know what the ‘true’
value of a missing value is. This distance can be used directly,
or transformed into a similarity value with a 7−→ 1 − a/2.
In this case, the similarity between a missing value and any
non-missing value is always 0.5, exactly half the maximum
similarity of 1.

This contrasts with the approach taken in [19], where the
similarity between a missing value and any other value is

3Perhaps first used implicitly by Roger Joseph Boscovich (1711–1787) to
minimise regression residuals [14]–[18]; also known as city block, Manhattan,
rectilinear and taxicab norm.

4Also known as Pythagorean norm.
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stipulated to always be 1. Similarly, the authors of the present
paper have proposed [20] (based on previous work [21]) to
propagate the uncertainty from missing values using interval-
valued fuzzy sets. These interval values are bounded by an
optimistic scenario, corresponding to the proposal in [19],
and a pessimistic scenario, in which the similarity between
a missing value and any other value (possibly also missing) is
0 (complete dissimilarity). In both cases the problem is that
missing values are not more similar to each other than to non-
missing values — missing values are not treated as a signal
to generalise from. Moreover, in practice these similarity
relations scale poorly to larger datasets, because they do not
admit straightforward implementations in terms of an existing
distance measure.

B. Euclidean distance

Based on the discussion in the previous subsection, a
straightforward way to obtain polar encoding for Euclidean
distance is to map non-missing values onto the non-negative
quadrant of the Euclidean unit circle (Fig. 1c). We propose
to do this with the following mapping, which establishes a
linear correspondence between distance in [0, 1] and arc length
(scaling by a factor

√
2):

x 7−→
〈
sin

x · π
2

, cos
x · π
2

〉
,

? 7−→ ⟨0, 0⟩ .
(3)

Note that this map cannot preserve Euclidean distance.
When encoding a [0, 1]-valued attribute in this manner, larger
distances become relatively less large. However, the difference
is relatively small and may not be problematic in practice. For
instance, the Euclidean distance between the minimum and
maximum values becomes

√
2 ≈ 1.41, which is slightly less

than twice the distance between either value and the midrange:(∣∣∣sin π

4
− 0

∣∣∣2 + ∣∣∣cos π
4
− 1

∣∣∣2) 1
2

≈ 0.765.

Furthermore, this maximum distance between two non-
missing values (

√
2), is now comparatively smaller than with

Boscovich distance (2). This is completely consistent with the
distance between two different one-hot encoded categorical
values, which is likewise

√
2 for Euclidean distance and 2 for

Boscovich distance.
For other values of p, there exist generalisations of sin

and cos that could be used instead to parametrise the non-
negative quadrant of the p-unit sphere [22], [23]. However,
these functions are defined as the inverses of integrals, and so
are not easy to apply in practice.

IV. POLAR ENCODING AND DECISION TREE CLASSIFIERS

Polar encoding also allows decision tree algorithms to learn
from missing values. The two dimensions of a polar-encoded
attribute induce identical splits on the data, except that missing
values end up on either side of each split (Fig. 3). Therefore,
decision trees are effectively offered a choice as to which side
of each split missing values should be grouped with. Missing

1

1

0

Non-missing
Missing

Fig. 3. Illustrative example of equivalent splits on a polar-encoded attribute,
with missing values on either side.

values can also be split off on their own by splitting on both
dimensions of a polar-encoded attribute.

This contrasts with the missing-indicator approach, where
missing values either group together with their imputed value
(when the tree splits on the original attribute), or alone (when
the tree splits on the missing-indicator).

The effect of polar encoding on decision trees is very similar
to the missingness incorporated in attributes (MIA) proposal
[10] which stipulates that when splitting on an attribute with
missing values, the algorithm should consider each potential
split twice, with missing values on either side, and additionally
a split that separates non-missing and missing values. MIA
has been added to the scikit-learn [24] implementation of
LightGBM [25], and a similar strategy is part of XGBoost
[26]. The advantage of polar encoding is that it can be applied
by the user, and combined with off-the-shelf implementations
of decision tree algorithms that do not natively support MIA.5

The performance of MIA has mostly been evaluated on the
basis of simulated data with informative missing values.

For decision trees, MIA performs better [10] than resolving
missing values as a weighted combination of the two branches
according to the prior probabilities of the non-missing values
[27], and about as good as multiple imputation with expecta-
tion maximisation [28], which had emerged as the two best-
performing strategies in a previous comparison [29].

For Bayesian additive regression trees, MIA has been shown
to outperform random forest imputation [30]. Similarly, MIA
has been shown to outperform mean imputation with missing-
indicators and a handful of other strategies for regression with
decision trees, Random Forest and XGBoost [11].

Finally the scikit-learn implementation of LightGBM men-
tioned above has also been evaluated on four large, real-life
medical datasets, and MIA was found to produce somewhat
to considerably better performance than the missing-indicator
approach with various forms of imputation [13].

5A similar trick is suggested in [11]: repeat each attribute with missing
features twice, and encode missing values alternatively as −∞ and +∞.
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(a) Crisp partition
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(b) Categorical attribute

Fig. 4. Example illustrating the correspondence between crisp partitions and
categorical attributes of a dataset X . Rows correspond to the records of X ,
columns to the partition classes and categories. The values 1 and 0 indicate
membership and non-membership, respectively.

V. POLAR ENCODING AS REPRESENTATION OF
BARYCENTRIC ATTRIBUTES

In this section, we will show how polar encoding can be
seen as the representation of barycentric attributes, which
generalise both categorical and [0, 1]-valued attributes. In par-
ticular, this explains how polar encoding generalises one-hot
encoding. To begin with, we establish our working definitions
of datasets, attributes and one-hot encoding.

A. Numerical and categorical attributes

A key difference between numerical and categorical at-
tributes is that while the values of numerical attributes can be
assumed to lie in R, allowing us to construct machine learning
models based on the arithmetic of R, the set of values V of
a categorical attribute is not assumed to have any relevant
internal structure.

However, many algorithms are only defined for numerical
data, and one popular solution, perhaps first documented by
Suits (1957) [12] (but “not new” even then), is to transform a
categorical attribute into a tuple of numerical features through
one-hot encoding (or encoding with dummy variables).

Definition 1. Let V be a categorical attribute. For a chosen
order V = (v1, v2, . . . , vp), its (redundant) one-hot encoding
is the map V −→ [0, 1]p that sends vi to the standard basis
vector ei = ⟨0, . . . , 0, 1, 0, . . . , 0⟩ for all i ≤ p, while its
compact one-hot encoding is the map V −→ [0, 1]p−1 that
sends vp to 0 and vi for i < p to ei.

Compact one-hot encoding is sufficient to ensure that all
categorical values are linearly separable, but it also introduces
an asymmetry that can be undesirable.

Remark 1. Binary attributes can be represented both as
categorical attributes and as numerical attributes. In the latter
case, a typical choice is to use the values 0 and 1. This
numerical representation corresponds directly to a compact
one-hot encoding of its categorical representation. We will
exploit this correspondence to argue that barycentric attributes
generalise not just categorical, but also [0, 1]-valued numerical
attributes.

It is a classical observation that categorical attributes cor-
respond to partitions [31]. Formally, a categorical attribute V
induces a partition on a dataset X through the equivalence
relation that equates elements of X with the same value in

Tertiary (services)

Primary (agriculture)

Secondary (industry)

Fig. 5. Example of a ternary plot: distribution of GDP over economic sectors
of countries and territories [32].

V . Conversely, if we have a partition U of X , we can derive
a categorical attribute of X that takes, for each x ∈ X , the
value U in U that contains y.

Both categorical attributes (through one-hot encoding) and
partitions can be represented with a matrix of values in {0, 1},
with exactly one value equal to 1 on each row (Fig. 4). In
Subsection V-C, we will extend this correspondence between
categorical attributes and partitions to barycentric attributes
and fuzzy partitions.

B. Barycentric attributes

Barycentric values (or coordinates; also known as homoge-
neous coordinates) are numerical values that sum to a fixed
number (typically 1), or where only the relative proportions
are considered important. The concept dates back to at least
Möbius (1827) [33]–[35], who used it to express a point as
the weighted sum (the barycentre, where the weights cancel
each other out) of the vertices of a simplex. Barycentric values
are also used to define the points that make up projective
space. For the purpose of the present paper, we will assume
that barycentric values are non-negative, and use the following
formal definition:

Definition 2. An attribute is barycentric if it is equal to
a copy of

(
Rm

≥0 \ {0}
)
/ ∼ for some m ≥ 1, where ∼

is the equivalence relation defined by ⟨x1, x2, . . . , xm⟩ ∼
⟨λx1, λx2, . . . , λxm⟩ for all λ ∈ R>0. The normalised repre-
sentation of a value [x1, x2, . . . , xm] ∈

(
Rm

≥0 \ {0}
)
/ ∼ is the

vector ⟨x1/s, x2/s, . . . , xm/s⟩ ∈ Rm, where s :=
∑

i≤m xi.

Barycentric values are often encountered in the literature in
the form of ternary plots (Fig. 5), which display the relative
frequencies of three components. Recent examples include the
composition of planets (core, mantle and hydrosphere) [36]–
[38], seabed sediment [39], ternary mixtures of fluids [40],
[41], ternary compounds [42], [43] and even human behaviour
[44], [45].

In addition, some machine learning problems are typically
approached by considering relative token frequencies. For
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(a) Fuzzy partition
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(b) Barycentric attribute

Fig. 6. Example illustrating the correspondence between fuzzy partitions and
fuzzy categorical attributes of a dataset X . Rows correspond to the records
of X , columns to the partition classes and categories. Values are membership
degrees.

instance, this can be part of the calculation of the cosine
similarity between text records [46]–[48].

Finally, the confidence scores produced by a classification
model (or some other estimate), when normalised to sum to
1, are also a natural example of barycentric values.

C. Barycentric attributes as fuzzified categorical attributes

Barycentric attributes generalise categorical attributes in the
following way. If

(
Rm

≥0 \ {0}
)
/ ∼ is a barycentric attribute,

then the subset V of values with only one non-zero coefficient
forms a categorical attribute, and we will write B(V ) :=(
Rm

≥0 \ {0}
)
/ ∼ and say that V is the set of categories of

B(V ). In particular, the normalised representation of B(V )
reduces precisely to one-hot encoding when restricted to V .

This relationship can also be understood geometrically. The
set of normalised representations of a barycentric attribute
coincides with the standard m− 1-simplex, which is spanned
by m vertices, the one-hot encoded values of V .

Conversely, barycentric attributes can be understood as
fuzzified categorical attributes, allowing us to give a fuzzy
answer to the question of category membership:

Remark 2. Let B(V ) be a barycentric attribute with m
categories. Then we can associate to each value in B(V ) with
normal representation ⟨x1, x2, . . . , xm⟩ the fuzzy set in V with
membership degrees x1, x2, . . . , xm. These are precisely the
fuzzy sets in V with cardinality 1.

This is reinforced by the fact that barycentric attributes
correspond to fuzzy partitions in the same way that categorical
attributes correspond to crisp partitions (Subsection V-A).
Recall the definition of a fuzzy partition [49], [50]:

Definition 3. Let X be a finite set. A fuzzy partition on X is
a finite set F of fuzzy sets in X such that for each x ∈ X ,
we have

∑
F∈F F (x) = 1.

To see that a barycentric attribute B(V ) on a dataset X
contains the same information as a fuzzy partition on X ,
consider that both can be represented by a |X|×|V | matrix of
values in [0, 1], such that the rows sum to 1 [51]. The columns
of such a matrix correspond to a fuzzy partition (Fig. 6a),
whereas its rows correspond to the normalised values of a
barycentric attribute (Fig. 6b).

Categorical Barycentric

Binary [0, 1]-valued

Fig. 7. Euler diagram of different attribute types. Barycentric attributes
generalise both categorical and [0, 1]-valued attributes.

D. [0, 1]-valued attributes as barycentric attributes

Just as one-hot encoding is redundant and we can use
compact one-hot encoding to represent the same information
with one fewer value (Definition 1), so the normalised repre-
sentation of a barycentric attribute ⟨x1, x2, . . . , xm⟩ is redun-
dant, and we can encode it compactly as ⟨x1, x2, . . . , xm−1⟩.
Together, these compactly encoded values form the m − 1-
simplex in Rm−1 spanned by the standard m− 2-simplex and
the origin. Conversely, we can reconstruct the full represen-
tation from a compactly encoded value ⟨x1, x2, . . . , xp−1⟩ by
appending the value 1−

∑
i≤p−1 xi.

The compact encoding of a barycentric attribute with only
two categories is a single value in [0, 1]. This leads us to the
following observation:

Remark 3. Let A be a [0, 1]-valued attribute. Then the values
of A are compactly encoded values of a barycentric attribute
with two categories. We obtain the corresponding redundant
representation with x 7−→ ⟨x, 1− x⟩. Thus, barycentric at-
tributes generalise not just categorical attributes, but also [0, 1]-
valued attributes (Fig. 7).

This redundant representation of [0, 1]-valued attributes gen-
eralises the categorical representation of binary attributes that
we noted in Remark 1. We can illustrate this with an example.
Suppose that we have a binary attribute denoting height, with
two values, ‘short’ and ‘tall’. Its compact encoding is as a
single numerical attribute A with two values, 0 and 1, ex-
pressing ‘tallness’. Its redundant encoding is as two numerical
attributes, tallness (A) and shortness (1−A). Likewise, suppose
that we have [0, 1]-valued attribute A′ denoting height, then its
redundant encoding ⟨A′, 1−A′⟩ consists of fuzzy expressions
of ‘tallness’ and ‘shortness’.

Of course, this redundant encoding of a [0, 1]-valued at-
tribute is precisely the polar encoding that we propose in this
paper (Fig. 1b).

E. Representing missing values

We now turn to the representation of missing values. Recall
our example from the previous subsection: suppose that we
have a barycentric attribute B(V ) denoting height, with V
containing the two categories ‘tall’ and ‘short’, then a miss-
ing value does not convey positive information about either
category. Therefore, we accommodate the possibility that a
barycentric attribute can have a missing value by expanding
the set

(
Rm

≥0 \ {0}
)
/ ∼ to Rm

≥0/ ∼, and by stipulating that the
normalised representation of [0, 0, . . . , 0] is the zero vector 0.
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TABLE I
CLASSIFICATION ALGORITHMS

Distance-based classifiers

NN Nearest Neighbours [54]
NN-D Nearest Neighbours, distance-weighted [55]
FRNN Fuzzy Rough Nearest Neighbours [56] with OWA [57]
SVM-G Soft-margin Support Vector Machine [58] with Gaussian kernel

Decision tree classifiers

CART Classification and Regression Tree [59]
RF Random Forest [60]
ERT Extremely Randomised Trees [61]
ABT Ada-Boosted Trees [62] with SAMME [63]
GBM Gradient Boosting Machine [64]

This corresponds to the unique fuzzy set in V with cardinality
0 (the empty set).

Note that barycentric attributes with missing values can no
longer be represented compactly, since doing so would also
encode the non-missing value [0, 0, . . . , 1] as 0. It is precisely
the redundancy of the redundant normal representation (in
particular, redundant one-hot encoding) that enables us to
encode missing values as zeroes. For [0, 1]-valued numerical
attributes, this means that our proposed polar encoding is
necessary if we want to represent missing values.

VI. EXPERIMENTAL EVALUATION

We now describe our experimental evaluation of using polar
encoding for classification. Concretely, we ask whether it
leads to better classification performance than the sophisti-
cated imputation strategies MICE and MIDAS and mean/mode
imputation with missing-indicators.

A. Setup

For MICE, we will use the recent miceforest implementation
for Python [52], which employs LightGBM [25] to obtain
predictions, while for MIDAS, we use the MIDASpy imple-
mentation for Python [53]. Since we want to obtain a single
dataset that can be used as input for various classification
algorithms, we perform single rather than multiple imputation.
Otherwise, we use default hyperparameter values. We use our
own implementations of mean/mode imputation with missing-
indicators and polar encoding, in the latter case by manually
applying the transformations (1) and (3) in Python.

We evaluate our selection of missing data approaches for
two sets of classifiers: distance-based and decision tree–based
algorithms (Table I). For the Support Vector Machine with
Gaussian kernel that is based on Euclidean distance, we
evaluate the Euclidean variant of polar encoding, while for
the nearest neighbour algorithms that allow setting the distance
measure as a hyperparameter, we evaluate both the standard
and the Euclidean variant.

We use the same collection of twenty datasets from the UCI
repository for machine learning [83] with naturally occurring
missing values that we previously used in [9] (Table II).
These datasets show great variation — they cover a number of
different domains and contain between 155 and 76 000 records,
between 4 and 590 attributes, between 2 and 21 decision

TABLE II
REAL-LIFE DATASETS WITH MISSING VALUES (ADAPTED FROM [9]).

Dataset Records Attributes Missing rate Source

adult 48 842 13 0.010 [65]
agaricus-lepiota 8124 22 0.014 [66]
aps-failure 76 000 170 0.083 [67]
arrhythmia 443 279 0.0032 [68]
bands 540 34 0.054 [69]
ckd 400 24 0.11 [70]
crx 690 15 0.0065 [71]
dress-sales 500 12 0.19
exasens 399 7 0.43 [72]
hcc 165 49 0.10 [73]
heart-disease 1611 14 0.17 [74]
hepatitis 155 19 0.057 [75]
horse-colic 368 20 0.26 [76]
mammographic-masses 961 4 0.042 [77]
mi 1700 111 0.085 [78]
nomao 34 465 118 0.38 [79]
primary-tumor 330 17 0.039 [27]
secom 1567 590 0.045 [80]
soybean 683 35 0.098 [81]
thyroid0387 9172 23 0.069 [82]

classes and missing value rates between 0.0032 and 0.43. We
rescale numerical attributes to [0, 1], before applying polar
encoding or imputation. In the latter case, we then also apply
one-hot encoding to categorical attributes.

We evaluate classification performance using the area under
the receiver operator curve (AUROC) [84]. For each dataset,
we perform five-fold stratified cross-validation, repeat this five
times for different random divisions of the data, and take the
mean of the resulting 25 AUROC scores. To establish whether
the performance of polar encoding vis-à-vis imputation gener-
alises to other (similar) datasets, we test for significance using
one-sided Wilcoxon signed-ranks tests [85]. A p-value below
0.5 indicates that polar encoding performed better, while a
p-value above 0.5 indicates that it performed worse.

For all classifiers we use the implementations provided by
the Python library scikit-learn [24], except for FRNN, where
we use our own implementation in fuzzy-rough-learn [86]. For
our main experiment, we use default hyperparameter values,
with three exceptions informed by the findings in [9]: with
CART we perform cost complexity pruning (α = 0.01), with
ERT we set the number of trees to 1000, and with GBM we
apply early-stopping.

We also perform a follow-up experiment in which we
compare polar encoding against mean/mode imputation with
missing-indicator for the same set of classifiers but with
hyperparameter optimisation. For NN, NN-D and FRNN, we
optimise k for all values in the range [1, 50]. For SVM, we
optimise C and γ by randomly drawing 10 pairs of values from
the exponential distribution 1

β e
− 1

β x, with, respectively, scale
β = 100 and scale β = 1

10 . For the decision tree classifiers,
we optimise the number of features that are considered at each
split, as well as the minimum number of records required to
continue splitting nodes, by randomly drawing 10 pairs of
values from the interval [0, 1], interpreted as share of the total
number of features or records. For NN, NN-D and FRNN,
we apply efficient leave-one-out validation, whereas for the
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TABLE III
p-VALUES, POLAR ENCODING VS OTHER MISSING VALUE APPROACHES.

Distance Classifier Alternative

MICE MIDAS Mean/mode imputation
with missing-indicators

Hyperparameter values

Default Default Default Optimised

Boscovich NN 0.011 0.024 0.18 0.074
NN-D 0.011 0.068 0.19 0.16
FRNN 0.0088 0.049 0.0024 0.0019

Euclidean NN 0.0098 0.0070 0.14 0.19
NN-D 0.018 0.024 0.15 0.086
FRNN 0.0056 0.0056 0.0040 0.0021
SVM-G 0.0027 0.0035 0.018 0.039

— CART 0.13 0.085 0.031 0.058
RF 0.012 0.23 0.40 0.57
ERT 0.0063 0.20 0.14 0.23
ABT 0.0045 0.054 0.054 0.77
GBM 0.0017 0.099 0.61 0.50

other classifiers we apply stratified (nested) five-fold cross-
validation,6 selecting the hyperparameter values that result in
the highest (mean) validation AUROC.

B. Results

Table III lists the p-values obtained from comparing the
performance of polar encoding against the performance of
MICE, MIDAS and mean/mode imputation with missing-
indicators, in terms of the mean AUROC for each classifier
and each dataset.7

The first thing to note is that with default hyperparameter
values and for our selection of datasets, polar encoding gen-
erally increases classification performance, except for RF and
GBM, where it leads to approximately the same performance
as mean/mode imputation with missing-indicators. On the
whole, the p-values for Euclidean distance are not higher than
the p-values for Boscovich distance, which indicates that the
relative advantage of polar encoding is not less with Euclidean
distance. In Subsection III-B, we noted that the Euclidean
variant of polar encoding introduces a slight distortion to the
distances between non-missing values, but this does not appear
to be harmful for classification performance.

Not all of the p-values are significant, which may be due to
the small sample size (20 datasets). Overall, the advantage of
polar encoding over pure imputation is more pronounced than
the advantage of polar encoding over mean/mode imputation
with missing-indicators, which agrees with our previous find-
ing that missing-indicators increase performance because they
preserve missingness-information. Nevertheless, it appears that
the greater conservatism of polar encoding gives classifiers
even more opportunity to learn from missing values. If we
perform a clustered Wilcoxon signed-rank test [87] on the
scores obtained for all datasets and all classifiers, clustered
by dataset, we find that polar encoding performs significantly

6For datasets with classes that contain only four records in the training set,
we have applied four-fold cross-validation instead.

7The mean AUROC scores are provided as supplementary material.

TABLE IV
p-VALUES, POLAR ENCODING VS OTHER MISSING VALUE APPROACHES.

Distance used with
NN, NN-D and FRNN

Alternative

MICE MIDAS Mean/mode imputation
with missing-indicators

Hyperparameter values

Default Default Default Optimised

Boscovich 0.0012 0.011 0.011 0.047
Euclidean 0.0012 0.0043 0.011 0.044

better than the alternative approaches, regardless of whether
we use Boscovich or Euclidean distance (Table IV).

Table III also contains the p-values from our follow-up
experiment, testing the performance of polar encoding against
mean/mode imputation with missing-indicators in the context
of hyperparameter optimisation. The p-values are essentially
similar to the p-values obtained with default hyperparameter
optimisation, except for ABT, where mean/mode imputation
with missing-indicators now has a slight advantage. Across
all classifiers, polar encoding still performs better (Table IV).

VII. CONCLUSION

In this paper we have presented polar encoding, a novel
method to represent missing values of categorical and [0, 1]-
valued attributes. We have argued that in the context of classifi-
cation, it presents a good baseline approach for missing values
because it is modular, conservative, simple and performant.

In particular, polar encoding is more conservative than
the current baseline, mean/mode imputation with missing-
indicators, because it does not just preserve the information
from missing values, but also does not pre-suppose their
contribution to the classification problem, as it avoids imputa-
tion altogether. For distance-based algorithms, it ensures that
missing values are equidistant from all non-missing values.
For decision tree algorithms, it allows missing values to be
grouped on either side of each split. This latter behaviour
corresponds to the existing MIA approach, with the crucial
difference that polar encoding can be combined with all sorts
of classification algorithms, which do not have to be adapted
for this purpose.

We have provided further justification for polar encoding
by showing that it can be viewed as a fuzzification of one-hot
encoding, the standard approach for representing categorical
attributes numerically. We did this by formalising the con-
cept of barycentric attributes, which can be seen as both a
fuzzification of categorical attributes and a generalisation of
[0, 1]-valued attributes. Because one-hot encoding is slightly
redundant, using one more dimension than strictly necessary,
it allows us to represent missing values as zero vectors,
symbolising the absence of information.

Having previously shown that missing-indicators improve
classification performance on real-life datasets, in the present
paper we conducted an experiment to test whether polar encod-
ing works even better. We found that in the context of classifi-
cation, polar encoding generally outperforms two sophisticated
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imputation algorithms, MICE and MIDAS. Polar encoding
also performs better than mean/mode imputation with missing
indicators, although this difference is less pronounced, and
mean/mode imputation may have a slight advantage with ABT
if hyperparameter optimisation is applied.

In the future, we would like to extend polar encoding to
numerical attributes that are scaled differently. For example,
when an attribute is scaled by its standard deviation, polar
encoding could be adapted to ensure that missing values are
equidistant from all ‘typical’ non-missing values, namely those
contained within one standard deviation of the mean.
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APPENDIX
FULL RESULTS

We list here the mean AUROC across five-fold cross-validation and five random states for each classifier, each dataset,
and each missing value approach, for distance-based classifiers and decision tree classifiers with default hyperparameter
values (Tables V and VI, respectively) and with optimised hyperparameter values (Tables VII and VIII, respectively). MMI-I:
mean/mode imputation with missing indicators. PE: polar encoding.

TABLE V: Distance-based classifiers, default hyperparameter values. Bold: highest value per distance measure.

Classifier Dataset Boscovich distance Euclidean distance
MICE MIDAS MMI-I PE MICE MIDAS MMI-I PE

NN adult 0.846 0.846 0.846 0.846 0.846 0.846 0.846 0.846
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.908 0.910 0.910 0.909 0.895 0.897 0.902 0.904
arrhythmia 0.756 0.758 0.757 0.757 0.720 0.706 0.733 0.723
bands 0.778 0.777 0.800 0.824 0.770 0.766 0.794 0.810
ckd 0.994 0.995 0.996 0.999 0.997 0.999 0.994 0.997
crx 0.909 0.909 0.910 0.912 0.909 0.911 0.910 0.911
dress-sales 0.535 0.545 0.560 0.552 0.536 0.545 0.560 0.548
exasens 0.697 0.712 0.717 0.719 0.702 0.719 0.713 0.717
hcc 0.718 0.703 0.751 0.717 0.696 0.687 0.733 0.699
heart-disease 0.833 0.836 0.833 0.841 0.824 0.825 0.827 0.832
hepatitis 0.834 0.826 0.815 0.818 0.839 0.827 0.815 0.828
horse-colic 0.735 0.754 0.723 0.728 0.735 0.732 0.727 0.730
mammographic-masses 0.820 0.822 0.831 0.830 0.820 0.821 0.830 0.830
mi 0.551 0.559 0.591 0.575 0.553 0.557 0.584 0.583
nomao 0.960 0.970 0.980 0.982 0.954 0.964 0.978 0.980
primary-tumor 0.692 0.687 0.719 0.687 0.695 0.687 0.718 0.697
secom 0.623 0.622 0.590 0.617 0.591 0.598 0.522 0.548
soybean 0.976 0.988 0.988 0.992 0.973 0.986 0.987 0.990
thyroid0387 0.797 0.819 0.833 0.835 0.785 0.804 0.827 0.830

NN-D adult 0.825 0.825 0.826 0.828 0.827 0.826 0.827 0.827
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.909 0.911 0.911 0.910 0.896 0.897 0.903 0.905
arrhythmia 0.759 0.760 0.759 0.760 0.722 0.708 0.735 0.726
bands 0.803 0.800 0.824 0.851 0.784 0.780 0.808 0.825
ckd 0.994 0.995 0.997 0.999 0.997 0.999 0.996 0.997
crx 0.905 0.905 0.906 0.909 0.906 0.906 0.906 0.909
dress-sales 0.534 0.543 0.564 0.552 0.535 0.539 0.563 0.548
exasens 0.694 0.702 0.636 0.637 0.699 0.708 0.632 0.634
hcc 0.738 0.723 0.762 0.738 0.713 0.705 0.744 0.720
heart-disease 0.835 0.839 0.837 0.843 0.828 0.829 0.832 0.837
hepatitis 0.828 0.825 0.823 0.821 0.833 0.829 0.819 0.827
horse-colic 0.750 0.770 0.747 0.754 0.745 0.750 0.745 0.749
mammographic-masses 0.791 0.801 0.808 0.808 0.791 0.801 0.808 0.808
mi 0.552 0.559 0.592 0.577 0.554 0.558 0.586 0.585
nomao 0.961 0.971 0.981 0.983 0.954 0.965 0.979 0.981
primary-tumor 0.676 0.681 0.703 0.679 0.676 0.680 0.704 0.688
secom 0.630 0.628 0.594 0.624 0.594 0.599 0.526 0.549
soybean 0.976 0.988 0.988 0.992 0.974 0.986 0.987 0.990
thyroid0387 0.798 0.820 0.835 0.837 0.787 0.805 0.829 0.832

FRNN adult 0.872 0.871 0.872 0.878 0.862 0.862 0.863 0.867
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.980 0.965 0.943 0.952 0.975 0.964 0.962 0.968

Continued on next page
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TABLE V: Distance-based classifiers, default hyperparameter values. Bold: highest value per distance measure.

Classifier Dataset Boscovich distance Euclidean distance
MICE MIDAS MMI-I PE MICE MIDAS MMI-I PE

arrhythmia 0.882 0.882 0.889 0.887 0.856 0.855 0.868 0.875
bands 0.812 0.810 0.832 0.852 0.796 0.795 0.819 0.833
ckd 1.000 1.000 0.999 1.000 1.000 1.000 0.998 1.000
crx 0.914 0.914 0.918 0.921 0.914 0.915 0.918 0.920
dress-sales 0.562 0.583 0.592 0.577 0.558 0.566 0.586 0.572
exasens 0.727 0.740 0.719 0.745 0.727 0.740 0.736 0.749
hcc 0.775 0.778 0.784 0.792 0.777 0.771 0.769 0.780
heart-disease 0.858 0.858 0.858 0.863 0.849 0.846 0.848 0.854
hepatitis 0.887 0.884 0.882 0.884 0.883 0.878 0.879 0.880
horse-colic 0.759 0.794 0.760 0.772 0.761 0.792 0.766 0.772
mammographic-masses 0.800 0.813 0.816 0.838 0.806 0.816 0.824 0.837
mi 0.668 0.680 0.674 0.687 0.658 0.662 0.670 0.678
nomao 0.976 0.983 0.986 0.990 0.971 0.978 0.987 0.989
primary-tumor 0.794 0.787 0.794 0.790 0.788 0.780 0.791 0.784
secom 0.693 0.689 0.642 0.673 0.629 0.630 0.596 0.609
soybean 0.992 0.997 0.997 0.997 0.991 0.996 0.997 0.997
thyroid0387 0.871 0.872 0.888 0.908 0.875 0.875 0.891 0.902

SVM-G adult 0.892 0.892 0.893 0.900
agaricus-lepiota 1.000 1.000 1.000 1.000
aps-failure 0.957 0.957 0.942 0.974
arrhythmia 0.866 0.869 0.872 0.878
bands 0.810 0.808 0.833 0.843
ckd 1.000 1.000 0.999 1.000
crx 0.918 0.920 0.920 0.922
dress-sales 0.623 0.623 0.632 0.614
exasens 0.760 0.767 0.768 0.774
hcc 0.784 0.785 0.800 0.789
heart-disease 0.860 0.862 0.861 0.869
hepatitis 0.861 0.853 0.857 0.858
horse-colic 0.759 0.786 0.776 0.788
mammographic-masses 0.831 0.837 0.845 0.835
mi 0.642 0.638 0.648 0.655
nomao 0.981 0.986 0.990 0.991
primary-tumor 0.792 0.782 0.781 0.789
secom 0.702 0.703 0.678 0.696
soybean 0.997 0.999 0.999 0.999
thyroid0387 0.877 0.874 0.894 0.922

TABLE VI: Decision tree classifiers, default hyperparameter values. Bold: highest value.

Classifier Dataset MICE MIDAS MMI-I PE

ABT adult 0.915 0.915 0.915 0.915
agaricus-lepiota 1.000 1.000 1.000 1.000
aps-failure 0.986 0.986 0.987 0.987
arrhythmia 0.633 0.634 0.634 0.634
bands 0.805 0.806 0.806 0.813
ckd 0.998 0.999 1.000 1.000
crx 0.904 0.906 0.906 0.908
dress-sales 0.585 0.596 0.581 0.583

Continued on next page
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TABLE VI: Decision tree classifiers, default hyperparameter values. Bold: highest value.

Classifier Dataset MICE MIDAS MMI-I PE

exasens 0.700 0.712 0.720 0.722
hcc 0.713 0.722 0.725 0.729
heart-disease 0.849 0.854 0.860 0.859
hepatitis 0.798 0.777 0.807 0.809
horse-colic 0.740 0.763 0.756 0.756
mammographic-masses 0.852 0.855 0.857 0.856
mi 0.576 0.568 0.572 0.582
nomao 0.979 0.985 0.987 0.987
primary-tumor 0.662 0.662 0.660 0.648
secom 0.673 0.673 0.668 0.663
soybean 0.744 0.851 0.870 0.892
thyroid0387 0.656 0.684 0.685 0.685

CART adult 0.844 0.844 0.844 0.844
agaricus-lepiota 0.991 0.993 0.992 0.992
aps-failure 0.860 0.867 0.859 0.859
arrhythmia 0.746 0.747 0.748 0.745
bands 0.742 0.731 0.759 0.768
ckd 0.980 0.980 0.975 0.977
crx 0.900 0.897 0.896 0.897
dress-sales 0.572 0.566 0.570 0.574
exasens 0.721 0.715 0.732 0.743
hcc 0.617 0.587 0.588 0.590
heart-disease 0.778 0.780 0.777 0.774
hepatitis 0.645 0.661 0.578 0.596
horse-colic 0.702 0.699 0.723 0.718
mammographic-masses 0.815 0.816 0.823 0.822
mi 0.535 0.581 0.592 0.607
nomao 0.917 0.935 0.916 0.916
primary-tumor 0.707 0.700 0.707 0.739
secom 0.500 0.500 0.500 0.500
soybean 0.959 0.984 0.991 0.993
thyroid0387 0.877 0.884 0.909 0.908

ERT adult 0.847 0.847 0.847 0.856
agaricus-lepiota 1.000 1.000 1.000 1.000
aps-failure 0.991 0.991 0.991 0.991
arrhythmia 0.897 0.899 0.899 0.899
bands 0.879 0.888 0.890 0.904
ckd 1.000 1.000 1.000 1.000
crx 0.915 0.916 0.914 0.916
dress-sales 0.572 0.579 0.602 0.575
exasens 0.716 0.740 0.626 0.627
hcc 0.778 0.791 0.808 0.803
heart-disease 0.857 0.864 0.862 0.861
hepatitis 0.874 0.879 0.873 0.857
horse-colic 0.776 0.803 0.782 0.796
mammographic-masses 0.789 0.793 0.802 0.805
mi 0.680 0.690 0.695 0.709
nomao 0.985 0.990 0.994 0.994
primary-tumor 0.698 0.727 0.714 0.712
secom 0.745 0.740 0.746 0.747
soybean 0.997 0.999 0.999 0.999

Continued on next page
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TABLE VI: Decision tree classifiers, default hyperparameter values. Bold: highest value.

Classifier Dataset MICE MIDAS MMI-I PE

thyroid0387 0.975 0.983 0.988 0.991

GBM adult 0.927 0.927 0.927 0.927
agaricus-lepiota 1.000 1.000 1.000 1.000
aps-failure 0.988 0.987 0.988 0.987
arrhythmia 0.848 0.848 0.852 0.851
bands 0.846 0.859 0.857 0.859
ckd 0.994 0.991 0.996 0.996
crx 0.934 0.934 0.933 0.933
dress-sales 0.592 0.621 0.614 0.608
exasens 0.733 0.752 0.757 0.757
hcc 0.734 0.761 0.745 0.751
heart-disease 0.859 0.863 0.871 0.869
hepatitis 0.817 0.804 0.810 0.798
horse-colic 0.769 0.768 0.784 0.783
mammographic-masses 0.850 0.852 0.859 0.856
mi 0.642 0.636 0.637 0.646
nomao 0.989 0.992 0.994 0.994
primary-tumor 0.761 0.755 0.767 0.767
secom 0.675 0.694 0.679 0.680
soybean 0.997 0.998 0.999 0.999
thyroid0387 0.885 0.899 0.918 0.928

RF adult 0.890 0.890 0.890 0.897
agaricus-lepiota 1.000 1.000 1.000 1.000
aps-failure 0.988 0.988 0.989 0.989
arrhythmia 0.885 0.890 0.887 0.885
bands 0.885 0.894 0.896 0.894
ckd 1.000 0.999 1.000 1.000
crx 0.930 0.931 0.931 0.931
dress-sales 0.585 0.609 0.606 0.576
exasens 0.734 0.753 0.702 0.707
hcc 0.794 0.806 0.816 0.813
heart-disease 0.857 0.859 0.864 0.858
hepatitis 0.880 0.886 0.886 0.875
horse-colic 0.783 0.786 0.792 0.798
mammographic-masses 0.812 0.812 0.822 0.825
mi 0.664 0.679 0.686 0.696
nomao 0.987 0.990 0.994 0.994
primary-tumor 0.749 0.757 0.758 0.756
secom 0.709 0.715 0.709 0.722
soybean 0.997 0.999 0.999 0.999
thyroid0387 0.978 0.987 0.994 0.992

TABLE VII: Distance-based classifiers, optimised hyperparameter values. Bold: highest value per distance measure.

Classifier Dataset Boscovich distance Euclidean distance
MMI-I PE MMI-I PE

NN adult 0.886 0.887 0.886 0.887
agaricus-lepiota 1.000 1.000 1.000 1.000
aps-failure 0.969 0.969 0.966 0.966
arrhythmia 0.797 0.796 0.785 0.786

Continued on next page
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TABLE VII: Distance-based classifiers, optimised hyperparameter values. Bold: highest value per distance measure.

Classifier Dataset Boscovich distance Euclidean distance
MMI-I PE MMI-I PE

bands 0.798 0.814 0.794 0.803
ckd 0.996 0.999 0.994 0.996
crx 0.913 0.913 0.909 0.909
dress-sales 0.612 0.607 0.614 0.607
exasens 0.728 0.729 0.735 0.729
hcc 0.758 0.761 0.717 0.744
heart-disease 0.859 0.858 0.847 0.847
hepatitis 0.860 0.858 0.862 0.861
horse-colic 0.762 0.771 0.757 0.765
mammographic-masses 0.838 0.839 0.841 0.839
mi 0.608 0.626 0.610 0.632
nomao 0.985 0.988 0.983 0.986
primary-tumor 0.762 0.736 0.764 0.749
secom 0.637 0.688 0.598 0.594
soybean 0.995 0.996 0.994 0.995
thyroid0387 0.913 0.915 0.912 0.913

NN-D adult 0.881 0.885 0.874 0.878
agaricus-lepiota 1.000 1.000 1.000 1.000
aps-failure 0.971 0.971 0.968 0.969
arrhythmia 0.814 0.815 0.807 0.800
bands 0.825 0.856 0.815 0.828
ckd 0.997 0.999 0.996 0.998
crx 0.913 0.917 0.911 0.915
dress-sales 0.604 0.597 0.601 0.597
exasens 0.731 0.729 0.727 0.726
hcc 0.776 0.764 0.754 0.771
heart-disease 0.863 0.863 0.852 0.853
hepatitis 0.864 0.860 0.862 0.856
horse-colic 0.771 0.771 0.773 0.777
mammographic-masses 0.828 0.830 0.825 0.824
mi 0.610 0.627 0.611 0.633
nomao 0.988 0.990 0.987 0.989
primary-tumor 0.779 0.745 0.779 0.761
secom 0.662 0.714 0.589 0.621
soybean 0.998 0.998 0.997 0.998
thyroid0387 0.914 0.921 0.911 0.913

FRNN adult 0.875 0.881 0.864 0.869
agaricus-lepiota 1.000 1.000 1.000 1.000
aps-failure 0.944 0.952 0.962 0.968
arrhythmia 0.879 0.875 0.858 0.868
bands 0.833 0.870 0.816 0.832
ckd 0.998 1.000 0.997 0.999
crx 0.917 0.920 0.919 0.919
dress-sales 0.613 0.601 0.608 0.596
exasens 0.741 0.741 0.739 0.744
hcc 0.781 0.781 0.771 0.775
heart-disease 0.856 0.862 0.846 0.852
hepatitis 0.876 0.881 0.871 0.878
horse-colic 0.757 0.768 0.766 0.777
mammographic-masses 0.845 0.853 0.843 0.847

Continued on next page
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TABLE VII: Distance-based classifiers, optimised hyperparameter values. Bold: highest value per distance measure.

Classifier Dataset Boscovich distance Euclidean distance
MMI-I PE MMI-I PE

mi 0.648 0.665 0.648 0.653
nomao 0.987 0.991 0.987 0.990
primary-tumor 0.777 0.778 0.784 0.780
secom 0.619 0.667 0.572 0.585
soybean 0.997 0.997 0.996 0.997
thyroid0387 0.898 0.914 0.894 0.905

SVM-G adult 0.900 0.906
agaricus-lepiota 1.000 1.000
aps-failure 0.970 0.972
arrhythmia 0.877 0.882
bands 0.846 0.872
ckd 1.000 1.000
crx 0.916 0.919
dress-sales 0.634 0.621
exasens 0.779 0.781
hcc 0.793 0.778
heart-disease 0.864 0.873
hepatitis 0.834 0.841
horse-colic 0.787 0.788
mammographic-masses 0.854 0.855
mi 0.660 0.669
nomao 0.992 0.992
primary-tumor 0.792 0.786
secom 0.672 0.680
soybean 0.999 0.999
thyroid0387 0.955 0.961

TABLE VIII: Decision tree classifiers, optimised hyperparameter values. Bold: highest value.

Classifier Dataset MMI-I PE

ABT adult 0.915 0.915
agaricus-lepiota 1.000 1.000
aps-failure 0.986 0.987
arrhythmia 0.741 0.724
bands 0.812 0.807
ckd 1.000 1.000
crx 0.909 0.909
dress-sales 0.576 0.572
exasens 0.721 0.716
hcc 0.722 0.735
heart-disease 0.863 0.862
hepatitis 0.803 0.790
horse-colic 0.753 0.767
mammographic-masses 0.855 0.856
mi 0.600 0.586
nomao 0.987 0.987
primary-tumor 0.769 0.757
secom 0.661 0.657
soybean 0.972 0.990

Continued on next page
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TABLE VIII: Decision tree classifiers, optimised hyperparameter values. Bold: highest value.

Classifier Dataset MMI-I PE

thyroid0387 0.878 0.888

CART adult 0.881 0.882
agaricus-lepiota 0.996 0.999
aps-failure 0.974 0.975
arrhythmia 0.723 0.727
bands 0.750 0.752
ckd 0.986 0.981
crx 0.909 0.902
dress-sales 0.596 0.592
exasens 0.733 0.734
hcc 0.622 0.627
heart-disease 0.798 0.800
hepatitis 0.755 0.767
horse-colic 0.709 0.718
mammographic-masses 0.838 0.835
mi 0.632 0.631
nomao 0.965 0.964
primary-tumor 0.713 0.712
secom 0.642 0.658
soybean 0.963 0.964
thyroid0387 0.918 0.920

ERT adult 0.893 0.898
agaricus-lepiota 1.000 1.000
aps-failure 0.985 0.985
arrhythmia 0.872 0.867
bands 0.848 0.857
ckd 1.000 1.000
crx 0.919 0.922
dress-sales 0.631 0.618
exasens 0.765 0.765
hcc 0.772 0.774
heart-disease 0.860 0.859
hepatitis 0.864 0.868
horse-colic 0.793 0.790
mammographic-masses 0.858 0.859
mi 0.680 0.683
nomao 0.980 0.981
primary-tumor 0.791 0.787
secom 0.729 0.728
soybean 0.998 0.998
thyroid0387 0.967 0.970

GBM adult 0.918 0.919
agaricus-lepiota 1.000 1.000
aps-failure 0.987 0.987
arrhythmia 0.905 0.904
bands 0.862 0.862
ckd 1.000 1.000
crx 0.937 0.937
dress-sales 0.609 0.602
exasens 0.783 0.784
hcc 0.794 0.790

Continued on next page
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TABLE VIII: Decision tree classifiers, optimised hyperparameter values. Bold: highest value.

Classifier Dataset MMI-I PE

heart-disease 0.874 0.874
hepatitis 0.863 0.873
horse-colic 0.788 0.789
mammographic-masses 0.866 0.862
mi 0.704 0.709
nomao 0.990 0.990
primary-tumor 0.794 0.792
secom 0.718 0.713
soybean 0.999 0.999
thyroid0387 0.955 0.951

RF adult 0.904 0.907
agaricus-lepiota 1.000 1.000
aps-failure 0.985 0.985
arrhythmia 0.864 0.857
bands 0.860 0.860
ckd 0.999 1.000
crx 0.930 0.931
dress-sales 0.640 0.627
exasens 0.763 0.757
hcc 0.818 0.804
heart-disease 0.862 0.859
hepatitis 0.872 0.872
horse-colic 0.781 0.785
mammographic-masses 0.860 0.862
mi 0.669 0.678
nomao 0.979 0.979
primary-tumor 0.787 0.791
secom 0.709 0.712
soybean 0.998 0.998
thyroid0387 0.975 0.975


