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Abstract By filling in missing values in datasets, imputation allows
these datasets to be used with algorithms that cannot handle missing
values by themselves. However, missing values may in principle contrib-
ute useful information that is lost through imputation. The missing-
indicator approach can be used in combination with imputation to in-
stead represent this information as a part of the dataset. There are sev-
eral theoretical considerations why missing-indicators may or may not be
beneficial, but there has not been any large-scale practical experiment
on real-life datasets to test this question for machine learning predic-
tions. We perform this experiment for three imputation strategies and a
range of different classification algorithms, on the basis of twenty real-
life datasets. In a follow-up experiment, we determine attribute-specific
missingness thresholds for each classifier above which missing-indicators
are more likely than not to increase classification performance. And in a
second follow-up experiment, we evaluate numerical imputation of one-
hot encoded categorical attributes. We reach the following conclusions.
Firstly, missing-indicators generally increase classification performance.
Secondly, with missing-indicators, nearest neighbour and iterative im-
putation do not lead to better performance than simple mean/mode
imputation. Thirdly, for decision trees, pruning is necessary to prevent
overfitting. Fourthly, the thresholds above which missing-indicators are
more likely than not to improve performance are lower for categorical
attributes than for numerical attributes. Lastly, mean imputation of nu-
merical attributes preserves some of the information from missing values.
Consequently, when not using missing-indicators it can be advantageous
to apply mean imputation to one-hot encoded categorical attributes in-
stead of mode imputation.

Keywords: Missing data · Missing-indicators · Imputation · Classifica-
tion · Data-centric machine learning.
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1 Introduction

Missing values are a frequent issue in real-life datasets, and the subject of a large
body of ongoing research. Some implementations of machine learning algorithms
can handle missing values natively, requiring no further action by practitioners.
But whenever this is not the case, a common general strategy is to replace the
missing value with an estimated value: imputation. An advantage of imputa-
tion is that we obtain a complete dataset, to which we can apply any and all
algorithms that make no special provision for missing values. However, missing
values may be informative, and a disadvantage of imputation is that it removes
this information.

The missing-indicator approach [12] is an old proposal to represent and
thereby preserve the information encoded by missing values. For every original
attribute, it adds a new binary ‘indicator’ or ‘dummy’ attribute that takes a value
of 1 if the value for the original attribute is missing, and 0 if not (Figure 1).4 The
missing-indicator approach is often presented as an alternative to imputation,
but since it does not resolve the missing values in the original attributes, it can
only be used in addition to, not instead of imputation.

a1 a2 a3 i1 i2 i3

0.92 aap 2.50 0 0 0
? aap 1.00 1 0 0
8.42 ? 3.00 0 1 0
2.23 noot 0.05 0 0 0
? ? ? 1 1 1
0.41 mies ? 0 0 1
...

...
...

...
...

...

Figure 1: Illustrative example of a dataset with three attributes (a1, a2, a3) with
missing values (‘?’), and corresponding missing-indicators (i1, i2, i3).

It is an open question whether missing-indicators should be used for predict-
ive tasks in machine learning [75]. Both imputation and the missing-indicator
approach originate in the statistical literature. While imputation strategies have
been the subject of a rich body of research, the missing-indicator approach has
not received a large amount of attention, and is often dismissed or disregarded
in overviews of approaches towards missing values.

In the context of machine learning, the effect of missing-indicators can be
framed as follows. On the one hand, the addition of missing-indicators results in
a more complete, higher-dimensional representation of the data. On the other
hand, their omission corresponds to a form of dimensionality reduction, which

4 Some authors use the opposite convention, letting the indicator express non-
missingness.
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may increase the efficiency and effectiveness of a dataset by eliminating redund-
ancy.

To determine whether this trade-off is useful, a key question is to which
extent missing values in a given dataset are informative. If they are not, the
phrase “missing at random” (MAR) [66] is used to indicate that the distribution
of missing values is dependent on the known values, while the stricter phrase
“missing completely at random” (MCAR) denotes values that are distributed
truly randomly. In contrast, informative missing values are often denoted as
“missing not at random” (MNAR).

In this respect, it is often argued that one should distinguish between missing
values that could in principle have been obtained, and missing values that fun-
damentally do not exist, like attributes related to pregnancy tests for male sub-
jects.5 In the latter case, the missing values are definitely informative. However,
such clear-cut cases may be comparatively rare. Moreover, it does not follow that
the missing values in the former case are definitely non-informative. In fact, for
real-life datasets, unless we have specific knowledge about the process respons-
ible for the missing values, we have to assume some degree of informativeness in
principle.6

Nonetheless, it has been argued that in practice, the attributes of a dataset
can be sufficiently redundant that one can get away with assuming that its
missing values are MAR [69]. This means that most of the information contained
by the missing values should in principle be recoverable through imputation. But
even if this is so, imputation may not always perform optimally, in which case
missing-indicators may still prove useful for machine learning.

A more subtle point is that even when missing values are informative, the
information they encode need not be lost completely through imputation. This
is particularly evident in the case of numerically encoded binary attributes (e.g.
0 and 1), where imputation can represent missing values as a third, intermediary
value (e.g. 0.5). More generally, Le Morvan et al. [49] have recently observed that
almost all deterministic imputation functions map records with missing values
to distinct manifolds in the attribute space that can in principle be identified by
sufficiently powerful algorithms. Nevertheless, missing-indicators can potentially
make this learning task easier.

In light of these conflicting theoretical arguments, the usefulness of missing-
indicators for real-life machine learning problems is an interesting empirical ques-
tion. However, previous experiments in this direction have been limited in scope
and number. These limitations include the use of only one or a handful of data-
sets, the use of datasets from which values have been removed artificially, and not
comparing the same imputation strategies with and without missing-indicators.

5 We are grateful to an anonymous reviewer for this example.
6 This is acknowledged by authors working under the assumption of MAR, e.g. “When

data are missing for reasons beyond the investigator’s control, one can never be cer-
tain whether MAR holds. The MAR hypothesis in such datasets cannot be formally
tested unless the missing values, or at least a sample of them, are available from an
external source.” [69]
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The purpose of the present paper is straightforward. On the basis of twenty
real-life classification problems with naturally occurring missing values, we meas-
ure the performance of a range of popular classification algorithms, using three
common types of imputation, with and without missing-indicators. This allows
us to evaluate the effect of using missing-indicators, as well as the choice of
imputation strategy.

Moreover, we conduct three follow-up experiments to gain a better under-
standing of when and why missing-indicators can be useful. In the first, we
determine whether this is influenced by the type (categorical or numerical) and
the amount of missing values of a given attribute. In the second, we test the
hypothesis that numerical imputation partially preserves the information from
missing values. And in the third follow-up experiment, we compare missing-
indicators to two model-specific approaches to missing values for nearest neigh-
bour and decision tree classifiers.

In Section 2, we provide a brief overview of the existing literature on missing-
indicators, including previous experimental evaluations. In Section 3, we describe
our experimental setup. We report our results in Section 4 and conclude in
Section 5.

2 Background

We start with a brief discussion of the origins and reception of the missing-
indicator approach, as well as previous experimental evaluations of the use of
missing-indicators in prediction tasks.

2.1 Origins and Reception

The missing-indicator approach originates in the literature on linear regression. It
dates back to at least Cohen [12], who pointed out that values in real-life datasets
are typically not missing completely at random, and that the distribution of
missing values may in particular depend on the values of the attribute that
is to be predicted. He proposed that each attribute could be said to have two
‘aspects’, its value, and whether that value is present to begin with, which should
be encoded with a pair of variables. For missing attribute values, the first of these
variables was to be filled in with the mean of the known values, although other
applications might call for different values. Cohen’s proposal was subsequently
expanded in [13], but received only limited recognition in the following years
[46,76,11,42,4,57].

Cohen’s proposal was subjected to a formal analysis by Jones [44], who
showed that, if one assumes that missing values are MAR, and the true lin-
ear regression model does not contain any terms related to missingness, it pro-
duces biased estimates of the regression coefficients (unless the sample covariance
between independent variables is zero). However, these assumptions run directly
counter to the position set out in [13] that a priori, the missingness of each attrib-
ute is a possible explanatory factor, that it is safer not to assume that missing
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values are distributed randomly, and that the usefulness of missing-indicators is
ultimately an empirical question.

Allison [2], motivated by [44] and working under the general assumption of
MAR, dismissed missing-indicators as “clearly unacceptable”, before conceding
that they in fact produce optimal estimates when the missing value is not just
missing, but cannot exist, such as the marital quality of an unmarried couple.
However, this semantic distinction may not always be clear-cut in practice, and
the more pertinent question may be whether missing values are informative.
Allison [3] later acknowledged that missing-indicators may lead to better pre-
dictions and their use for that purpose was acceptable. Missing-indicators have
also been dismissed in [61,70,36,5], and are frequently omitted in overviews of
missing data strategies [69,25,23,32,16].

2.2 Previous Experiments

Only a handful of experimental comparisons of missing data approaches have in-
cluded the missing-indicator approach, and these have been limited in scope. [81]
and [56] only use a single dataset with randomly removed values, and base their
evaluation on the performance of a single algorithm (respectively a neural net-
work and linear regression). The authors of [59] use three classification algorithms
and 22 datasets, but again with randomly removed values, explicitly assuming an
MCAR context. They conclude that imputation outperforms missing-indicators,
but the comparison is not like-for-like, since it involves several forms of imputa-
tion but only combines indicator attributes with zero imputation. The authors
of [41] compare missing-indicators with zero imputation against several other
forms of imputation without missing-indicators on one real dataset, for logistic
regression. However, they do not evaluate predictive performance.

Ding & Simonoff [18] conduct a more extensive investigation, using insights
from a series of Monte Carlo simulations to systematically remove values from
36 datasets to simulate different forms of missingness. They use these datasets to
compare zero imputation7 with indicator attributes against mean/mode imputa-
tion without, as well as a number of other missing data approaches, for logistic
regression. In addition, the authors evaluate a related representation of missing
values8 on the same set of 36 datasets, and on one real-life dataset with missing
values, for decision trees. They find that there is strong evidence that represent-
ing missing values is the best approach when they are informative; when this is
not the case their results show no strong difference.

The comparison by Grzymala-Busse & Hu [38] is based on 10 datasets with
naturally occurring missing values. However, the setting is purely categorical

7 Presumably, they use one-hot encoding for categorical attributes, in which case zero
imputation is equivalent to treating missing values as a separate category, but they
do not state this explicitly.

8 For categorical values, encoding missing values as a separate category; for numerical
values, encoding missing values as an extremely large value that can always be split
from the other values.
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— all attributes are transformed into categorical attributes — the only form of
imputation is mode imputation, and the missing value approaches are evaluated
on the basis of the LERS classifier (Learning from Examples based on Rough
Sets [37]).

Marlin [52] compares zero imputation with missing-indicators (augmentation
with response indicators) against several forms of imputation without, for logistic
regression and neural networks, on the basis of an extensive series of simulations,
one dataset with artificially removed values, and three real datasets. For the
real datasets, there is no strong difference in performance between the different
approaches.

Most recently, building on earlier experiments with simulated regression
datasets [45,49], Perez-Lebel et al. [60] compare four different imputation tech-
niques with and without missing-indicators (missingness mask) on seven predic-
tion tasks derived from four real medical datasets, and conclude that missing-
indicators consistently improve performance for gradient boosted trees, ridge
regression and logistic regression.

We point out that the Missingness in Attribute (MIA) proposal [80] for de-
cision trees and decision tree ensembles can be understood as an implicit combin-
ation of missing-indicators with automatic imputation, and has also been shown
to outperform imputation without missing-indicators in small-scale experimental
studies [45,60].

Finally, even experimental comparisons of missing data that do not feature
the missing-indicator approach generally do not involve more than a handful of
real-life datasets with naturally occurring missing values. We have only found
the connected works [50,51], which feature 21 datasets from the UCI repository,
but 12 of these are problematic.9

9 The target column of the echocardiogram dataset (‘alive-at-1’) is supposed to denote
whether a patient survived for at least one year, but it doesn’t appear to agree with
the columns from which it is derived, that denote how long a patient (has) survived
and whether they were alive at the end of that period. The audiology dataset has a
large number of small classes with complex labels and should perhaps be analysed
with multi-label classification. In addition, it has ordinal attributes where the order
of the values is not entirely clear, and three different values that potentially denote
missingness (‘?’, ‘unmeasured’ and ‘absent’), and it is not completely clear how
they relate to each other. The house-votes-84 dataset contains ‘?’ values, but its
documentation explicitly states that these values are not unknown, but indicate
different forms of abstention. The ozone dataset is a time-series problem, while the
task associated with the sponge and water-treatment datasets is clustering, with no
obvious target for classification among their respective attributes. Finally, the breast-
cancer (9), cleveland (7), dermatology (8), lung-cancer (5), post-operative (3) and
wisconsin (16) datasets contain only very few missing values, and any performance
difference between missing value approaches on these datasets may to a large extent
be coincidental.
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3 Experimental Setup

To evaluate the effect of the missing-indicator approach on classification per-
formance, we conduct a series of experiments, using the Python machine learning
library scikit-learn [58].

3.1 Questions

The aim of our experiments is to answer the following questions:

– Do missing-indicators increase performance, and does it matter which im-
putation strategy they are paired with?

– When do missing-indicators start to become useful in terms of missingness?
– Does using mean imputation instead of mode imputation allow for more

information to be learned from missing categorical values?
– How do missing-indicators compare to model-specific approaches to missing

values?

3.2 Evaluation

We preprocess datasets by standardising numerical attributes and one-hot en-
coding categorical attributes (as required by the implementations in scikit-learn).

We measure classification performance by performing stratified five-fold cross-
validation, repeating this for five different random states (which determine both
the dataset splits and the initialisation of algorithms with a random component),
and calculating the mean area under the receiver operator curve (AUROC). For
multi-class datasets, we use the extension of AUROC defined in [40].

To compare two alternatives A and B, we consider the p-value of a one-sided
Wilcoxon signed-rank test [82] on the mean AUROC scores for our selection of
datasets. When we compare A vs B, a score below 0.5 means that A increased
performance on our selection of datasets; the lower the scores, the more confident
we can be that this generalises to other similar datasets. Conversely, a score
higher than 0.5 means that A decreased performance on our selection of datasets.

3.3 Imputation Strategies

We consider the following three imputation strategies:

– Mean/mode imputation replaces missing values of numerical and categorical
attributes by, respectively, the mean and the mode of the non-missing values.

– Nearest neighbour imputation [79] replaces missing values of numerical and
categorical attributes by, respectively, the mean and the mode of the 5
nearest non-missing values, with distance determined by the corresponding
non-missing values for the other attributes.
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– Iterative imputation, as implemented in scikit-learn, based on [8], predicts
missing values of one attribute on the basis of the other attribute values
using a round-robin approach. For numerical attributes, this uses Bayesian
ridge regression [77], initialised with mean imputation, while for categorical
attributes, we use logistic regression, initialised with mode imputation.

The scikit-learn implementations of nearest neighbour and iterative imputa-
tion can currently only impute numerical features, so we had to adapt them
for categorical imputation. In all other aspects, we follow the default settings of
scikit-learn.10

3.4 Classification Algorithms

We consider the classification algorithms listed in Table 1, as implemented in
scikit-learn. Hyperparameters take their default values, except for SVM-L, LR
and MLP, where we increase the maximum number of iterations to 10 000 to
increase the probability of convergence.

For a number of these algorithms, specific ways have been proposed to handle
missing values: e.g. NN-2-D [19], SVM-G [72], MLP [78,73,43] and CART [63,80].
The purpose of the present experiment is to evaluate the general approach of
using imputation with missing-indicators when these solutions have not been
implemented, as is the case in scikit-learn.

Table 1: Classification algorithms.
Name Description

NN-1 Nearest neighbours [28] with (Boscovich) 1-distance
NN-2 Nearest neighbours with (Euclidean) 2-distance
NN-1-D Nearest neighbours with 1-distance, distance-weighted [21]
NN-2-D Nearest neighbours with 2-distance, distance-weighted
SVM-L Soft-margin Support Vector Machine [14] with linear kernel
SVM-G Soft-margin Support Vector Machine with Gaussian kernel
LR Multinomial logistic regression [15]
MLP Multilayer perceptron [65] with ReLu activation [31], Glorot ini-

tialisation [34] and Adam optimisation [47]
CART Classification and Regression Tree [7]
RF Random Forest [6]
ERT Extremely Randomised Trees [33]
ABT Ada-boosted trees [29] with SAMME (stagewise additive model-

ing using a multi-class exponential loss function) [83]
GBM Gradient Boosting Machine [30]

10 For the nomao dataset, iterative imputation diverged, so we had to restrict imputa-
tion to the interval [−100, 100].
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3.5 Datasets

We use twenty real-life datasets with naturally occurring missing values from
the UCI repository for machine learning [20] (Table 2). These datasets are quite
varied — they cover a number of different domains and contain between 155 and
76 000 records, between 4 and 590 attributes, between 2 and 21 decision classes
and missing value rates between 0.0032 and 0.43.

We have preprocessed these datasets in the following manner. We have re-
moved attributes that were non-informative according to the accompanying doc-
umentation, as well as identifiers and alternative target values. When it was clear
from the description that an attribute was categorical, we have treated it as such,
even if it was originally represented with numerals. Conversely, where the pos-
sible values of an attribute admitted a semantic order, we have encoded them
numerically. We have left binary attributes in their original encoding (categorical
or numerical). To enable 5-fold cross-validation, we have removed classes with
fewer than 5 records.

Table 2: Real-life classification datasets with missing values from the UCI repos-
itory for machine learning.
Dataset Records Classes Attributes Missing value rate Source

Num Cat Total Num Cat Total

adult 48842 2 5 8 13 0.0 0.017 0.010 [48]
agaricus-lepiota 8124 2 1 21 22 0.0 0.015 0.014 [71]
aps-failure 76000 2 170 0 170 0.083 0.083 [27]
arrhythmia 443 10 279 0 279 0.0032 0.0032 [39]
bands 540 2 19 15 34 0.054 0.054 0.054 [26]
ckd 400 2 14 10 24 0.14 0.059 0.11 [67]
crx 690 2 6 9 15 0.0060 0.0068 0.0065 [62]
dress-sales 500 2 3 9 12 0.20 0.19 0.19
exasens 399 4 7 0 7 0.43 0.43 [74]
hcc 165 2 49 0 49 0.10 0.10 [68]
heart-disease 1611 2 13 1 14 0.18 0.0 0.17 [17]
hepatitis 155 2 19 0 19 0.057 0.057 [22]
horse-colic 368 2 19 1 20 0.25 0.39 0.26 [54]
mammographic-masses 961 2 2 2 4 0.042 0.041 0.042 [24]
mi 1700 8 111 0 111 0.085 0.085 [35]
nomao 34465 2 89 29 118 0.38 0.37 0.38 [9]
primary-tumor 330 15 16 1 17 0.029 0.20 0.039 [10]
secom 1567 2 590 0 590 0.045 0.045 [53]
soybean 683 19 22 13 35 0.099 0.096 0.098 [55]
thyroid0387 9172 18 7 16 23 0.22 0.0021 0.069 [64]
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Table 3: One-sided p-values, imputation with missing-indicators versus without.
Classifier Imputation strategy

Mean/mode Neighbours Iterative

NN-1 0.0088 0.0015 0.0017
NN-2 0.015 0.0024 0.00048
NN-1-D 0.0045 0.0019 0.0011
NN-2-D 0.0019 0.0031 0.00027
SVM-L 0.13 0.27 0.099
SVM-G 0.0032 0.0027 0.0021
LR 0.079 0.063 0.068
MLP 0.0027 0.0063 0.0056
CART 0.44 0.39 0.40
RF 0.038 0.051 0.17
ERT 0.28 0.0099 0.026
ABT 0.089 0.078 0.47
GBM 0.17 0.012 0.36

4 Results and Discussion

Using the experimental setup detailed in the previous section, we now try to
answer the questions listed in Subsection 3.1.

4.1 Do Missing-Indicators Increase Performance, and Does It
Matter Which Imputation Strategy They Are Paired With?

The p-values obtained by comparing imputation with and without missing-
indicators are displayed in Table 3. Missing-indicators generally lead to increased
performance — with the notable exception of CART, to which we return below.
The more complicated imputation strategies do not result in much better results
than mean/mode imputation when we pair imputation with missing-indicators
(Table 4). At best, nearest neighbour and iterative imputation only lead to a
modest improvement, and for many classifiers, they actually decrease perform-
ance. Therefore, we focus on mean/mode imputation for the remainder of this
section.

A possible reason for the failure of missing-indicators to increase performance
with CART, is that by default, the scikit-learn implementation of this classifier
does not perform pruning, making it prone to overfitting. To test this hypothesis,
we repeat our experiment for CART and mean imputation, but this time we
apply cost complexity pruning (α = 0.01). This clearly improves performance
(p = 0.0069 without missing-indicators, p = 0.015 with missing-indicators), and
now missing-indicators have a slight advantage (p = 0.23).

We have also taken a closer look at ERT and GBM, for which the performance
increase from missing-indicators is not very significant. For ERT, this may be
due to underfitting. If we increase the number of trees from the default 100 to
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Table 4: One-sided p-values, missing-indicators with iterative and nearest neigh-
bour versus mean/mode imputation.

Classifier Imputation strategy
Neighbours Iterative

NN-1 0.94 0.15
NN-2 0.78 0.19
NN-1-D 0.97 0.55
NN-2-D 0.84 0.23
SVM-L 0.53 0.61
SVM-G 0.47 0.94
LR 0.40 0.83
MLP 0.30 0.55
CART 0.69 0.79
RF 0.61 0.86
ERT 0.61 0.64
ABT 0.33 0.78
GBM 0.93 0.85
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0.88
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0 100 200
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(b) mammographic-masses

Figure 2: GBM test AUROC for two illustrative datasets, using mean/mode
imputation without missing-indicators, for one random state and one cross-
validation fold. The default hyperparameter value of 100 iterations leads to
under- (a) and overfitting (b).
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1000, this improves performance (p = 0.0011 without missing-indicators, p =
0.0032 with missing-indicators), and makes the advantage of missing-indicators
somewhat clearer (p = 0.092).

For GBM, the default choice of 100 iterations of gradient descent can lead to
both under- or overfitting, depending on the dataset (Fig. 2). We believe that
it is generally preferable to continue training until an early-stopping criterion
is met. However, applying the same criterion as with MLP11 does not improve
performance over the default of 100 (p = 0.81 without missing-indicators, p =
0.85 with missing-indicators) and does not change the relative advantage due to
missing-indicators (p = 0.20).

4.2 When Do Missing-Indicators Start to Become Useful in Terms
of Missingness?

The theoretical motivation for representing missing values through missing-
indicators is that this allows classifiers to learn the information encoded in their
distribution. In principle, this should be easier when there are more examples to
learn from. We can use this principle to obtain a better understanding of when
missing-indicators might be useful on a per-attribute level.

The challenge that we have to overcome is that we would like to study in-
dividual attributes, but classification performance is measured on the dataset
level. We tackle this by studying datasets with only one attribute with miss-
ing values, allowing us to investigate the relation between the properties of the
attribute and classification performance on the dataset.

We conduct the following experiment. For each attribute with missing values
in each dataset, we reduce the original dataset by removing all other attributes
with missing values. We thus obtain 1148 reduced datasets with only one at-
tribute with missing values, onto which we apply each of our classifiers (with
pruning for CART, 1000 trees for ERT and early-stopping for GBM) and con-
sider whether missing-indicators increase or decrease AUROC (we dismiss ties).
Finally, for each classifier we fit a logistic regression model with cluster robust
covariance (clustered by the originating dataset), with the following potential
parameters: categoricalness (whether the attribute is categorical) and either the
number of missing values (log-transformed) or the missing rate. We use the
Akaike information criterion [1] to decide whether to select these parameters.

We find that for most classifiers, either the absolute or the relative number
of missing values is an informative parameter with positive coefficient. For MLP,
neither parameter is informative, while for RF, the number of missing values is
an informative parameter with negative coefficient, for which we have no explan-
ation at present. For every classifier, categoricalness is an informative parameter
with positive coefficient, meaning that missing-indicators are more beneficial for
categorical than for numerical attributes.

11 Setting aside 10% of the data for validation, stopping when validation loss has not
decreased by at least 0.0001 for ten iterations, with a maximum of 10 000 iterations.
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The fitted logistic regression models allow us to calculate attribute-specific
thresholds above which missing-indicators are more likely than not to increase
AUROC, for all classifiers except MLP and RF (Table 5). In many cases, these
thresholds are 1 or 0.0, indicating that missing-indicators are always likely to
increase AUROC.

Table 5: Thresholds above which missing-indicators are more likely than not
to increase AUROC, in terms of the absolute number of missing values or the
missing rate.

Classifier Missing values Missing rate
Cat Num Cat Num

NN-1 1 302
NN-2 2 130
NN-1-D 1 291
NN-2-D 1 73
SVM-L 0.0 0.0
SVM-G 0.0 0.40
LR 0.0 0.0
CART 0.0 0.12
ERT 0.0 1.0
ABT 1 23200
GBM 0.0 0.0

4.3 Does Using Mean Imputation Instead of Mode Imputation
Allow for More Information to Be Learned from Missing
Categorical Values?

As indicated above, missing-indicators are generally more likely to increase per-
formance for categorical than for numerical attributes. A potential explanation
for this is the fact that the mode of a categorical attribute is one of the non-
missing values, whereas the mean of a numerical attribute is generally not equal
to one of the non-missing values. Therefore, categorical imputation renders miss-
ing values truly indistinguishable from non-missing values, whereas numerical
imputation does not — the information expressed by missing values may be
partially recoverable, as argued by Le Morvan et al. [49] and discussed in the
Introduction.

We can achieve a similar partial representation of missing categorical values
by changing the order in which we perform imputation and one-hot encoding, i.e.
by performing numerical imputation on one-hot encoded categorical attributes
with missing values. For imputation without missing-indicators, this indeed leads
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to better performance for some classifiers, while in combination with missing-
indicators, it does not make much of a difference (Table 6)12.

Table 6: One-sided p-values, mean imputation after one-hot encoding versus
mode imputation of missing categorical values.

Classifier Without — With missing-indicators

NN-1 0.020 0.077
NN-2 0.14 0.031
NN-1-D 0.016 0.12
NN-2-D 0.16 0.031
SVM-L 0.43 0.57
SVM-G 0.17 0.56
LR 0.81 0.057
MLP 0.16 0.60
CART 0.44 0.30
RF 0.046 0.57
ERT 0.030 0.95
ABT 0.48 0.62
GBM 0.077 0.54

4.4 How Do Missing-Indicators Compare to Model-Specific
Approaches to Missing Values?

While not the primary focus of this paper, we may also wonder how the missing-
indicator approach compares to model-specific approaches to missing values. For
CART and RF, we consider the proposal by [80], that a decision tree should eval-
uate two variants of each split, with missing values sent to either side. This has
been implemented in the latest version of scikit-learn (1.4.0), which was released
after the previous experiments in this section were conducted. In addition, we
have modified the implementation of the nearest neighbour classifier in scikit-
learn to obtain the approach labelled as ‘normal’ in [19]. This calculates the dis-
tance between two records by linearly extrapolating the distance calculated only
on the basis of all non-missing feature values. We note that every model-specific
approach is different — we expect that their effect on classification performance
will differ from case to case — so our evaluation of these two approaches only
serves an illustrative purpose.

We find (Table 7, Test 1) that the model-specific approach for the nearest
neighbour classifiers performs significantly worse than mean/mean imputation
with missing-indicators. In contrast, there is no difference for CART, and the
model-specific approach appears to perform better for RF. We can also ask
whether these model-specific approaches benefit from adding missing-indicators
12 LR is an exception here, we have no explanation for this.
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— here this only appears to be the case for the nearest neighbour classifiers
(Table 7, Test 2), i.e. when the model-specific approach performs badly. How-
ever, even with missing-indicators the model-specific approach for the nearest
neighbour classifiers does not perform better than mean/mean imputation with
missing indicators (Table 7, Test 3).

Table 7: One-sided p-values, model-specific missing value approaches. Test
1: Mean/mean imputation with missing-indicators vs model-specific approach
without; Test 2: Model-specific approach with missing-indicators vs model-
specific approach without; Test 3: Model-specific approach vs mean/mean im-
putation, both with missing-indicators.

Classifier Test 1 Test 2 Test 3

NN-1 0.00036 0.00017 0.56
NN-2 0.00074 0.00015 0.94
NN-1-D 0.00020 0.00015 0.89
NN-2-D 0.00023 0.00011 0.93
CART 0.50 0.86 0.66
RF 0.92 0.60 0.092

5 Conclusion

We have presented the first large-scale experimental evaluation of the effect of
the missing-indicator approach on classification performance, conducted on real
datasets with naturally occurring missing values, paired with three different im-
putation techniques. The central question was whether, on balance, more benefit
can be derived from the additional information encoded in a representation of
missing values, or from the lower-dimensional projection of the data obtained by
omitting missing-indicators.

On the whole, missing-indicators increase performance for the classification
algorithms that we considered. An exception was CART, which suffers from
overfitting in its default scikit-learn configuration. When pruning is applied,
missing-indicators do increase performance. For ERT, the advantage of missing-
indicators becomes more significant when underfitting is controlled.

We also found that, in the presence of missing-indicators, nearest neighbour
and iterative imputation do not significantly increase performance over simple
mean/mode imputation. This is a useful finding, because implementations of
more sophisticated imputation strategies may not always be available to practi-
tioners working in different frameworks, or easy to apply.

In a follow-up experiment, we determined attribute-specific missingness thresh-
olds, above which missing-indicators are more likely than not to increase per-
formance. For categorical attributes, this threshold is generally very low, while
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for numerical attributes, there is more variation among classifiers, in particular
as to whether this threshold is absolute or relative to the total number of records.

The greater usefulness of missing-indicators for categorical than for numerical
attributes can be explained by the fact that the mean of a numerical attribute is
not generally identical to any of the non-missing values, and that mean imputa-
tion therefore preserves some of the information of missing values. This is sup-
ported by the results of a further experiment, which showed that, in the absence
of missing-indicators, applying mean imputation to one-hot encoded categorical
attributes results in somewhat better performance than mode imputation.

While we have mainly considered the use of missing-indicators with imputa-
tion, there also exist model-specific solutions for missing values, that can in turn
be combined with missing-indicators. Whether missing-indicators outperform
these model-specific approaches has to be determined on a case-by-case basis.
This was illustrated by our third follow-up experiment for nearest neighbour and
decision tree classifiers.

We conclude that the combination of mean/mode imputation with missing-
indicators is a safe default approach towards missing values in classification tasks.
While over- or underfitting is a concern for certain classifiers, it is a concern
for these classifiers with or without missing-indicators. However, practitioners
may want to omit missing-indicators when the classification algorithm to be
used has a special provision for missing values, when the missingness thresholds
that we determined are not met, or on the basis of specific information about
the distribution of missing values in the dataset. The use of missing-indicators
can also be combined with dimensionality reduction algorithms to increase the
information density of the resulting dataset.

The problem of missing data has been the subject of a rich body of theor-
etical literature. We hope to have contributed with this paper to the practical
evaluation of some of that theory. In particular, we are happy to have identified
twenty real-life datasets with missing values, and hope that in the future, more
such datasets will be collected.

Data and code. Datasets and the code to reproduce our experiments are available
at https://cwi.ugent.be/~oulenz/code/lenz-2024-no.tar.gz.
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