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Introduction

Imagine that you are invited to listen to a recording of a person speaking
English, and to guess, on the basis of their accent, where they are from.
One (subconscious) strategy that you might try is to mentally compare
the person in the recording with (your memory of) various other people
speaking English, and to identify the closest match. If this is your
strategy, you are applying nearest neighbour (NN) classification.

The process just described is extremely intuitive, and Pelillo (2014)
has claimed that it has already been formulated as early as the 1030s
by Ibn al-Haytham. The simplicity of NN classification contrasts with
muchmore complex algorithms like neural networks, which have gained
a reputation for being inscrutable: a powerful magical black box that
transforms raw data into conclusions that are generally correct, but
which may also fail in mysterious ways.

As NN classification is so simple, one could be forgiven for thinking
that there is not much left to say about it. But that is not quite true. How
many neighbours should we consider, and should we consider them
equally? In order to be able to identify neighbours in the first place,
we need a definition of distance. It turns out that there are multiple
plausible choices, so which distance measure should we select, and how
should we scale our data?

What is more, Jensen & Cornelis (2008) have proposed a variant of
NN,knownas fuzzy roughnearest neighbours (FRNN). It is still under active
development, and is not yet understood as well as NN classification. For
FRNN, we face the same questions as listed in the previous paragraph,
and in addition we may wonder whether FRNN offers any advantages
over NN.

In the machine learning literature, it is typical to establish results
theoretically, with carefully controlled simulations or with individual
case studies. This is perhaps not surprising, given that machine learn-
ing is an outgrowth of statistics. But it does mean that the real-life
consequences of these results are not always clear.

Part of the reason for these approaches may also be practical. Real-
life datasets are a limited resource that can take a lot of time and effort to
compile. However, this has started to change with the advent of dataset
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repositories, which are filled by generous donors (typically authors of
specific case studies). Perhaps the most important of these is the UCI
machine learning repository (Dua & Graff 2019), established in 1987.
Using datasets from this repository still requires a certain amount of
preparatory work, since only some of the datasets are suitable for any
given task, the datasets come in different formats, and they may require
various forms of preprocessing. These challenges also entail that a
practitioner must develop a superficial understanding of each dataset
that they want to use, from the (often terse) documentation and relevant
publications.

Still, the UCI repository represents an invaluable resource. The
goal of this thesis is to demonstrate how FRNN and some related
algorithms can be applied practically, and throughout we will use
a curated collection of real-life classification problems from the UCI
repository to empirically evaluate proposals.

In Section 0.1, we will provide a number of preliminary definitions
that will be used throughout this thesis. After that, we will sketch a
brief outline of the contents of this thesis in Section 0.2.

0.1 Preliminaries

In this section, we will give formal definitions of fuzzy sets, datasets and
classification, and explain how we evaluate classification performance
throughout this thesis.

Fuzzy sets

Fuzzy rough nearest neighbour classication is based on concepts from
fuzzy set theory (Bellman et al 1964; Zadeh 1965). However, we will
only require a few elementary definitions.

Fuzzy sets generalise classical (‘crisp’) subsets. Recall that a subset
. of a set - is equivalent to an indicator function on -, which takes the
value 1 for all elements contained in., and 0 for all other elements. Fuzzy
sets generalise these indicator functions to allow partial membership:

0.1 Definition (Fuzzy set). Let - be a set. A fuzzy set in - is a map
- −→ [0, 1]. We use ℱ (-) to denote the set of all fuzzy sets in -.

Recall that a binary relation on a set - is a subset of - × -. Analo-
gously, a binary fuzzy relation on - is a fuzzy subset of - × -. We will
use one specific type of binary fuzzy relation:

0.2 Definition (Tolerance relation). A tolerance relation on a set - is a
fuzzy relation on - that is reflexive and symmetric.
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Introduction

Note that this definition is quite flexible, and there is little conceptual
difference with similarity measures that take values in [0, 1].

Fuzzy sets can be used to extend logic to partial truth values in [0, 1].
This requires a fuzzification of logical connectives, but there is no single
solution for this. Instead, for each classical connective, we define a
class of corresponding fuzzy connectives, and the practitioner has to
make a choice. In this thesis, we will only encounter t-norms and fuzzy
implications, which generalise, respectively, the conjunction ∧ and the
implication =⇒ .

0.3 Definition (T-norm). A t-norm (or triangular norm) is an associative,
commutative and monotonically increasing binary operation on [0, 1]
for which 1 is an identity element.

0.4 Definition (Fuzzy implication). A fuzzy implication is a binary op-
eration � on [0, 1] that is monotonically decreasing in its first argument
and monotonically increasing in its second argument, and for which
�(0, 0) = �(0, 1) = �(1, 1) = 1 and �(1, 0) = 0.

The last two conditions ensure that a fuzzy implication reduces to
the implication on {0, 1}. Likewise, because a t-norm ) is increasing,
)(0, 0) = )(0, 1) = 0, so it restricts to the conjunction on {0, 1}.

Datasets

Nearest neighbour algorithms and other classical machine learning
approaches are most easily applied to tabular data. This consists
of a varying number of rows, one for each record (or instance), and
a fixed number of columns, corresponding to the attributes of the
records. Attributes are typically either numerical (taking a value in R)
or categorical. In the latter case, the set of values is deemed not to have
any internal structure, in that no two values are more or less similar
than any other two values. Attributes with only two possible values are
known as binary attributes, and can be considered as either numerical
or categorical attributes.

We can formalise the concept of a dataset with the following defini-
tion:

0.5 Definition (Dataset). An attribute space � =
∏
�8 is a finite product

of attributes�8 , which are either copies ofR (numerical attributes) or finite
sets of values + (categorical attributes). A dataset is a finite multisubset -
of an attribute space �. The elements of - are called records or instances.

We define - as a multisubset to allow for the possibility of duplicate
records, but we will write simply - ⊂ �.
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Many algorithms are only defined for numerical data, and one
popular solution, perhaps first documented by Suits (1957) (but “not
new” even then), is to transform a categorical attribute into a series
of binary dummy variables that can be represented numerically. Each
of these dummy variables indicates whether a different value of the
categorical attribute applies. Since each record can only take one value,
only one of the dummy variables will take a value of 1, while the rest
remain 0. Therefore, this approach is known as one-hot encoding:

0.6 Definition (One-hot encoding). Let + be a categorical attribute.
For a chosen order + = (E1 , E2 , . . . , E?), its one-hot encoding is the
map + −→ R? that sends E8 to the standard basis vector e8 =
〈0, . . . , 0, 1, 0, . . . , 0〉 for all 8 ≤ ?.

Thus, if we apply one-hot encoding, we obtain a numerical dataset
- ⊂ R< for some < > 0.

Classification

One way to characterise the field of machine learning is by the different
tasks it is applied to. In many of these tasks, covered by the umbrella
term of prediction, we want to predict some unknown property, on the
basis of some other properties that are known, as well as a training set of
examples for which we do know the property to be predicted. In this
thesis, we are mostly concerned with the task of classification, for which
the unknown property is a categorical attribute.

Formally, classification can be defined as follows:

0.7 Definition (Classification). A classification dataset is a dataset- ⊂ �
together with a map - −→ C. The elements �8 ∈ C are the decision
classes of -, and we can identify �8 with its preimage in -, such
that we obtain a partition - =

⊔ C. A classifier is an algorithm that
takes a classification dataset and returns a function � −→ ℱ (C), the
classification model of -.

Thus, we distinguish between a classifier (the algorithm) and its
classification model (the application of the algorithm to a specific
problem).

Classification models do not simply predict a single class, but a score
in [0, 1] for each class (indicating how likely that class is). The default
way of discretising these scores into a single class prediction is to select
the class with the highest score.1 We can also normalise class scores

1In the event of a tie, we can choose randomly, select a class according to some order
of preference, or adjust the classifier to obtain a new prediction.
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such that they sum to 1 (if this isn’t already the case), for example by
dividing them by their sum.

Classification scores give analysts a complete picture on which to
base their decisions. When predicting a single class, we want to avoid
errors, but not all errors may carry the same cost in the real world. For
example, it may be more harmful to predict that an ill person is healthy
than vice-versa. An analyst can take this cost into account, and may
want to predict a class even if its score is not the highest. Likewise,
they may want to avoid predicting any single class when all of the class
scores are low.

Classification performance
To evaluate a classificationmodel �(-) produced by a classifier �, we use
a test set . ⊂ � for which we also know the class membership . −→ C
(the ground truth). The best-known evaluationmeasure is accuracy, which
requires that we discretise �(-)(.) into a set of predicted values in C;
we obtain the accuracy score by counting the share of corresponding
matches with the ground truth.

However, because it requires discretising the class scores, accuracy is
not a good summary of the full discriminative ability of a classification
model. Instead, we will mostly use the area under the receiver operating
characteristic (AUROC, Bradley 1997; Hanley &McNeil 1982) throughout
this thesis. For two decision classes �1 and �2, this corresponds to
the probability that a classification model assigns a higher normalised
score for �1 to a random test record belonging to �1 than to a random
test record belonging to �2. For multiclass problems, we will use
the extension by Hand & Till (2001), which aggregates the AUROC
corresponding to each pair of classes.

To evaluate the performance of a classifier � on a classification
dataset -, we will use three procedures, ranked in order of increasing
sophistication:

Train/test splitting Randomly split - into a training set -train and a
test set -test, and use -test to evaluate �(-train).

Stratified :-fold cross-validation For some : ≥ 2, select a random
partition - =

⊔
-8 into : equally-sized test sets with an equal

proportion of each decision class, and use every -8 to evaluate
the model �(⋃9≠8 -9) of the corresponding training set. We thus
obtain : performance measures, which we can summarise by
taking the mean.

Leave-one-out validation Predict a score for each G ∈ - using the
model �(- \ {G}), and evaluate the resulting set of scores using
the ground truth for -.
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Leave-one-out validation is arguably the most elegant of these proce-
dures, but it is only feasible if the score �(- \ {G})(G) can be calculated
efficiently. Throughout this thesis, we will mostly use stratified 5-
fold cross-validation to evaluate classifiers, and apply leave-one-out
validation in specific cases.

To compare two classifiers (or two variants of the same classifier),
we will use a series of datasets and apply cross-validation to obtain a
corresponding series of AUROC scores for each classifier. We evaluate
the difference in performance by applying a one-sided Wilcoxon signed-
rank test (Wilcoxon 1945), which produces a ?-value in [0, 1].2 A
value below 0.5 indicates that A performed better than B, and that the
probability that B is really better than A (on other datasets) is no more
than ?. Vice versa, a value above 0.5 indicates that B performed better
than A and that the probability that this is coincidence is no more than
1 − ?.

0.2 Outline

We will now give a brief overview of the contents of this thesis. It
consists of the following four parts:

Part I We start by reviewing the existing definition of fuzzy rough sets,
and proposing a reformulation of FRNN as a proper nearest neigh-
bour algorithm, allowing it to be implemented and applied more
efficiently (Chapter 1). We then review the family of Minkowski
distance measures and a number of related concepts (Chapter 2),
and present a systematic experiment to identify the best scale
and distance measure for NN and FRNN classification, compare
FRNN against NN, and determine good default choices for the
number of neighbours : (Chapter 3).

Part II In this part, we explore how FRNN classification can be scaled
to large datasets. We first present an implementation of FRNN
that employs distributed computing (Chapter 4), and then argue
that the computational complexity of FRNN can be reduced
substantially through approximative nearest neighbour searches
(Chapter 5).

Part III Next, we widen our view to consider data descriptors, a class
of algorithms that model similarity with a decision class. We

2When comparing a group of approaches, another option is to apply a Friedman
test on the mean ranks (Demšar 2006). However, the appropriateness of this test has
been questioned by Benavoli et al (2016), because the resulting p-values may be unduly
inflated or deflated by the selection of classifiers. Instead, Benavoli et al (2016) recommend
pairwise Wilcoxon signed-rank tests followed by a correction for the family-wise error.
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start by introducing the setting of one-class classification and
propose our own data descriptor, average localised proximity
(Chapter 6). We then evaluate the performance of a number of
data descriptors with default hyperparameter values (Chapter 7)
and with hyperparameter optimisation (Chapter 8). Finally, we re-
analyse FRNN as a one-class classification ensemble and explore
whether we can improve its performance by substituting different
components (Chapter 9).

Part IV In the last part, we consider missing values, an issue that is
frequently encountered with real-life datasets. We evaluate three
approaches: missing-indicators, anoldproposal from the literature
(Chapter 10), interval-valued fuzzy sets, a solution specific to
FRNN (Chapter 11), and polar encoding, a new proposal that
represents missing values in a neutral manner and which can be
used with various algorithms (Chapter 12).

We finish with a Conclusion, in which we summarise the results of this
thesis and describe a number of avenues for future research.

Appendices In Appendix A, we describe the software library fuzzy-
rough-learn. Appendix B contains an overview of the datasets
used in this thesis. Lastly, some of the long tables with complete
results have been relegated to Appendix C.
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Part I

Numerical datasets





Chapter 1

Fuzzy rough nearest neighbour
classification1

Fuzzy rough sets were first proposed by Dubois & Prade (1990) as
a hybridisation of fuzzy and rough sets. Rough sets (Pawlak 1981,
1982) can be used to model the uncertainty stemming from conflicting
information in categorical datasets. Fuzzy rough sets generalise rough
sets to numerical datasets using concepts from fuzzy logic (Bellman et al
1964; Zadeh 1965), an extension of classical logic to [0, 1]-valued truth.

Fuzzy rough sets can be used to model concepts, analyse datasets
and help decision-making. In particular, fuzzy rough sets have been
integrated in machine learning algorithms for tasks such as feature
selection, instance or prototype selection, classification and regression
(Vluymans et al 2015b). Our primary interest in this and the following
chapters is fuzzy roughnearest neighbours (FRNN) (Jensen&Cornelis 2008),
a relatively straightforward classification algorithm that approximates
each decision class with a so-called upper and lower approximation and
predicts class membership on the basis of membership degrees in these
approximations.

Like other lazy learners, FRNN does not require training and so
can be applied directly to classify test instances with a training set.
FRNN is also conceptually attractive because its predictions are directly
interpretable. Upper approximation membership encodes to what
extent a test instance is similar to the training instances of a class, and
so possibly belongs to this class. Lower approximation membership
encodes to what extent a test instance is not similar to the training
instances of other classes, and hence should belong to this class.

In Section 1.1, we review the definitions of rough sets and fuzzy
rough sets, and showhow the latter have beenmademore robust through
the incorporation of ordered weighted averaging (OWA) aggregation.

1This chapter is based on parts of Lenz et al (2019) and Lenz et al (2020b).
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Part I. Numerical datasets

This involves the application of weight vectors, and the choice of these
weight vectors offers a degree of flexibility. For example, because lower
and upper approximations are calculated for each class, it is possible to
use different types of weights for different classes. This idea has been
applied successfully by Ramentol et al (2015) and subsequent studies
(Vluymans et al 2016, 2018b) to imbalanced datasets, where a judicious
choice of weights increases the signal of the minority class.

Then, in Section 1.2, we propose a number of changes that make the
application of FRNN classification more practical. In particular, this
involves the adaptation of OWA operators into weighted maxima and
minima, which allows us to calculate upper and lower approximation
membership using nearest neighbour queries.

We conclude this chapter in Section 1.3.

1.1 From rough sets to fuzzy rough sets with OWA
operators

In this section, we will sketch the historical development of FRNN,
starting with rough sets.

Rough sets

Rough sets (Pawlak 1981, 1982) approximate sets of records by way of
some attributes defined over those records. Traditionally, rough sets are
defined in terms of an information system:

1.1 Definition (Information system). An information system is a pair
(-, �), where - is a finite set of records, and � a finite set of maps
0 : - −→ +0 , called attributes. The indiscernibility relation ' in (-, �) is
the equivalence relation {(G, H) ∈ - × - |∀0 ∈ � : 0(G) = 0(H)}.

The equivalence classes of ' consist of all records that are indis-
cernible in terms of their attribute values. Then a rough set is defined
as follows:

1.2 Definition (Upper and lower approximations). Let (-, �) be an in-
formation system, and � ⊆ - a subset. The upper approximation � and
lower approximation � of � are defined by:

� :=
{
H ∈ - |∃G ∈ � : H ∼' G

}
� :=

{
H ∈ - |�G ∈ - \ � : H ∼' G

} (1.1)

A rough set in (-, �) is a pair (�, �) for some subset � ⊆ -.
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1. Fuzzy rough nearest neighbour classification

The upper approximation of � contains all instances that are in-
discernible from instances of �, while the lower approximation of �
contains only those instances that are discernible from all instances not
contained in �. They are the closure and interior of the quasi-discrete
topology generated by '.

The traditional interpretation is that the upper approximation of �
contains instances that, based on their attribute values, possibly belong
to �, while the lower approximation of � contains instances that, based
on their attribute values, necessarily belong to �.

Fuzzy rough sets

Upper and lower approximations were originally proposed for categori-
cal data, and their applicability to numerical data is limited by the fact
that they are based on exact equality of attribute values. In order to work
with numerical data, we want to be able to use the fact that numerical
attribute values can be more or less similar to each other. The solution,
proposed by Dubois & Prade (1990), is to work with fuzzy subsets, and
to replace ' with a tolerance relation (Definition 0.2).

Note that the classical definition of upper and lower approximation
can be reformulated as follows, if we consider ' and � as indicator
functions:

�(H) = max
G∈-
('(H, G) ∧ �(G)),

�(H) = min
G∈-
('(H, G) =⇒ �(G)).

(1.2)

Thus, we can fuzzify upper and lower approximations by replacing
the conjunction ∧ and the implication =⇒ by, respectively, a t-norm
(Definition 0.3) and a fuzzy implication (Definition 0.4).

1.3 Definition (Upper and lower approximation). Let (-, �) be an in-
formation system. For a choice of a tolerance relation ' on - such
that (∀0 ∈ � : 0(G) = 0(H)) =⇒ '(G, H) = 1, a t-norm ) and a fuzzy
implication �, the upper and lower approximation � and � of a fuzzy subset
� of - are are the fuzzy subsets of - defined by:

�(H) := max
G∈-
()('(H, G), �(G)),

�(H) := min
G∈-
(�('(H, G), �(G)).

(1.3)

Analogous to rough sets, a fuzzy rough set in (-, �) is a pair (�, �)
for some fuzzy subset � ⊆ -.

13



Part I. Numerical datasets

Table 1.1: Types of weight vectors F: that can be used for the upper
approximation. For the lower approximation, the dual weight vectors
can be used.

Name F:
8

Example: F4

Strict

{
1 8 = 1
0 8 > 1

〈1, 0, 0, 0〉

Linear 2(: + 1 − 8)
:(: + 1)

〈
4
10 ,

3
10 ,

2
10 ,

1
10

〉
Reciprocally linear 1

8 ·∑8≤:
1
8

〈
12
25 ,

12
50 ,

12
75 ,

12
100

〉
Exponential 2:−8

2: − 1

〈
8
15 ,

4
15 ,

2
15 ,

1
15

〉

OWA operators

A practical limitation of Definition 1.3 is that the upper and lower
approximationmembership of a given H are each completely determined
by a single G ∈ -, because of the max and min operators. The solution
has been to instead use different operators that approximate max and
min but also take into account other records in -. A popular choice
has been to use ordered weighted averaging (OWA) operators (Cornelis
et al 2010; Yager 1988), this has been shown to generally produce better
results than a number of alternative proposals (D’eer et al 2015).

1.4 Definition (OWA operator). Let F be a weight vector of = values in
[0, 1] that sum to 1. The OWA operator owaF induced by F acts on any
collection of = values by ordering these values in descending order and
taking the inner product with F. We say that two weight vectors are
dual if they have inversely ordered matching coefficients.

A number of possible sets of weight vectors are listed in Table 1.1
(Vluymans et al 2019). Strict weights represent the trivial choice, for
whichwe recovermax andmin. The otherweights are displayed visually
in Figure 1.1 for : = 10.

Thus, we obtain the following revised definition:

1.5 Definition (Upper and lower approximation). Let (-, �) be an in-
formation system. For a choice of a tolerance relation ' on - such
that (∀0 ∈ � : 0(G) = 0(H)) =⇒ '(G, H) = 1, a t-norm ), a fuzzy
implication � and weight vectors F and F of length |- |, the upper and
lower approximation � and � of a fuzzy subset � of - are the fuzzy
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1. Fuzzy rough nearest neighbour classification

2 4 6 8 10
i

0.0

0.1

0.2

0.3

0.4

0.5
Va

lu
e

name
Linear
Exponential
Reciprocally linear

Figure 1.1: Values of the weight vectors from Table 1.1 for : = 10.

subsets of - defined by:

�(H) := owa
F

{
)('(H, G), �(G))|G ∈ -

}
;

�(H) := owa
F

{
�('(H, G), �(G))|G ∈ -

}
.

(1.4)

FRNN classification

Fuzzy rough sets can be applied for classification in a straightforward
way. This is called fuzzy rough nearest neighbour (FRNN) classification
(Jensen & Cornelis 2008):

1.6 Definition (FRNN classification). Let- ⊂ � be a (training) dataset,
and let - =

⊔ C be a partition of - into classes. For a test instance
H ∈ �, the upper, lower and mean approximation classifiers predict a class
membership of, respectively, �(H), �(H) and (�(H) + �(H))/2 for each
class � ∈ C. When a single prediction is required, select the class with
the highest membership.

15



Part I. Numerical datasets

We have, by definition, that )(I, 0) = 0 and )(I, 1) = I for any
I ∈ [0, 1] and any choice ) of t-norm. Likewise, for any choice � of
fuzzy implication, �(I, 1) = 1 and �(I, 0) = #�(I), where #� is the fuzzy
negation induced by �. Therefore, in the setting of FRNN classification
— where the decision classes � are crisp — the choices of t-norm and
fuzzy implication reduce to a choice of fuzzy negation, and it is common
to simply use the standard negation I ↦−→ 1− I (Jensen & Cornelis 2008;
Ramentol et al 2015; Vluymans et al 2019).

If we used the strictmax andmin operators, both the upper and lower
approximation classifiers would predict the class containing the record
G ∈ - that is most similar to a test instance H, akin to traditional nearest
neighbour classification (with : = 1).2 Thus, using OWA aggregation
with non-trivial weights fulfills a similar role to choosing higher values
of :.

1.2 FRNN as a nearest neighbour classifier

In this section, wewill propose three adaptations thatmake classification
with upper and lower approximations more practical.

Replacing information systems with datasets

To begin with, note that the formulation of upper and lower approx-
imation in the context of an information system rather limits their
applicability, as it only allows us to view them as fuzzy sets in - itself.
That means that we cannot calculate �(H) and �(H) unless we already
know �(H). In particular, this makes FRNN classification somewhat
ill-defined.

Since we require ' to respect attribute values, and define upper
and lower approximations in terms of the values of ', we obtain a
simpler definition that allows generalisation to unseen instances by
defining upper and lower approximations in the attribute space. For
this, we replace the notion of information systems with that of datasets
(Definition 0.5), corresponding to the familiar perspective of records as
elements of a vector space.

1.7 Definition (Upper and lower approximation). Let - ⊂ � be a
dataset, let ' be a tolerance relation on �, and let F, F be a choice
of weight vectors of length |- |. The upper and lower approximation �
and � of a subset � of - are the fuzzy subsets of � defined by:

2This was first pointed out explicitly by Verbiest et al (2012).

16



1. Fuzzy rough nearest neighbour classification

�(H) := owa
F

{
min('(H, G), �(G))|G ∈ -

}
;

�(H) := owa
F

{
max(1 − '(H, G), �(G))|G ∈ -

}
.

(1.5)

Replacing OWA operators with weighted maxima and minima

While the use of OWA operators makes upper and lower approximations
more robust against noise and outliers, they also have two significant
downsides. Firstly, in order to calculate the upper or lower approxima-
tionmembership of a record H, we need to order |- | values, which scales
poorly. And secondly, this computational effort is at best irrelevant, and
at worst detrimental. For strict weights, it is clear that we do not really
need to order all values, it suffices to identify the largest or smallest
value. Something similar applies to exponential weights. As these
reduce exponentially, the contribution of each value quickly becomes
insignificant, and, eventually, impossible to compute.

For linear weights, we find that with large datasets, the weights are
spread out too much (Ramentol et al 2015). We could solve this problem
by choosing a different weight vector, but it is more practical to have a
way to directly control how widely the weights are spread out.

The solution to both issues is the following adaptation of OWA
operators:3

1.8 Definition (Weighted maximum and minimum). Let F be a
weight vector of : values in [0, 1] that sum to 1. The weighted maximum
Fmax and weighted minimum Fmin induced by F of any collection -
of = ≥ : values are defined as follows:

Fmax - :=
∑
8≤:

F8 · -(=+1−8) ,

Fmin - :=
∑
8≤:

F8 · -(8) ,
(1.6)

where the so-called order statistic -(8) denotes the 8th smallest value of
-.

When : = =, theweightedmaximum is equal to the orderedweighted
average, while the weighted minimum is equal to the ordered weighted

3The idea to limit the application of OWA operators to the : nearest neighbours of a
record was perhaps first expressed by Jensen & Mac Parthaláin (2015). It was also noted
by Ramentol et al (2015) that when calculating the lower approximation of a decision class
�, it makes little sense to assign weight to the subset of values corresponding to records
in �, for which �('(H, G), �(G)) = 1.
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Part I. Numerical datasets

average induced by the dual weight vector. When : < =, this corre-
spondence still holds if we pad the weight vector with zeros. So as
an added benefit, this formulation no longer requires us to define two
dual variants of each type of weight vector, as the choice of operator
determines the orientation.

With this adaptation, we obtain the following simplified definition
for upper and lower approximations that can be used for classification:

1.9 Definition (Upper and lower approximation). Let - ⊂ � be a
dataset, let ' be a tolerance relation on �, and let F, F be a choice
of weight vectors. The upper and lower approximation � and � of a
subset � of - are defined by:

�(H) := Fmax
G∈�

'(H, G),

�(H) := Fmin
G∈-\�

(1 − '(H, G)). (1.7)

Replacing tolerance with dissimilarity

While replacing OWA operators with weighted maxima and minima
prevents us from having to sort all similarity values, a naive implemen-
tation would still require calculating '(H, G) for all G ∈ � or all G ∈ - \�.
Therefore, we propose to redefine upper and lower approximations
further in terms of a dissimilarity measure:

1.10 Definition (Upper and lower approximation). Let - ⊂ R< be a
dataset, let 3 be a dissimilarity measure on R< , and let F, F be a choice
of weight vectors of length : ≤ |� | and : ≤ |- \ � |, respectively. The
upper and lower approximation � and � of a subset � of - are the
fuzzy subsets of R< defined by:

�(H) := max(0, 1 − Fmin
G∈�

3(H, G)),

�(H) := min(Fmin
G∈-\�

3(H, G), 1). (1.8)

Now, we can use nearest neighbour queries to obtain the : smallest
distances from H to records in � and the : smallest distances from H to
records in - \ �, and use these to calculate �(H) and �(H).

A common choice for ' (D’eer et al 2015; Ramentol et al 2015;
Vluymans et al 2019) is to define it as the mean of per-attribute similarity
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1. Fuzzy rough nearest neighbour classification

relations'8 , corresponding to the attributes�8 thatmake up the attribute
space�. When�8 is categorical, '8 evaluates to 1 for identical values and
to 0 otherwise (this is the indiscernibility relation from classical rough
set theory). When�8 is numerical, '8(H, G) := max(0, |G−H |)/(2 · A∞(-8)),
where A∞ is the half-range.

We can reformulate ' in terms of the Boscovich distance4 as follows.
Given a dataset - ⊂ � with < attributes:

1. One-hot encode every categorical attribute;

2. Rescale every numerical attribute by the half-range;

3. Let 3 be the Boscovich distance divided by 2<.

The effect of weight types on classification performance
We illustrate the effect of the different weight types with an exploratory
experiment (using scaled Boscovich distance, as described above). For
this purpose, we use the Python library scikit-learn (Pedregosa et al 2011)
to create synthetic datasets with the help of the make_classification
function. Each dataset consists of two decision classes and twenty
numerical attributes, of which eight are informative5, four are linear
combinations of these informative attributes, and the remaining eight
are random noise. We repeat this procedure with different random
seeds, to obtain three times one hundred training datasets with each,
respectively, 1000, 10 000 and 100 000 records, as well as corresponding
test datasets containing 1000 records.

The mean accuracy obtained by applying the upper approximation
classifier to these classification problems is displayed in Figure 1.2, as a
function of : and for three different weight types. Note first that : = 1
corresponds to using strict max and min operators, which is clearly
suboptimal. Exponential weights improve upon this baseline, but
quickly plateau. The difference between linear and reciprocally linear
weights is much less substantial — they appear to achieve essentially
identical performance, but with different values of :. Linear weights
reach their optimum sooner, while the performance of reciprocally linear
weights remains stable across a larger range of values for :. We have
observed a similar pattern when we repeat this experiment with 10
decision classes, as well as for the lower approximation classifier. Our
take-away is that both linear and reciprocally linear weights are good
choices, and that the choice of : is more important for classification
performance than the choice of either weight type.

4The simple 1-distance G, H −→ ∑|H8 − G8 |, see Section 2.1.
5When projected onto these eight informative attributes, the records are normally

distributed in clusters around the vertices of an eight-dimensional hypercube, with each
cluster assigned to one of the decision classes.
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Figure 1.2: Mean accuracy for classification with the upper approxima-
tion classifier across 100 artificial training sets of size = and test sets of
size 1000.
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1. Fuzzy rough nearest neighbour classification

1.3 Conclusion

In this chapter, we have reviewed the application of upper and lower
approximations towards classification with the FRNN algorithm. Upper
and lower approximations become more robust through the incorpora-
tion of OWAoperators, but the latter also have two important downsides.
Firstly, they have a large impact on the computational complexity of
FRNN, since they require sorting the entire training set. And secondly,
they require that practitioners choose a weight vector.

We have shown how the first issue can be addressed by adapting
OWA operators into weighted minima and maxima, and that both linear
and reciprocally linear weights in principle perform well enough, so
that the most important choice to be made by the practitioner is now
the number of nearest neighbours on which they should be applied, a
choice that is familiar from other nearest neighbour algorithms.

In addition, we have proposed a reformulation of upper and lower
approximations that replaces the traditional tolerance relation with
a dissimilarity measure. Together with the use of weighted maxima
and minima, this makes upper and lower approximation membership
directly calculable with nearest neighbour queries.

In the next chapter, we will review a number of measures of distance
and scale. Then, in Chapter 3, wewill systematically evaluate the choices
of distance, scale and the number of nearest neighbours : for FRNN, and
compare it with traditional nearest neighbour (NN) classification. Later,
in Part II of this thesis, we will build on the more efficient definition of
FRNN proposed in this chapter to scale FRNN to very large datasets.

21





Chapter 2

Minkowski distance

A key ingredient of nearest neighbour algorithms is the dissimilarity
measure that determines the distance between records. A handful of
distance measures that are commonly used, like Euclidean distance,
can be viewed as special cases of a larger family, known as Minkowski
distance (Minkowski 1896, also known as ;? distance). In this chapter,
we will review its definition, and recall how a number of familiar
concepts, like the mean, median, mode and standard deviation of a
dataset, and the '2-score of a regression model, can all be defined in
terms of special cases of the Minkowski distance. We will also highlight
some other special cases that may be less familiar, and suggest that they
may nonetheless be useful.

2.1 Minkowski size and distance

Just as Euclidean distance can be defined in terms of the Euclidean norm,
we find it convenient to define general Minkowski distance from the
Minkowski size of a vector. We also need two closely related measures:
rootless Minkowski size and the Minkowski mean.

2.1 Definition (Minkowski size). For a vector G ∈ R< and some ? ∈
(0,∞), we define the following measures.

The Minkowski ?-size of G:

|G |? :=

(∑
8≤<
|G8 |?

) 1
?

. (2.1)

The rootless Minkowski ?-size of G:

|G |? :=
∑
8≤<
|G8 |? . (2.2)
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Part I. Numerical datasets

The Minkowski ?-mean of G:

|G |∗? :=

(
1
<

∑
8≤<
|G8 |?

) 1
?

. (2.3)

The rootless Minkowski ?-mean of G:

1
<
|G |? := 1

<

∑
8≤<
|G8 |? . (2.4)

Moreover, we also define these measures for ? ∈ {0,∞} through
their respective limits. The three most relevant cases are:

|G |0 := lim
?→0
|G |? ;

1
<
|G |0 := lim

?→0

1
<
|G |? ;

|G |∞ := lim
?→∞
|G |? .

(2.5)

2.2 Definition (Minkowski distance). The (rootless) Minkowski dis-
tance between two vectors G, H ∈ R< is defined as the (rootless)
Minkowski size of H − G. The (rootless) scaled Minkowski distance
between G and H is defined as the (rootless) Minkowski mean of H − G.

Because the (rootless) Minkowski size andmean are defined in terms
of absolute values, Minkowski distance is symmetric. We can retrieve
the Minkowski size of G as the Minkowski distance between G and the
zero vector 0.

Minkowski (1896) provedwhat has become known as theMinkowski
inequality, namely that for ? ≥ 1 Minkowski size satisfies the triangle
inequality:

|G + H |? ≤ |G |? + |H |? , (2.6)

for any G, H ∈ R< . Togetherwith absolute homogeneity (|�| · |G |? = |�·G |?
for all � ∈ R) and positive definiteness (|G |? = 0 =⇒ G = 0), this means
that Minkowski size is a norm for ? ≥ 1.

Rootless Minkowski size does not satisfy absolute homogeneity for
any ? ≠ 1, and therefore is not a norm, but for ? ≤ 1 it does satisfy the
triangle equality, and together with symmetry, positive definiteness,
and the fact that |0|? = 0, this means that rootless Minkowski distance is
a metric for ? ≤ 1.

Four special cases (and their scaled equivalents) of Minkowski size
(and corresponding distance) are of particular interest:
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2. Minkowski distance

? = 2 (rooted): Euclidean norm.1 Arguably the most natural distance
in a geometric sense, in particular because it is invariant under
rotation. Unrooted Euclidean distance is commonly referred to as
squared Euclidean distance.

? = 1: Boscovich norm.2 In a certain sense the simplest Minkowski size,
since it is just the sum of the absolute values in each dimension.
In particular, the rooted and rootless Boscovich norm are identical,
and the Boscovich mean is the ordinary arithmetic mean of the
absolute values in each dimension.

? = ∞ (rooted): Chebyshev norm.3 Maximum of the absolute values.
The scaled Chebyshev norm and distance are identical.

? = 0 (rootless): Hamming size.4 Counts the number of values that
are different from 0, while Hamming distance counts the number
of values that are different from each other. Because Hamming
distance only uses the identity or non-identity of values, it can
also be applied to (and is in practice mostly used for) categorical
data.

Note that rootless Chebyshev and rooted Hamming size are not
particularly interesting, since they are equal to 0 or∞ for most values.
The rooted Hamming mean is the geometric mean, which we have no
need for in the present chapter. Thus, while we defined four variants of
Minkowski size, only in the Euclidean case all four variants (rootless
and/or scaled) are relevant and distinct. Boscovich and Hamming size
have scaled variants, Chebyshev size has no relevant variants.

2.2 Minkowski distance between univariate datasets

It is straightforward to extendMinkowski distance to a distance measure
between univariate datasets5 with corresponding indices, because we
can represent a univariate real-valued dataset of size = as a vector in R= .

1Corresponding to the geometry described in Euclid’s elements; also known as
Pythagorean norm, since it corresponds to the Pythagorean theorem.

2Perhaps first used implicitly by Boscovich (1757, 1760) to minimise regression
residuals (Eisenhart 1961; Stigler 1986; Todhunter 1873); also knownas city-block,Manhattan,
rectilinear, right-angle and taxicab norm.

3Popularised by Tchebyshev (1854, 1859) in the context of approximating functions;
also known as chessboard, king-move, maximum, square, supremum and uniform norm.

4Introduced by Hamming (1950) as part of his proposal for error detection and
correction.

5Datasets - ⊂ R< with < = 1.
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2.3 Definition. Let - = (G1 , G2 , . . . , G=) and . = (H1 , H2 , . . . , H=) be two
univariate datasetswith corresponding index. Then the (rootless and/or
scaled) Minkowski ?-distance between - and . is the (rootless and/or
scaled) Minkowski ?-size of 〈H1 − G1 , H2 − G2 , . . . , H= − G=〉 ∈ R= .

The squared Euclidean distance between datasets is known as the
sum of squares, the scaled and scaled squared Euclidean distance as,
respectively, the root-mean-square and mean squared deviation or error.

For the scaled Boscovich and Chebyshev distance, we obtain, respec-
tively, the mean and maximum absolute deviation or error.

The (scaled) Hamming distance between two datasets is simply the
number (share) of corresponding pairs of elements that are different.

2.3 Univariate measures of central tendency and
dispersion

We can in turn extend the Minkowski distance between two univariate
datasets to the distance between a univariate dataset and a single value:

2.4 Definition. Let - = (G1 , G2 , . . . , G=) be a univariate dataset and
I ∈ R a single value. The (rootless and/or scaled) Minkowski ?-distance
between - and I is the (rootless and/or scaled) Minkowski ?-size of
〈I − G1 , I − G2 , . . . , I − G=〉 ∈ R= .

With abuse of notation, we will write |- − I |? to denote the distance
between a dataset and a single value. Note that unlike the distance
between two datasets, the index of the dataset is not important here.

An example is the standard deviation of a dataset, which is the scaled
Euclidean distance between the dataset and its mean. In turn, the mean
of a dataset is the value that minimises this distance. We can generalise
this as follows:

2.5 Definition. Let - = (G1 , G2 , . . . , G=) be a univariate real-valued
dataset. The Minkowski ?-radius and rootless Minkowski ?-radius of -
are defined, respectively as:

A?(-) := min
I∈R
|- − I |∗? ;

A?(-) := 1
=

min
I∈R
|- − I |? .

(2.7)

The Minkowski ?-centre of - (not necessarily unique) is defined as:

2?(-) :=


arg min
I∈R

|- − I |? ? ∈ [0,∞);

arg min
I∈R

|- − I |? ? ∈ (0,∞].
(2.8)
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2. Minkowski distance

Note that the two cases agree for ? ∈ (0,∞), and likewise for scaled
distance.6

The nature of the Minkowski ?-centre differs quite strongly depend-
ing on whether ? is smaller or larger than 1, as demonstrated by the
following two results:

2.6 Lemma. For ? ∈ (1,∞), the Minkowski ?-centre of a univariate
dataset - is unique.

Proof. Let 5 (I) := |- − I |? . For ? > 1 and any G ∈ R, |G − I |? as
a function in I is twice differentiable. Consequently, 5 as a sum of
twice differentiable functions is itself twice differentiable. Denote
-≤I := {G ∈ - |G ≤ I} and -≥I := {G ∈ - |G ≥ I}. Then we have:

5 (I) =
∑
G∈-≤I
(I − G)? +

∑
G∈-≥I
(G − I)? ;

5 ′(I) = ? ·
( ∑
G∈-≤I
(I − G)?−1 −

∑
G∈-≥I
(G − I)?−1

)
;

5 ′′(I) = ? · (? − 1) ·
( ∑
G∈-≤I
(I − G)?−2 +

∑
G∈-≥I
(G − I)?−2

)
= ? · (? − 1) · |- − I |(?−2) .

(2.9)

5 ′(I) is negative if I < min- and positive if I > max-, so 5 has at
least one minimum in [min-,max-]. If - consists of more than one
distinct point, 5 ′′ is positive everywhere, and therefore 5 is a strictly
convex function with no more than one minimum. �

2.7 Lemma. For ? ∈ (0, 1), the Minkowski ?-centre of a univariate
dataset - is in -.

Proof. If ? ∈ (0, 1), then 5 (I) := |- − I |? is continuous, but not differen-
tiable in the points of -. However, on each segment of the complement
of -, 5 is still twice differentiable, with derivatives as in (2.9). Since
? > 0 and ? − 1 < 0, we now have that 5 ′′ is negative everywhere,
whence 5 is strictly concave on each segment, and that 5 ′ diverges to
∞ as I → max-≤I and to −∞ as I → min-≥I . Consequently, 5 has a
local minimum in each point of - and no minima in the complement of
-. �

The Hamming, Boscovich, Euclidean and Chebyshev centres and
radii admit an explicit characterisation; they correspond to familiar
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Table 2.1: Special cases ? ∈ {0, 1, 2,∞} of the Minkowski centre 2? and
Minkowski radius A? .

? 2? A? A?

0 Mode — Variation ratio
1 Median Mean absolute deviation around the median (A1 = A1)
2 Mean Standard deviation Variance
∞ Midrange Half-range —

measures of central tendency and dispersion (Table 2.1). The proofs
that these centres really minimise (2.8) are relatively straightforward:

2.8 Lemma. A Hamming centre 20(-) of a univariate dataset - is a
mode of -.

Proof.
|- − I |0 = |{G ∈ - |G ≠ I}| (2.10)

is minimal if I is a mode of -. �

2.9 Lemma. A Boscovich centre 21(-) of a univariate dataset - is a
median of -.

Proof. For any I ∈ R, write -≤I := {G ∈ - |G ≤ I} and -≥I := {G ∈
- |G ≥ I}. Then

|- − I |1 =
∑
G∈-
|G − I |

=

∑
G∈-≤I
(I − G) +

∑
G∈-≥I
(G − I),

(2.11)

which is piecewise linear and continuous as a function in I. It is
descending for all I such that |-≤I | < |-≥I | and ascending for all I such
that |-≤I | > |-≥I |. It is constant, and consequently minimal, for all I
such that |-≤I | = |-≥I |, i.e. if I is a median. �

2.10 Lemma. The Euclidean centre 22(-) of a univariate dataset - is
the mean of -.

Proof. We want to find the value I ∈ R for which 5 (I) = |- − I |2 =∑
G∈-(G − I)2 is minimal. By Lemma 2.6, its minimum corresponds to

the unique zero of 5 ′. We have that:
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5 ′(I) =
∑
G∈-
−2 · (G − I)

= 2=I − 2 ·
∑
G∈-

G,
(2.12)

which is equal to 0 if:

I =
1
=
·
∑
G∈-

G. (2.13)
�

2.11 Lemma. The Chebyshev centre 2∞(-) of a univariate dataset - is
the midrange of -.

Proof. We have that

|- − I |∞ = max
G∈-
|G − I |

= max(max- − I, I −min-).
(2.14)

This is minimal if I is the midrange of -. �

2.4 Multivariate measures of central tendency

We can generalise the Minkowski ?-centres to multivariate datasets7 by
combining the per-attribute Minkowski ?-centres.

2.12 Definition. Let - be a multivariate dataset. The Minkowski ?-
centre 2?(-) of - is defined as (2?(-1), 2?(-2), . . . , 2?(-<)), where -8 is
the projection of - onto its 8th component, for 8 ≤ <.

For ? = 2, this is the centroid (or centre of gravity) of a dataset. The
centroid satisfies the property that it minimises the squared Euclidean
distance to all points in the dataset. In general, for ? ∈ [0,∞) and any
I ∈ R< , we have that:∑

G∈-
|G − I |? =

∑
G∈-

∑
8≤<
|G8 − I8 |?

=

∑
8≤<

∑
G∈-
|G8 − I8 |?

=

∑
8≤<
|-8 − I8 |? ,

(2.15)

7Datasets - ⊂ R< with < > 1.
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which is minimised by I = 2?(-) = (2?(-1), 2?(-2), . . . , 2?(-<)), so the
Minkowski ?-centre minimises the sum of the rootless ?-distances to
records in -.

In addition, we have that the per-attribute midrange I = 2∞(-)
minimises:8

lim
?→∞

(∑
G∈-
|G − I |?

) 1
?

= lim
?→∞

(∑
8≤<

∑
G∈-
|G8 − I8 |?

) 1
?

= max
G∈-;8≤<

|G8 − I8 | .
(2.16)

2.5 Minkowski score

One application of the distance between two univariate datasets is to
evaluate a series of predicted values by comparing it against a series of
reference values (e.g. the ground truth). In practice, it is often desirable
to normalise the resulting error score by dividing it by some baseline
expectation, and subtracting it from 1 to obtain a similarity value. The
result is called a skill score (Heidke 1926; Muller 1944a,b,c). If we do this
with Minkowski ?-distance, we obtain the Minkowski ?-score:

2.13 Definition. Let - and . be two univariate real-valued datasets
with corresponding index. Then the Minkowski ?-score and rootless
Minkowski ?-score of - with respect to . are defined as, respectively:

'? := 1 −
|. − - |?
A?(.)

,

'? := 1 − |. − - |
?

A?(.) ,

(2.17)

with A? and A? the Minkowski ?-radius and rootless Minkowski
?-radius (Definition 2.5).

The squared Euclidean score is the '2 score that is a popularmeasure
of regression performance. '1 and '∞ are alternative measures that put
different amounts of weight on smaller or larger deviations. Note that
'2 is simply a transformation of '2, namely 1 −

√
1 − '2.

'0 is a modified accuracy score. It expresses the number of matching
values, divided not by the total number of values, but by the number
of values in the target set that are different from the mode. For binary

8Note, however, that I = 2∞(-) is in general not a unique minimum. Let Amax
∞ be the

maximum per-attribute half-range of -. Then on the remaining attributes with smaller
half-ranges, there are more values than just the midrange that lie within Amax

∞ of all points,
and any combination of these values will still minimise (2.16).
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datasets that are perfectly balanced, this linearly scales the ordinary
accuracy score from [0, 1] to [−1, 1]. For imbalanced datasets, it corrects
for the strategy of always predicting themode, without otherwise giving
more weight to minority classes. Thus, it represents a potentially useful
alternative to balanced accuracy.

2.6 Conclusion

In this chapter, we have reviewed the family of Minkowski ?-distances,
and highlighted the special cases of Hamming, Boscovich, Euclidean
and Chebyshev distance. We then showed how Minkowski distance
can be extended to a distance measure between datasets and how this
underpins a number of very familiar measures from everyday data
science.

One open question is whether the case ? = 1
2 is also of interest, which

one might expect on the basis of symmetry, given that it mirrors the
Euclidean case. In particular, we may ask whether the centre 2 1

2
of a

dataset admits an explicit characterisation.
In the next chapter, we will evaluate the performance of NN and

FRNN classification with Boscovich, Euclidean and Chebyshev distance,
as well as with A1, A2 and A∞ scaling.
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Chapter 3

Classification performance

In Chapter 1, we have argued that if we use linear weights with FRNN
classification, the choice of a weight vector can effectively be reduced
to the choice of its length :. In the present chapter, we will evaluate
the performance of FRNN when we optimise : on validation data, and
establish a good default value for :. We will do the same for classical
nearest neighbour (NN) classification with and without weights, which
will allow us to compare FRNN and NN.

The nearest neighbour queries at the heart of NN and FRNN classifi-
cation are sensitive both to the distance measure used and the relative
scale of each attribute. A typical default for NN is to rescale by the
standard deviation and to use Euclidean distance, while we saw in
Chapter 1 that the traditional approach for FRNN is to scale by the range
and to use scaled Boscovich distance.

In the previous chapter, we have identified three popular distance
measures for numerical data: Boscovich, Euclidean and Chebyshev
distance, corresponding to Minkowski ?-distance with ? equal to, re-
spectively, 1, 2, and∞. In addition, we have identified three measures
of dispersion that can be used to rescale datasets: the mean absolute
deviation around the median A1, the standard deviation A2 and the
half-range A∞.

Because the performance of NN and FRNN is inextricably linked to
the distance measure and scale of the data, we will also establish the
best choices for these two measures.

We start with a brief overview of the literature (Section 3.1). We then
describe our experiment (Section 3.2) andpresent the results (Section 3.3),
before concluding (Section 3.4).
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3.1 Background

In this section, we briefly review a number of previous experiments
with NN and FRNN classification.

NN classification
Nearest neighbour classification was first formally proposed by Fix
& Hodges (1951). Research into the properties of nearest neighbour
classification started in earnest following the influential paper by Cover
& Hart (1967).

Perhaps the most significant innovation was the proposal by Dudani
(1973, 1976) to weigh the contribution of neighbours on the basis of their
distance. His main proposal was to weigh the 8th neighbour by:

F8 =


3: − 38
3: − 31

: > 1;

1 : = 1,
(3.1)

where 38 is the distance to the 8th neighbour. This establishes a linear
correspondence between the distance of each neighbour and its weight.
A curious aspect of this weighting scheme is that the :th weight is
always 0 (if : > 1). In addition, Dudani (1973, 1976) also suggested an
alternative weighting scheme, where weights correspond reciprocally
to distance:1

F8 =
1
38
. (3.2)

For the first type of weights, Dudani (1973, 1976) demonstrated
lower classification error than unweighted NN on a synthetic dataset.
However, Bailey & A Jain (1978) subsequently showed that this was
due to the fact that Dudani (1973, 1976) had counted all ties as errors,
and that when these are resolved instead (e.g. by choosing randomly),
the performance of weighted and unweighted NN was similar on the
synthetic dataset. Moreover, Bailey & A Jain (1978) also proved that the
asymptotic classification error of unweighted NN is minimal among all
possible weighted variants of NN. This in turn elicited a response by
Macleod et al (1987), who argued that there exist finite classification
problems where some distance-weighted variants of NN do have lower
error.

Despite the extensive literature on NN classification, there have only
been a small number of experimental studies of distance-weighted NN.

1If 38 = 0 for some 8, we set F8 = 1 for all such 8 and F8 = 0 for all other 8. Similarly,
if 3: − 31 = 0 in (3.1), we set all weights equal to 1. In either eventuality, this essentially
means that we perform unweighted NN with the neighbours that have identical attribute
values to the test record.
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Working with 18 synthetic and real-life datasets, Wettschereck (1994)
found that reciprocally weighted NN clearly outperforms unweighted
NN for Euclidean distance, and that there is no clear difference between
Euclidean and Boscovich distance. Zavrel (1997) additionally considered
linear weights, with slightly better results than reciprocal weights in
a comparison based on 13 datasets and cosine distance, while both
weighted variants clearly outperformed unweighted NN.

Moreover, we are not aware of any systematic evaluations as to what
a good default choice for : might be. The default used by the popular
machine learning library scikit-learn (Pedregosa et al 2011) is : = 5, but
there are theoretical arguments that : should increase with the number
of records = to limit classification error (Chaudhuri & Dasgupta 2014,
and references therein). One recommendation that appears in several
places (Jirina & Jirina 2011; Lantz 2013; Nadkarni 2016), with no clear
origin, is to set : =

√
=.

FRNN classification
Vluymans et al (2019) has to date been the only systematic study into
how FRNN should be configured. In addition to strict (no weights),
linear, reciprocally linear and exponential weights (Table 1.1), Vluymans
et al (2019) also consider a multiplicative weighting type, defined as
follows:

F8 =
∏
9≤8

< 9 , (3.3)

with

<8 =

{
1, 8 = 1 ∨ E8 = E8−1;
1 − |E8 − E1 |, E8 ≠ E8−1 ,

(3.4)

where E8 is the 8th value to be aggregated, and the data is scaled such
that all values E8 lie in [0, 1]. Thus, unlike the weight types in Table 1.1,
these weights are dependent on the values to be aggregated. They are
designed in particular such that successive values that are equal are also
weighted equally.

For the lower approximation, Vluymans et al (2019) recommend
choosing theweights for a dataset according to eight rules, to be resolved
in order (Table 3.1). A major limitation of this scheme is that it assumes
full-length weight vectors (not limited by :).

3.2 Experimental setup

To evaluate NN and FRNN classification, we will use 50 numerical
real-life datasets (these are described in Section B.1). We perform 5-fold
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Table 3.1: Weighting scheme recommended by Vluymans et al (2019) for
lower approximation classification. =: number of records; <: number
of attributes; num: numerical attributes; 2: number of classes; IR: im-
balance ratio; F1: Maximum Fisher’s discriminant ratio (corresponding
inversely to complexity) (Ho et al 2006).

# = < num 2 IR F1 Weights

1 = 0 Multiplicative
2 = 1 ≥ 2 Strict
3 ≤ 1000 ≥ 30 Multiplicative
4 > 5 ≤ 10 Exponential
5 > 5 > 10 Strict
6 ≤ 4000 ≤ 5 ≤ 2 Reciprocally linear
7 ≤ 4000 ≤ 5 > 2 Linear
8 > 4000 ≤ 5 Exponential

cross-validation, and calculate the mean AUROC as a measure of the
discriminative ability of each classifier. To compare two approaches, we
calculate the ?-value from a one-sidedWilcoxon signed-rank test. When
we compare classifiers against each other, we apply the Holm-Bonferroni
method (Holm 1979) to correct for family-wise error.

We compare four classifiers. Three variants of nearest neighbours:
unweighted (NN), with linear weights (3.1) (NN-L) and with recipro-
cal weights (3.2) (NN-R). In addition, we include FRNN with linear
weights (except when evaluating the weighting scheme recommended
by Vluymans et al (2019)).

Our evaluation consists of three parts. Firstly, we optimise : for all
classifiers, and evaluate their performance for three distance measures
and for scaling by four measures of dispersion, before comparing the
classifiers against each other. The distance measures are Boscovich,
Euclidean and Chebyshev distance (Section 2.1); the measures of dis-
persion are A1, A2, A∞ (Section 2.3), as well as the interquartile half-range
(iqhr), i.e. half the distance between the first and third quartile, which
is a robust measure of dispersion that is less sensitive to outliers and
suited for asymmetric distributions (Rousseeuw & Croux 1993).

To optimise :, we apply a form of leave-one-out validation that is
efficient in the sense that we do not have to create = models, where = is
the training set size, but can take a short cut. To obtain the : nearest
neighbours of a training record, we perform a : + 1-nearest neighbour
query on the training set, and eliminate the 1st nearest neighbour, which
is the training record itself. For FRNN, we select for each classification
problem either the upper, lower or mean approximation based on
validation AUROC. For the mean approximation, we optimise two
values for : (for the upper and lower approximation).

Secondly, we identify optimal default values for : by considering
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Table 3.2: One-sided ?-values, comparing optimised AUROC with
Boscovich distance against Euclidean and Chebyshev distance.

Classifier Scale Euclidean Chebyshev

NN A1 < 0.0001 < 0.0001
A2 < 0.0001 < 0.0001
A∞ 0.0022 < 0.0001
iqhr 0.00018 < 0.0001

NN-L A1 0.00027 < 0.0001
A2 0.00098 < 0.0001
A∞ 0.00037 < 0.0001
iqhr 0.00037 < 0.0001

NN-R A1 0.00011 < 0.0001
A2 0.0011 < 0.0001
A∞ 0.0039 < 0.0001
iqhr 0.015 < 0.0001

FRNN A1 0.00023 < 0.0001
A2 0.0011 < 0.0001
A∞ 0.00051 < 0.0001
iqhr 0.00016 < 0.0001

the mean test AUROC across datasets. If a value of : is too large for a
dataset, we instead substitute the largest possible value for that dataset.

And lastly, we compare the classifiers with these new default values
against each other and against the values suggested in Section 3.1. For
the NN variants, these are : = 5 and : =

√
=, while for FRNN we will

compare against the weighting scheme recommended by Vluymans
et al (2019). In order not to overestimate the performance of our
recommended default values, we compare them using a leave-one-
dataset-out scheme, recalculating the optimal values for each dataset on
the basis of all other datasets.

3.3 Results

In this section, we will present the results of our experiments for
optimised and default values of :.

Optimised performance
We will first consider classification performance when : is optimised
through leave-one-out validation.

Table 3.2 lists the result of comparing Boscovich distance against
Euclidean and Chebyshev distance. As can be seen, Boscovich distance
produces results that are clearly better for all scales and all classifiers.
Therefore, we restrict the rest of our experiments to Boscovich distance.

Table 3.3 lists the results of comparing rescaling by A1 against A2,
A∞ and iqhr. Generally speaking, A1 scaling outperforms A∞ and iqhr
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Table 3.3: One-sided ?-values, comparing optimised AUROC with A1
scaling against A2, A∞ and iqhr scaling (Boscovich distance).

Classifier A2 A∞ iqhr

NN 0.31 0.025 0.079
NN-L 0.16 0.0021 0.0084
NN-R 0.15 0.0022 0.033
FRNN 0.17 0.011 < 0.0001

Table 3.4: One-sided ?-values, testing that the classifier in the row
has higher AUROC than the classifier in the column, with Boscovich
distance, A1 scaling and optimised :, with Holm-Bonferroni family-wise
error correction applied to each row.

NN-L NN-R NN

FRNN 0.00020 0.0014 < 0.0001
NN-L 0.21 0.00045
NN-R 0.00012

scaling, although less significantly so for NN (without weights). The
difference between A1 and A2 scaling is only weakly significant for all
classifiers. Nonetheless, we will adopt A1 scaling going forward, as it
produces the best results on our selection of datasets.

When we compare the classifiers against each other for Boscovich
distance and A1 scaling (Table 3.4), we find that NN classification with
distance weights performs better than without, and that weights that
correspond linearly with distance give somewhat better results than
reciprocal-distance weights, but that this is only weakly significant.
However, FRNN classification clearly outperforms NN classification
with either weight type.

Optimal default values for :

Having established that all variants of NN, as well as FRNN, work best
with Boscovich distance and A1 scaling, we consider what might be good
default values for :. For this, we will look at the mean AUROC obtained
across datasets, as a function of :.2

While it makes intuitive sense that : should grow with the dataset
size =, and the value of

√
= has been suggested, we have not been able

to maximise mean AUROC by reparametrising : in terms of log = or√
=. That is, we have not been able to obtain a higher mean AUROC by

2We adopt the rule that when : is larger than the size of a dataset (NN) or class
(FRNN) we substitute that value instead (for that dataset or class).
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Figure 3.1: Mean test AUROC of NNwithout weights, and with weights
that correspond linearly (NN-L) or reciprocally (NN-R) with distance.

setting : = 0 log = or : = 0
√
= and optimising 0 than by optimising :

directly.
For NN with and without distance-weights, the result is displayed

in Figure 3.1. The curves for the weighted variants of NN differ from
unweighted NN in two significant ways. Firstly, they clearly achieve
a higher mean AUROC. And secondly, while unweighted NN has a
peak, indicating that performance deteriorates when : is too high, the
weighted versions of ## are much more stable, making it much easier
to select a value of : that is large enough without having to worry that
it is too large. The difference between NN-L and NN-R is quite small,
although NN-L does achieve a slightly higher mean AUROC.

For FRNN, we obtain the highest mean AUROC by only using the
lower approximation. The resulting curve as a function of : is displayed
in Figure 3.2. As with unweighted NN, this curve has a clear peak —
performance deteriorates when : is too high — but it is less steep.

The resulting best values for : are listed in Table 3.5. For NN-L and
NN-R, these values are somewhat arbitary — any sufficiently large :
appears to provide similar performance. For FRNN, this value (21) is
remarkably close to our first approximation (20) in Chapter 1.
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Figure 3.2: Mean test AUROC of classification with the lower approxi-
mation (FRNN).

Table 3.5: Optimal default values for :.

Classifier :

NN 25
NN-L 74
NN-R 79
FRNN 21

Performance with default :

Lastly, we consider how well the NN variants and FRNN perform with
the default values for : that we have just established, by recalculating
: for each dataset using our leave-one-dataset-out scheme. When we
compare the classifiers against each other (Table 3.6), we find that FRNN
still performs better than the NN variants on our selection of datasets,
but the difference with respect to distance-weighted NN is no longer
significant. Moreover, in this setting, only NN-L is quite certain to
outperform unweighted NN, while for NN-R and FRNN, the difference
is only weakly significant.

For the NN variants, our new default values for : result in signifi-
cantly higher AUROC than the scikit-learn default of : = 5 (Table 3.7).
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Table 3.6: One-sided ?-values, testing that the classifier in the row
has higher AUROC than the classifier in the column, with Boscovich
distance, A1 scaling and default :, with Holm-Bonferroni family-wise
error correction applied to each row.

NN-L NN-R NN

FRNN 0.37 0.28 0.060
NN-L 0.27 < 0.0001
NN-R 0.083

Table 3.7: One-sided ?-values, comparing AUROC with Boscovich
distance, A1 scaling and optimal default : against : = 5 and : =

√
=.

Classifier : = 5 : =
√
=

NN < 0.0001 0.15
NN-L < 0.0001 0.052
NN-R < 0.0001 0.19

The difference with respect to : =
√
= on the other hand is only weakly

significant, indicating that this was quite a reasonable guess.
For the lower approximation (FRNN), we find that simply using

linear weigths with : = 21 leads to substantially better results than the
weighting scheme recommended by Vluymans et al (2019), regardless
of whether the latter is combined with A1 scaling (? = 0.035), or, as
originally proposed, A∞ scaling (? = 0.020).

3.4 Conclusion

In this chapter, we have conducted a large-scale experiment on real-
life datasets for different nearest neighbour classifiers, resulting in a
number of clear findings. We found that, in general, Boscovich distance
produces markedly better results than both Euclidean and Chebyshev
distance. This confirms the default for FRNN, but is surprising for NN
classification, where Euclidean distance is often the implicit or explicit
default choice. As for scaling, we obtained the best results by scaling
with A1, the mean deviation from the median, although the difference
with respect to the standard deviation A2 is only weakly significant.
When we optimise the number of nearest neighbours :, we find that
FRNN outperforms all forms of NN, and that NNwith distance-weights
outperforms unweightedNN. Between the two different weight types for
NN, there is weak evidence that Dudani (1973)’s original linear weights
outperform his reciprocal weights, confirming the earlier finding by
Zavrel (1997).
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We have also been able to establish optimal default values for :. For
FRNN, we found that it is best to only use the lower approximation,
and set : = 21, which is remarkably close to our previous working
assumption of : = 20. Using a leave-one-dataset-out scheme, we
showed that this gives better performance than the weight vectors
recommended by Vluymans et al (2019). For NN, NN-L and NN-R, the
optima are located at : = 25, : = 74 and : = 79, respectively, but in
the latter two cases, any value between 50 and 100 should give similar
results. These values are significantly better than a small value like
: = 5, the current default in scikit-learn, and there is some evidence that
they may also be better than setting : =

√
=.

Having established FRNN as a strong nearest neighbour classifier,
we will investigate in Chapter 9 whether it can be improved even further
by viewing FRNN as a one-class ensemble and optimising : for each
decision class.
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Chapter 4

Distributed FRNN
classification1

Over the course of the past few decades, ever larger quantities of
data have become available as potential inputs for machine learning
algorithms, to the point where the performance of machine learning
algorithms is often no longer constrained by the availability of training
data, but by the capability of the algorithms to handle this training data.
One popular tactic to increase data processing capacity is to break down
the work of an algorithm into a series of parallel tasks, and to execute
these tasks on a cluster of computing cores. A number of frameworks
exist that automate many of the aspects of parallel cluster computing,
including Apache Spark (Karau et al 2015), which we use in this chapter.

Handling large amounts of data is a particular challenge for lazy
learners like FRNN, which have to process the entire training set when
they receive a test instance. Since the application of fuzzy rough sets in
machine learning problems is a relatively recent, ongoing endeavour,
it is not surprising that while there exist distributed implementations
of nearest neigbour (Maillo et al 2017b) and fuzzy nearest neighbour
(Maillo et al 2017a) classification, no big data implementation exists of a
fuzzy rough set classifier. The few implementations that do try to extend
the use of fuzzy rough sets to a big data context focus on preprocessing
algorithms, and only Q Hu et al (2018) apply their implementation to a
real dataset with more than 1 million instances.

In this chapter, we address this lacuna by presenting a big data
implementation of FRNN classification. By effectively parallelising the
algorithm, our implementation can be scaled to arbitrarily large datasets
by adding additional computing cores. We demonstrate this through a
series of systematic tests on synthetic datasets of up to 224 instances. In

1This chapter is based on Lenz et al (2019).
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Table 4.1: Existing work using fuzzy rough sets with large datasets —
Use with Prototype Selection (PS) or Feature Selection (FS) and largest
synthetic and real-life dataset sizes

Source Use Synthetic Real-life

Asfoor et al (2014) — 10 000 000 —
Vluymans et al (2015a) PS 10 000 000 320 395
Asfoor (2015) PS 10 000 000 320 395
Jensen & Mac Parthaláin (2015) FS — 832
Qian et al (2015) FS — 2310
Zeng et al (2015) FS — 2800
Zeng et al (2017) FS — 2800
Q Hu et al (2018) FS — 4898 431

addition, we use our implementation to classify test instances with real
datasets containing over 10 million instances.

4.1 Existing big data implementations of fuzzy rough
sets

The existing literature on using fuzzy rough sets in a big data context is
limited, and has focused on preprocessing algorithms, which reduce
the size of training data, improve its quality, or both, by acting on its
instances, its attributes, or both.

The first publication to explicitly adapt a fuzzy rough set algorithm
for large datasets was by Asfoor et al (2014). The authors point out
that for a given information system (-, �) and fuzzy set � in -, the
time complexity of calculating the membership of each instance of
- in the lower and upper approximations of � is O(<=2), where =
is the number of records and < the number of attributes of -. In
addition, the resulting indiscernibility matrix has size O(<=2), and
storing it inmemory becomes highly problematic as = grows. They solve
these challenges with a distributed implementation in Message Passing
Interface (MPI) that avoids calculating and storing thewholematrix. This
workwas continued byVluymans et al (2015a), whopresent a distributed
implementation in Apache Spark of Fuzzy Rough Prototype Selection
(FRPS), a preprocessing algorithm for nearest neighbour classification
developed by Verbiest et al (2013) and adapted by Vluymans et al (2015a)
for nearest neighbour regression. Asfoor (2015) also adapts OWA-FRPS,
a more robust version of FRPS with OWA operators, into a distributed
implementation (POWA-FPRS) that approximates the ordered weighted
average by partitioning the data and calculating the ordered weighted
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average of the ordered weighted averages within these partitions.
Jensen & Mac Parthaláin (2015) point out that the calculation of

fuzzy rough sets scales badly to large numbers of instances, and that
this is further compounded if the feature space is also large. They
propose three variants of Fuzzy Rough Feature Selection (FRFS). In
nnFRFS and nnFDM (based on FRFSwith FuzzyDiscernibilityMatrices),
the indiscernibility relation is modified to only consider the : nearest
neighbours of each instance. Fuzzy Rough Feature Grouping (FRFG)
introduces a preliminary step in which overlapping groups of correlated
features are defined. For each pass, only the most decisive feature from
each group is considered, and other features in the same group are
then skipped, thus reducing the number of candidates that have to be
evaluated.

A number of other authors have presented big data implementations
of FRFS. Qian et al (2015) propose to reduce the computational cost of
FRFS by relaxing the calculations of the lower and upper approximations,
potentially reducing the specificity of the resulting feature selection.
Zeng et al (2015, 2017) present a mechanism to incrementally update
fuzzy rough approximations in a hybrid information system (HIS) (in
which a hybrid metric combines different types of attributes) and apply
this to feature selection. Finally, Q Hu et al (2018) present a distributed
implementation of multi-kernel attribute reduction using kernelised
fuzzy rough sets, and evaluate the results for Support Vector Machines
(SVM) and Classification and Regression Trees (CART).

As can be seen in Table 4.1, half of these works only use datasets with
up to a few thousand instances. The connected studies of Asfoor et al
(2014), Asfoor (2015) and Vluymans et al (2015a) work with generated
datasets of up to 10 000 000 instances and only Q Hu et al (2018) test on
real datasets with more than one million instances.

The studies mentioned above have demonstrated the usefulness of
scalable implementations of fuzzy rough prototype and feature selection.
However, the application of FRNN classification to large datasets has so
far remained unexplored.

4.2 Implementing FRNN classification on Spark

We propose a parallelised implementation of FRNN (using the mean
approximation) that can classify test instances with arbitrary large
datasets in a fixed amount of time if we add sufficient parallel computing
power.

There exist several different frameworks for parallel computing that
provide different trade-offs between ease of use, automated performance
optimisation and user control. Since ourmain objective is to demonstrate
the conceptual viability of our approach, rather than to obtain the
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absolutely fastest run times possible, we have chosen to implement our
algorithm in Spark, which is well-established, widely used, and which
offers a relatively straightforward path to parallelisation. We implement
FRNN through the Python API of Spark, using high-level dataframe
operations that allow us to express operations as SQL instructions which
are automatically distributed across the nodes in the cluster.

Our implementation is structured as follows:

0. Initialise Spark.

1. Read the training set, combine all attributes into a feature vector.
If the attributes are numerical, scale the features to [0, 1].

2. Read the test set, combine all attributes into a feature vector. If the
attributes are numerical, apply the same scaling as in Step 1.

3. Optional: divide the training set from Step 1 into a large number
of small partitions.

4. Fill a dataframe of length : with linear weights.

5. Broadcast the test set from Step 2 to all partitions, cross join with
the training set from Step 1, calculate the distance between each
pair of test and training instances and select the : closest distances
per class per test instance.

6. Cache the dataframe from Step 5.

7. Join the weights from Step 4 with the distances from Step 5,
multiply, and sum per class and test instance to get the upper
approximations.

8. For every test instance and class, join the weights from Step 5 with
the : closest training instances from Step 5 that do not belong to
that class, multiply, and sum to get the lower approximations.

9. Join the upper and lower approximations from Steps 7 and 8 and
for every test instance, select the class for which the sum of the
approximations is highest.

10. Divide the number of test instances from Step 9 for which the
predicted class matches the actual class by the total number of test
instances and report the accuracy.

Step 3 was used only to prevent out-of-memory errors with the
largest datasets when using multiple executors per node. Anecdotally, it
seemed to increase run times, and so we did not include Step 3 with our
baseline measurements with only one core, so as not to obtain unduly
positive speedups.
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Step 5 is the costliest step, because it involves a cross join between
training and test instances. Broadcasting the test set makes it available
on all partitions, which means that the training set does not have to be
replicated across partitions. Ordinarily, Spark would not preserve the
resulting dataframe after its use in Step 7, and would have to recalculate
Step 5 for Step 8. To prevent this, we cache the dataframe in Step 6.

4.3 Experimental setup

All experiments were performed on the Golett cluster of the Ghent
University Tier-2 of the Flemish Supercomputer Centre (VSC). The
computing nodes of the Golett cluster are equipped with 2 x 12-core
Intel E5-2680v3 (Haswell-EP @ 2.5 GHz) processors, 64 GB memory
and 500 GB hard drives, and connected by FDR-10 InfiniBand. The
experiments were run in Spark clusters of up to 64 executors, 4 cores
per executor and 16 GB memory per executor. These Spark clusters
occupied up to 32 nodes of the Golett cluster, with 8 cores per node. The
algorithm was implemented in Spark 2.4.0 and run with the Hadoop
Yarn resource manager.

The shared nature of the Golett cluster and the general inavailability
of fully free nodes necessitated the choice of using only 8 cores per node,
while limiting the number of cores per executor to 4 meant that two
executors fit precisely onto one node. During initial testing, increasing
the number of nodes per executor far above 4 led to diminishing returns.
Of the 64 GB of memory per node, 8 GB was reserved for the operating
system. Our cluster was limited to using one third of the remaining
56 GB on the basis of using one third of the number of cores. Thus, we
chose 16 GB of memory per executor to maximise this resource, whereas
in practice this amount was limited to 9.33 GB per executor.

The scaling of our implementation was tested on a series of synthetic
datasets with varying training set sizes. Each training set had 20 real-
valued attributes and 10 classes. Training set size varied from 210 to 224

records.
The algorithm was also tested on four large real-life datasets, de-

scribed in Section B.2. susy, hepmass and higgs are three datasets of
Monte Carlo simulations of particle physics collisions. The attributes
are all real-valued and we use Boscovich distance, with both attributes
and distance scaled to [0, 1]. poker-hand is a slightly smaller dataset of
possible hands of cards in the game of poker. It was included here
because its attributes are categorical, allowing us to experiment with
a different dissimilarity measure, namely Hamming distance scaled to
[0, 1] (see Chapter 2). We set : = 20.

Our primary performance measure is )?,= , the time it takes using
? cores to classify one test instance with = training instances. Time
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Table 4.2: Run times in seconds per test instance of FRNN classification
applied to generated training sets of different sizes, for different numbers
of cores

Cores Training set size

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

1 0.83 0.83 1.3 1.3 1.9 3.1 6.1 11 21 50 104 201 428 858 1627
2 0.37 0.44 0.63 0.86 1.3 1.8 3.1 5.8 11 27 68 78 202 424 876
4 0.33 0.39 0.55 0.81 1.2 1.0 1.6 3.0 5.4 12 29 39 82 273 356
8 0.54 0.41 0.74 1.0 1.0 1.0 1.3 1.6 3.1 5.9 18 20 39 95 189

16 0.44 0.54 0.59 0.86 1.1 1.1 1.8 1.0 1.5 3.1 6.0 13 27 55 110
32 0.38 0.50 0.65 0.94 1.2 1.1 1.1 1.3 1.1 1.8 3.8 5.9 15 21 42
64 0.55 0.75 0.86 1.4 1.3 1.2 1.2 1.4 1.1 2.2 3.2 6.0 12 11 23

128 0.51 0.63 0.71 1.0 1.2 1.2 1.3 1.2 1.2 1.4 2.0 4.1 6.7 7.2 14
256 0.75 0.77 1.0 1.2 1.5 1.5 1.5 1.4 1.3 1.5 1.5 2.1 7.2 6.4 14

Values rounded for readability to two significant digits (< 100) or whole integers (≥ 100)

Table 4.3: Speedups of FRNN classification applied to generated training
sets of different sizes, for different numbers of cores

Cores Training set size

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2.2 1.9 2.1 1.5 1.4 1.7 2.0 2.0 1.9 1.9 1.5 2.6 2.1 2.0 1.9
4 2.5 2.1 2.4 1.6 1.6 3.0 3.8 3.7 4.0 4.3 3.6 5.2 5.2 3.1 4.6
8 1.5 2.0 1.8 1.3 1.8 2.9 4.8 6.9 7.0 8.5 5.9 10 11 9.1 8.6

16 1.9 1.5 2.2 1.5 1.7 2.9 3.5 11 14 16 17 15 16 16 15
32 2.2 1.6 2.0 1.3 1.6 2.8 5.6 9.1 20 28 27 34 28 41 38
64 1.5 1.1 1.5 0.89 1.5 2.5 5.1 8.3 19 23 32 33 35 79 72

128 1.6 1.3 1.9 1.3 1.5 2.5 4.8 9.2 18 35 52 49 65 120 118
256 1.1 1.1 1.3 1.0 1.3 2.1 4.2 8.1 16 34 68 95 59 133 115

Values rounded for readability to two significant digits (< 100) or whole integers (≥ 100)

measurement starts with the initialisation of Spark and ends with
the calculation of the accuracy. We report the average run time per
test instance, derived from running the algorithm with a test set of
100 instances. These were, respectively, generated in addition to the
synthetic training sets, and drawn and subtracted from the real training
sets. For the synthetic training sets, we also report a speedup figure (?,=
which is defined as )1,=/)?,= .

4.4 Results

Table 4.2 summarises the run times of our distributed implementation of
FRNN classification for various generated training set sizes and various
numbers of cores, and Table 4.3 shows the resultant speedups with
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Figure 4.1: Speedups for different numbers of cores, with FRNN classifi-
cation applied to generated training sets of different sizes

respect to the baseline of using only one core. The speedups are also
plotted in Figure 4.1.

The results show first of all that there is a certain amount of random
fluctuation, which is to be expected on shared infrastructure. For training
sets with fewer than 211 instances, the overhead of the implementation is
the dominating factor, and run time is effectively constant. For training
sets with fewer than 213 instances, overhead is still large enough that it
negates the effect of addingmore cores: speedup is constant. As training
set size grows beyond 213 instances, the speedup with ? cores starts to
climb more or less linearly until it reaches its theoretical maximum, ?.
This is reflected in the distinct diagonal cluster of lines in Figure 4.1.
Only the maximal configuration with 256 cores does not reach its full
potential speedup within the space of these dataset sizes.

Table 4.4 shows the run times of our implementation of FRNN
applied to the real datasets, which demonstrate that our implementation
can be used to classify instances using FRNN with very large training
sets.
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Table 4.4: Run times per test instance of FRNN classification applied to
real datasets, with 256 cores

Name Time (s)

poker-hand 1.2
susy 4.3
hepmass 27
higgs 30

4.5 Conclusion

In this chapter we have demonstrated that through parallelisation on
a computing cluster, FRNN classification can also be applied to very
large datasets. We have showed that with sufficiently large datasets,
the execution time of our implementation is effectively reduced by
a factor equal to the number of computing cores. We note that a
key component of our implementation was the adaptation of OWA
operators into weighted minima and maxima that was proposed in
Chapter 1, restricting the calculation of the weighted sum to the :
nearest neighbours of each test instance, rather than the full training set.

While distributed computing is useful in principle, enabling us to use
training sets of more than 10 million instances, it requires a considerable
amount of computational infrastructure. Therefore, we will consider in
the next chapter a different, more pragmatic approach towards FRNN
classification with large datasets: reducing computational complexity
by approximating the nearest neighbour search.
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Chapter 5

Approximate FRNN
classification1

In the previous chapter, we considered what could be called the brute
force approach towards large datasets: simply using more computing
resources. But the availability of ever larger amounts of data for
machine learning also compels us to scrutinise the scalability of existing
algorithms, and where necessary to develop variants or alternatives
that scale better. For machine learning problems where run time is
a greater impediment to performance than the amount of available
data, approximative algorithms with a slightly lower accuracy but a
higher capacity may offer a worthwhile trade-off. If the computational
complexity of an algorithm is superlinear, computation time may blow
up as dataset size grows. But even if it is strictly linear, processing orders
of magnitude more data requires orders of magnitude more computing
time. Ideally, then, we would like to have access to algorithms with
logarithmic computational complexity.

Computing FRNN classification requires a nearest neighbour search
in each decision class for those training instances that are closest to a
given test instance. Consequently, a straightforward implementation
without preprocessing has a time complexity that is linear with respect
to the number of training instances. As discussed above, this restricts
the applicability of FRNN classification to large datasets. Parallelisation,
as in the previous chapter, cannot speed up FRNN by a factor larger
than the number of processor cores available. Thus, while we were able
to use real-life training sets with as many as 10 000 000 records to classify
individual test records, the results that we obtained also indicate that
performing cross-validation on the whole dataset would still require a
run time of about ten years. Therefore, it would be more effective if we
could reduce the time complexity of FRNN classification itself.

1This chapter is based on Lenz et al (2020b).
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There is a rich literature of nearest neighbour search algorithms
(Indyk & Motwani 1998; Jégou et al 2011; J Johnson et al 2021; Muja &
Lowe 2014; Yu et al 2015). One of the most popular exact approaches
uses a so-called KD-tree (Bentley 1975). It has a theoretical average
query time complexity that is logarithmic, but in practice this is hard
to achieve, and its query time complexity for real datasets with more
than a handful of attributes is much closer to linear (Andoni & Indyk
2017). A recent approximate nearest neighbour proposal, Hierarchical
Navigable Small World (HNSW) (Malkov & Yashunin 2020), promises to
achieve actual logarithmic query time complexity at a very low constant
error rate.

In this chapter, we propose approximate FRNN classification, which
we obtain by incorporating HNSW nearest neighbour identification into
FRNN. We hypothesise that this is a particularly fortuitous combination
because the use of OWA operators has been shown to make FRNN
robust against noise (D’eer et al 2015), and this should translate into a
certain amount of tolerance for the nearest neighbour misidentifications
introduced by HNSW.

To test the performance of approximate FRNN classification, we
explore four different parameter settings of HNSW, and show that it is
possible to achieve logarithmic query time complexity while sacrificing
a minimal amount of accuracy with respect to exact FRNN classification.
This means that approximate FRNN classification can be applied to very
large datasets, and we demonstrate this by performing cross-validation
on three of the largest datasets of the UCI Machine Learning Repository
(Dua & Graff 2019).

5.1 Hierarchical Navigable Small World graphs

Finding the nearest neighbours of an instance in a dataset is a classical
computational problem. A brute force approach that compares the
distances of a query instance to all training instances scales linearly with
training set size, which makes nearest neighbour searches with large
training sets impractical. It is possible to achieve better performance
by using the distribution of the training set over the attribute space to
limit explicit comparison with the query instance to certain training
instances. This requires preprocessing the training set to abstract its
spatial structure into some data structure. Since this abstraction is
independent of any query instances, this introduces a construction stage,
and with it, a trade-off between the fixed, one-time construction time
and the reduction in the query time per query instance. It also blurs the
traditional distinction between lazy and eager learners, since we are no
longer comparing query instances directly to the training instances, and
this construction stage can be seen as a training stage.
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5. Approximate FRNN classification

There is adistinction tobemadebetween exact spatial representations
of the training set that can faithfully identify the nearest neighbours
of a query instance, and approximative representations, which offer a
second trade-off between a limited number of incorrect predictions in
exchange for even further reduced query times.

A classical example of an exact representation is the binary KD-tree
(Bentley 1975), which iteratively divides the training set in two with a
series of hyperplanes. The theoretical asymptotic average query time
complexity of KD-trees is O(log =) (Friedman et al 1977), but KD-trees
suffer from the “curse of dimensionality”, in the sense that with datasets
with more than a handful of attributes, the time complexity in practice
is much closer to linear (Andoni & Indyk 2017).

One class of approximative approaches uses a search graph, whose
nodes correspond to the training instances and the edges encode the
spatial structure of the dataset (by connecting certain instances that are
not necessarily nearest neighbours in the attribute space). To identify
the : nearest neighbours of a query instance H, this graph is traversed
iteratively by passing to the node that is nearest to H (in the attribute
space) from among the neighbours of the current node. This requires
the inspection of all neighbouring nodes of the current node, and a
record is kept of the : training instances closest to H that have been
inspected.

Both query time and the correctness of the result depend on the edges
between the nodes. Everything else being equal, query time is reduced
if there are fewer neighbours per node and if the graph can be traversed
in fewer steps, whereas more edges generally improve the reachability
of the actual : nearest neighbours of H. The Navigable Small Worlds
(NSW)model (Malkov et al 2014) strives to strike a good balance between
these tendencies through a mix of short and long distance connections.
It adds training instances to the graph in random order, and inserts
edges to the " nearest instances already present, for some value of
". As a consequence, connections that are established early generally
cover larger distances than connections that are established later. By
starting the nearest neighbour search at an instance that was inserted
early, we gain immediate access to these long-distance connections and
can traverse the dataset with large steps until we reach the general
neighbourhood of our query instance. The search stops when the list of
nearest neighbours is no longer updated between steps. It is possible
to increase the accuracy to any desired level by repeating the search
from different training instances. By keeping a record of instances that
have been inspected across searches and excluding them from future
consideration, unnecessary repetition is avoided.

The query time complexity of NSW is O(log2 =) for a constant
accuracy of 0.999. In order to improve query time complexity further,
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0 ℎ

Layer 2

2

0 1 4 ℎ

Layer 1

2 5

0 1 4 ℎ

3 6

Layer 0

Figure 5.1: Schematic depiction of a nearest neighbour search in HNSW.
The search begins in the highest layer, and continues in each lower layer
from the element that was previously found. The size of the layers
follows an exponential distribution.

the authors recently introduced a modified version of NSW called
Hierarchical Navigable Small Worlds (HNSW) (Malkov & Yashunin
2020). The main conceit of HNSW is that it employs a hierarchy of <!

search layers that can be viewed as a vertical stack. The bottom layer
consists of a search graph of the whole training set, and each subsequent
layer consists of a search graph of a subset of the subset below it.

To identify the : nearest neighbours of a query instance H, we start
in the top layer and run a greedy search to select one nearest neighbour,
like in NSW. This process is repeated in the lower layers, in each case
using the previously selected neighbour as the new entry point. In the
bottom layer, the greedy search is expanded to identify 45@ candidate
neighbours. From these, the : instances nearest to H are returned. This
process is depicted in Figure 5.1.

A very similar algorithm is used to iteratively construct the hierarchy
of search layers. Each new training instance G is assigned its highest
layer ;G at random, following an exponential distribution. We then
traverse the existing hierarchy from top to bottom by running a greedy
search in each existing layer. In all layers higher than ;G , the search is
restricted to identifying a single neighbour, which we use as the starting
point in the next layer. In ;G and all lower layers, we expand the search
to greedily identify 452 candidate neighbours. We insert G as a new node,
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Table 5.1: Parameters of HNSW

Name1 Description Min Default2

Construction parameters
452 Number of candidate neighbours to identify " 200
" Maximum number of edges to insert between can-

didate neighbours and a newly added training
instance

5 16

Query parameters
45@ Number of candidate neighbours to identify : 20
: Number of neighbours to return 1 —
1 The parameters 452 and 45@ are called 4 5 �>=BCAD2C8>= and 4 5 respectively by
Malkov&Yashunin (2020), they have been relabelled here for the sake of readability.

2 These are the default values in the Non-Metric Space Library (NMSLIB, Boytsov &
Naidan 2013), the implementation used in this chapter.

and connect it to up to " neighbours by repeatedly adding an edge to
the closest remaining candidate neighbour that is closer to G than to any
of the already selected neighbours. We then use the selected neighbours
as multiple starting points in the next layer.

For a given configuration of the HNSWmodel, accuracy decreases
with dataset size. If accuracy is kept constant, the HNSWmodel has a
query time complexity of O(log =) and a construction time complexity
of O(= log =). The principal parameters that can be used to tune perfor-
mance are summarised in Table 5.1. Higher values for 452 , " and 45@
increase accuracy in return for longer run times. However, the authors
recommend to experimentally identify values for 452 and" that produce
reasonable results and then increase 45@ to attain the desired level of
accuracy. In a recent empirical comparison of approximate nearest
neighbour search algorithms, HNSW achieved the highest speed at all
accuracy levels on all four datasets that were considered (Bernhardsson
2018). While the scope of this experiment was limited and its results
are only indicative, it allows us to select HNSW as representative of the
state of the art in approximate nearest neighbour search algorithms.

5.2 Approximate FRNN classification

To adapt FRNN classification for use with large datasets, we propose
to calculate weighted minima on the basis of the approximate nearest
neighbours of a test instance as returned by the HNSW model. Since
this is the only step of the query phase of FRNN classification that is
dependent on the training set size, our proposal should result in query
times that scale logarithmically.
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Table 5.2: Approximate FRNN classification, parameter configurations
of HNSW

Name 452 "

A1 200 16
A2 40 16
A3 16 16
A4 40 5

5.1 Definition (Approximate upper and lower approximation). Let
-<
R be a dataset, 3 a dissimilarity measure, F and F a choice of weight

vectors of length : and : respectively, and # a process that takes
an integer :, a multiset � in �, and an element H of � and returns
a submultiset of � of size : (the neighbour selector). Then for any
submultiset � of -, the upper and lower approximation � and � are the
fuzzy subsets of � defined by:

�(H) = 1 − Fmin #(:, �, H)
�(H) = Fmin #(:, - \ �, H)

(5.1)

As has been pointed out by Ramentol et al (2015), if there are just
two decision classes �1 and �2 and F = F, then �1(H) = 1−�2(H) (up to
consistency of #), and so the upper and lower approximation classifiers
are identical. Therefore, we proceed with the upper approximation
classifier. To obtain a clear comparison of our run times, we fix a choice
of linear weights of length : = 40.

Definition 5.1 allows us to equip FRNN classificationwith alternative
nearest neighbour search algorithms # . In this chapter we will compare
an exact KD-tree search (exact FRNN) with four different parameter
configurations ofHNSW(Table 5.2). The goal is to identify a combination
of 452 and " that produces a good baseline in terms of accuracy. For
this purpose, we fix 45@ = :. Combination A1 represents the default
values 452 = 200 and " = 16 (see Table 5.1). For combinations A2–4, we
lower 452 to 45@ = 40 and to its minimum value " = 16, and " to its
minimum value of 5.

Approximative models like HNSWmay misidentify nearest neigh-
bours, which will lower the general accuracy of approximate FRNN.
Nonetheless, we hypothesise that approximate FRNN can still rival exact
FRNN in terms of accuracy for two reasons. First, the authors of HNSW
have demonstrated that it can operate at close to 100% accuracy. And
second, the misidentification of a nearest neighbour of a test instance
need not automatically lead to its misclassification. This ought to be true
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in particular due to the high noise tolerance of FRNN with weighted
minima.

We will measure the accuracy deficits of FRNN-A1–4 experimentally,
but we can already predict that since lower parameter values necessarily
induce lower accuracy in HNSW, configurations A1, A2 and A3 will
be decreasingly accurate, and A4 will be less accurate than A2, leaving
only the relative order between A3 and A4 uncertain.

5.3 Experimental setup

The goal of our experiments is to compare the accuracy and run times
of approximate and exact FRNN classification. In particular, we want
to test whether the approximate variants FRNN-A1–4 can match the
accuracy of exact FRNN within logarithmically scaling query times.

All experiments are carried out on a single laptop computer equipped
with a 4-core i7-8550U (Kaby Lake Refresh @ 1.8 GHz) processor and
16 GB of memory. We use our own Python implementation of FRNN,
which incorporates the Cython (compiled to C) implementation of the
scikit-learn library (Pedregosa et al 2011) for KD-Tree nearest neighbour
searches and the implementation in C++ provided by the Non-Metric
Space Library (NMSLIB) (Boytsov & Naidan 2013) for HNSW nearest
neighbour searches. To ensure a fair comparison, all experiments are
single-threaded.

As in the previous chapter, we work with three of the largest datasets
from the UCI Machine Learning Repository (Dua & Graff 2019): susy,
higgs and hepmass (described in Section B.2). These are sufficiently large
that performing cross-validation with exact FRNN classification is not
practical. To measure time complexity and to detect the effect of dataset
size on accuracy, we take random samples of different sizes. This setup
allows us to evaluate run time and accuracy on real data, while ensuring
that the datasets of different sizes are in all other respects comparable to
each other.

We perform two separate series of experiments. First, to see whether
approximate FRNN classification is able to match the accuracy of exact
FRNN classification, we perform 5-fold cross validation, starting with
samples of 210 instances and increasing in powers of 2 up to the full
dataset size. In the case of exact FRNN, we stop at 220 instances. Second,
in order to get a clear picture of query time complexity, we perform
simple holdout testing using test sets with a fixed size of 25 instances
and training sets with 210–220 instances. To limit the effect of chance,
both series of experiments are repeated for five different samples per
sample size and the average results are reported.
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Table 5.3: Accuracy deficit of approximate FRNN for 5-fold cross-
validation on samples of 220 instances.

Method susy higgs hepmass

A1 -0.0001 -0.0009 -0.0020
A2 -0.0009 -0.0014 -0.0155
A3 -0.0048 -0.0051 -0.0387
A4 -0.0072 -0.0206 -0.0654

Table 5.4: 5-fold cross-validation accuracy of approximate FRNN on full
datasets.

Method susy higgs hepmass

A1 0.785 0.679 0.844
A2 0.783 0.676 0.834
A3 0.776 0.654 0.813
A4 0.775 0.637 0.784

5.4 Results

Figure 5.2 shows the accuracy obtained with 5-fold cross-validation
on samples of the susy, higgs and hepmass datasets. As discussed in
Section 5.1, the accuracy of HNSW decreases with sample size for a
given parameter configuration. This is reflected in the approximate
FRNN implementations — which incorporate HNSW — in the form of
an accuracy deficit with respect to exact FRNN that eventually opens up
as sample size grows large enough. The final accuracy deficits at sample
sizes of 220 instances— the largest sample size forwhich cross-validation
with exact FRNN proved feasible — are listed in Table 5.3. The final
accuracy figures for approximate FRNN over the whole datasets are
listed in Table 5.4.

The results bear out our prediction that configurations A1, A2 and
A3 produce decreasing levels of accuracy. They also show that A4
produces lower accuracy than A3 across the board. On susy and higgs,
A1 and A2 perform extremely close to exact FRNN. A3 and A4 drop off
as sample size grows, with A4 performing relatively worse on higgs.
Despite having an identical number of attributes, hepmass poses a much
greater challenge than higgs, with A2 performing markedly worse than
exact FRNN. A1 stays close to exact FRNN up to 220 instances, but its
accuracy doesn’t increase further for larger sample sizes. It is possible
that this is due to a certain amount of saturation of hepmass and that
the accuracy of exact FRNN levels off in a similar manner. However, if
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Figure 5.2: 5-fold cross-validation accuracy of exact (E) and approximate
(A1–4) FRNN classification on samples of susy, higgs and hepmass.
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Figure 5.3: Construction times of exact (E) and approximate (A1–4)
FRNN on samples of susy, higgs and hepmass.
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Figure 5.4: Query times per test instance of exact (E) and approximate
(A1–4) FRNN on samples of susy, higgs and hepmass.
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Figure 5.5: Query times per test instance of FRNN-E and -A1 on samples
of susy, higgs and hepmass.

this is not the case, it should be possible to match the accuracy of exact
FRNN by increasing 45@ .

Figure 5.3 shows the construction times of FRNN with various
training set sizes. The construction time of approximate FRNN starts
out by being longer than the construction time of exact FRNN, but with
higgs and hepmass the difference becomes less pronounced as training
set size grows. The observed time complexity of approximate FRNN is
linear, supporting the claimed O(= log =) construction time complexity
of HNSW.

The log-log graphs in Figure 5.4 show that the query time per test
instance of approximate FRNN scales much better with training set
size than the query time of exact FRNN. Figure 5.5 displays the same
query times in lin-log graphs for exact FRNN and FRNN-A1 (the graphs
for FRNN-A2–4 are very similar). It appears that with susy, exact
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Figure 5.6: Holdout accuracy as a function of query time per test instance
of approximate (A1–4) FRNN with training sets of various sizes, on
samples of susy, higgs and hepmass.
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FRNN possibly achieves its theoretically predicted logarithmic time
complexity as training set size grows beyond 216, but that with the
higher dimensional higgs and hepmass, this does not happen within the
range of the tested training set sizes. The query times of FRNN-A1 scale
more unevenly, but seemingly better than logarithmically as sample size
grows beyond 215.

Finally, the query times of approximate FRNN are repeated in
Figure 5.6 together with the corresponding holdout test accuracy. These
graphs illustrate the trade-off between accuracy and query time which
FRNN-A1–4 offer when the quantity of available data is not a significant
limiting factor. It can be seen that for the datasets tested, most levels
of accuracy can be reached with A2 in less time than A1, while A3 and
A4 offer no clear advantage. However, to achieve the highest levels of
accuracy with hepmass we do need A1.

From these results we can conclude that approximate FRNN can
produce accuracy figures that are extremely close to exact FRNN, while
achieving a query time reduction that grows to several orders of magni-
tude for large sample sizes. Formost sample sizes considered, this comes
at a cost of a somewhat longer construction time. The construction
and query times of the various configurations of approximate FRNN
differ by a constant factor and scale equally well. The different accuracy
results for higgs and hepmass show that it is difficult to generalise across
different datasets and that achieving an optimal trade-off between accu-
racy and query time requires dataset-specific tuning. However, based
on this limited overview, it seems that the default parameter values of
HNSW, combination A1, are also a safe default choice for approximate
FRNN. A2may also be good enough if query time is a particular concern,
whereas the relatively limited additional query time reduction of A3
and A4 does not seem to warrant the more significant loss in accuracy.

5.5 Conclusion

The scalability of FRNN classification is restricted by the nearest neigh-
bour searches that it requires. Existing exact nearest neighbour search
algorithms struggle to achieve better than linear query time complex-
ity in practice. In contrast, HNSW, a state of the art approximative
algorithm, is able to identify nearest neighbours with near-100% accu-
racy and logarithmic query time complexity. In this chapter, we have
presented approximate FRNN, a variant of FRNN that incorporates
HNSW.

To compare the performance of exact and approximate FRNN, we
defined four parameter configurations (A1–4) of HNSW and selected
three very large datasets with up to 11 million instances (susy, higgs
and hepmass). These datasets were then used to draw a series of

66



5. Approximate FRNN classification

random samples of different sizes. To evaluate classification accuracy,
we performed cross-validation on these samples as well as the full
datasets. Finally, we measured construction and query times through
simple hold-out testing on the samples.

As a result of these experiments, we found that on susy and higgs,
the parameter configurations A1 and A2 achieve near-identical accuracy
as exact FRNN for all sample sizes, without any need for further tuning.
For hepmass, this was still true for A1 up to the largest sample size for
which cross-validation with exact FRNN was feasible. Crucially, the
experimental query time complexity of all parameter configurations was
sub-logarithmic, resulting in a speed-up with respect to exact FRNN
that grew to several orders of magnitude as sample size increased.

Now that the usefulness of using HNSW as part of FRNN has
been demonstrated, we propose that it might be possible to achieve
further improvements through deeper integration. For instance, when
performing imbalanced binary classification, the computational cost
of performing the nearest neighbour search required for calculating
upper approximation membership of the minority class is relatively
low. Therefore, we could perform this first, and terminate the nearest
neighbour search for the upper approximation of the majority class early
as soon as we know that a test instance has a higher membership therein.
We would only have to run the full search if we end up predicting
minority class membership, which should only occur in a corresponding
minority of cases.
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Chapter 6

Average localised proximity1

One-class classification (Tax 2001), also known as novelty, semi-supervised
outlier or semi-supervised anomaly detection, is an asymmetric type of
binary classification between a target or positive class and the other or
negative class. One-class classifiers, known as data descriptors, learn a
model of the target class that can later be used to predict whether unseen
instances belong to that target class. The difference with ordinary binary
classification lies in the fact that a data descriptor only uses training data
belonging to the target class. It is this restriction that makes one-class
classification a challenging problem.

One-class classification is also closely related to, but subtly different
from learning from positive and unlabelled data (Bekker & Davis 2020), in
which the training data contains both positive and unlabelled records, as
well as unsupervised outlier detection (Domingues et al 2018), in which
the training data is an unlabelled mixture of mostly positive and some
negative records and the goal is to find out which are which. Algorithms
originally defined for one of these settings are frequently repurposed,
but their performance should be evaluated separately in each setting.

In recent years, one-class classification has been applied to a wide
range of problems, including the detection of tweets promoting hate or
extremism (Agarwal & Sureka 2015), or generated by bots (Rodríguez-
Ruiz et al 2020), user authentication based on keystroke dynamics (M
Antal & Szabó 2015), writer identification (Hadjadji & Chibani 2018),
detecting abnormal train door operations (Ribeiro et al 2016), and the
identification of different tumor cell subtypes (Sokolov et al 2016).

In the present chapter, we will review a number of existing data
descriptors, and introduce our own proposal, Average Localised Prox-
imity (ALP), which can be seen as an improved version of the existing
Localised Nearest Neighbour Distance (LNND) and Local Outlier Factor

1This chapter is based on a part of Lenz et al (2021b).
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(LOF) data descriptors. We will then compare their performance in the
next two chapters.

Weproceed by providing formal definitions of one-class classification
in general (Section 6.1) and the eight existing data descriptors covered
in this thesis in particular (Section 6.2). We then introduce Average
Localised Proximity (Section 6.3) and offer some concluding thoughts
(Section 6.4).

6.1 One-class classification

Formally, we may view one-class classification as a generalisation from
a finite set of instances to a function from the entire attribute space to
the unit interval (Definition 6.1). Recall that a dataset - ⊂ R< is a finite
multisubset (Definition 0.5).

6.1 Definition. A data descriptor is a function � that takes a dataset
- ⊂ R< for some < > 0 and returns a function R< −→ [0, 1] (the model
by � of -).

In practical applications, - is a sample drawn from some statistical
population, the target class, and the goal of one-class classification is to
predict, on the basis of their attribute values, whether new instances
originated from this target class. For this purpose, the values in [0, 1]
assigned by a data descriptor model can be interpreted as confidence
scores. Accordingly, a data descriptor model should ideally assign high
scores to the instances in -, although this is not a strict requirement.

Most of the data descriptors in this chapter are initially formulated
as functions to a larger subset ( ⊆ R, expressing some form of similarity
or distance. Such functions can easily be adapted to fit Definition 6.1
through composition with a monotonic or anti-monotonic map ( −→
[0, 1]. In particular, we will transform distance functions R< −→ [0,∞)
with the map (6.1).

I ↦−→ 1
1 + I (6.1)

It may be desirable to make a more definite statement about target
class membership by using a threshold 
, and predicting that all
instances with a score greater than or equal to 
 belong to the target
class. The choice of 
 determines a trade-off between false positive and
false negative predictions, and should therefore be informed by the
context in which the data descriptor model is deployed.

We say that two data descriptor models are equivalent if they can be
transformed into each other through a strictly order-preserving map on
[0, 1]. Such a map is also a map between thresholds.
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We can evaluate the performance of a data descriptor model using a
test set . ⊆ R< containing both elements drawn from the target class
(but not contained in -), as well as other instances. Evaluation in terms
of accuracy is dependent on a choice of threshold. AUROC is a better
evaluation metric of the model as such, since it represents the ability of
the model to separate target instances from other instances. It directly
corresponds to the chance that a random target instance receives a higher
score than a random other instance.

As mentioned in the Introduction, one-class classification differs
from unsupervised outlier detection, where the assumption is that most
but not all of the instances in - are drawn from the target class, and
the task is not to generalise - to R< , but to identify the elements in -
that do not belong to the target class. Data descriptors can be used for
this task by considering the scores they assign to records of - itself.
Conversely, some unsupervised outlier algorithms can also be used to
assign scores to instances outside of -, and we will consider some data
descriptors that have been repurposed in this way.

6.2 Existing data descriptors

We now discuss a number of data descriptors that have been evaluated
favourably in the comparisons by Janssens et al (2009) and Swersky et al
(2016), or that have been claimed to perform even better. Throughout,
we assume a dataset - ⊂ R< and a generic instance H ∈ R< , and define a
descriptor through the action of its model of - on H. For the descriptors
based on nearest neighbour distances, we use NN:(I) to denote the :th
nearest neighbour in - of any I ∈ R< , excluding I itself if I is explicitly
drawn from -. We will define the respective hyperparameter spaces
informally, as a choice of hyperparameters.

Fig. 6.1 illustrates the models obtained from applying the data
descriptors in this section and the next to the same toy dataset.

Nearest Neighbour Distance
Nearest Neighbour Distance (NND) is conceptually very simple, and
goes back to at least Knorr & RT Ng (1997). In its general form, it
requires a choice of a dissimilarity measure 3 and a positive integer :.
It is based on the score 3:(H) := 3(H,NN:(H)), from which we obtain a
model through composition with (6.1). While this is not scale-invariant,
different scalings lead to equivalent models of -.

Localised Nearest Neighbour Distance
The argument for Localised Nearest Neighbour Distance (LNND) (Rid-
der et al 1998; Tax & Duin 1998) is that distance in the attribute space
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ALP CD IF

EIF LNND LOF

MD NND SVM

Figure 6.1: Contour lines of data descriptor models, constructed on a
randomly generated toy dataset. ALP, LNND, LOF, NND and SVM have
been initialised with the default hyperparameter values from Table 7.2.
CD: centroid distance. Note that for each subplot, the range of contours
corresponds to the range of scores for that data descriptor (in the plotted
area), so the different shades of grey do not encode the same scores
across data descriptors.
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should not be valued equally everywhere, but that it should instead be
compared to the local distance between nearby training instances. Thus,
for a choice of dissimilarity 3 and a positive integer :, we can define
the local distance 32

:
(H) = 3:(NN:(H)) relative to a point H ∈ R< and the

localised distance ;3:(H) = 3:(H)/32
:
(H), which we compose with (6.1) to

obtain a model of -.

Local Outlier Factor
Local Outlier Factor (LOF), originally proposed for unsupervised out-
lier detection (Breunig et al 2000), is also based on nearest neighbour
distances, and also involves a form of localisation. For a choice of dis-
similarity 3 and positive integer :, it derives from 3 the (non-symmetric)
reachability distance A3: (6.2). The goal is to “significantly reduce” the
“statistical fluctuations” that occur when query instances lie very close to
target instances. It achieves this by effectively cancelling out all distances
that are smaller than a certain threshold, determined by local nearest
neighbour distances.

A3:(H, G) = max(3(H, G), 3:(G)), (6.2)

LOF then aggregates and inverts a range of reachability distance
values to obtain the local reachability density lrd: (6.3), and localises
and aggregates a range of local reachability density values to end up
with the local outlier factor lof: (6.4), which we compose with (6.1) to
obtain a model of -.

lrd:(H) =
1

1
:

∑
8≤: A3:(H,NN8(H))

, (6.3)

lof:(H) =
1
:

∑
9≤:

lrd:(NN9(H))
lrd:(H)

. (6.4)

Mahalanobis Distance
One of the oldest approaches to novelty detection is to assume that the
target class samples are drawn fromamultivariateGaussianDistribution.
The atypicality of an instance under this distribution is given by the
Mahalanobis Distance (MD) (Mahalanobis 1936) to this distribution (6.5),
where � and ( are the mean and the covariance matrix of the training
instances.

�(H) =
√
(H − �))(−1(H − �), (6.5)
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Mahalanobis distance generalises distance from the mean in terms
of standard deviations in a univariate Gaussian distribution. Squared
Mahalanobis distance follows a "2-distribution with < degrees of
freedom, and we obtain a ?-value (6.6) by applying its cumulative
distribution function � and subtracting from 1.

?(H) = 1 − �(�(H)2). (6.6)

This ?-value is a natural choice for a model of -, but it approaches 0
very quickly, making it computationally difficult to distinguish between
?-values of large Mahalanobis distances (they are all rounded to 0).
Therefore, in order not to unduly limit the discriminative power of MD,
we instead compose � with (6.1) in the experiment that we perform in
the next chapter.

Support Vector Machine
There exist two, practically equivalent, adaptations of the soft-margin
Support Vector Machine (SVM) (Cortes & Vapnik 1995) to one-class
classification. Both allow the use of a kernel : : R< × R< −→ R to
transform the feature space in which we obtain the solution via an
implicit map ) : R< −→ / to some inner product space /.

The Tax variant (Tax & Duin 1999a,b) fits a hypersphere of mini-
mal volume around the training instances by solving the optimisation
problem (6.7), with dual (6.8), for a choice of � ∈ [0,∞) and a choice of
kernel :. The instances G8 with corresponding non-zero values of 
8 are
the support vectors — these span a hypersphere centred at some point
0 ∈ / with radius '2. The parameter � determines how many training
instances remain outside the hypersphere. The decision function is 3)
(6.9), the distance to 0.

min
0∈/,'∈R,�∈R=≥0

'2 + �
∑
8

�8 , with ∀8 :


)(G8) − 0

2 ≤ '2 + �8 (6.7)

min

∈[0,�]=

∑
8


8 :(G8 , G8) −
∑
8 , 9


8
 9 :(G8 , G 9), with
∑
8


8 = 1 (6.8)

3)(H) = :(H, H) − 2
∑
8


8 :(H, G8) +
∑
8 , 9


8
 9 :(G8 , G 9) (6.9)

The Schölkopf variant (Schölkopf et al 1999, 2001) fits a hyperplane to
separate the training instances from the origin, at a maximum distance
from the origin, by solving the optimisation problem (6.10), with dual
(6.11), for a choice of � ∈ (0, 1] and a choice of kernel :. The instances
G8 with corresponding non-zero values of 
8 are the support vectors —
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these span a hyperplane with distance � to the origin. The parameter �
determines how many training instances remain on the wrong side of
the hyperplane. The decision function is the signed distance 3( to this
hyperplane (6.12), with negative values on the side of the origin.

min
F∈/,�∈R,�∈R=≥0

1
2 ‖F‖

2 + 1
�=

∑
8

�8 − �, with ∀8 : F · )(G8) ≥ � − �8

(6.10)

min

∈[0, 1

�= ]=
1
2

∑
8 , 9


8
 9 :(G8 , G 9), with
∑
8


8 = 1

(6.11)

3((H) =
∑
8


8 :(G8 , H) − �.

(6.12)

Both SVM variants have been shown to produce the best overall
results with the Gaussian kernel (6.13), which requires a choice for the
kernel width 2.

:(G, H) = 4−
‖G−H‖2

2 (6.13)

For kernels : for which :(H, H) is constant, like the Gaussian ker-
nel, the respective optimisation problems become equivalent (with
reparametrisation � = 1

�= ), resulting in the same set of support vectors
(Schölkopf et al 2001; Tax & Duin 2004), and the decision functions 3)
and 3( are monotonic linear transformations of each other, leading to
equivalent data descriptormodels. In this thesis we use a data descriptor
model based on the Schölkopf variant (6.14), for which we have access to
an implementation. Instances on the hyperplane receive a score of 0.5.

H ↦−→ 1
2

(
3((H)��3((H)�� + 1

+ 1

)
. (6.14)

With the Gaussian kernel, the Schölkopf variant of SVM has two
hyperparameters that need to be tuned, � and 2.

Isolation Forest
Isolation Forest (IF) (FT Liu et al 2008) is an adaptation of the Random
Forest classifier for one-class classification. Its central idea is that
instances that are more isolated from the target class should be easier
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to separate from the training instances. This idea is modelled by
constructing randomised search trees on the target data, and measuring
the average number of steps required to pass through these trees.

For positive integers C and #, IF creates C binary incomplete search
trees of height at most

⌈
log2(#)

⌉
using C random subsamples of #

instances of -, in which each node splits the remaining instances by
randomly selecting an attribute and a corresponding value within the
range of remaining values, until the maximum tree height is reached.

The expected average path length in a tree of 8 instances is expressed
by 2 (6.15), where �8−1 is the (8 − 1)th harmonic number.

2(8) = 2�8−1 −
2(8 − 1)

8
(6.15)

For each tree ), define ℎ)(H) as the sum of the path length of H in
) and 2(9), where 9 is the subsample size remaining in the final node
of H in ). The rationale behind limiting tree height and estimating the
remaining path length is that this limits the number of search steps,
while it mostly affects target class instances.

From this we obtain an anomaly score B in [0, 1] (6.16), which we
subtract from 1 to obtain a data descriptor model.

B(H) = 2−
1
C

∑
) ℎ) (H)/2(#). (6.16)

The performance of IF initially increases with the number of trees C
and the subsample size #, but eventually converges, and FT Liu et al
(2008) experimentally finds that these hyperparameters can safely be set
to 100 and min(256, =) respectively. Hence, a significant advantage of IF
is that it has no tuning parameters.

Extended Isolation Forest
Extended Isolation Forest (EIF) (Hariri et al 2021) is a slight modification
of IF, which only changes the construction of the trees. It is motivated
by the observation that IF seems to produce counter-intuitive results
with simple distributions. In particular, IF assigns much lower anomaly
scores to instances that are far removed from the training set along a
single feature dimension (but not the others) than to instances that are
slightly removed from the training set in several feature dimensions.
This is due to the fact that the splits in the binary trees correspond
to hyperplanes in the attribute space that always lie parallel to < − 1
feature dimensions.

EIF solves this bias by splitting its trees along hyperplanes with a
randomly chosen slope and an intersect randomly drawn from the range
determined by the remaining instances.
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Shrink Autoencoder

The problem of one-class classification can also be approached with
autoencoders. These neural networks learn a latent representation of
a dataset by forcing the data through a bottleneck layer with fewer
features than the input. After this encoding step, the data is decoded
again by applying the same weights in reverse, and the whole model
is trained by minimising the resulting reconstruction error. After
training is completed, the reconstruction error of new instances can
be used to define a data descriptor. However, Cao et al (2019) argue
that better results can be obtained by working directly with the latent
representation of an autoencoder, if we force this representation to
conform to a compact distribution. For this purpose, Cao et al (2019)
propose the Shrink Autoencoder (SAE) and the Dirac Delta Variational
Autoencoder (DVAE). We only consider SAE here, as its reported results
are slightly better and it has proven easier to implement.

SAE is an autoencoder with five hidden layers, in which the number
of features is linearly reduced from< to

⌊√
<

⌉
+1—the number of latent

features of the central layer2 — and increased back to <. In addition to
the reconstruction error, the loss function also incorporates Euclidean
regularisation on the central layer, thereby directing the learning process
towards latent representations that are distributed closely around the
origin.

By substituting the latent for the original representation of the data,
SAE can be used as a preprocessing step in combination with any other
data descriptor. Cao et al (2019) show that this is beneficial, especially
for sparse datasets. Moreover, due to the regular shape of the latent
representation, the choice of hyperparameters and even the choice of
data descriptor becomes largely irrelevant. Therefore, Cao et al (2019)
propose that one may use SAE in combination with a simple centroid
data descriptor, which measures the distance to the mean after rescaling
by the respective standard deviations in each dimension. It is this
combination that we will test in the next chapter.

6.3 Average Localised Proximity

The performance of NND and LNND has been compared by Swersky
et al (2016), with the remarkable result that NND outperforms LNND.
Yet the principle behind LNND seems sensible: if a dataset is more
densely distributed in one part of the attribute space than in another, we
should adjust our expectations regarding nearest neighbour distance
accordingly. So we may ask what causes LNND to perform badly.

2By
⌊√
<

⌉
, we mean

√
< rounded to the nearest integer.
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The most obvious problem with LNND is that its measure for local
nearest neighbour distance is not very robust, since it is determined by
a single distance in the training set. In every natural dataset, there is
random variation in the distances between instances, and this directly
translates into random variation of the LNND scores of test instances.
Secondly, while it seems elegant to localise against the :th nearest
neighbour distance of the :th nearest neighbour of a test instance,
it is not clear why the :th nearest neighbour distance of the closest
training instance isn’t more relevant. And finally, LNND only considers
neighbour distances for a single value of :, whereas it would be more
robust to aggregate over different values for :.

These problems are addressed by LOF, but LOF has issues of its
own. The conceptual motivation for its slightly convoluted amalgam
of localisation and reachability is not entirely clear. LOF seems to take
localisation one step too far, with three rounds of averaging that require
calculating the distance to the :th neighbour of the 8th neighbour of the
9th neighbour of a test instance H. There is also a degree of arbitrariness
to its application of reachability, as it uses :th neighbour distances as
a threshold for 8th neighbour distances, with : generally larger than 8.
More fundamentally, it is not clear that reachability is a good idea, since
it may discard useful information by cancelling out small distances.

As an alternative, we propose Average Localised Proximity (ALP),
a new data descriptor that is more robust than LNND, yet conceptu-
ally simpler than LOF (Definition 6.3). It uses an Ordered Weighted
Averaging (OWA) operator (Yager 1988) (Definition 6.2) to obtain a soft
maximum.

6.2 Definition. Let F be a weight vector of length :, with monotonically
decreasing values in [0, 1] that sum to 1. The Ordered Weighted Averaging
operator owaF induced by F transforms a collection . =

{
H8

}
8≤: of

values in R into the weighted sum owaF8≤:H8 =
∑
8≤: F8 · H>(8), where

>(8) is the index value of the 8th largest element in ..

6.3 Definition. Let (R< , -) be a dataset, let 3 be a choice of dissimilarity
function on R< , let :, ; ∈ N be choices of positive integers, and let F: , F ;

be choices of weight vectors of length : and ; respectively. For each
8 ≤ :, define �8(H) (6.17), the local 8th neighbour distance relative to
H, and from this, lp8(H) (6.18), the localised proximity of H. Then the
average localised proximity alp(H) of H is the ordered weighted average of
these values (6.19).

�8(H) =
∑
9≤;

F ;
9 · 38(NN9(H)). (6.17)
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lp8(H) =
�8(H)

�8(H) + 38(H)
. (6.18)

alp(H) = owaF:
8≤: lp8(H). (6.19)

As illustrated in Figure 6.2, ALP features aggregation on two levels.
Local nearest neighbour distance is determined with a weighted sum
over a section of the training set. By choosing monotonically decreasing
weights, we let the contribution of training instances to this weighted
sum decrease with distance to H. The choice of weight vector determines
the amount of localisation, which can be seen as a trade-off between
variance and bias. For : = ; = 1, we recover LNND with : = 1, whereas
if ; = = and all weights are equal to 1

= , all distances are localised against
the training set mean and we obtain models that are equivalent to those
produced by NND.

We thus obtain : localised distance values, which we can interpret
as representing different scales. Inspired by the definition of fuzzy
rough sets (Chapter 1), we first transform these into proximity values in
[0, 1], and then apply a weighted maximum. With suitable weights, the
weighted maximum offers a combination of flexibility and robustness,
emphasising the scales atwhich test instances have the greatest proximity
to the target class, without being completely determined by any single
scale. The impact of scales with small proximities is also reduced by
our choice to aggregate after transforming values from [0,∞] to [0, 1],
rather than vice-versa.

The choice of weight vector offers further opportunity for optimisa-
tion. However, the experiments in Chapter 1 suggest that the effect of
this choice may in fact be limited, and that linearly decreasing weights
constitute a good default. Similarly, a good enough default choice for
the dissimilarity measure is Boscovich distance. Therefore, the only
other hyperparameters to be specified by the user are : and ;.

We illustrate the application of ALP with a toy example (Figure 6.3),
with two instances to be scored (H1 and H2) and a number of training
instances (G1 , G2 , . . . ). We choose : = 3 and ; = 2. Accordingly, we
obtain F: =

〈 3
6 ,

2
6 ,

1
6
〉
and F ; =

〈 2
3 ,

1
3
〉
.

A relevant selection of nearest neighbours and nearest neighbour
distances is listed in Table 6.1a, while Table 6.1b contains the resulting
local distances relative to H1 and H2, their localised proximities and their
average localised proximity scores. The local distances are calculated as
the weighted sum of the nearest neighbour distances of G1 and G2 for
H1, and G9 and G10 for H2, weighted with 2

3 and 1
3 respectively. The final

scores are obtained by sorting the localised proximities of H1 and H2 and
from large to small, and taking their sum with weights 3

6 ,
2
6 and 1

6 .
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y

Query instance NN1(H)
NN2(H)
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.

NN; (H)

31(H), 32(H), . . . , 3: (H)

31(NN1(H)), 32(NN1(H)), . . . , 3: (NN1(H))
31(NN2(H)), 32(NN2(H)), . . . , 3: (NN2(H))

.
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.

31(NN; (H)), 32(NN; (H)), . . . , 3: (NN; (H))

lp1(H), lp2(H), . . . , lp: (H)
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�1(H), �2(H), . . . , �: (H)
Local distances

alp(H)

Average localised proximity

; nearest neighbours

: nearest neighbour distances : nearest neighbour distances

Weighted average with F ;
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Figure 6.2: Schematic illustration of the calculation of the average
localised proximity of a query instance H.
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Figure 6.3: One-class classification example, with training instances
(G1 , G2 , . . . ) and query instances (H1 and H2).

Table 6.1: Selected values used in the application of ALP to the one-class
classification example in Figure 6.3.

(a)

NN1 NN2 NN3 31 32 33

H1 G1 G2 G3 4 5 6
H2 G9 G10 G6 7 8 11
G1 G2 G3 G4 1 2 3
G2 G1 G3 G4 1 1 2
G9 G8 G10 G6 5 5 6
G10 G7 G9 G5 5 5 9

(b)

�1 �2 �3 lp1 lp2 lp3 alp

H1 1.00 1.67 2.67 0.20 0.25 0.31 0.27
H2 5.00 5.00 7.00 0.42 0.38 0.39 0.40
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6.4 Conclusion

In this chapter, we have reviewed the challenge of one-class classification,
and presented a number of data descriptors that are representative of the
state of the art. We then presented a new proposal, Average Localised
Proximity (ALP), motivated by a number of perceived shortcomings in
the existing data descriptors LNND and LOF.

While data descriptors are intended to be applied to training data
that only consists of positive data, a number of the data descriptors in
this chapters, including ALP, have one or two hyperparameters without
an obvious default value. In the next chapter, we will use a large
selection of real-life datasets to establish good default values for these
hyperparameters. Then, in Chapter 8, we will investigate how they
can best be optimised experimentally if a sample of negative records is
available for this purpose. In both settings, we will also compare the
empirical performance of the data descriptors presented in this chapter.
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Chapter 7

One-class classification with
default hyperparameter values1

There have been two large evaluations of data descriptors for one-class
classification in the literature, which identified, respectively, SVM, LOF
and LNND (Janssens et al 2009) and SVM, LOF, NND andMD (Swersky
et al 2016) as the best-performing algorithms. A common property of
these data descriptors, with the exception of MD, is that they require
setting one or two ‘magic’ hyperparameters by the user, which typically
control a trade-off between variance and bias. Both Janssens et al (2009)
and Swersky et al (2016) optimise these hyperparameters for each one-
class classification task through cross-validation on the training set.
While this approach can be expected to yield the best possible result
for that particular task, it does not fully answer the challenge raised
by the authors of the Schölkopf variant of SVM to “turn the algorithm
into an easy-to-use black-box method for practitioners” (Schölkopf et al
1999). For that, we need a set of sensible default values for these
hyperparameters, in particular for applications where no substantial
amount of training material from the other class is available for tuning.

In contrast, IF, EIF and SAE, which were not included in these
evaluations, do not require users to specify any hyperparameters. Strictly
speaking, these data descriptors do have hyperparameters, but the
authors have established default values that can be taken for granted.
In a small-scale evaluation of unsupervised outlier detection by FT
Liu et al (2008), IF was shown to achieve better results than a number
of other approaches, including LOF with a (likely sub-optimal) fixed
hyperparameter choice of : = 10. The proponents of EIF in turn showed
in another small-scale experiment that it achieved better unsupervised
outlier detection results than IF (Hariri et al 2021). However, it remains
unclear howwell IF and EIF performone-class classification. Finally, Cao

1This chapter is based on a part of Lenz et al (2021b).
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et al (2019) report that SAE (paired with centroid distance) outperforms
LOF and SVM for one-class classification, especiallywith sparse datasets,
but in their experiment too the choice of hyperparameters for LOF and
SVM may not have been optimal, and the selection of datasets was
limited.

In this chapter, we address the state of affairs sketched above in two
steps. Firstly, we determine optimal default hyperparameter values
for NND, LNND, LOF, SVM and ALP, which allows them to be used
as “black-box methods” like MD, IF, EIF and SAE. And secondly, we
compare the performance of these nine data descriptors across 246
one-class classification tasks derived from 50 datasets.

We will first describe the experiments that we perform (Section 7.1),
and then present our analysis of the results (Section 7.2) and our general
conclusion (Section 7.3).

7.1 Experimental setup

A large part of the one-class classification problems used by the two
previous comparison studies (Janssens et al 2009; Swersky et al 2016)
were created by David Tax2 on the basis of binary or multiclass classifi-
cation datasets in the UCI machine learning repository (Dua & Graff
2019), by selecting one decision class as the target class, and combining
the rest to form the other class. We apply the same procedure to a
selection of 50 numerical datasets that represent real-life data (described
in Section B.1). By matching the variation contained in the UCI machine
learning repository, we aim to achieve a certain degree of represen-
tativeness. In total, the 50 datasets contain 246 individual decision
classes, with up to 194 198 target class instances and up to 649 attributes
(Table B.1)3. We will also consider the sparsity of the target datasets,
which we define as the rate of attribute values equal to the respective
mode.4

For each descriptor, dataset and class, we perform one-class classifica-
tion with 5-fold stratified cross validation. We evaluate the performance
of one-class classification with the mean AUROC across folds.

Some of the data descriptors in our selection are sensitive to the
relative scale of the attributes. To ensure that the potential contribution
of each attribute is approximately equal, we rescale the instances within
each fold, using only information from the target class instances in the
training set. Since we are dealing with a large variety of target class

2http://homepage.tudelft.nl/n9d04/occ/index.html
3A few of the datasets have a handful of records with missing attribute values. These

records were omitted.
4Our definition differs slightly from that of Cao et al (2019), who take the rate of zeros.

The motivation for our choice is that it makes sparsity independent of the encoding of the
data.
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Table 7.1: Data descriptors with hyperparameters and reparametrisa-
tions, with = the size of the target class and < the number of attributes.
Hyperparameters : and ; rounded to the nearest integer in the range
[1, = − 1].

Data descriptor Hyperparameter Reparametrisation Resolution Window size

NND : 1 3
LNND : 0 log = 0.01 101
LOF : 0 log = 0.01 101
SVM � 0.1 11

2 2′< 0.1 × 11
ALP : 0 log = 0.1 11

; 1 log = 0.1 × 11

distributions, including some that may be heavily skewed, we have
chosen a robust measure of scale: the interquartile range (Rousseeuw
& Croux 1993). By rescaling attribute values to match the interquartile
range of the target class, the central half of all attribute values are
brought to the same scale, which is not influenced by extreme values
and incidental outliers.

For EIF, we use the implementation provided by the authors5, while
for SVM and IF, as well as for nearest neighbour searches, we use
implementations provided by scikit-learn. We have implemented SAE
in Keras and TensorFlow based on the code provided by the authors6,
and we use our own Python wrapper fuzzy-rough-learn (Appendix A)
for MD, NND, LNND, LOF and ALP.

We evaluate the performance of a data descriptor with a specific
combination of hyperparameter values by first calculating the mean
AUROC for each dataset, and then the mean of these mean values across
datasets. This ensures that datasets with a large number of classes do
not dominate the final result.

During initial experimentation, we found that we obtain better
overall results by reparametrising some hyperparameters in terms of
the number of instances or features. We also found that for small
hyperparameter differences, the response in average AUROC becomes
noisy. We can interpret this noisiness as a natural limit on the resolution
with which it makes sense to determine optimal default hyperparameter
values, at least on the basis of our current selection of datasets.7 Tomake
the resultsmore robust, we apply a rollingmeanwith a centeredwindow

5https://github.com/sahandha/eif
6https://github.com/vanloicao/SAEDVAE
7In the case of SVM, another more practical limit is computation time. This is less of

an issue for the other data descriptors because we can reuse nearest neighbour searches,
and because the number of possible values for : and ; is finite.
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(two-dimensional in the case of SVM and ALP). The reparametrisations,
the chosen resolution and the window size are listed in Table 7.1.

In addition to the number of nearest neighbours :, NND, LNND
and LOF also require a choice of dissimilarity measure. We will see
in Section 7.2 that NND, LNND and LOF obtain near-uniformly better
results with the Boscovich thanwith the Euclideanmetric, sowe decided
to simplify the rest of the experiments by limiting them to the Boscovich
metric.

We will first use this setup to identify and report recommended
default hyperparameter values for each data descriptor.

Next, we compare the performance of all data descriptors as black-box
classifiers with predetermined hyperparameter values. As in Chapter 3,
to ensure that the comparison is fair and the results generalise to other
datasets, we use a leave-one-dataset-out scheme, where for each dataset
we use those hyperparameter values that maximise AUROC across
the other datasets. Our first question is whether our proposal, ALP,
introduced in the previous chapter, performs better than the existing
data descriptors. But we will also have the opportunity to test whether
any of the existing data descriptors can be said to outperform each other.

We would like to compare data descriptors by applying Wilcoxon
signed-rank tests. However, our observations contain one-class classi-
fication problems derived from the same dataset. Even though data
descriptors only use training data from the target class, which differs for
each observation, they are still based on the same type of data, and we
cannot assume that these observations are completely independent. To
address this, we choose to apply clustered Wilcoxon signed-rank tests
(Rosner et al 2006), as implemented in the R package clusrank (Jiang
et al 2020).

For each data descriptor, we test whether it performs better than the
eight other data descriptors with a series of eight one-sided clustered
Wilcoxon signed-rank tests. We apply the Holm-Bonferroni method
(Holm 1979) to correct for family-wise error. The Holm-Bonferroni
method indexes the eight uncorrected ?-values from small to large, and
then derives the corrected values as ?̃8 = max9≤8(9 − 9) · ? 9 .

Finally, we will also have a look at the ability of the data descriptors
to scale to large datasets, by measuring the construction and query times
of one-class classification with a series of training sets of increasing
size. For this purpose, we draw random samples from the large higgs
dataset (Section B.2). At each size, we report the average single-threaded
computation time based on five such samples. We query with a test set
of 1024 instances, and report the average query time per instance.
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7. One-class classification with default hyperparameter values

Table 7.2: Optimal default hyperparameter values of data descriptors,
with = the size of the target class and < the number of attributes.
Hyperparameters : and ; rounded to the nearest integer in the range
[1, = − 1].

Data descriptor Hyperparameter Optimal default value

NND : 1
LNND : 3.4 log =
LOF : 2.5 log =
SVM � 0.20

2 0.25<
ALP : 5.5 log =

; 6.0 log =

Table 7.3: Weighted mean rank, AUROC and standard deviation of
AUROC across cross-validation folds (CVSD) of data descriptors.

Data descriptor Rank AUROC CVSD

ALP 3.51 0.817 0.0378
SVM 3.90 0.814 0.0404
NND 4.33 0.805 0.0414
LOF 4.67 0.803 0.0417
MD 4.68 0.806 0.0370
IF 5.15 0.800 0.0479
EIF 5.59 0.790 0.0504
LNND 6.55 0.781 0.0438
SAE 6.63 0.757 0.0539

7.2 Results and analysis

Figure 7.1 displays the average AUROC of the data descriptors with
hyperparameters. It is clear that NND, LNND and LOF produce better
overall results with Boscovich distance than with Euclidean distance.
After applying the running mean, the AUROC graphs approximate 1- or
2-dimensional unimodal curves with a prominent global maximum. For
SVM and ALP, the mean weighted AUROC decreases quite slowly away
from the global maximum, which means that these data descriptors are
quite robust to small small changes in their hyperparameter values. On
the basis of these graphs, we can recommend the default hyperparameter
values listed in Table 7.2. To avoid unwarranted precision, we have
chosen to only determine these values up to multiples of 0.1 (LNND
and LOF), 0.05 (SVM), and 0.5 (ALP).

The full leave-one-dataset-out AUROC values of the data descriptors
are listed in Table C.1. The weighted mean rank and AUROC8 of the

8Note that for ALP, SVM, NND, LOF and LNND, the weighted mean AUROC is
lower than the highest scores in Figure 7.1, since, in general, the leave-one-dataset-out
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Figure 7.1: Weighted mean AUROC of data descriptors across their
respective hyperparameter spaces.
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Table 7.4: One-sided ?-values of clustered Wilcoxon signed-rank tests of
the hypotheses that the data descriptor in the row is ranked higher than
the data descriptor in the column, with Holm-Bonferroni family-wise
error correction applied to each row.

SVM NND LOF MD IF EIF LNND SAE

ALP 0.14 0.018 < 0.0001 0.035 0.035 0.00076 < 0.0001 < 0.0001
SVM 0.51 0.029 0.050 0.042 < 0.0001 < 0.0001 < 0.0001
NND ≥ 1 0.47 0.38 0.017 < 0.0001 < 0.0001
LOF ≥ 1 0.83 0.036 < 0.0001 0.00028
MD 0.35 0.11 0.0066 < 0.0001
IF ≥ 1 0.20 0.0068
EIF 0.78 0.025
LNND 0.27

data descriptors are summarised in Table 7.3. Because the AUROC
for each dataset and target class is calculated through cross-validation,
we can also measure the standard deviation across folds to gain an
idea to what extend the performance is influenced by random factors.
Generally speaking, we find that the lower-ranked data descriptors are
more susceptible to statistical variation. We might reasonably expect to
be able to improve their performance by making them more robust to
statistical variation. The principal exceptions to this trend are MD and
LNND, which show relatively low statistical variance, and this suggests
a more limited potential for improvement.

Next, we test which data descriptors can be said with certainty
to perform better than others on the type of one-class classification
problems represented by our sample. Table 7.4 contains the p-values
of the one-sided clustered Wilcoxon signed-rank tests, corrected for
family-wise error with the Holm-Bonferroni method.

We find that there is strong evidence that ALP outperforms the other
data descriptors, except SVM, for which there is only weak evidence (? =
0.14). In particular, these results confirm (? < 0.0001) our hypothesis that
ALP improves upon LOF and LNND. Among the other data descriptors,
there is good evidence that SVM performs better than the others, except
NND and MD (for which the evidence is weaker: ? = 0.050), as well as
strong evidence that LOF and NND outperform EIF, LNND and SAE,
that MD outperforms LNND and SAE, and that IF and EIF outperform
SAE, and weak evidence that MD performs better than EIF (? = 0.11).

We note that the performance of IF is the hardest to pin down: in
fact we can only say with limited certainty that ALP (? = 0.035) and
SVM (? = 0.042) perform better. In particular, we find no evidence that

hyperparameter values are not equal to the optimal values calculated on the basis of all
datasets.

91



Part III. One-class datasets

0.0

0.1

0.2

0.3

0.4

Fr
eq

ue
nc

y

ALP SVM NND

0.0

0.1

0.2

0.3

0.4

Fr
eq

ue
nc

y

LOF MD IF

1 2 3 4 5 6 7 8 9
Rank

0.0

0.1

0.2

0.3

0.4

Fr
eq

ue
nc

y

EIF

1 2 3 4 5 6 7 8 9
Rank

LNND

1 2 3 4 5 6 7 8 9
Rank

SAE

Figure 7.2: Average frequency (H-axis) of ranks (G-axis) of data de-
scriptors, weighted by dataset, with ties distributed evenly among the
respective ranks.

EIF performs better than IF. This may be because the type of dataset
that motivated the formulation of EIF is not represented in our sample.

To gain more insight into the typical performance of the data descrip-
tors, we have summarised the frequency with which a data descriptor
achieves a certain rank in Figure 7.2. For ALP, SVM, LOF and LNND,
the distributions of these frequencies are close to unimodal. In contrast,
NND, MD, IF and EIF are less consistent — their performance is good or
bad as or more often than it is mediocre. The poor overall performance
of SAE is reflected in the fact that it is the worst-ranked data descriptor
for nearly 40% of one-class classification problems. Yet it is also the
best-ranked data descriptor in around 5% of them.

Figure 7.3 shows the extent to which the performances of the data
descriptors correlate, as reflected by the weighted Kendall’s � (Vigna
2015). The strongest correlation can be found between the nearest
neighbour based data descriptors and SVM, and between IF and EIF.
This information is potentially useful when constructing ensembles of
data descriptors. In addition to selecting data descriptors with good
individual performance, it may be desirable to select pairs of data
descriptors with low correlation that may be expected to complement
(e.g. ALP and IF) rather than reinforce (e.g. ALP and LOF) each other.
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Figure 7.3: Weighted Kendall’s � between data descriptors.

Indeed, when comparing all pairs of data descriptors on the basis of
the maximum of their respective AUROC scores for each one-class
classification problem, we find that the five best performing pairs are
(ALP, MD), (NND, MD), (ALP, NND), (ALP, IF) and (NND, IF).

There are anumber of factors that potentially explain theperformance
of the data descriptors: the number of instances =, the dimensionality <
and the sparsity of the target data. In addition, we can use the median
AUROC obtained by the data descriptors in this chapter as an indication
of the ‘simplicity’ or ‘separability’ of the evaluation data.

When we fit weighted linear regression models on the ranks of the
data descriptors in terms of log =, log<, sparsity and median AUROC,
we find that median AUROC is a positive significant factor for NND,
LOF, ALP and MD, and a negative significant factor for LNND, IF and
SAE. Surprisingly, there is no strong evidence that sparsity (? = 0.400) or
dimensionality (? = 0.802) are positive factors for SAE. Unsurprisingly,
given that SAE is a neural network, size is a significant positive factor
(? = 0.002), with each order of magnitude (base 4) increasing the rank of
SAE by 0.31 places (±0.19). Among the other data descriptors, sparsity
may be a negative factor for LOF (? = 0.058).

The effect of median AUROC is illustrated in Figure 7.4. We see
that the performance of ALP and SVM is broadly similar, except for
the evaluation data that is the easiest to separate. This is the largest
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Figure 7.5: Mean construction and query times of data descriptors across
five runs. Query times calculated on the basis of 210 instances.

stratum in our sample, and it is the stratum for which ALP has the
biggest relative advantage. ALP also has a fairly constant advantage
over LOF across all strata. Interestingly, while IF performs suboptimally
on evaluation data that is easily separable, it is competitive on harder
problems.

Figure 7.5 contains the construction and query times of the data
descriptors. The absolute times are implementation-dependent, but
the way these times scale is nevertheless informative. There is a clear
division between the nearest neighbour based data descriptors and
SVM on the one hand, for which query times grow polynomially with
training set size, and the other data descriptors, which keep query
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7. One-class classification with default hyperparameter values

times near-constant. The query times of NND, LNND, LOF and ALP
are near-identical, since they all revolve around a nearest neighbour
query. The faster construction times of NND reflect the fact we only
pre-calculate local distances for LNND, LOF and ALP. The construction
times for SAE start high, but remain effectively constant, although this is
dependent on the precise choice of early-stopping criteria. Similarly, the
construction times of IF and EIF are constrained by the constant number
of trees and number of samples per tree.

When comparing classification accuracy and computational per-
formance, we see that the data descriptors present different possible
compromises. ALP and SVM offer the highest accuracy, but slow run
times with large datasets, whereas IF, MD and SAE offer much better
computational performance with large datasets but lower accuracy. We
note that in the case of ALP and SVM, this trade-off can be further
tweaked by incorporating approximative nearest neighbour search and
support vector machine algorithms.

7.3 Conclusion

This chapter has produced two main results. On the basis of a large
collection of one-class classification problems derived from real-world
datasets, we have determined optimal default hyperparameter values
for ALP, as well as the existing data descriptors NND, LNND, LOF
and SVM. And secondly, we have evaluated the performance of the
data descriptors through a leave-one-dataset-out procedure, and found
weak evidence that ALP outperforms SVM, and strong evidence that it
outperforms all other data descriptors, in particular LNND and LOF.

At the beginning of this chapter, we pointed out that the data
descriptors MD, IF, EIF and SAE have no user-tunable hyperparameters
andmay therefore appear simpler to apply, and even preferable when no
data is available for tuning. The optimal default hyperparameter values
identified in this chapter allow all of the data descriptors discussed here
to also be used as “easy-to-use black-box method for practitioners”, as
called for by Schölkopf et al (1999). Moreover, we have shown that with
their default hyperparameter values, ALP and SVM generally perform
better than MD, IF, EIF and SAE. The ability to further optimise these
hyperparameters for specific datasets should therefore be seen as an
additional advantage, not a necessary requirement.

We see a number of avenues for further research. Firstly, it may be
possible to further reparametrise some hyperparameters in a way that
would allow the identification of even better performing default values.
Secondly, we set out to evaluate general data descriptor performance
using a variety of different one-class classification problems, but it may
also be worthwhile to investigate whether certain data descriptors are
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better suited to specific types of problems. Thirdly, we have evaluated
novelty detection, and it remains to be seen whether the results in this
chapter can be reproduced for unsupervised outlier detection. And
fourthly, given the better computational performance of MD, IF, EIF and
SAE, one could explore the trade-off between accuracy and run time
— on the one hand, ALP and SVM could be sped up by incorporating
approximative algorithms, while on the other hand, it may be possible
to modify the IF, EIF and SAE algorithms to improve their accuracy, at
some computational cost.

In the next chapter, we will again compare these data descriptors,
but this time in a setting with per-dataset hyperparameter tuning.
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Chapter 8

One-class classification with
hyperparameter optimisation1

Having looked in the previous chapter at one-class classification per-
formance with default hyperparameter values, we now consider what
happens if we are allowed to optimise, or ‘tune’, hyperparameter values
using negative data. Notably, for all of the concrete applications of
one-class classification listed in the Introduction of Chapter 6, there
was negative data that could have been used for hyperparameter op-
timisation. In addition, negative data is always available when data
descriptors are used as building blocks in a multi-class classification
ensemble, which we consider in the next chapter.

As mentioned in the previous chapter, there have been two previ-
ous evaluations of data descriptors with hyperparameter optimisation.
These evaluations had partially contradictory results. Janssens et al
(2009) compared five data descriptors, and found that SVM, LOF and
LNND significantly outperform the Parzen Window (PW) and Local
Correlation Integral (LOCI) data descriptors, as well as weak evidence
that SVM and LOF outperform LNND. Swersky et al (2016) replicated
this experiment, and found instead that LNND performs no better
than PW and LOCI, plus weak evidence that SVM outperforms LOF. In
addition, Swersky et al (2016) tested 6 more descriptors, of which NND
also performed very well.

Both previous experiments had several limitations that make a re-
evaluation worthwhile. The first question that we will try to answer
is: “What is the best way to optimise the hyperparameter values of a
data descriptor?”. Whereas both previous works use a naive grid search
to optimise hyperparameter values, we will evaluate a representative
selection of optimisation algorithms, and identify the most effective
strategy. We will also explain how data descriptors based on near-

1This chapter is based on Lenz et al (2022c).
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est neighbour searches can be optimised using efficient leave-one-out
validation instead of ordinary cross-validation.

A second question that we address is: “How long should hyperpa-
rameter optimisation run for?” Besides being inefficient, grid search
also requires fixing the total number of evaluations before optimisation
begins. In contrast, the optimisation algorithms that we consider se-
quentially select points in the hyperparameter space to evaluate. This
allows us to present our results in terms of the number of evaluations,
giving practitioners more insight into the effect of this choice.

We compare the data descriptors that have one or more optimisable
hyperparameters: ALP, SVM, NND, LNND and LOF. In the experiments
performed by Janssens et al (2009), SVM and LOF were tied, ahead
of LNND, but the difference was not statistically significant. Swersky
et al (2016) ranked SVM, NND, LOF and LNND from high to low
in that order, but only the difference between SVM and LNND was
statistically significant. The former study did not include NND, and
neither study included ALP, which had not yet been proposed at the
time. Thus, ALP remains untested in the context of hyperparameter
optimisation, whereas we found in the previous chapter that it is the
best-performing data descriptor with default hyperparameter values
(although the difference with SVM was only weakly significant).

Both previous studies evaluated performance with a Nemenyi test
on mean ranks (Demšar 2006). This forced them to amalgamate results
from one-class classification problems derived from the same dataset,
of which there were 24 in Janssens et al (2009) and 30 in Swersky et al
(2016). In order to get more statistical power, we draw from a larger
number of datasets (50), and we compare pairs of data descriptors using
a clustered Wilcoxon signed rank test (Rosner et al 2006) that allows
us to use the full results from all 246 one-class classification problems.
This choice is additionally motivated by the criticism that the ?-value
generated by the Nemenyi test for a pair of machine learning algorithms
is too strongly dependent on the inclusion of other algorithms in the
comparison (Benavoli et al 2016).

Together, these improvements over the previous studies — using
a suitable optimisation procedure, more datasets and a more precise
statistical test, and including ALP — allow us to provide a stronger
answer to our third and final question: “What is the best data descriptor
for one-class classification with hyperparameter optimisation?”

We proceed by discussing our selection of data descriptors (Sec-
tion 8.1) and optimisation algorithms (Section 8.2), explaining how our
experiments are structured (Section 8.3), discussing the results of these
experiments (Section 8.4) and presenting our conclusions (Section 8.5).
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8.1 Data descriptors

In this section, we discuss how we will optimise the hyperparameters
of our data descriptors. The data descriptors were defined in detail in
Chapter 6. Here we focus on how the hyperparameters of these data
descriptors can be optimised. The goal in each case is to maximise
AUROC.

Support Vector Machine

Recall that the Schölkopf variant of SVM fits a hyperplane between most
of the target data and the origin, at a maximal distance to the origin,
and that we apply a Gaussian kernel to transform the problem space.
Accordingly, SVM has two hyperparameters that can be optimised.
� ∈ (0, 1] controls the relative weight placed respectively on maximising
distance to the origin, and not leaving training instances on the same side
as the origin. 2 ∈ (0,∞) parametrises the ‘width’ of the Gaussian kernel.
Because many of the optimisation methods that we consider require
compact hyperparameter domains, we reparametrise 2 as 2′

1−2′ , and
optimise 2′ in [10−6 , 1 − 10−6], and restrict the domain of � to [10−6 , 1].

In order to optimise � and 2′, we apply stratified five-fold cross-
validation to obtain five splits of the available training data into a
smaller training set and a validation set. For each training set, we
select the target class instances to obtain a target set. We evaluate a
pair of hyperparameter values by constructing a model on the target
set, querying with the respective validation sets, and calculating the
mean of the resulting AUROC scores. This means that optimising the
hyperparameters of SVM requires constructing five models for each pair
of values to be evaluated.

Nearest Neighbour Distance

In principle, the distance measure to be used with NND can be chosen
freely. However, in order to allow the efficient form of optimisation
discussed below, we fix this choice to Boscovich distance, which, as
we saw in the previous chapter, generally gives better results than
Euclidean distance. This leaves the nearest neighbour number : as the
only hyperparameter to be optimised. Since it encodes a magnitude,
we optimise : logarithmically. To avoid having to work with extremely
large arrays, and knowing that its optimal default value is simply 1
(Table 7.2), we limit : to min(=, 100 log =).

Because NND is so simple, : can be optimised more efficiently than
the hyperparameters of SVM. Firstly, it is not necessary to completely
recalculate a newNNDmodel for each value of :. if :max is themaximum
value for : that we want to consider, we only require a single sorted :max
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nearest neighbour query, since this contains all :th nearest neighbours
for : ≤ :max.

Secondly, instead of five-fold cross-validation, we use an efficient
form of leave-one-out cross-validation, where each validation set con-
tains a single instance. For five-fold cross-validation, we would have
to create five nearest neighbour search models, one for each target set
corresponding to a fold. To perform leave-one-out cross-validation,
we create a single nearest neighbour search model on the basis of all
records from the target class. For each target class record, we must
ensure that it is not also part of the target set corresponding to its fold,
so we query to obtain its :max + 1 nearest neighbours, and remove the
first nearest neighbour distance (with value 0). For negative instances,
there is nothing to correct and we can simply perform a :max nearest
neighbour query. We collect the resulting scores and calculate a single
validation AUROC.

Localised Nearest Neighbour Distance

As with NND, we adopt Boscovich distance and optimise : logarithmi-
cally, up tomin(=, 100 log =). We can also perform efficient leave-one-out
cross-validation as with NND, but we have to do some additional work
to obtain a correct result. For each target class record, we have to check
whether it is among the : nearest neighbours of its :th nearest target
class neighbour, and if so, substitute the : + 1th nearest neighbour.

Local Outlier Factor

Again as with NND and LNND, we adopt Boscovich distance and
optimise : logarithmically, up to min(=, 100 log =). The calculation of
LOF requires determining the :th nearest neighbour distance of the 8th
nearest neighbour of the 9th nearest neighbour of a test instance (for all
8 , 9 ≤ :). For this reason, it is no longer feasible to apply the efficient
form of leave-one-out cross-validation described for NND and LNND,
and we resort to performing stratified five-fold cross-validation as with
SVM. However, we still retain the efficiency that for each fold, we only
need one query to obtain the :max nearest neighbours of a test instance.

Average Localised Proximity

ALP has two nearest neighbour hyperparameters to be optimised. : and
; respectively determine the scale at which nearest neighbour distances
are considered and the amount of localisation. As with NND, we
optimise : and ; logarithmically. Similarly to NND and LNND, we
only need a single max(:max , ;max) nearest neighbour query if we want
to evaluate values of : and ; up to :max and ;max. Since ALP is less
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complex than LOF, we can also apply efficient leave-one-out validation,
by performing essentially the same correction as for LNND. In particular,
we correct the local distances of a neighbour G of H by considering its
: + 1 nearest neighbours, and removing either the distance to H or the
: + 1th nearest neighbour distance.

Increasing : and ; has two effects: it draws inmore distant neighbours
of H, and it decreases the slope of the weight vectors, making the
contribution of successive neighbours more equal. The asymptotic limit
of this process is a weight vector with equal weights everywhere. A
more practical limit is that : and ; cannot grow beyond the number of
target instances =. However, we can simulate higher values for : and ;
by truncating the weight vector and multiplying by a constant to ensure
that its sum still equals 1.

This also allows us to address a computational issue with large
datasets, that evaluating a pair of values for : and ; on the whole
training set involves (: + 1) · ; · = distance values. If all three values are
large, processing a single array with all distance values requires a very
large amount ofmemory. For these reasons, we let : and ; range up to 5=,
but truncate distance values and weight vectors after min(=, 20 log =).
This is informed by the knowledge that the optimal default values for :
and ; are 5.5 log = and 6 log = respectively.

8.2 Optimisation algorithms

Optimisation problems are typically formulated in terms of a problem
function 5 : % −→ R, where the problem space % is a subspace of R< for
some < that is often required to be compact. Depending on the context,
the goal of optimisation is to find points in % that minimise or maximise
5 . In the present instance, we wish to maximise the validation AUROC
of our data descriptors, and the problem space is determined by the
hyperparameters that we optimise.

There is an important distinction between algorithms that aim to
find a local optimum of 5 in %, and those that aim to identify the global
optimum of 5 in %. An essential characteristic of global optimisation
algorithms is that they have to balance the exploration of areas of the
problem space with large uncertainty and the exploitation of areas
where function performance is known to be good.

An intrinsic disadvantage of local optimisation algorithms is that they
require a choice of starting point, andmay get stuck in a local optimum if
this starting point is chosen poorly. However, the optimisation problems
of finding the best hyperparameter values for our data descriptors may
be close to unimodal/quasiconvex (Stephenson et al 2021), in which
case this risk could be relatively small. For this reason, we include two
classical local optimisation algorithms that are easy to implement.
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Random search

Purely random search is a surprisingly potent global optimisation
strategy. By continuing to evaluate arbitrary points in the problem
space, we can expect to eventually get arbitrarily close to the global
optimum. In particular, random search is a more efficient algorithm
than grid search (Bergstra & Bengio 2012). Because this strategy uses no
information from previous evaluations, it serves as a good baseline.

Hooke-Jeeves

The local search algorithm proposed by Hooke & Jeeves (1961) passes
through the problem space in steps. Each step follows a pattern, which is
the vector sum of a number of substeps along each coordinate axis. The
pattern is adjusted with each step, by optionally adding or subtracting a
substep along each coordinate axis, depending on which option results
in the greatest improvement in the objective function value. If the
pattern cannot be adjusted to produce a step with any improvement, a
new pattern is created from scratch. If no such pattern can be found
either, the substep size is decreased.

We use the implementation provided by pymoo (Blank & Deb 2020)
and its default values. As starting values we use the optimal default
values identified in the previous chapter.

Nelder-Mead

The local search algorithm proposed by Nelder & Mead (1965) is based
on an earlier proposal by Spendley et al (1962). It iterates on < + 1
points that can be viewed as the vertices of an <-dimensional simplex.
The algorithm lets this simplex ‘walk’ through the problem space by
replacing its worst vertex in each iteration. Each step is directed towards
the mid-point of the remaining vertices. The new vertex is either placed
between the worst vertex and this mid-point (shrinking the simplex), or
beyond the midpoint (reflecting and optionally extending it). If none
of these options improve upon the worst vertex, the entire simplex is
shrunk, with only the best vertex remaining in place.

The theoretical performance of Nelder-Mead optimisation had long
been unclear, until Torczon (1989) demonstratedwith a concrete example
that Nelder-Mead can converge on points that are not local optima, even
with problems that are twice differentiable. Nevertheless, Nelder-Mead
optimisation has been very popular due to its relative simplicity, and
because it seems to converge very quickly in many simple practical
applications (Wright 1995).
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We use the implementation provided by SciPy (Virtanen et al 2020),
with starting simplices centred around the optimal default values iden-
tified in the previous chapter.

Kushner-Sittler

A global optimisation method was first proposed by Kushner (1962,
1964), based in part on unpublished work by Robert A Sittler (see Betrò
(1991), DR Jones (2001) and Brochu et al (2009) for overviews of later
developments). This has been referred to as simply global optimisation,
or Bayesian optimisation, because its central idea is to iteratively use the
Bayesian information criterion to select the next point in the problem
space to evaluate. We assume that the unknown problem function is
drawn from a random distribution of functions, which is traditionally
modelled as a Gaussian process. In each step, we can calculate the
conditional probability ?(H |G) that the problem function will obtain
certain values at a given point G in the problem space, in light of the
function values that have already been calculated. These conditional
probabilities are then reduced to a single score for each G with an
activation function, and the point with the maximal such score is
selected as the next point to evaluate. The activation function most often
used today, already hinted at in Kushner (1962), is expected improvement,
the expected value of max(H − H∗ , 0) under the model for some H∗ ∈ R,
typically the largest evaluated function value so far.

Kushner-Sittler optimisation transforms the original optimisation
problem into a series of new optimisation problems for each iteration.
These new optimisations incur a certain cost themselves, but this cost
is only dependent on the dimensionality of the original problem, so
for problems that are costly to evaluate, the trade-off is worthwhile.
Note also that as with the original problem, these optima can generally
only be approximated, but it is (often tacitly) assumed that this is not
problematic.

We use the implementation provided by Emukit (Paleyes et al 2019),
with the first point chosen randomly.

Bergstra-Bardenet

A more recent variant of Kushner-Sittler optimisation, motivated in
particular by high-dimensional and conditional problem spaces, is the
Tree-structured Parzen Estimator (TPE) proposal by Bergstra et al (2011).
It lets the target value H∗ correspond to a quantile of the evaluated
function values. This induces a split between small and large values,
and the corresponding distributions ?(H < H∗) and ?(H > H∗), which can
bemodelledwith two Parzen Estimators ;(G) and 6(G). By reformulating
?(H |G) in terms of ?(G |H), ?(H) and ?(G), the authors then show that the
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expected improvement of the original model is maximal when 6(G)
;(G) is

maximal.
We use the Adaptive TPE implementation of hyperopt (Bergstra et al

2011).

Malherbe-Powell

Global optimisation algorithms often proceed from the assumption
that the problem function satisfies certain smoothness conditions. In
particular, for any : > 0, we can define the class of :-Lipschitz functions
as those functions 5 that satisfy:

∀G1 , G2 ∈ � :
�� 5 (G1) − 5 (G2)

�� ≤ : · |G1 − G2 | (8.1)

Malherbe & Vayatis (2017) propose that we can use this assumption
to restrict the search to certain parts of the problem space. They propose
the LIPO algorithm, in which random candidates are drawn from the
problem space, but only those candidates are evaluated that potentially
improve upon the current optimum, in view of the candidates evaluated
so far and (8.1).

In general, : may be difficult to estimate, and we simply want to
assume that some such : exists for a problem function. For this purpose,
Malherbe & Vayatis (2017) also propose the AdaLIPO algorithm. This
alternates LIPO with purely random search, and increases : whenever
(8.1) is no longer satisfied.

AdaLIPO was further modified into MaxLIPO and implemented
into the dlib library by King (2009, 2017). MaxLIPO presents three
improvements. Firstly, it incorporates a noise term that prevents :
from approaching infinity if the problem function is not in fact :-
Lipschitz because it has small discontinuities. Secondly, it employs
separate values of : for each dimension. And thirdly, instead of selecting
new candidates at random, it identifies the candidate with the largest
potential improvement in light of (8.1).

A more fundamental problem of AdaLIPO that carries over to
MaxLIPO is that while it is seemingly able to quickly locate the neigh-
bourhood of the global optimum, it then takes much longer to approach
the optimum itself. This can be understood, since by considering the
maximal potential improvement, rather than some form of expected
improvement, these algorithms place a greater emphasis on exploration
than exploitation. To address this, King (2017) lets MaxLIPO alternate
with the trust region approach of the local optimiser BOBYQA (Powell
2009), a bounded version of the earlier NEWUOA proposal (Powell
2004).
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8.3 Experimental setup

In order to enable comparisonwith using default hyperparameter values,
we closely follow the experimental setup of the previous chapter. In
particular, we use the same collection of 246 one-class classification
problems.

For each one-class classification problem, we apply stratified five-
fold cross-validation. We measure the performance of a data descriptor
with specific hyperparameter values in terms of AUROC. For each
division, we measure validation AUROC using nested cross- or leave-
one-out validation as explained in Section 8.1, as well as test AUROC by
retraining the data descriptor on all of the training data and evaluating
its performance on the test data.

We maximise validation AUROC by applying the optimisation algo-
rithms from Section 8.2. Each optimiser is allowed a maximum budget
of 50 evaluations of hyperparameter values. Although the NND, LNND,
LOF and ALP hyperparameters : and ; are discrete, in order to be able
to apply the selected optimisation algorithms, we optimise them as if
they were continuous.2 As a result, subsequent steps of the optimisa-
tion search may target different points in the problem space that are
discretised back to the same concrete value(s), which are not evaluated
again. Thus, with local optimisers that have reached a local optimum,
as well as with small datasets in general, the optimisation search may
never reach 50 evaluations. Therefore, we terminate all optimisation
searches after 100 steps.

We structure our analysis in terms of the number of evaluations. For
each cross-validation division and number of evaluations, we use the
hyperparameter values that maximise validation AUROC up to that
point. We start our analysis by identifying the most suitable optimiser
for each data descriptor, and adopt this for the rest of our analysis. We
compare data descriptors both by summarising performance with the
mean test AUROC, and by looking at individual results at the level of
cross-validation divisions. In both cases, we apply a weighting scheme
such that the 50 datasets from which the one-classification problems
are drawn all contribute equally. In scatter plots, this is reflected in the
size of the markers. We measure rank correlation with the weighted
Kendall’s � (Vigna 2015).

In order to determine statistical significance, we apply clustered
Wilcoxon signed-rank tests (Rosner et al 2006) on the mean AUROC
scores across folds for each one-class classification problem. When we
compare data descriptors to each other, we use the Holm-Bonferroni
method (Holm 1979) to correct for family-wise error.

2We note that more generally, for any classification algorithm, performance metrics
like AUROC, accuracy, precision and recall are non-continuous because a finite number of
instances can only be subjected to a finite number of rankings.

105



Part III. One-class datasets

8.4 Results and analysis

The results of our experiments allow us to answer the three questions
raised in the Introduction.

What is the best way to optimise the hyperparameter values of
a data descriptor?

Figure 8.1 shows the performance of the different optimisers with the
data descriptors. We can get an idea of the difficulty of these optimisation
problems by looking at the baseline random strategy. For NND, our
maximum budget of fifty evaluations is essentially enough for random
search to find the global maxima, while for LOF, it comes reasonably
close. LNND andALP aremore difficult, and random search clearly lags
behind the other optimisation strategies with SVM. Taking into account
the dimensionality of the respective problem spaces, it appears that the
problem curves of LNND and SVM are relatively hard to optimise.

It is clear that the two local optimisation methods, Nelder-Mead and
Hooke-Jeeves, generally fail to find the global optima because they get
stuck in a local optimum. Neither method performs clearly better than
the other. Nevertheless, if ease of implementation is a larger priority
than performance, they may be an acceptable option for ALP and SVM.
For the data descriptorswith one hyperparameter, simple random search
is to be preferred.

Of the global algorithms, the performance of Kushner-Sittler is
surprisingly poor, in particular with NND and LOF, where it appears
to stall below the level reached by the best local algorithm. Closer
inspection reveals that it is too strongly focused on exploitation over
exploration, and will often evaluate long series of points in the problem
space that are very close together. This may be due to the chosen
implementation, or the fact that the problem functions induced by the
hyperparameters : and ; are locally constant.

The overall best-performing method is Malherbe-Powell, with Berg-
stra-Bardenet in clear second place. Malherbe-Powell finds the highest
AUROC for all data descriptors, except NND, where the difference with
Bergstra-Bardenet is minimal (1.4 · 10−4). Therefore, we will use the
results of Malherbe-Powell for the rest of this section. However, we also
note that some of the differences are very small, and practitioners may
want to prioritise ease of implementation when selecting an optimiser.

Figure 8.2 shows the distribution of the hyperparameter values after
50 evaluations. These distributions are relatively uniform, which sug-
gests that the chosen parametrisations are efficient, in the sense that the
optimisation algorithm doesn’t have to spend unnecessary evaluations
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Figure 8.1: Weighted mean validation AUROC of data descriptors with
hyperparameters optimised by a number of different algorithms.
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Figure 8.2: Distribution of selected hyperparameter values after 50
evaluations with Malherbe-Powell optimisation, for each of the 246
one-class classification problems and for each five-fold cross-validation
division. Point size corresponds to the weight of a problem, which
corresponds inversely to the number of problems derived from the same
original dataset.
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Figure 8.3: Weighted mean test AUROC of data descriptors, with
hyperparameters optimised by the Malherbe-Powell algorithm.

exploring sparse areas of the hyperparameter space.3 However, for LOF
(7.3%), LNND (8.6%) and especially NND (39%), there is a substantial
minority of problems for which the optimal value is simply 1. In the
case of NND, for which 1 is the default value, this indicates that : often
doesn’t need to be optimised. For LNND, a large number of optimal
values (23%) are within 1% of the maximum, but this is in most cases
due to the fact that : cannot increase beyond =, rather than our imposed
limit of 100 log =.

How long should hyperparameter optimisation run for?

Figure 8.3 shows the weighted mean test AUROC of the data descriptors.
The data descriptors display varying sensitivity to hyperparameter
optimisation. All test AUROC curves increase steeply for 4 evaluations
and then flatten out. However, for SVM, the initial rise is steeper and
its curve continues to increase for much longer, allowing it to surpass
LOF, NND and ALP even though it starts quite low. LNND improves
even more steeply, but because it starts out very poorly, remains the

3We also find for many problems that different cross-validation divisions optimise to
different values, which may indicate that the response curves are somewhat flat and noisy.
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Figure 8.4: Difference between test and validation AUROC as a function
of target class size =. Point size corresponds to the weight of a problem,
which corresponds inversely to the number of problems derived from
the same original dataset.

worst-performing data descriptor. The data descriptors approach their
final scores (after 50 evaluations) to within 0.001 points after respectively
5 (NND), 10 (LNND and LOF), 13 (ALP) and 37 (SVM) evaluations.

The test AUROC curves in Figure 8.3 don’t achieve the same scores
as the validation AUROC curves for Malherbe-Powell optimisation in
Figure 8.1. This difference can be interpreted as overfitting. Among the
data descriptors optimised with leave-one-out validation, it is largest for
LNND (0.036 after fifty evaluations), followed by ALP (0.012) and NND
(0.0066), while for those optimised with five-fold cross-validation, it is
larger for LOF (0.016) than for SVM (0.0073). Note that LNND and LOF,
with one hyperparameter, showmore overfitting than, respectively, ALP
and SVM, with two hyperparameters. The weighted Kendall’s � for the
amount of overfitting after 50 evaluations ranges from 0.31 for SVM and
LNND to 0.59 for SVM and NND. The amount of overfitting should
be taken into account when estimating test AUROC or selecting data
descriptors on the basis of validation AUROC. However, the numbers
cited above are dependent on the mix of datasets that we use: for all
data descriptors, validation AUROC becomes increasingly accurate as
the target set size grows (Figure 8.4).

When we apply a clustered Wilcoxon signed rank test to compare
the test AUROC obtained with hyperparameter optimisation and the
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Figure 8.5: Increased or decreased AUROC due to hyperparameter
optimisation over default hyperparameter values, as a function of target
class size =. Point size corresponds to the weight of a problem, which
corresponds inversely to the number of problems derived from the same
original dataset.

test AUROC obtained with default hyperparameter values from the
previous chapter, we find that optimised values start to outperform
default values with great certainty (? < 0.01) within 2 (LNND, ALP),
3 (LOF, SVM) and 4 (NND) evaluations. With optimised values, SVM,
LOF and NND also perform significantly better (? < 0.01) than ALP, the
best data descriptor with default values, after 4 (SVM), 5 (LOF) and 20
(NND) evaluations. Even after fifty evaluations, LNND with optimised
values still performs worse than ALP with default values. However,
note that hyperparameter optimisation is not guaranteed to increase
AUROC for any of the data descriptors, especially with smaller datasets
(Figure 8.5).

What is the best data descriptor for one-class classification
with hyperparameter optimisation?

The test AUROC scores after 50 evaluations are highly rank-correlated:
the weighted Kendall’s � ranges from 0.74 (SVM and LNND) to 0.86
(SVM and NND). To determine whether the differences in performance
are statistically significant, we perform one-sided clustered Wilcoxon
signed rank tests. The resulting ?-values after each evaluation are
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Figure 8.6: One-sided ?-values of clustered Wilcoxon signed rank tests
that one data descriptor is better than another (uncorrected for multiple
testing).

Table 8.1: One-sided ?-values of clustered Wilcoxon signed-rank tests of
AUROC after 50 evaluations, testing row data descriptor > column data
descriptor, with Holm-Bonferroni family-wise error correction applied
to each row.

ALP LOF NND LNND

SVM 0.29 0.0079 0.037 < 0.0001
ALP 0.00091 0.0077 < 0.0001
LOF ≥ 1 < 0.0001
NND 0.00037
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Table 8.2: Fraction of one-class classification problems with higher
validation and test AUROC by ALP or SVM.

Validation AUROC Test AUROC

ALP < SVM ALP = SVM ALP > SVM Total

ALP < SVM 0.37 0.031 0.088 0.49
ALP = SVM 0.00080 0.033 0.0052 0.039
ALP > SVM 0.12 0.038 0.31 0.47
Total 0.49 0.10 0.40

displayed in Figure 8.6. The ?-value for the opposite test can be obtained
by subtracting the respective value from 1. Tests with LNND are omitted
from Figure 8.6 since the corresponding ?-values don’t rise above 0.01.
Table 8.1 lists the ?-values after 50 evaluations, corrected for multiple
testing.

Based on these experiments, we can confidently say that with suffi-
cient evaluations, ALP and SVM perform better than NND, LOF and
LNND, and that NND and LOF also perform better than LNND. We
have far less certainty about the relative performance of ALP and SVM,
and of NND and LOF. Figure 8.6 suggests that LOF generally outper-
forms NND, and that when the number of evaluations is small, ALP
outperforms SVM, and vice-versa when the number of evaluations is
large, but there is a large possibility that these observations are simply
due to chance.

If we focus on the performance of SVM and ALP after 50 evaluations
(Table 8.2), we see that SVM obtains a higher AUROC than ALP slightly
more often than vice-versa, both on validation and test data. This
confirms that the average performance of ALP and SVM is very close
in practice. However, for individual classification problems, the choice
still matters. We note that which of these two data descriptor performs
better is fairly consistent between validation and test data. If for each
classification problem, we choose the data descriptor that obtains a
higher validation AUROC (choosing ALP in event of a tie), it will
perform worse on test data than the other data descriptor in only 21% of
cases. The advantage of this combination of ALP and SVM over either
of ALP or SVM on its own is highly significant (? < 0.0001), regardless
of whether we choose for each fold separately or on the basis of the
mean validation AUROC across folds.

One factor that plays a role in the relative performance of SVM and
ALP is the difficulty of the one-class classification problem. For the
purpose of the present analysis, we can express this as the maximum
of the AUROC achieved by ALP and SVM. Figure 8.7 plots the relative
performance of ALP and SVM against this difficulty. SVM is better able
to separate more difficult problems, but for problems for which a good
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Figure 8.7: Difference between ALP and SVM AUROC, as a function
of the difficulty of one-class classification problems, expressed by the
maximum of ALP and SVM AUROC. Point size corresponds to the
weight of a problem, which corresponds inversely to the number of
problems derived from the same original dataset.

AUROC of 0.8 or more can be achieved, ALP beats SVM more often
(46%) than vice-versa (41%), with a weighted mean difference of 0.0021.

Finally, Figure 8.8 displays the run times of hyperparameter optimi-
sation as a function of the number of evaluations. These run times are
implementation-dependent, but we can nevertheless make a number of
broad observations. For SVM, run time is directly proportional to the
number of evaluations, as no calculations are reused. NND, LNND and
LOF can effectively be optimised in constant time, since the initial nearest
neighbour queries dominate. The run time of LOF is higher because it
uses five-fold cross-validation and needs five nearest neighbour queries.
For ALP, we observe a considerable amount of additional run time per
evaluation. Looking at individual evaluations, we find that their run
time varies wildly, seemingly due to the computational load of working
with large arrays when : and ; are large.

The higher run time required by SVM for additional evaluations
is compounded by the finding, reported above, that optimisation of
SVM requires more evaluations than ALP, LOF, LNND and especially
NND. This is illustrated by the fact that the curves of the last three data
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Figure 8.8: Mean run times (5 runs) of hyperparameter optimisation
with Malherbe-Powell on a training set with 1000 target class instances
and 1000 other instances, drawn from the miniboone dataset (target class
1).

descriptors in Figure 8.8 end before 50 evaluations.

8.5 Conclusion

In this chapter, we have presented a thorough analysis of hyperparameter
optimisation for five data descriptors: SVM, NND, LNND, LOF and
ALP. We have explained how NND, LNND and ALP can be optimised
efficiently with a single nearest neighbour query and leave-one-out
validation, while SVM requires building a newmodel for each additional
hyperparameter evaluation. We then evaluated the performance of
hyperparameter optimisation empirically.

From a selection of optimisation algorithms, the recent Malherbe-
Powell approach provides the best overall performance with all five data
descriptors. LNND and LOF are relatively sensitive to overfitting, but in
all cases overfitting reduces with target set size. For all data descriptors,
optimised hyperparameters significantly outperform default hyperpa-
rameter values after a handful of evaluations. As predicted, different
hyperparameter values can be evaluated more efficiently for NND,
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LNND, LOF and ALP than for SVM. In addition, these data descriptors
also require fewer evaluations than SVM. After 50 evaluations, ALP
and SVM significantly outperform LOF, NND and LNND, and LOF and
NND in turn perform better than LNND. SVM also outperforms ALP
on our datasets, but the difference is not significant.

A more detailed look at the difference between ALP and SVM
revealed that their strengths are to some extent complementary, and that
selecting one or the other based on their validation AUROC gives the
best results. SVM has a strong relative advantage with difficult one-class
classification problems, while ALP performs better with problems with
which a good AUROC of 0.8 or higher can be achieved.

Overall, we come to the following conclusion. NND is a very
simple data descriptor that can be optimised very efficiently. While
the resulting gain in performance is limited, it nevertheless leads to
results that are generally better than what can be obtained with a
data descriptor with default hyperparameter values. SVM is a data
descriptor with excellent performance, but it is expensive to optimise.
The performance of ALP rivals that of SVM, and potentially surpasses it
with one-class classification problems that admit a good solution, but it
can be optimised much more efficiently.

Therefore, we find that ALP is a good default choice, while NND
may appeal to practitioners constrained by a smaller computational
budget. If the absolute best performance is desired, we recommend
that practitioners consider both ALP and SVM, and make the choice
dependent on validation AUROC.

In future research, we think that it could be worthwhile to investigate
in greater detail what properties of datasets determine the relative
strengths and weaknesses of ALP and SVM. A deeper understanding
of this question could in turn be applied to modify the ALP and SVM
algorithms. In addition, it would be useful if the computational cost of
optimising SVM and ALP could be reduced.

We have focused our attention in this chapter on a handful of
hyperparameters with the most immediate impact on the classification
of different datasets. But these are not the only choices available to a
practitioner. Hyperparameter optimisation is a specific form of model
selection, and conversely, any modification to a classification algorithm
can be seen as a hyperparameter choice. In particular, one large topic
that we have set aside in the present chapter is the possibility to change
how similarity and difference are measured, by choosing a different
metric, kernel and/or scaling function. These are essentially open-ended
choices, so part of the challenge lies in delineating the search area.

Another avenue for future research is the effect of the quality and
quantity of the negative records that are available for hyperparameter
optimisation. The aim of such an investigation could be to provide
guidance as towhen a negative sample is insufficiently representative for
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binary classification, yet still good enough to make hyperparameter opti-
misation beneficial. However, this question may be difficult to answer in
general terms, since samples of negative data can be unrepresentative in
ways that are particular to a specific problem. In any case, establishing a
collection of one-class classification problems that are not derived from
multi-class problems would provide a useful reality check in this regard.

In the next chapter, we will apply hyperparameter optimisation to
data descriptor ensembles in a multi-class setting.
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Chapter 9

Fuzzy rough one-class
ensembles

Fuzzy rough set theory (Chapter 1) and one-class classification (Chap-
ter 6) are two seemingly unrelated fields of soft computing. In this
chapter, we identify the conceptual overlap between these fields, and
show in particular that upper and lower approximations are data de-
scriptors, and consequently, that FRNN can be seen as a one-class
classification ensemble. This insight allows us to apply results from
one-class classification to obtain a more flexible definition of fuzzy
rough sets. Conversely, the use of lower approximations in addition to
upper approximations in fuzzy rough sets can inform the construction
of one-class ensembles for multi-class classification.

One-class ensembles have been applied to problems like image
segmentation (Goh et al 2005; Krawczyk et al 2014b), network intrusion
detection (Giacinto et al 2008; Kassab 2021), malware detection (J
Liu et al 2013), microarray classification (Krawczyk 2013), medical
image classification (Zhang et al 2014), hypertension type classification
(Krawczyk & Woźniak 2014b), breast cancer diagnosis (Krawczyk &
Filipczuk 2014; Krawczyk et al 2014a) and handwriting recognition
(Hadjadji et al 2019). They have been found to be particularly suited for
problems with large numbers of classes (Krawczyk et al 2015; Mygdalis
et al 2015), imbalanced classification problems in general (Hayashi &
Fujita 2021; Krawczyk et al 2015), and imbalanced data streams in
particular (Klikowski & Woźniak 2020).

In Section 9.1, we give a brief overview of existing work on one-class
ensembles. Next, in Section 9.2, we spell out the formal connections
between fuzzy rough sets and one-class classification and propose
weighted nearest neighbour distance as a data descriptor and the fuzzy
rough one-class ensemble for classification. We then propose a series of
experiments in Section 9.3 and report the results in Section 9.4, before
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concluding in Section 9.5.

9.1 Related research

One-class ensembles for multi-class classification were first introduced
independently by Goh et al (2005), Ban & Abe (2006) and Giacinto
et al (2008). There have been proposals with specifically adapted data
descriptors, including the SVM data descriptor (Tohmé & Lengellé 2011)
and the Extreme Learning Machine data descriptor (Gautam et al 2016).

Initial research focused on combining the predictions from the
individual classifiers in an optimal way (Abbas et al 2013; Wilk &
Wozniak 2010, 2012), but subsequently various authors investigated
heterogenous ensembles, i.e. ensembles that combine multiple different
data descriptors for each class to improve classification performance
(Hadjadji et al 2014, 2017, 2019; Kang et al 2015; Krawczyk &Woźniak
2012, 2014a). It has also been shown that it may be worthwhile to
decompose classes into clusters using an unsupervised algorithm before
applying one-class ensembles (Abdallah et al 2021; Fragoso et al 2021;
Krawczyk et al 2014c; Krawczyk & Cyganek 2017), and to exclude
non-competent data descriptors from an ensemble (Krawczyk et al
2018).

Finally, data descriptors in a one-class ensemble can also be subjected
to boosting (Xing & WT Liu 2020; CY Yeh et al 2009).

We will not evaluate any of these ideas at present, but note that they
may be combined with the proposal that we present next.

9.2 Proposal

In this section, we show how the traditional upper and lower approxi-
mations can be seen as models of a data descriptor, and give a formal
definition of generalised upper and lower approximations substituing
other data descriptors.

Weighted nearest neighbour distance
Recall from Chapter 1 that the upper approximation of a subset � of a
dataset - ⊂ R< is the fuzzy set in R< defined by:

�(H) := max(0, 1 − Fmin
G∈�

3(H, G)), (9.1)

for a choice of F and 3. Note that this definition does not depend
on -, and that the upper approximation therefore satisfies the formal
definition of a data descriptor model of �, since it generalises � to a
function from R< . The upper approximation also satisfies the purpose
of a data descriptor, as it expresses similarity to the training set �.
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Similarly, recall the definition of the lower approximation of �:

�(H) := min(Fmin
G∈-\�

(3(H, G)), 1). (9.2)

At first glance, it may appear that, unlike the upper approximation,
the lower approximation is dependent on both � and -. In fact, it is
only dependent on - \ �, and therefore, this satisfies the definition
of a data descriptor model of - \ �. However, in this case, the lower
approximation does not satisfy the concept of a data descriptor, since
it expresses dissimilarity with - \ �. Instead, we can rewrite it as the
negation I ↦−→ 1− I of the upper approximation of - \�, and therefore,
interpret it as the negation of a data descriptor model:

�(H) = min(Fmin
G∈-\�

(3(H, G)), 1)

= 1 −max(0, 1 − Fmin
G∈-\�

3(H, G)).
(9.3)

We formalise the correspondence by giving a name to this data
descriptor:

9.1 Definition (Weighted nearest neighbour distance). Let - ⊂ R<
be a dataset. For a choice of dissimilarity 3 and weight vector F,
the weighted nearest neighbour distance (WNND) data descriptor sends -
to the model defined by:

H ↦−→ max(0, 1 − Fmin
G∈-

3(H, G)). (9.4)

As with upper and lower approximations, we will assume linearly
descending weights by default, reducing this hyperparameter to its
length :.

Generalised upper and lower approximations
Having established that the traditional definition of upper and lower
approximations can be seen as models of a specific data descriptor
(WNND), we now propose a more general definition of upper and lower
approximations where we allow the use of any data descriptor. This is
possible because any data descriptor model is a function from R< to
[0, 1], and thus, by definition, a fuzzy set in R< .

9.2 Definition. Let - ⊆ R< be a dataset, let � be a crisp set in -,
and let � be a choice of data descriptor. Then the upper and lower
approximations of � induced by � are the fuzzy subsets of R< defined
as follows:
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�(H) = �(�)(H);
�(H) = 1 − �(- \ �)(H).

(9.5)

For the upper approximation, we can optimise the hyperparameters
of � using - \ �, while for the lower approximation we can use �, with
AUROC as the maximisation target as in Chapter 8.

Fuzzy rough one-class ensembles

We can now use the generalised upper and lower approximations to
propose a generalised version of FRNN classification, the fuzzy rough
one-class ensemble.

9.3 Definition (Fuzzy rough one-class ensemble). Let - =
⊔
8≤2 �8 ⊆

R< be a classification dataset, let � be a choice of data descriptor, and
let �1 ,�2 , . . . ,�2 ∈ [0, 1]. Then for any H ∈ R< and any class �8 , the
fuzzy rough one-class ensemble induced by � assigns the following score:

(1 − �8) · �(�8)(H) + �8 · (1 − �(- \ �8). (9.6)

If �1 = �2 = . . . = �2 are equal to 0, 1, or 0.5, we respectively
recover the upper, lower, and mean approximation classifiers from
Definition 1.6. However, what we propose is that subsequently to
optimising the hyperparameters of� using �8 and - \�8 bymaximising
the AUROC of the corresponding one-class classification problems, one
may then use the validation scores of the records in �8 and - \ �8 to
also optimise �8 .

Furthermore, because we optimise the hyperparameters of � sepa-
rately for each class, there is no guarantee that the resulting class scores
are comparable. For instance, with WNND, larger values of : translate
to larger distance values and smaller class scores. However, we do
know that, everything else being equal, a higher class score indicates
a higher probability that a record belongs to that class. Therefore, we
post-process the class scores by training a logistic regression model
(without regularisation) on the validation scores, and applying it to the
predicted test scores.

While any data descriptor may be used to construct a fuzzy rough
one-class ensemble, nearest neighbour data descriptors like NND, ALP
and WNND that lend themselves to efficient leave-one-out validation
(Section 8.1) are particularly suitable.

122



9. Fuzzy rough one-class ensembles

2 4 6 8 10 12 14 16 18 20
k

0.80

0.81

AU
RO

C

2 4 6 8 10 12 14 16 18 20
k

Running mean

Dissimilarity
Boscovich
Euclidean

Figure 9.1: Weighted mean AUROC of WNND.

9.3 Experimental setup

We perform two sets of experiments in this chapter. Firstly, we will
evaluate the performance of WNND as a data descriptor, replicating the
experiments in the previous two chapters (see those chapters for more
details).

Secondly, we will evaluate the performance of fuzzy rough one-class
ensembles based on NND,WNND and ALP for multiclass classification,
adopting the same experimental setup as in Chapter 3, restricted to
datasets with more than two classes. In particular, we will use Boscovich
distance and A1 scaling, which yielded the best result for FRNN classifi-
cation. We will first evaluate the effect of post-processing with logistic
regression, and then compare the one-class ensembles with optimised
FRNN classification.

9.4 Results

We now discuss the results of our experiments, starting with the one-
class classification performance of WNND.

Weighted nearest neighbour distance

We start by considering the weighted mean AUROC of WNND as a
function of :, weighting each one-class classification problem inversely
proportional to the number of problems derived from the same original
multiclass dataset. As with NND, we obtain a higher weighted mean
AUROC when comparing : as-is, and not by reparametrising it in
terms of the target class size. The result is displayed in Figure 9.1. As
with NND, LNND and LOF, we obtain higher scores with Boscovich
than with Euclidean distance. The weighted mean AUROC reaches its
maximum at : = 8, which we therefore recommend as the default for
WNND.

When we recalculate the optimal value for : for each dataset using
the leave-one-dataset-out scheme, and compare the resulting AUROC
to the other data descriptors, we obtain the ?-values and weighted
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Table 9.1: ?: one-sided ?-value of clusteredWilcoxon signed-rank test of
WNND vs the data descriptor; ?∗: ? with Holm-Bonferroni family-wise
error correction; �: weighted Kendall’s �.

Vs ? ?∗ �

ALP 0.99 ≥ 1 0.83
SVM 0.55 ≥ 1 0.87
NND 0.099 0.31 0.91
LOF 0.076 0.31 0.83
MD 0.018 0.091 0.75
IF 0.0066 0.040 0.66
EIF < 0.0001 0.00036 0.75
SAE < 0.0001 < 0.0001 0.67
LNND < 0.0001 < 0.0001 0.79

Table 9.2: Weighted mean rank, AUROC and standard deviation of
AUROC across cross-validation folds (CVSD) of ALP, SVM, WNND and
NND.

Data descriptor Rank AUROC CVSD
ALP 3.91 0.817 0.0378
SVM 4.40 0.814 0.0404
WNND 4.53 0.811 0.0425
NND 4.88 0.805 0.0414

Kendall’s � listed in Table 9.1. WNND performs comparable to SVM and
somewhat better than NND on our selection of one-class classification
problems, but the difference is not significant. Overall, the performance
vis-à-vis the other data descriptors is somewhat better than that of
NND vis-à-vis the other data descriptors (Table 7.4). The values for
the weighted Kendall’s � indicate that, unsurprisingly, the performance
of WNND aligns closest to NND, followed by SVM. Otherwise, these
values are very similar to those between NND and SVM and the other
data descriptors (Table 7.3).

In terms of weighted mean rank and weighted mean AUROC (Ta-
ble 9.2), WNND also scores better than NND and approaches SVM.
Somewhat surprisingly, it shows a bit more variation across cross-
validation folds than NND. Overall, the ranks achieved by WNND are
more consistently good than those achieved by NND (Figure 9.2).

As with NND, median AUROC is a positive significant factor for
WNND, meaning that it performs better with easier one-class classifi-
cation problems. This is illustrated by Figure 9.3, where we see that
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Figure 9.2: Average frequency (H-axis) of ranks (G-axis) of NND and
WNND, weighted by dataset, with ties distributed evenly among the
respective ranks.
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Figure 9.3: Weighted mean rank (H-axis) of ALP, NND and WNND,
stratified by the median AUROC of datasets across all data descriptors
(G-axis).

in each stratum except the group of essentially impossible problems
where median AUROC is lower than 0.5, the performance of WNND is
consistently slightly better than that of NND, and in some strata even
rivals that of ALP.

Surprisingly, and unlike the other data descriptors, dimensionality
is a negative significant factor for WNND (? = 0.033). We do not have a
good explanation for this.

When we optimise : using negative data, we find that the relative
advantage of WNND over NND and LOF quickly disappears (Fig-
ure 9.4), and SVM and ALP clearly outperform WNND after a handful
of evaluations. Looking at the weighted mean AUROC across one-class
classification problems (Figure 9.5), we see that the test set performance
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Figure 9.4: One-sided ?-values of clustered Wilcoxon signed rank
tests that WNND is better than other data descriptors (uncorrected for
multiple testing) with hyperparameter optimisation, as a function of the
number of evaluations.

Table 9.3: One-sided ?-values, evaluating the effect of post-processing
with logistic regression for fuzzy rough one-class ensembles of upper
approximations, lower approximations, and optimised ratios of both.

descriptor Upper Lower Both

ALP 0.00094 1.0e-05 0.035
NND 0.15 1.4e-05 0.0065
WNND 0.22 1.3e-05 0.011

of both WNND and NND quickly reaches a plateau, but that for the
first few evaluations, NND simply improves more with each evaluation.
It may be the case that WNND has a slightly better default performance
than NND because the use of weights gives it greater stability, but that
they also reduce the precision with which it can be adapted to a specific
problem.
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Figure 9.5: Weighted mean test AUROC of NND and WNND.

Table 9.4: One-sided ?-values, comparing fuzzy rough one-class ensem-
bles with logistic regression post-processing against optimised classical
FRNN.

descriptor Upper Lower Both

ALP 1.3e-05 0.99 0.86
NND 7.0e-05 1.0 0.98
WNND 1.8e-05 1.0 0.96

Table 9.5: One-sided ?-values, comparing fuzzy rough one-class ensem-
bles with optimised ratios of upper and lower approximations against
just either type (with logistic regression post-processing).

strategy Upper Lower
descriptor

ALP 0.45 0.0015
NND 0.091 8.1e-05
WNND 0.48 0.0013
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Table 9.6: Multiclass AUROC. ALP: fuzzy rough one-class ensemble
induced by ALP, with optimised upper and lower approximation ratio;
IR: imbalance ratio.

n c IR ALP FRNN Difference
dataset

shuttle 58000 7 560.8 0.997686 0.990 0.0081
vehicle 846 4 1.1 0.921674 0.914 0.0073
new-thyroid 215 3 3.5 0.990926 0.985 0.0057
foresttypes 523 4 1.8 0.971938 0.967 0.0048
column 310 3 1.9 0.920194 0.916 0.004
iris 150 3 1.0 0.998667 0.997 0.0013
avila 20867 12 38.7 0.997020 0.996 0.0013
faults 1941 7 3.9 0.961932 0.962 0.00037
letter 20000 26 1.0 0.999443 0.999 0.00016
page-blocks 5473 5 31.6 0.972923 0.973 0.00013
wifi 2000 4 1.0 0.999605 0.999 0.00013
waveform 5000 3 1.0 0.970540 0.971 -2.4e-05
texture 5500 11 1.0 0.999585 1.000 -0.00014
segment 2310 7 1.0 0.996499 0.997 -0.00047
dermatology 358 6 2.2 0.997808 0.999 -0.0014
sensorless 58509 11 1.0 0.997748 1.000 -0.0018
mfeat 2000 10 1.0 0.997640 1.000 -0.0019
landsat 6435 6 1.7 0.986523 0.989 -0.0021
wine 178 3 1.3 0.997294 1.000 -0.0027
seeds 210 3 1.0 0.984524 0.987 -0.0027
yeast 1484 10 11.6 0.874931 0.886 -0.011
ecoli 332 6 6.3 0.947055 0.961 -0.014
breasttissue 106 6 1.3 0.906306 0.925 -0.019
leaf 340 30 1.2 0.950147 0.975 -0.025
glass 214 6 3.6 0.884746 0.919 -0.034

Fuzzy rough one-class ensemble

We now evaluate the performance of fuzzy rough one-class ensembles.
As can be seen in Table 9.3, post-processing with logistic regression
improves performance, although the effect is only weakly significant for
upper approximation ensembles induced by the NND and WNND data
descriptors.

Next, we compare the resulting performance with classical FRNN.
In particular, we compare upper approximation one-class ensembles
against the upper approximation classifier with optimised :, lower
approximation one-class ensembles against the lower approximation
classifier with optimised :, and one-class ensembles with optimised
ratios against FRNN as optimised in Chapter 3. We find (Table 9.4) that
fuzzy rough one-class ensembles only perform better with upper ap-
proximations, whereas in the other two cases they perform significantly
worse.

Fuzzy rough one-class ensembles appear to perform particularly
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poorly with lower approximations, so much so that the optimised ratios
actually do not perform better than simply using upper approximations
for ALP and WNND (Table 9.5). (Note, however, that upper approxima-
tion ensembles do not perform any better against optimised FRNN.) It
is possible that data descriptors are simply not a good fit for negative
data, which is composed of several different decision classes.

If we compare the results for the ensemble induced by ALP and
FRNN in detail (Table 9.6), we can make a few observations. Firstly,
the overall poorer result by the ALP ensemble appears to be due to the
fact that it performs relatively weakly on a handful of datasets, rather
than that it performs worse on a large majority of datasets. Secondly,
the datasets on which it performs worst are relatively small. Thirdly,
it performs well on a number of datasets with a large imbalance ratio.
And lastly, the ALP ensemble appears to perform relatively poorly when
there are many classes. This is slightly counterintuitive, but we can think
of two possible explanations. Firstly, when there are many classes, the
logistic regression post-processing task to balance the class scores ismore
difficult. And secondly, when there are many classes, their complements
that serve as the target for the lower approximation are more alike,
making it more likely that a single globally optimised hyperparameter
value is better than class-specific hyperparameter values that were
optimised through one-class classification.

When we fit linear regression models using ordinary least squares,
to predict the signed rank of each difference, we find that the imbalance
ratio is not in fact significant when we also take the dataset size = into
account. Instead, we obtain a good fit by including log = (? = 0.017) and
log 2 (? = 0.012). The resulting model predicts that the ALP ensemble
has a higher AUROC than FRNN when the following condition is
satisfied:1

4.03 · log = − 12.6 · log 2 − 8.45 > 0. (9.7)

9.5 Conclusion

In this chapter, we have investigated the connections between fuzzy
rough set theory and one-class classification. We have shown that the

1We have also identified a small shortcoming in our implementation of ALP. Recall
(Section 8.1) that the hyperparameter ; controls the number of neighbours used to calculate,
as a weighted average, the local :th nearest neighbour distance in the target data, as well
as the slope of the weight vector. As ; increases, this weighted average should approach
the unweighted mean in the whole target class, but for practical reasons, we limit the
calculation of the number of neighbours of a test record to 20 log =, where = is the target
class size. We have now found that one obtains slightly better results by making the
asymptotic limit available to the optimisation process by substituting the target class mean
when ; > 20 log =. The effect of this on our analysis is small, but the significance of log =
(? = 0.004) and log 2 (? = 0.005) in the linear regression model becomes even larger.
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classical definitions of upper and lower approximation can be interpreted
as involving a data descriptor, WNND, which we subjected to the same
analysis as other data descriptor in the previous two chapters. We
found that when used in the context of default hyperparameter values
— we recommend : = 8 — it can be an attractive alternative to NND,
although we found no definitive evidence that it performs better, and its
advantage disappears in the context of hyperparameter optimisation.

In addition, we have proposed a generalised definition of upper
and lower approximations, allowing the application of data descriptors
other than WNND, and leading to the concept of a fuzzy rough one-
class ensemble for classification. This is distinguished from standard
one-class ensembles by its inclusion of the lower approximations of the
decision classes, determined by their complements. The fact that the
good performance of FRNN classification is to a large part due to the
lower approximation — as we saw in Chapter 3 — indicates that this
is of great potential benefit to one-class ensembles. Unfortunately, we
failed to obtain good overall performance by optimising these lower
approximations as one-class classification tasks.

After subjecting our results to closer analysis, we found that a fuzzy
rough one-class ensemble induced by ALP does on the whole lead
to higher multiclass classification performance than FRNN on large
datasets and datasets with not too many classes. We think that the latter
fact can be explained by the fact that as the number of decision classes
increases, so does the overlap between their complements, making it
more likely that a single hyperparameter value obtained through global
optimisation is close to optimal for each class.

For the future, we think that it is important to gain a better under-
standing of why exactly hyperparameter optimisation through one-class
classification works better for upper approximations than for lower
approximations. If this issue turns out to be unsolvable, it may be worth-
while to try combining individually optimised upper approximations
with globally optimised lower approximations.
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Chapter 10

Missing-indicators1

In this and the next two chapters, we will consider three different ways
of representing missing values in datasets.

Missing values are a frequent issue in real-life datasets, and the
subject of a large body of ongoing research. Some implementations
of machine learning algorithms can handle missing values natively,
requiring no further action by practitioners. But whenever this is not
the case, a common general strategy is to replace the missing value with
an estimated value — imputation. An advantage of imputation is that we
obtain a complete dataset, to which we can apply any and all algorithms
that make no special provision for missing values. However, missing
values may be informative, and a disadvantage of imputation is that it
removes this information.

In the present chapter, we will review and evaluate the missing-
indicator approach (J Cohen 1968), which is an old proposal to represent
and thereby preserve the information encoded by missing values. For
every original attribute, it adds a new binary ‘indicator’ or ‘dummy’
attribute that takes a value of 1 if the value for the original attribute is
missing, and 0 if not.2 Themissing-indicator approach is often presented
as an alternative to imputation, but since it does not resolve the missing
values in the original attributes, it can only be used in addition to, not
instead of imputation.

Both imputation and the missing-indicator approach originate in
the statistical literature. While imputation strategies have been the
subject of a rich body of research, the missing-indicator approach has
not received a large amount of attention, and is often dismissed or
disregarded in overviews of approaches towards missing values. In
particular, it is an open question whether missing-indicators should be

1This chapter is based on Lenz et al (2022b).
2Some authors use the opposite convention, letting the indicator express non-

missingness.
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used for predictive tasks in machine learning (Sperrin et al 2020). On the
one hand, the addition of missing-indicators results in a more complete,
higher-dimensional representation of the data. On the other hand, their
omission can be seen as a form of dimensionality reduction, which
may increase the efficiency and effectiveness of a dataset by eliminating
redundancy.

To determine whether this trade-off is useful, a key question is to
which extent missing values in a given dataset are informative. If they
are not, the phrase “missing at random” (MAR) (Rubin 1976) is used
to indicate that the distribution of missing values is dependent on the
known values, while the stricter phrase “missing completely at random”
(MCAR) denotes values that are distributed truly randomly. In contrast,
informativemissing values are often denoted as “missing not at random”
(MNAR). For real-life datasets, unless we have specific knowledge about
the process responsible for the missing values, we have to assume some
degree of informativeness in principle.3 However, Schafer (1997) has
argued that in practice, the attributes of a dataset can be sufficiently
redundant that one can get away with assuming its missing values
are MAR. But even if this is so, imputation may not always perform
optimally, in which case missing-indicators may still prove useful.

Amore subtle point is that evenwhenmissing values are informative,
the information they encode need not be lost completely through impu-
tation. This is particularly evident in the case of numerically encoded
binary attributes, where imputation can represent missing values as
a third, intermediary value. More generally, Le Morvan et al (2021)
have observed that almost all deterministic imputation functions map
records with missing values to distinct manifolds in the attribute space
that can in principle be identified by sufficiently powerful algorithms.
Nevertheless, including missing-indicators can still potentially make
this learning task easier.

In light of these conflicting theoretical arguments, the usefulness of
missing-indicators for real-life machine learning problems is an interest-
ing empirical question. However, previous experiments in this direction
have been limited in scope and number. These limitations include the
use of only one or a handful of datasets, the use of datasets from which
values have been removed artificially, at random (corresponding to the
MCAR setting), and not comparing the same imputation strategies with
and without missing-indicators.

In this chapter, we will evaluate the effect of missing-indicators on
the performance of a range of popular classification algorithms, paired

3This is acknowledged by authors working under the assumption of MAR, e.g. “When
data are missing for reasons beyond the investigator’s control, one can never be certain
whether MAR holds. The MAR hypothesis in such datasets cannot be formally tested
unless the missing values, or at least a sample of them, are available from an external
source.” (Schafer 1997)
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with three common types of imputation, on the basis of twenty real-life
classification problems with naturally occurring missing values.

In Section 10.1, we provide a brief overview of the existing literature
on missing-indicators, including previous experimental evaluations. In
Section 10.2, we describe our experimental setup. We report our results
in Section 10.3 and conclude in Section 10.4.

10.1 Background

Westartwith abrief discussionof the origins and receptionof themissing-
indicator approach, as well as previous experimental evaluations of the
use of missing-indicators in prediction tasks.

Origins and reception

The missing-indicator approach originates in the statistical literature
on linear regression. It dates back to at least J Cohen (1968), who
pointed out that values in real-life datasets are typically not missing
completely at random, and that the distribution of missing values may
in particular depend on the values of the attribute that is to be predicted.
He proposed that each attribute could be said to have two ‘aspects’, its
value, and whether that value is present to begin with, which should be
encoded with a pair of variables. For missing attribute values, the first
of these variables was to be filled in with the mean of the known values,
although other applications might call for different values. Cohen’s
proposal was subsequently expanded by J Cohen & P Cohen (1975), but
received only limited recognition in the following years (AB Anderson
et al 1983; Chow 1979; Hutcheson & Prather 1981; JO Kim & Curry 1977;
Orme & Reis 1991; Stumpf 1978).

Cohen’s proposal was subjected to a formal analysis by MP Jones
(1996), who showed that, if one assumes that missing values are MAR,
and the true linear regression model does not contain any terms related
tomissingness, it produces biased estimates of the regression coefficients
(unless the sample covariance between independent variables is zero).
However, these assumptions run directly counter to the position set
out by J Cohen & P Cohen (1975) that a priori, the missingness of each
attribute is a possible explanatory factor, that it is safer not to assume
that missing values are distributed randomly, and that the usefulness of
missing-indicators is ultimately an empirical question.

Allison (2001), motivated by MP Jones (1996) and working under the
general assumption of MAR, dismissed missing-indicators as “clearly
unacceptable”, before conceding that they in fact produce optimal
estimates when the missing value is not just missing, but cannot exist,
such as the marital quality of an unmarried couple. However, this
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semantic distinction may not always be clear-cut in practice, and the
more pertinent question may be whether missing values are informative.
Allison (2010) later acknowledged that missing-indicators may lead
to better predictions and their use for that purpose was acceptable.
Missing-indicators have also been dismissed elsewhere (Aste et al 2015;
Graham 2009; Pigott 2001; Schafer & Graham 2002), and are frequently
omitted in overviews of missing data strategies (Das et al 2018; Eirola
2014; Enders 2010; García et al 2015; Schafer 1997).

Previous experiments

Only a handful of experimental comparisons of missing data approaches
have included the missing-indicator approach, and these have been
limited in scope. Vamplew & Adams (1992) and CG Ng & Yusoff (2011)
only use a single dataset with randomly removed values, and base their
evaluation on the performance of a single algorithm (respectively a
neural network and linear regression). Pereira Barata et al (2019) use
three classification algorithms and 22 datasets, but again with randomly
removed values, explicitly assuming a MCAR context. They conclude
that imputation outperforms missing-indicators, but the comparison is
not like-for-like, since it involves several forms of imputation but only
combines indicator attributes with zero imputation. Van der Heĳden
et al (2006) compare missing-indicators with zero imputation against
several other forms of imputation without missing-indicators on one
real dataset, for logistic regression. However, it appears that they do not
use a test set, and only evaluate the resulting models on the training set.

Ding & Simonoff (2010) conduct a more extensive investigation,
using insights from a series of Monte Carlo simulations to systemat-
ically remove values from 36 datasets to simulate different forms of
missingness. They use these datasets to compare zero imputation4 with
indicator attributes against mean/mode imputation without, as well
as a number of other missing data approaches, for logistic regression.
In addition, the authors evaluate a related representation of missing
values5 on the same set of 36 datasets, and on one real-life dataset
with missing values, for decision trees. They find that there is strong
evidence that representing missing values is the best approach when
they are informative; when this is not the case their results show no
strong difference with respect to imputation.

4Presumably, Ding & Simonoff (2010) use one-hot encoding for categorical attributes,
in which case zero imputation is equivalent to treating missing values as a separate
category, but they do not state this explicitly.

5For categorical values, encoding missing values as a separate category, for numerical
values, encoding missing values as an extremely large value that can always be split from
the other values.
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The comparison by Grzymala-Busse & M Hu (2000) is based on 10
datasets with naturally occurring missing values. However, the setting
is purely categorical — all attributes are transformed into categorical
attributes — the only form of imputation is mode imputation, and the
missingvalue approaches are evaluatedon the basis of theLERS classifier
(Learning from Examples based on Rough Sets (Grzymala-Busse 1988)).

Marlin (2008) compares zero imputation with missing-indicators
(augmentation with response indicators) against several forms of imputation
without missing-indicators, for logistic regression and neural networks,
on the basis of an extensive series of simulations, one dataset with
artificially removed values, and three real datasets. For the real datasets,
there is no strong difference in performance between the different
approaches.

Most recently, Josse et al (2020) andLeMorvan et al (2021) respectively
evaluate missing-indicators (missingness mask) for regression trees, Ran-
dom Forest and XGBoost, and for multilayer perceptrons, on simulated
regression datasets, and conclude that when missing values are infor-
mative, using missing-indicators clearly increases performance. This
work has been continued by Perez-Lebel et al (2022), who compare four
different imputation techniques with and without missing-indicators
on seven prediction tasks derived from four real medical datasets, and
conclude that missing-indicators consistently improve performance for
gradient boosted trees, ridge regression and logistic regression.

We point out that the Missingness in Attribute (MIA) proposal
(BE Twala et al 2008) for decision trees and decision tree ensembles
can be understood as an implicit combination of missing-indicators
with automatic imputation, and has also been shown to outperform
imputation without missing-indicators in small-scale experimental
studies (Josse et al 2020; Perez-Lebel et al 2022).

Finally, even experimental comparisons of missing data that do not
feature the missing-indicator approach generally do not involve more
than a handful of real-life datasets with naturally occurring missing
values. We have only found Luengo et al (2012a,b), who use 21 datasets
from the UCI repository, but 12 of these are problematic.6

6The target column of the echocardiogram dataset (‘alive-at-1’) is supposed to denote
whether a patient survived for at least one year, but it doesn’t appear to agree with
the columns from which it is derived, that denote how long a patient (has) survived
and whether they were alive at the end of that period. The audiology dataset has a
large number of small classes with complex labels and should perhaps be analysed with
multi-label classification. In addition, it has ordinal attributes where the order of the
values is not entirely clear, and three different values that potentially denote missingness
(‘?’, ‘unmeasured’ and ‘absent’), and it is not completely clear how they relate to each
other. The house-votes-84 dataset contains ‘?’ values, but its documentation explicitly
states that these values are not unknown, but indicate different forms of abstention. The
ozone dataset is a time-series problem, while the task associated with the sponge and
water-treatment datasets is clustering, with no obvious target for classification among their
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10.2 Experimental setup

To evaluate the effect of the missing-indicator approach on classification
performance, we conduct a series of experiments, using the Python
machine learning library scikit-learn (Pedregosa et al 2011).7

Questions

The aim of our experiments is to answer the following questions:

• Do missing-indicators increase performance, and does it matter
which imputation strategy they are paired with?

• When do missing-indicators start to become useful in terms of the
number of missing values?

• Does usingmean imputation instead of mode imputation allow for
more information to be learned from missing categorical values?

The last question is motivated by the observation that mean imputa-
tion would keep missing categorical values distinct from non-missing
values, making the information that they encode in principle easier to
recover.

Evaluation

We preprocess datasets by standardising numerical attributes and one-
hot encoding categorical attributes (as required by the implementations
in scikit-learn).

We measure classification performance by performing stratified
five-fold cross-validation, repeating this for five different random states
(which determine both the dataset splits and the initialisation of algo-
rithms with a random component), and calculating the mean AUROC.
To compare two alternatives A and B, we consider the ?-value of a
one-sided Wilcoxon signed-rank test on the mean AUROC scores for
our selection of datasets.

Imputation Strategies

We consider the following three imputation strategies:

respective attributes. Finally, the breast-cancer (9), cleveland (7), dermatology (8), lung-cancer
(5), post-operative (3) and wisconsin (16) datasets contain only very few missing values, and
any performance difference between missing value approaches on these datasets may to a
large extent be coincidental.

7The code to reproduce the experiments in this chapter is available at https://cwi.
ugent.be/~oulenz/code/lenz-2022-no-imputation.tar.gz.
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Table 10.1: Classification algorithms.

Name Description

NN-1 Nearest neighbours (Fix & Hodges 1951) with Boscovich distance
NN-2 Nearest neighbours with Euclidean distance
NN-1-D Nearest neighbours with Boscovich distance, distance-weighted (Dudani

1976)
NN-2-D Nearest neighbours with Euclidean distance, distance-weighted
SVM-L Soft-margin Support Vector Machine (Cortes & Vapnik 1995) with linear

kernel
SVM-G Soft-margin Support Vector Machine with Gaussian kernel
LR Multinomial logistic regression (Cox 1966)
MLP Multilayer perceptron (Rosenblatt 1961) with ReLu activation (Fukushima

1969), Glorot initialisation (Glorot & Bengio 2010) and Adam optimisation
(Kingma & Ba 2015)

CART Classification and Regression Tree (Breiman et al 1984)
RF Random Forest (Breiman 2001)
ERT Extremely Randomised Trees (Geurts et al 2006)
ABT Ada-boosted trees (Freund & Schapire 1995) with SAMME (stagewise

additive modeling using a multi-class exponential loss function) (Zhu
et al 2009)

GBM Gradient Boosting Machine (Friedman 2001)

• Mean/mode imputation replaces missing values of numerical and
categorical attributes by, respectively, the mean and the mode of
the non-missing values.

• Nearest neighbour imputation (Troyanskaya et al 2001) replaces miss-
ing values of numerical and categorical attributes by, respectively,
the mean and the mode of the 5 nearest non-missing values, with
distance determined by the corresponding non-missing values for
the other attributes.

• Iterative imputation, as implemented in scikit-learn, based on Van
Buuren &Groothuis-Oudshoorn (2011), predicts missing values of
one attribute on thebasis of the other attribute valuesusing a round-
robin approach. For numerical attributes, this uses Bayesian ridge
regression (Tipping 2001), initialised with mean imputation, while
for categorical attributes, we use logistic regression, initialised
with mode imputation.

The scikit-learn implementations of nearest neighbour and iterative
imputation can currently only impute numerical features, so we had to
adapt them for categorical imputation. In all other aspects, we follow
the default settings of scikit-learn.8

8For the nomao dataset, iterative imputation diverged (i.e. the imputed values would
grow towards infinity), so we forced imputed values to stay in the interval [−100, 100].
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Classification Algorithms

We consider the classification algorithms listed in Table 10.1, as im-
plemented in scikit-learn. Hyperparameters take their default values,
except for SVM-L, LR and MLP, where we increase the maximum num-
ber of iterations of the optimisation algorithm to 10 000 to increase the
probability of convergence.

For a number of these algorithms, specific ways have been proposed
to handle missing values: e.g. NN-2-D (Dixon 1979), SVM-G (Śmieja
et al 2019), MLP (Ipsen et al 2020; Śmieja et al 2018; Tresp et al 1994)
and CART (Quinlan 1989; BE Twala et al 2008). We do not consider
these here, as the purpose of the present experiment is to evaluate the
general approach of using imputation with missing-indicators that can
be applied in contexts where these solutions have not been implemented,
as is the case in scikit-learn.

Datasets

We use twenty real-life datasets with naturally occurring missing values.
These are described in Section B.3.

10.3 Results and discussion

Using the experimental setup detailed in the previous section, we now
try to answer the questions listed in Subsection 10.2. For the AUROC
scores, see Section C.2 in the Appendix.

Do missing-indicators increase performance, and does it
matter which imputation strategy they are paired with?

Missing-indicators generally lead to increased performance (Table 10.2)
—with the notable exception of CART. Themore complicated imputation
strategies do not result in much better results than mean/mode impu-
tation when we pair imputation with missing-indicators (Table 10.3).
At best, nearest neighbour and iterative imputation only lead to a
modest improvement, and for many classifiers, they actually decrease
performance. Therefore, we focus on mean/mode imputation for the
remainder of this section.

A possible reason for the poor performance of missing-indicators
with CART, is that by default, the scikit-learn implementation of this
classifier does not perform pruning, making it prone to overfitting. To
test this hypothesis, we repeat our experiment for CART and mean
imputation, but this time we apply cost complexity pruning (
 = 0.01).
The resulting AUROC scores are now much better than the original
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Table 10.2: One-sided ?-values obtained by comparing AUROC from
imputation with missing-indicators vs without.

Classifier Imputation strategy
Mean/mode Neighbours Iterative

NN-1 0.024 0.0027 0.0011
NN-2 0.035 0.0050 0.00085
NN-1-D 0.016 0.0031 0.00085
NN-2-D 0.0063 0.0070 0.00042
SVM-L 0.18 0.31 0.11
SVM-G 0.0063 0.0063 0.0027
LR 0.092 0.079 0.074
MLP 0.0050 0.013 0.011
CART 0.84 0.75 0.70
RF 0.058 0.12 0.29
ERT 0.36 0.018 0.027
ABT 0.089 0.10 0.49
GBM 0.39 0.022 0.18

Table 10.3: One-sided ?-values obtained by comparing AUROC from
missing-indicators with iterative and nearest neighbour vs mean/mode
imputation.

Classifier Imputation strategy
Neighbours Iterative

NN-1 0.90 0.27
NN-2 0.74 0.26
NN-1-D 0.95 0.71
NN-2-D 0.80 0.34
SVM-L 0.48 0.61
SVM-G 0.47 0.94
LR 0.36 0.85
MLP 0.29 0.56
CART 0.67 0.69
RF 0.63 0.86
ERT 0.47 0.51
ABT 0.63 0.94
GBM 0.94 0.83
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Figure 10.1: Test AUROC from one cross-validation fold for GBM as a
function of the number of steps of gradient descent, for two illustrative
datasets. Using a constant number of iterations can lead to underfitting
(a) or overfitting (b).

scores without missing-indicators (? = 0.013) and somewhat better than
cost complexity pruning without missing-indicators (? = 0.23).

In the case of ERT, missing-indicators may not lead to a clear per-
formance improvement because of underfitting. If we increase the
number of trees from the default 100 to 1000, the improvement becomes
somewhat clearer (? = 0.15).

For GBM, the default choice of 100 iterations of gradient descent can
lead to both under- or overfitting, depending on the dataset (Figure 10.1).
We believe that it is generally preferable to continue training until an
early-stopping criterion is met. If we apply the same criterion as the
scikit-learn default for MLP,9 the performance increase due to missing-
indicators also becomes clearer (? = 0.19).

When do missing-indicators start to become useful in terms of
the number of missing values?

The theoretical motivation for representing missing values through
missing-indicators is that this allows classifiers to learn the information
encoded in their distribution. In principle, this should be easier when
there are more examples to learn from. We can use this to obtain a
better understanding of when missing-indicators might be useful on a
per-attribute level.

We test this with the following additional experiment. For each
attribute with missing values in each dataset, we reduce the original

9Setting aside 10% of the data for validation, stopping when validation loss has not
decreased by at least 0.0001 for ten iterations, with a maximum of 10 000 iterations.

142



10. Missing-indicators

Table 10.4: Thresholds above which missing-indicators are more likely
than not to increase AUROC, in terms of the absolute number of missing
values or the missing value rate

Classifier Missing values Missing value rate
Categorical Numerical Categorical Numerical

NN-1 20 296
NN-2 10 146
NN-1-D 21 370
NN-2-D 6 80
SVM-L 0.0 0.0
SVM-G 0.0 0.44
LR 0.0 0.0
CART 1 13
ERT 0.0 1.0
ABT 1 18850
GBM 0.0 0.0

dataset by removing all other attributes with missing values. We
thus obtain 1148 derived datasets, on which we again apply each of
our classifiers (with pruning for CART, 1000 trees for ERT and early-
stopping for GBM) and consider whether missing-indicators increase
or decrease AUROC (we dismiss ties). Finally, for each classifier we fit
a logistic regression model with cluster robust covariance (clustered
by the originating dataset), with the following potential parameters:
categoricalness (whether the attribute is categorical) and either the
number of missing values (log-transformed) or the missing value rate.
We use the Akaike information criterion (Akaike 1971) to decidewhether
to select these parameters.

We find that for most classifiers, either the absolute or the relative
number of missing values is an informative parameter with positive
coefficient. For MLP, neither parameter is informative, while for RF, the
number of missing values is an informative parameter with negative
coefficient, for which we have no explanation at present. For every
classifier except NN-1, NN-1-D and LR, categoricalness is an informative
parameter with positive coefficient, meaning that missing-indicators are
more beneficial for categorical than for numerical attributes.

The fitted logistic regression models allow us to calculate attribute-
specific thresholds at and above which missing-indicators are more
likely than not to increase AUROC, for all classifiers except MLP and
RF (Table 10.4). In many cases, these thresholds are 1 or 0.0, indicating
that missing-indicators are always likely to increase AUROC. We have
included NN-1 and NN-1-D in this table on the basis of a model that
includes the categoricalness parameter, since we find it implausible that
it should not be relevant only for these specific classifiers. If we exclude
it, the thresholds respectively become 233 and 285 records for categorical
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and numerical attributes alike. For LR, the threshold is a missing value
rate of 0.0, whether we include the categoricalness parameter or not.

Does using mean imputation instead of mode imputation
allow for more information to be learned from missing
categorical values?

As indicated above, missing-indicators are generally more likely to
increase performance for categorical than for numerical attributes. A
potential explanation for this is the fact that the mode of a categorical
attribute is one of the non-missing values, whereas the mean of a nu-
merical attribute is generally not equal to one of the non-missing values.
Therefore, categorical imputation renders missing values truly indistin-
guishable from non-missing values, whereas numerical imputation does
not — the information expressed by missing values may be partially
recoverable, as argued by Le Morvan et al (2021) and discussed in the
Introduction.

We can achieve a similar partial representation of missing categorical
values by changing the order in which we perform imputation and
one-hot encoding, i.e. by performing numerical imputation on one-hot
encoded categorical attributes with missing values. For imputation
without missing-indicators, this indeed leads to better performance for
some classifiers, while in combination with missing-indicators, it does
not make much of a difference (Table 10.5)10.

10.4 Conclusion

In this chapter, we have presented the first large-scale experimental
evaluation of the effect of the missing-indicator approach on classifica-
tion performance, conducted on real datasets with naturally occurring
missing values, paired with three different imputation techniques. The
central question was whether, on balance, more benefit can be derived
from the additional information encoded in a representation of missing
values, or from the lower-dimensional projection of the data obtained
by omitting missing-indicators.

On the whole, missing-indicators increase performance for the clas-
sification algorithms that we considered, although we cannot be sure
for each classifier that this result will generalise to other datasets. The
only classifier for which missing-indicators decreased performance was
CART. We have argued that this is due to overfitting by the default con-
figuration of the scikit-learn implementation of CART, and showed that

10LR is an exception here. We have no explanation for this, although we note that it
corresponds with our finding in Subsection 10.3 that categoricalness is not an informative
parameter for LR.
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Table 10.5: One-sided ?-values obtained by comparing AUROC from
mean imputation after one-hot encoding vs mode imputation of missing
categorical values.

Classifier Without — With missing-indicators

NN-1 0.030 0.22
NN-2 0.32 0.17
NN-1-D 0.030 0.36
NN-2-D 0.29 0.17
SVM-L 0.44 0.71
SVM-G 0.22 0.56
LR 0.88 0.023
MLP 0.14 0.52
CART 0.50 0.34
RF 0.084 0.78
ERT 0.023 0.95
ABT 0.56 0.66
GBM 0.12 0.56

missing-indicators do increase performance when pruning is applied.
For ERT and GBM, wewere able to show that the advantage of including
missing-indicators becomes more significant when the number of trees
of ERT is increased to limit underfitting, and the number of iterations of
GBM is determined dynamically by an early-stopping criterion to avoid
both under- and overfitting.

We also found that, in the presence of missing-indicators, nearest
neighbour and iterative imputation do not increase performance over
simple mean/mode imputation, with the possible exception of NN-
2 and NN-2-D in the case of iterative imputation. This is a useful
finding, because implementations of more sophisticated imputation
strategies may not always be available to practitioners working in
different frameworks, or easy to apply.

In a follow-up experiment, we determined attribute-specific miss-
ingness thresholds above which missing-indicators are more likely than
not to increase performance. For categorical attributes, this threshold
is generally very low, while for numerical attributes, there is more
variation among classifiers, in particular as to whether this threshold is
absolute or relative to the total number of records.

The greater usefulness of missing-indicators for categorical than
for numerical attributes can be explained by the fact that the mean
of a numerical attribute is not generally identical to any of the non-
missing values, and that mean imputation therefore preserves some
of the information of missing values. Accordingly, in the absence
of missing-indicators, applying mean imputation to one-hot encoded
categorical attributes results in somewhat better performance thanmode
imputation.
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On the basis of these experiments, we conclude that the combination
of mean/mode imputation with missing-indicators represents the best
known general-purpose solution for missing values in a classification
context, that may be used when the algorithm to be used has no special
provision for missing values, and when values are not known to be
missing at random. While over- or underfitting is a concern for certain
classifiers, it is a concern for these classifiers with or without missing-
indicators. The use of missing-indicators can also be combined with
dimensionality reduction algorithms to increase the information density
of the resulting dataset.

In the next chapter, we will consider a more specific proposal for
representing missing information with fuzzy rough sets.
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Chapter 11

Interval-valued fuzzy rough
sets1

Recall from Chapter 1 that fuzzy rough sets are a combination of fuzzy
and rough sets. Accordingly, they can be used to model two different
types of uncertainty. As fuzzy sets, upper and lower approximations
model partial membership of a concept �, while the difference between
the upper and lower approximation captures the conflicting ways in
which � may be predicted from a set of independent attributes: the
upper approximation generalises the positive evidence for �, whereas
the lower approximation generalises the negative evidence - \ �.

In this chapter, we consider a third type of uncertainty: incomplete
information. There exist several proposals for missing data that involve
rough or fuzzy rough sets (Thangavel & Pethalakshmi 2009). In partic-
ular, fuzzy rough sets have been used for imputation (Amiri & Jensen
2016), there have been proposals to adapt both crisp and fuzzy decision
rules to the presence of missing values (Grzymala-Busse 2006; Hong
et al 2010; Kryszkiewicz 1998), and in the context of classical rough
sets, Grzymala-Busse (2006) has provided three alternative definitions
of upper and lower approximations in datasets with missing values. In
contrast, our strategywill be to incorporate the uncertainty of incomplete
information directly into the representation of concepts, by extending
the notion of upper and lower approximation.

We propose to mimic the dual approach of rough sets by modelling
an optimistic and a pessimistic scenariowhen comparing amissing value
with another value. The optimistic scenario is that the two values are
really identical, while the pessimistic scenario is that they are maximally
different. We cannot know what the ground truth is, but we know that
it must lie somewhere in between these two extremes. Formally, we can
represent this with an interval-valued fuzzy set (Dubois & Prade 2005,

1This chapter is based on Lenz et al (2021a).
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and references therein). Since the uncertainty of incomplete information
is orthogonal to the uncertainty that arises from positive and negative
information, the resulting interval-valued fuzzy rough set is defined
by four fuzzy sets: the optimistic and pessimistic upper and lower
approximations �

min
, �

max
, �min , �max.

This work builds on the earlier proposal for interval-valued fuzzy
rough sets in the context of feature selection by Jensen & Shen (2009),
as well as a related proposal of ill-known fuzzy rough sets (Couso &
Dubois 2011) based on twofold fuzzy sets (Dubois & Prade 1987), but this
approach has otherwise remained relatively underexplored. We present
an up-to-date definition in Section 11.1. In Section 11.2, we modify
Fuzzy Rough Nearest Neighbour (FRNN) classification to incorporate
interval-valued fuzzy rough sets, and evaluate its performance on a
number of real-life datasets.

11.1 Interval-valued fuzzy rough sets

In order to formulate the application of interval-valued fuzzy rough
sets to missing values, we have to use the definition of upper and lower
approximations in terms of a tolerance relation ' (Definition 1.9), which
is the mean of attribute-specific tolerance relations '8 on R.

Interval-valued fuzzy sets (Dubois & Prade 2005, and references
therein) are defined as follows:

11.1 Definition (Interval-valued fuzzy set). Let- be a set. An interval-
valued fuzzy set in - is a pair of fuzzy sets (�1 , �2) in - such that
�1(G) ≤ �2(G) for all G ∈ -.

Equivalently, an interval-valued fuzzy set in - can also be defined
as a function - −→ ℐ([0, 1]), where the range is the set of intervals in
[0, 1], i.e. the subset of [0, 1] × [0, 1]whose values in the first component
are always less than or equal to the values in the second component.

We can accommodate the possibility of missing data by adjoining
a formal symbol denoting a missing value to each copy of R to obtain
R? := R ∪ {?}, and by letting a dataset - be a multisubset of R<? . The
task then is to extend any choice of '8 to ?. We define optimistic and
pessimistic per-attribute relations 'max

8
and 'min

8
by stipulating that for

any 0, 1 ∈ R:

'max
8 (0, 1) = 'min

8 (0, 1) = '8(0, 1)
'max
8 (0, ?) = 'max

8 (?, 1) = 'max
8 (?, ?) = 1

'min
8 (0, ?) = 'min

8 (?, 1) = 'min
8 (?, ?) = 0

(11.1)
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Accordingly, we define interval-valued upper and lower approxima-
tions through the aggregated relations 'max and 'min:

11.2 Definition (Interval-valued upper and lower approximation).
Let - ⊂ R<? be a finite multisubset for some < ∈ N, let F be a weight
vector of some length :, ) a t-norm and � a fuzzy implication, and
let ('8)8≤< be a family of tolerance relations. Then for any fuzzy
submultiset� of-, the interval-valued upper and lower approximations
of � are, respectively, the interval-valued fuzzy sets (�min

, �
max) and

(�min , �max), defined as:

�
min(H) = Fmax

G∈-
()('min(H, G), �(G))

�
max(H) = Fmax

G∈-
()('max(H, G), �(G))

�min(H) = Fmin
G∈-
(�('max(H, G), �(G))

�max(H) = Fmin
G∈-
(�('min(H, G), �(G))

(11.2)

Because t-norms and fuzzy implications are respectively monotonic
and anti-monotonic in the first argument, the pessimistic approximations
�

min
and �min encode the minimum membership degrees in the upper

and lower approximations, while the optimistic approximations �
max

and �max encode the maximum membership degrees.
Membership in the optimistic and pessimistic approximations —

like membership in ordinary upper and lower approximations — is
determined purely on the basis of the attribute values of an instance,
so it is possible to plot membership degrees across the attribute space.
This is illustrated for a toy example in Figure 11.1. Here, � is a crisp set
containing two elements, one of which has a missing attribute value,
which we have represented with a line. We have chosen '8(H, G) =
1 − |H8 − G8 |. Recall (Chapter 1) that for crisp sets, the choice of t-norm
becomes void and that we resolve the choice of fuzzy implication by
choosing the standard negation I ↦−→ 1 − I. We set F =

〈 2
3 ,

1
3
〉
(linear

weights with : = 2). Darker shades of grey indicate higher membership
degrees. It can be seen that membership degrees of the optimistic
approximations are uniformly higher than membership degrees of the
pessimistic approximations.

The treatment in this section is essentially an updated version of
Jensen& Shen (2009). The differences aremainly practical. Firstly, Jensen
& Shen (2009) use a more general setting, where '8 is an interval-valued
relation, but this greater generality potentially obscures the fact that
this approach can be applied in any context that currently uses ordinary
fuzzy rough sets, where '8 is scalar-valued. And secondly, Jensen &
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Figure 11.1: Toy example with � = {(0.2, 0.8), (?, 0.2)}. Missing value
displayed as a line. Optimistic and pessimistic upper approximations of
� and optimistic and pessimistic lower approximations of - \ �.

Shen (2009) aggregate 'min and 'max using a t-norm, instead of the
mean. As a result, 'min will always be 0 if any of the attribute values
are missing, and we lose the information encoded by the non-missing
attribute values.

11.2 FRNN with interval-valued approximations

We can adapt FRNN classification to datasets with missing values
by considering the membership of unseen records in the interval-
valued upper and lower approximations of the decision classes. The
computational complexity of calculating membership in the bounds of
the interval-values upper and lower approximations is in principle the
same as that of calculating membership in traditional upper and lower
approximations. However, the specific definition of 'min and 'max for
records with missing values prevents any clear reformulation of 'min
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11. Interval-valued fuzzy rough sets

and 'max in terms of distance measures with existing nearest neighbour
search implementations, which only makes this approach practical for
smaller datasets.

We test interval-valued FRNN classification with a small experiment
on binary classification sets. As upper and lower approximations pro-
duce equivalent results with binary datasets, we simplify the experiment
by only using the upper approximation.

As in Chapter 1, we use linearly decreasing weights of length : = 20.
For the tolerance relation, we select '8(H, G) = 1 − |H8 − G8 |/A8 , where A8
is the range of values in the training set.

We evaluate performance with the mean AUROC across 5-fold
cross-validation. We apply this to eleven datasets with missing values
(Section B.3).2 Where applicable, we remove classes with fewer than
five instances, and select a stratified sample of 2000 instances.

We experiment with two strategies: using the mean membership
values in the optimistic and pessimistic approximations, and optimising
a weighted mean on the basis of training data.

For the second strategy, we use the efficient form of leave-one-out
validation detailed in Sections 3.2 and 8.1. Recall that this entails
taking a single nearest neighbour query for the entire training set, and
correcting it by removing nearest neighbour distances from a training
instance to itself. The remaining values can then be used to calculate
optimistic and pessimistic approximation memberships � \ {G}

max
(G)

and � \ {G}
min
(G). As in Chapter 9, we parametrise the average of these

two values with a value � ∈ [0, 1]:

(1 − �) · � \ {G}
min
(G) + � · � \ {G}

max
(G) (11.3)

We optimise � by calculating the resulting AUROC and applying
Malherbe-Powell optimisation (Section 8.2) with a budget of 20 evalua-
tions.

Note that the computational complexity of this strategy is equal to
the computational complexity of a : + 1-nearest neighbour query with =
query instances and = target instances, where = is the size of the training
set. For large =, this can potentially be mitigated by using only a subset
of the training set to optimise �.

The results are displayed in Table 11.1. Optimising the weighted
mean increases AUROC for 7 datasets and decreases it for 3. Applying
a one-sided Wilcoxon signed-rank test, we find that this is weakly
significant (? = 0.057).

For comparison, we have also included the results obtained from
simple imputation with the mean (numerical attributes) or mode (cat-

2The eleven datasets used in this chapter represent an initial selection, which we later
extended for the experiments in Chapters 10 and 12.
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Part IV. Incomplete datasets

Table 11.1: Datasets with the number of records = andmissing value rate
?, as well as the AUROC from classification with the mean of optimistic
and pessimistic upper approximation memberships, with an optimised
ratio of both, and with normal upper approximation memberships after
imputation with the mean and mode.

Dataset = ? Mean Optimised Imputation

adult 2000 0.010 0.863 0.863 0.860
aps-failure 2000 0.083 0.969 0.985 0.993
arrhythmia 443 0.003 0.878 0.880 0.877
ckd 400 0.105 1.000 1.000 1.000
exasens 399 0.428 0.738 0.748 0.734
hcc 165 0.102 0.746 0.741 0.771
hepatitis 155 0.057 0.879 0.884 0.877
mammographic-masses 961 0.042 0.833 0.834 0.827
primary-tumor 330 0.039 0.779 0.777 0.775
secom 1567 0.045 0.678 0.681 0.689
soybean 683 0.098 0.993 0.995 0.996

0.00 0.02 0.04 0.06 0.08 0.10
Missing value rate

Imputation

Proposal

Figure 11.2: Distributionof datasets forwhich imputationor theproposal
of this chapter achieves higher AUROC as a function of the missing
value rate, with logistic regression fit.

egorical attributes) of the known values in the training data. For 6
datasets, both the mean and optimised weighted mean optimistic and
pessimistic approximations achieve a higher AUROC than simple im-
putation, whereas for 5 datasets, simple imputation achieves a higher
AUROC. If we exclude the outlying dataset exasens, we see that the
optimistic and pessimistic approximations perform better on datasets
with a lower missing value rate, and imputation on datasets with a
higher missing value rate (Figure 11.2). When we fit a logistic regression
model, the odds are even at a missing value rate of 0.056.

11.3 Conclusion

In this chapter, we have presented an approach towards datasets with
missing values that has received relatively little attention so far. While
the existing literature is typically devoted to resolving these missing
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11. Interval-valued fuzzy rough sets

values in an optimal manner, we have argued that in the context of fuzzy
rough sets, which are motivated by a desire to model different kinds of
uncertainty, it is worthwhile to also model the uncertainty of incomplete
information.

We have recalled the concept of interval-valued fuzzy rough sets,
which iterate on the dualistic nature of rough sets and replace the upper
and lower approximations by interval-valued fuzzy sets: secondary
pairs of approximations, reflecting optimistic and pessimistic assump-
tions about the values that are missing. These define a bandwidth
that contains the true (but unknown) upper and lower approximation
memberships. We think that this can offer a valuable perspective for
qualitative analyses of datasets with missing values.

We have shown how the interval-valued upper and lower approxi-
mations can be used to extend Fuzzy Rough Nearest Neighbour (FRNN)
classification to problems with missing values. From an evaluation
on several real-world datasets, we found that the best results can be
obtained by taking a weighted average of the optimistic and pessimistic
approximation memberships, and by optimising the relative weight
on the basis of training data. This results in a comparable overall
performance to simple imputation with the mean and mode, but is
more directly interpretable as it does not involve the insertion of arti-
ficial values. Further analysis revealed that our proposal in particular
outperforms imputation on datasets with a missing value rate below
0.056. However, a major limitation of our proposal is that it is difficult
to implement efficiently, making it suitable only for datasets of up to a
few thousand records.

In the next chapter, we will propose a third and final approach
towards missing values that represents them as distinct values that a
classifier can learn from (like the missing-indicator approach) but which
does not assume a higher similarity with any of the non-missing values
(like the approach in the present chapter).
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Chapter 12

Polar encoding1

In Chapter 10, we found that the use of missing-indicators generally
improves performance on real-life datasets for a range of classification
algorithms. However, the missing-indicator approach can only be used
in addition to, not instead of imputation, which is still required to
provide a value for the original attribute. This is of particular relevance
for algorithms that are based on distance, like nearest neighbours
algorithms, because it means that a missing value is closest to the non-
missing value that corresponds to the imputed value (Figure 12.1a). It
is also an issue for decision tree algorithms, because missing values
will always split together with their imputed value when the algorithm
splits on the original attribute.

In this chapter, we present polar encoding2 as an alternative represen-
tation of missing values that does not rely on imputation. Its default
form, to be used with 1-distance or with algorithms that are not based
on distance, is as follows. It represents each [0, 1]-scaled numerical
attribute as a pair of features, with the following map:

G ↦−→ 〈G, 1 − G〉 ,
? ↦−→ 〈0, 0〉 , (12.1)

where ? is a missing value. For categorical attributes, polar encoding
corresponds to one-hot encoding, with missing values also represented
as zero vectors.

We present three theoretical justifications for this proposal. Firstly,
in Section 12.1, we show that polar encoding maps non-missing values
onto one quadrant of a unit circle centred on missing values. As a
consequence, missing values become equidistant from all non-missing

1This chapter is based on Lenz et al (2022d).
2We have chosen the name polar encoding as a loose analogy to polar coordinates,

because values are encoded in relation to a number of poles: the origin and the unit
vectors 〈1, 0〉 and 〈0, 1〉 (and higher-dimensional unit vectors for categorical attributes).
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Part IV. Incomplete datasets

values, and we avoid having to choose a non-missing value that missing
values are most similar to. In addition to our main proposal, we will
give a variant of polar encoding that can be used with 2-distance.

Secondly, in Section 12.2 we argue that because polar encoding
results in two copies of each [0, 1]-valued attribute, with missing values
located at either end, it effectively allows decision tree algorithms to
choose which side of each split missing values should be grouped with,
and that it thus offers a practical realisation of themissingness incorporated
in attributes (MIA) proposal by BE Twala et al (2008).

And thirdly, in Section 12.3, we present the concept of barycentric
attributes and show that these are fuzzified categorical attributes, and
also generalise numerical [0, 1]-valued attributes. In particular, the
categorical and numerical representations of binary attributes turn out
to be two sides of the same coin. Barycentric attributes also have a
fuzzified equivalent of one-hot encoding, and when this is applied to
[0, 1]-valued attributes, viewed as barycentric attributes, we obtain polar
encoding.

We complement these theoretical arguments in Section 12.4 with
an experimental evaluation of the practical usefulness of our proposal,
by comparing it against the missing-indicator approach for a number
of distance-based and decision tree classification algorithms, using 20
real-life datasets with missing values. For FRNN classification, we will
also compare our approach to the use of interval-valued upper and
lower approximations (Chapter 11).

Finally, we present our conclusions in Section 12.5.

12.1 Polar encoding as mapping onto the unit circle

In this section, we will explain how polar encoding ensures that missing
values are equidistant from all non-missing values, and present a variant
proposal for Euclidean distance.

Boscovich distance

Recall the definition of the Minkowski ?-norm of a vector G ∈ R< from
Section 2.1. The Minkowski ?-norm unit sphere in R< consists of all
points with ?-norm equal to 1. For < = 2, this gives us the ?-norm unit
circles (Figure 12.2).

Figure 12.1b illustrates the application of polar encoding with a
toy example. The key observation to make is that unlike with the
missing-indicator approach, the Boscovich distance between a missing
value and any non-missing value is always 1. In fact, this is a simple
consequence of the fact that polar encoding maps non-missing values
onto the non-negative quadrant of the Boscovich (1-norm) unit circle.
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Figure 12.1: Illustrative example of a [0, 1]-valued attribute for height
with missing value, with missing-indicator and polar encoding.

p = 1 p = 4
3 p = 2 p = 4 p

Figure 12.2: Minkowski ?-norm unit circles for various values of ?.

Moreover, with polar encoding, the Boscovich distance between
any two non-missing values G, H ∈ [0, 1] becomes twice the original
distance

��G − H��. In other words, the distances between non-missing
values remain essentially unchanged, except for a scaling factor of 2. The
Boscovich distance between a missing value and non-missing values is 1,
which is exactly half the maximum distance 2 between two non-missing
values, reflecting the fact that we do not know what the ‘true’ value of a
missing value is. This distance can be used directly, or transformed into
a similarity value with 0 ↦−→ 1− 0/2. In this case, the similarity between
a missing value and any non-missing value is always 0.5, exactly half
the maximum similarity of 1.

This contrasts with the approach taken by Dai (2013), who stipu-
late that the similarity between a missing value and any other value
should always be 1. Similarly, in the previous chapter, we proposed
propagating the uncertainty from missing values using interval-valued
fuzzy sets. These interval values are bounded by an optimistic scenario,
corresponding to the proposal by Dai (2013), and a pessimistic scenario,
in which the similarity between a missing value and any other value
(possibly also missing) is 0 (complete dissimilarity). In both cases the
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Part IV. Incomplete datasets

problem is that missing values are not more similar to each other than
to non-missing values — missing values are not treated as a signal to
generalise from. Moreover, in practice these similarity relations scale
poorly to larger datasets, because they do not admit straightforward
implementations in terms of an existing distance measure.

Euclidean distance

Based on the discussion in the previous subsection, a straightforward
way to obtain polar encoding for Euclidean distance is to map non-
missing values onto the non-negative quadrant of the Euclidean (2-norm)
unit circle (Figure 12.1c). We propose to do this with the following
mapping, which establishes a linear correspondence between distance
in [0, 1] and arc length (scaling by a factor

√
2):

G ↦−→
〈
sin G · �2 , cos G · �2

〉
,

? ↦−→ 〈0, 0〉 .
(12.2)

Note that this map cannot preserve Euclidean distance. When
encoding a [0, 1]-valued attribute in thismanner, larger distances become
relatively less large. However, the difference is relatively small and may
not be problematic in practice. For instance, the Euclidean distance
between the minimum and maximum values becomes

√
2 ≈ 1.41, which

is slightly less than twice the distance between either value and the
midrange:

(���sin �
4 − 0

���2 + ���cos �4 − 1
���2) 1

2

≈ 0.765.

Furthermore, this maximum distance between two non-missing
values (

√
2), is now comparatively smaller than with Boscovich distance

(2). This is completely consistent with the distance between two different
one-hot encoded categorical values, which is likewise

√
2 for Euclidean

distance and 2 for Boscovich distance.
For other values of ?, there exist generalisations of sin and cos that

could be used instead to parametrise the non-negative quadrant of the
?-unit sphere (Lindqvist & Peetre 2000; Shelupsky 1959). However,
these functions are defined as the inverses of integrals, and so are not
easy to apply in practice.
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Figure 12.3: Illustrative example of equivalent splits on a polar-encoded
attribute, with missing values on either side.

12.2 Polar encoding as “missingness incorporated in
attributes”

Polar encoding also allows decision tree algorithms to learn frommissing
values. The twodimensions of a polar-encoded attribute induce identical
splits on the data, except that missing values end up on either side of
each split (Figure 12.3). Therefore, decision trees are effectively offered
a choice as to which side of each split missing values should be grouped
with. Missing values can also be split off on their own by splitting on
both dimensions of a polar-encoded attribute.

This contrasts with the missing-indicator approach, where missing
values either group together with their imputed value (when the tree
splits on the original attribute), or alone (when the tree splits on the
missing-indicator).

The effect of polar encoding on decision trees is very similar to the
missingness incorporated in attributes (MIA) proposal by BE Twala et al
(2008), which stipulates that when splitting on an attribute with missing
values, the algorithm should consider each potential split twice, with
missing values on either side, and additionally a split that separates
non-missing andmissing values. MIA has been added to the scikit-learn
implementation of LightGBM (Ke et al 2017), and a similar strategy is
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part of XGBoost (T Chen & Guestrin 2016). The advantage of polar
encoding is that it can be applied by the user, and combined with
off-the-shelf implementations of decision tree algorithms that do not
natively support MIA.3

The performance of MIA has mostly been evaluated on the basis of
simulated data with informative missing values.

For decision trees, BE Twala et al (2008) showed that MIA performs
better than resolving missing values as a weighted combination of the
two branches according to the prior probabilities of the non-missing
values (Cestnik et al 1987), and about as good as multiple imputation
with expectation maximisation (Schafer 1997), which had emerged as
the two best-performing strategies in a previous comparison by B Twala
(2009).

Kapelner & Bleich (2015) have shown that for Bayesian additive
regression trees, MIA outperforms random forest imputation. Similarly,
MIA has been shown to outperform mean imputation with missing-
indicators and a handful of other strategies for regression with decision
trees, Random Forest and XGBoost (Josse et al 2020).

Finally, the scikit-learn implementation of LightGBM mentioned
above has also been evaluated on four large, real-life medical datasets
by Perez-Lebel et al (2022), who found that MIA produces somewhat to
considerably better regression and classification performance than the
missing-indicator approach with various forms of imputation.

12.3 Polar encoding as representation of barycentric
attributes

In this section, we will show how polar encoding can be seen as the
representation of barycentric attributes, which generalise both categorical
and [0, 1]-valued attributes. In particular, this explains how polar
encoding generalises one-hot encoding. To begin with, we establish
some working definitions.

Numerical and categorical attributes
Recall from Definition 0.6 that we can transform a categorical attribute
into a tuple of numerical features through one-hot encoding. In addition
to this redundant form of one-hot encoding, it is also possible to define
compact one-hot encoding:

12.1 Definition. Let + be a categorical attribute. For a chosen order
+ = (E1 , E2 , . . . , E?), its compact one-hot encoding is the map + −→

3A similar trick is suggested by Josse et al (2020): repeat each attribute with missing
features twice, and encode missing values alternatively as −∞ and +∞.
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Figure 12.4: Example illustrating the correspondence between crisp
partitions and categorical attributes of a dataset -. Rows correspond to
the records of -, columns to the partition classes and categories. The
values 1 and 0 indicate membership and non-membership, respectively.

[0, 1]?−1 that sends E? to 0 and E8 for 8 < ? to the standard basis vector
e8 = 〈0, . . . , 0, 1, 0, . . . , 0〉.

Compact one-hot encoding is sufficient to ensure that all categorical
values are linearly separable, but it also introduces an asymmetry that
can be undesirable.

12.2 Remark. Binary attributes can be represented both as categorical
attributes and as numerical attributes. In the latter case, a typical choice
is to use the values 0 and 1. This numerical representation corresponds
directly to a compact one-hot encoding of its categorical representation.
We will exploit this correspondence to argue that barycentric attributes
generalise not just categorical, but also [0, 1]-valued numerical attributes.

It is a classical observation that categorical attributes correspond to
partitions (Quinlan 1986). Formally, a categorical attribute + induces a
partition on a dataset - through the equivalence relation that equates
elements of - with the same value in + . Conversely, if we have a
partitionU of -, we can derive a categorical attribute of - that takes,
for each G ∈ -, the value* inU that contains H.

Both categorical attributes (through one-hot encoding) and partitions
can be represented with a matrix of values in {0, 1}, with exactly one
value equal to 1 on each row (Figure 12.4). Later in this section, we will
extend this correspondence between categorical attributes and partitions
to barycentric attributes and fuzzy partitions.

Barycentric attributes

Barycentric values (or coordinates; also knownas homogeneous coordinates)
are numerical values that sum to a fixed number (typically 1), or where
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Tertiary (services)

Primary (agriculture)

Secondary (industry)

Figure 12.5: Example of a ternary plot: distribution of GDP over
economic sectors of countries and territories (CIAWorld Factbook 2022).

only the relative proportions are considered important. The concept
dates back to at least Möbius (1827), who used it to express a point as
the weighted sum (the barycentre, where the weights cancel each other
out) of the vertices of a simplex (Allardice 1891; Boyer 1956). Barycentric
values are also used to define the points that make up projective space.
For the purpose of the present chapter, we will assume that barycentric
values are non-negative, and use the following formal definition:

12.3 Definition. An attribute is barycentric if it is equal to a copy of(
R<≥0 \ {0}

)
/∼ for some < ≥ 1, where ∼ is the equivalence relation

defined by 〈G1 , G2 , . . . , G<〉 ∼ 〈�G1 ,�G2 , . . . ,�G<〉 for all � ∈ R>0. The
normalised representation of a value [G1 , G2 , . . . , G<] ∈

(
R<≥0 \ {0}

)
/∼ is

the vector 〈G1/B, G2/B, . . . , G</B〉 ∈ R< , where B :=
∑
8≤< G8 .

Barycentric values are often encountered in the literature in the form
of ternary plots (Figure 12.5), which display the relative frequencies of
three components. Recent examples include the composition of planets
(core, mantle and hydrosphere) (Haldemann et al 2022; Huang et al 2022;
MacDonald et al 2022), seabed sediment (F Wang et al 2021), ternary
mixtures of fluids (Stemplinger et al 2021; Tönsmann et al 2021), ternary
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compounds (WC Chen et al 2021; Nolan et al 2021) and even human
behaviour (M Kim et al 2021; Molter et al 2022).

In addition, some machine learning problems are typically ap-
proached by considering relative token frequencies. For instance, this
can be part of the calculation of the cosine similarity between text records
(Sangma et al in press; Tian et al 2021; Zhao & Mao 2018).

Finally, the confidence scores produced by a classification model (or
some other estimate), when normalised to sum to 1, are also a natural
example of barycentric values.

Barycentric attributes as fuzzified categorical attributes

Barycentric attributes generalise categorical attributes in the following
way. If (R<≥0 \ {0})/∼ is a barycentric attribute, then the subset + of
values with only one non-zero coefficient forms a categorical attribute,
and we will write �(+) := (R<≥0 \ {0})/∼ and say that + is the set of
categories of �(+). In particular, the normalised representation of �(+)
reduces precisely to one-hot encoding when restricted to + .

This relationship can also be understood geometrically. The set of
normalised representations of a barycentric attribute coincides with the
standard < − 1-simplex, which is spanned by < vertices, the one-hot
encoded values of + .

Conversely, barycentric attributes can be understood as fuzzified
categorical attributes, allowing us to give a fuzzy answer to the question
of category membership:

12.4 Remark. Let �(+) be a barycentric attribute with < categories.
Then we can associate to each value in �(+) with normal represen-
tation 〈G1 , G2 , . . . , G<〉 the fuzzy set in + with membership degrees
G1 , G2 , . . . , G< . These are precisely the fuzzy sets in + with cardinality 1.

This is reinforced by the fact that barycentric attributes correspond to
fuzzy partitions in the same way that categorical attributes correspond
to crisp partitions (as discussed at the beginning of this section). Recall
the definition of a fuzzy partition (Dunn 1974; Ruspini 1969):

12.5 Definition. Let - be a finite set. A fuzzy partition on - is a finite set
ℱ of fuzzy sets in - such that, for each G ∈ -, we have

∑
�∈ℱ �(G) = 1.

To see that a barycentric attribute �(+) on a dataset - contains
the same information as a fuzzy partition on -, consider that both
can be represented by a |- | × |+ | matrix of values in [0, 1], such that
the rows sum to 1 (Bezdek & Harris 1978). The columns of such
a matrix correspond to a fuzzy partition (Figure 12.6a), whereas its
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Figure 12.6: Example illustrating the correspondence between fuzzy par-
titions and fuzzy categorical attributes of a dataset -. Rows correspond
to the records of -, columns to the partition classes and categories.
Values are membership degrees.

Categorical Barycentric

Binary [0, 1]-valued

Figure 12.7: Euler diagram of different attribute types. Barycentric
attributes generalise both categorical and [0, 1]-valued attributes.

rows correspond to the normalised values of a barycentric attribute
(Figure 12.6b).

[0, 1]-valued attributes as barycentric attributes
Just as one-hot encoding is redundant and we can use compact one-
hot encoding to represent the same information with one fewer value
(Definition 0.6), so the normalised representation of a barycentric at-
tribute 〈G1 , G2 , . . . , G<〉 is redundant, and we can encode it compactly
as 〈G1 , G2 , . . . , G<−1〉. Together, these compactly encoded values form
the < − 1-simplex in R<−1 spanned by the standard < − 2-simplex and
the origin. Conversely, we can reconstruct the full representation from
a compactly encoded value

〈
G1 , G2 , . . . , G?−1

〉
by appending the value

1 −∑
8≤?−1 G8 .

The compact encoding of a barycentric attribute with only two
categories is a single value in [0, 1]. This leads us to the following
observation:

12.6 Remark. Let � be a [0, 1]-valued attribute. Then the values of
� are compactly encoded values of a barycentric attribute with two
categories. We obtain the corresponding redundant representation
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with G ↦−→ 〈G, 1 − G〉. Thus, barycentric attributes generalise not just
categorical attributes, but also [0, 1]-valued attributes (Figure 12.7).

This redundant representation of [0, 1]-valued attributes generalises
the categorical representation of binary attributes that we noted in
Remark 12.2. We can illustrate this with an example. Suppose that we
have a binary attribute denoting height, with two values, ‘short’ and
‘tall’. Its compact encoding is as a single numerical attribute � with
two values, 0 and 1, expressing ‘tallness’. Its redundant encoding is as
two numerical attributes, tallness (�) and shortness (1 − �). Likewise,
suppose that we have [0, 1]-valued attribute �′ denoting height, then
its redundant encoding 〈�′, 1 − �′〉 consists of fuzzy expressions of
‘tallness’ and ‘shortness’.

Of course, this redundant encoding of a [0, 1]-valued attribute is pre-
cisely the polar encoding that we propose in this chapter (Figure 12.1b).

Representing missing values

We now turn to the representation of missing values. Recall our example
from the previous subsection: suppose that we have a barycentric
attribute �(+)denoting height, with+ containing the two categories ‘tall’
and ‘short’, then a missing value does not convey positive information
about either category. Therefore, we accommodate the possibility that
a barycentric attribute can have a missing value by expanding the
set

(
R<≥0 \ {0}

)
/∼ to R<≥0/∼, and by stipulating that the normalised

representation of [0, 0, . . . , 0] is the zero vector 0. This corresponds to
the unique fuzzy set in + with cardinality 0 (the empty set).

Note that barycentric attributes with missing values can no longer
be represented compactly, since doing so would also encode the non-
missing value [0, 0, . . . , 1] as 0. It is precisely the redundancy of the
redundant normal representation (in particular, redundant one-hot
encoding) that enables us to encode missing values as zeroes. For
[0, 1]-valued numerical attributes, this means that our proposed polar
encoding is necessary if we want to represent missing values.

12.4 Experimental evaluation

Wenowdescribe our experimental evaluation of usingpolar encoding for
classification. Concretely, we ask whether it leads to better classification
performance than the traditional approach of mean/mode imputation
with missing-indicators.
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Table 12.1: Classification Algorithms used for the experimental compar-
ison

Distance-based classifiers

NN Nearest Neighbours (Fix & Hodges 1951)
NN-D Nearest Neighbours, distance-weighted (Dudani 1976)
FRNN Fuzzy Rough Nearest Neighbours, mean approximation with linear

weights and : = 20 (Chapter 1)
SVM-G Soft-margin Support Vector Machine (Cortes & Vapnik 1995) with

Gaussian kernel

Decision tree classifiers

CART Classification and Regression Tree (Breiman et al 1984)
RF Random Forest(Breiman 2001)
ERT Extremely Randomised Trees(Geurts et al 2006)
ABT Ada-Boosted Trees (Freund & Schapire 1995) with SAMME (stagewise

additive modeling using a multi-class exponential loss function) (Zhu
et al 2009)

GBM Gradient Boosting Machine (Friedman 2001)

Setup

We evaluate polar encoding for two sets of classifiers: distance-based
and decision tree based algorithms (Table 12.1). For the Support Vector
Machine with Gaussian kernel that is based on Euclidean distance,
we evaluate the Euclidean variant of polar encoding, while for the
nearest neighbour algorithms that allow setting the distance measure
as a hyperparameter, we evaluate both the standard and the Euclidean
variant.

For all classifiers we use the implementations provided by scikit-
learn, except for FRNN, where we use our own implementation in
fuzzy-rough-learn (Appendix A). Based on the findings in Chapter 10,
we apply cost complexity pruning (
 = 0.01) with CART, set the number
of trees of ERT to 1000, and apply early-stopping with GBM. Otherwise,
we use default hyperparameter values.

We evaluate classification performance with the AUROC. For each
dataset, we perform five-fold stratified cross-validation, repeat this
five times for different random divisions of the data, and reduce the
resulting 25 AUROC scores by taking the mean. To establish whether
the performance of polar encoding vis-à-vis imputation with missing-
indicators generalises to other (similar) datasets, we test for significance
using one-sided Wilcoxon signed-ranks tests.

We use the same collection of twenty datasets with naturally occur-
ring missing values that we previously used in Chapter 10 (described in
Section B.3). We rescale numerical attributes to [0, 1], before applying
polar encoding or mean/mode imputation with missing-indicators.
In the latter case, we then also apply one-hot encoding to categorical
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Table 12.2: ?-values of one-sided Wilcoxon signed-rank tests of barycen-
tric encoding vs mean/mode imputation with missing-indicators, for
distance-based classifiers

Classifier Boscovich distance Euclidean distance

NN 0.18 0.13
NN-D 0.18 0.15
FRNN 0.0021 0.0040
SVM-G 0.018

attributes.
For the FRNN classifier, we separately compare our results against

the approach proposed in the previous chapter, using interval-valued
upper and lower approximations. The interval-valued class predictions
are transformed into specific values by averaging the lower and upper
bounds. Specifically, we optimise a weighted mean through leave-one-
out validation on the training data. We improve upon the experiment
in the previous chapter by using not just the upper, but also the lower
approximation, for which we optimise the weighted average separately,
and calculating the mean of both. However, we still run into the
limitation that the custom tolerance relations prevent the use of standard
nearest neighbour search algorithms, and thus, their application to
large datasets. Therefore, we downsample datasets for this approach
to 2000 records, and we similarly evaluate polar encoding on these
downsampled datasets when comparing against interval-valued fuzzy
rough sets.

Results

The full results of our experiments are listed in the appendix (SectionC.3).
Table 12.2 lists the ?-values of the AUROC scores obtained with

polar encoding versus mean/mode imputation with missing-indicators,
for distance-based classifiers. For all classifiers, and both Boscovich and
Euclidean distance, polar encoding leads to improved results on our
selection of datasets. In particular, it performs significantly better for
FRNN and SVM-G. The fact that the ?-values for Euclidean distance
are not higher than the ?-values for Boscovich distance seemingly
indicates that the distortion introduced by Euclidean polar encoding is
not harmful for classification performance.

In addition to these results on the full datasets, FRNN also scores
better with polar encoding than with interval-valued upper and lower
approximations on the datasets downsampled to 2000 records (? = 0.18).

The picture is more mixed for decision tree classifiers (Table 12.3).
Polar encoding leads to improved performance for CART, ERT and
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Table 12.3: ?-values of one-sided Wilcoxon signed-rank tests of barycen-
tric encoding vs imputation with missing-indicators, for decision tree
classifiers.

Classifier ?

CART 0.060
RF 0.42
ERT 0.14
ABT 0.054
GBM 0.63

ABT, and about the same performance as mean/mode imputation with
missing-indicators for RF and GBM.

12.5 Conclusion

In this chapter we have presented the polar encoding of categorical and
[0, 1]-valued attributes as a solution for the representation of missing
values. It preserves the information encoded in their distribution, does
not require the use of imputation, and can be easily used as input for
existing machine learning algorithms. For distance-based algorithms, it
ensures that missing values are equidistant from all non-missing values,
while for decision tree algorithms, it allows splits to choose how to
group missing values.

We have provided further justification for our proposal by giving a
formal definition of barycentric attributes, and showing that they can
be understood as fuzzified categorical attributes and also generalise
[0, 1]-valued attributes. Moreover, the normalised representation of
barycentric attributes reduces to traditional one-hot encoding for cate-
gorical values. Because this representation is slightly redundant, using
one more dimension than strictly necessary, it allows us to represent
missing values as zero vectors, symbolising the absence of information.

Having previously shown in Chapter 10 that missing-indicators
improve classification performance on real-life datasets, in the present
chapter we conducted an experiment to test whether polar encoding
works even better. For the distance-based classifiers, this was the case
on our selection of datasets, with significant improvement in particular
for FRNN and SVM-G. For the decision tree classifiers, the picture was
more mixed, but polar encoding improved performance for CART, ERT
and ABT.

Accordingly, we recommend polar encoding as a conservative base-
line approach for missing values that seemingly performs as well or
better than the missing-indicator approach. For classifiers where there
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is no notable difference in performance, like RF and GBM, practitioners
may want to try out both approaches.
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We will end this thesis by summing up the main results (Section 12.5)
and discussing some open questions and possibilities for future work
(Section 12.5).

Results

Part I In Chapter 1, we started by tracing the development of fuzzy
rough nearest neighbour (FRNN) classification. We then argued
that by adapting ordered weighted averaging (OWA) operators
into weighted mimima and maxima, predictions by FRNN can
be efficiently calculated using nearest neighbour queries. In
Chapter 2, we reviewed the concept of Minkowski distance, with
the important special cases of Boscovich, Euclidean andChebyshev
distance. We then recalled howMinkowski distance can also be
used to define certainmeasures of central tendency and dispersion.
In particular, we identified A1, the mean absolute distance to
the median, as the measure of dispersion induced by Boscovich
distance. In Chapter 3, we conducted an experiment on fifty real-
life datasets and found that on average, nearest neighbour (NN)
and FRNN classification perform best with Boscovich distance
and A1 scaling and that FRNN outperforms NN, for which we
recommend linear distance-weights. Finally, we determined good
default choices for the number of neighbours :.

Part II Chapter 4 contained a small case study, which demonstrated
that FRNN can be scaled to very large datasets using distributed
computing, although this approach has several limitations and
is perhaps not very practical. More significantly, we also showed
in Chapter 5 that it is possible to fundamentally reduce the run
time complexity of FRNN by substituting approximate nearest
neighbour queries, which incur only aminimal loss in classification
performance.

Part III This part was devoted to one-class classification. We pro-
posed average localised proximity (ALP), a new data descriptor
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(Chapter 6), and used a series of 246 one-class classification tasks
to determine good default hyperparameter values for ALP and
other data descriptors, and to show that ALP has the best over-
all performance (Chapter 7). In Chapter 8, we found that the
Malherbe-Powell algorithm is a good choice for optimising the
hyperparameter values of data descriptors, andwe determined the
number of necessary evaluations. After hyperparameter optimisa-
tion, the support vector machine (SVM) data descriptor performs
slightly better than ALP, but ALP can be optimised much more
efficiently. Finally, in Chapter 9, we showed that upper and lower
approximations can be reinterpreted as models produced by a
weighted nearest neighbour distance (WNND) data descriptor.
We evaluated its performance for one-class classification, and
concluded that it is an interesting alternative for nearest neighbour
distance (NND). We also proposed a generalisation of FRNN as a
one-class classification ensemble, but were not able to improve its
overall multiclass performance by substituting different data de-
scriptors and optimising their hyperparameter values on the basis
of one-class classification. However, we found some evidence that
an ensemble based on ALP does perform better for large datasets
with a small number of decision classes.

Part IV In the last part, we evaluated three approaches that allow clas-
sifiers to learn the information encoded by missing values. In
Chapter 10, we showed that missing-indicators increase classifi-
cation performance for a range of algorithms, and that it suffices
to pair them with mean/mode imputation. In Chapter 11, we
showed that by using interval-valued fuzzy sets, FRNN can di-
rectly represent the uncertainty from missing values. However,
this approach is difficult to implement efficiently, and it only pos-
sibly outperforms mean/mode imputation for datasets with few
missing values. Finally, in Chapter 12, we proposed polar encod-
ing, a representation of missing values with [0, 1]-scaled data that
does not require imputation. We showed that this makes missing
values equidistant from all non-missing values and provides a
practical implementation of a previous proposal for decision trees,
missingness incorporated in attributes (MIA). We also argued
that polar encoding can be interpreted as the standard representa-
tion of barycentric attributes, which generalise both categorical
and [0, 1]-valued attributes. We showed that polar encoding out-
performs missing-indicators for nearest neighbour algorithms,
support vector machines and some decision tree algorithms, while
for others there is no real difference.

We also wish to highlight three results of potentially broad practical
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relevance for other researchers:

• We have generally obtained better results with Boscovich distance
than with Euclidean distance, whereas many machine learning
applications appear to employ Euclidean distance by default. This
is understandable, because Euclidean distance has a number of
special properties and is most natural in a physical sense, but our
findings suggest that, where possible, this unspoken assumption
should be challenged.

• The efficient leave-one-out validation technique that we have
identified for nearest neighbour classifiers (Section 3.2) seems
generally preferable to cross-validation when we need a single
validation score (e.g. for hyperparameter optimisation) and are
not interested in calculating model variance.

• We have converted (and preprocessed where necessary) a large
collection of real-life classification datasets from theUCI repository
for machine learning into a standard format (Appendix B). These
datasets can now easily be used by other researchers for benchmark
purposes.

Open questions and future work

In this last section, we will consider a number of open questions and
suggest avenues for future research.

Revisiting older fuzzy rough set algorithms
In view of the fact that we were able to make FRNN classification more
powerful and efficient through the use of weighted maxima and minima
instead of full-length OWA operators, it could be worthwhile to revisit
and improve a number of other, more specialised fuzzy rough set algo-
rithms, like FROVOCO (imbalanced classification), FRONEC (multilabel
classification), FRNN (regression), FRFS (feature selection) and FRPS
(instance selection). (These are briefly discussed in Section A.5.)

The relative scale of numerical and categorical attributes
The measures of dispersion that we evaluated in Chapter 3 determine
the relative scale between numerical attributes. But when a dataset
additionally has categorical attributes, one also has to consider the
relative scale between numerical and categorical attributes. If one
adopts one-hot encoding, this question is reduced to the absolute scale
of numerical attributes. That is, in the presence of categorical attributes,
not just the choice between scaling by the standard deviation and the
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half-range matters, but also the choice between scaling by the half-range
and by the range (or any other multiple), which is largely irrelevant in
purely numerical datasets.

Applying ALP to unsupervised outlier detection

Given that ALP performed well in our one-class classification exper-
iments, a natural question to ask is whether it is also suitable for
unsupervised outlier detection.

The influence of scale on the default hyperparameter values of
data descriptors

For our one-class classification experiments in Chapter 7, we chose
to scale by the interquartile range. It would be worthwhile to investi-
gate to which extent different scales affect the recommended default
hyperparameter values.

Realistic one-class classification problems

The data descriptors in Chapters 7 and 8 were evaluated on the basis
of one-class classification tasks derived from multiclass datasets. One
may ask whether these tasks are sufficiently representative of real-life
problems for which one-class classification is a good fit. Finding better
tasks is complicated by the fact that one-class classification is appropriate
particularly in contexts where it is difficult to obtain a representative
sample of negative records, but that for the purpose of evaluation, we
ought to have such a representative sample.

As a first step to address this situation, we would like to suggest a
systematic inventorisation of one-class classification applications in the
literature, the collection of datasets used in these studies, and a critical
evaluation of whether one-class classification is really the best approach
to solve these problems.

Fuzzy rough one-class ensembles

It remains an open question whether lower approximations can be incor-
porated into one-class ensembles to obtain a classifier with even better
performance than FRNN. Thiswill likely require a deeper understanding
of why using one-class classification to optimise hyperparameter values
separately for each decision class appears to increase the overall perfor-
mance of upper approximations, but not of lower approximations. If this
cannot be overcome, it may be possible to combine globally optimised
lower approximations with class-wise optimised upper approximations.
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Once this issue is solved, an additional step would be to combine
the use of lower approximations with other proposals for one-class
ensembles in the literature.

Polar encoding for other scales
A limitation of polar encoding is that it pertains to [0, 1]-scaled data.
Therefore, a natural direction for future research is its extension to
numerical data that is scaled differently. The useful properties of polar
encoding could be preserved for a central region of each attribute
corresponding to the interval [0, 1].

A benchmark collection of classification datasets
The collection of multiclass datasets that we have used in this thesis
could form the core of a standardised benchmark test. For this purpose,
the collection should be made more robust by increasing its size (to
mitigate overfitting on this particular collection of datasets), and in
particular by increasing its diversity. This presupposes the identification
of important dataset characteristics, like the imbalance ratio, the number
of classes, the types of attributes and the difficulty of the classification
task, in terms of which diversity may be defined. Having a large, diverse
collection of datasets with interesting characteristics would not just
allow one to empirically evaluate overall classification performance, but
also to determine whether a given algorithm is specifically suited to
certain classification tasks.
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Appendix A

fuzzy-rough-learn1

In this appendix, we describe the Python library fuzzy-rough-learn. The
principal goal of fuzzy-rough-learn is tomake soft computing algorithms
from the literature available to other researchers, both to enable their
application to practical problems and to facilitate empirical comparisons
and further development. It includes some of the algorithms in this
thesis, as well as reference implementations for a number of older fuzzy
rough set algorithms.

fuzzy-rough-learn is inspired by scikit-learn (Pedregosa et al 2011)
and relies on some of its algorithms as a backend. scikit-learn is one
of the most popular Python libraries for general machine learning, and
only admits “well-established algorithms” with at least 200 citations2, a
criterion not (yet) satisfied by most algorithms in fuzzy-rough-learn.

The target audience for fuzzy-rough-learn is researchers with some
programming skills, in particular thosewho are familiarwith scikit-learn.
We envision two principal use cases:

• The application of its algorithms to solve concretemachine learning
problems.

• The creation of new or modified algorithms to handle new types
of data or to achieve better performance.

A third use case falls somewhat in between these two: reproducing or
benchmarking against results from existing algorithms.

We will give brief sketches of existing implementations (Section A.1),
the release history of fuzzy-rough-learn (Section A.2), its formal prop-
erties (Section A.3) and our design principles (Section A.4), before

1This appendix is based on Lenz et al (2020a) and Lenz et al (2022a).
2https://scikit-learn.org/stable/faq.html
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describing the core algorithms (Section A.5) and utility functions (Sec-
tion A.6) in fuzzy-rough-learn and briefly discussing the future direction
of work (Section A.7).

A.1 Background

Since its conception by Dubois & Prade (1990), fuzzy rough set theory
has been applied as part of a growing number of machine learning
algorithms (Vluymans et al 2015b). Simultaneously, the distribution
and communication of machine learning algorithms has spread beyond
academic literature to a multitude of publicly available software imple-
mentations (Jović et al 2014; Nguyen et al 2019; Z Wang et al in press).
And also during the same period, Python has grown from its first release
(Rossum & Boer 1991) to become one of the world’s most popular high-
level programming languages. Python has become especially popular
in the field of data science, in part due to the self-reinforcing growth of
its package ecosystem.

Only a limited number of fuzzy rough set machine learning al-
gorithms have received publicly available software implementations.
Variants of FRNN classification, fuzzy rough rule induction (Jensen et al
2009), fuzzy rough feature selection (FRFS, Cornelis et al 2010) and fuzzy
rough prototype selection (FRPS, Verbiest et al 2013; Verbiest 2014) are
included in the R package RoughSets (Riza et al 2014), and have also
been released for use with the Java machine learning software suite
WEKA (Hall et al 2009; Jensen 2010).

So far, none of these algorithms seem to have been made available
for Python in a systematic way.

A.2 Release history

To date, there have been three minor releases of fuzzy-rough-learn (as
well as a number of bug patches):

0.0 | 2019-07-30

• Proof of concept, implementation of FRNN classification.

0.1 | 2020-06-22

• Reference implementations of FROVOCO, FRONEC, FRFS and
FRPS.
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0.2 | 2021-09-13

• Expansion of the scope of fuzzy-rough-learn to also cover one-class
classification (Chapter 6) to facilitate exploration of the conceptual
overlap with upper and lower approximations (Chapter 9).

• Inclusion of FRNN regression, additional hyperparameters for
FROVOCO.

• Incorporation of a convenient method for specifying feature pre-
processing.

• Redesign of class structure and hyperparameters, to make it easier
for users to control the behaviour of the included algorithms and
supplement their own alternatives.

A.3 Formal specifications

fuzzy-rough-learn is hosted on the two principal repositories for Python
libraries, pipy and conda-forge, and thus can easily be installed with
either pip or conda. API documentation is integrated into the code and
automatically updated on the documentation website3 whenever a new
version is released, and includes references to the literature. fuzzy-
rough-learn also has an integrated test suite to limit the opportunities
for bugs to be introduced.

The source code is accessible on GitHub4, which also offers users the
opportunity to report issues or contribute improvements or additional
material. fuzzy-rough-learn is distributed under theMIT license (Saltzer
2020), making it freely usable for any purpose.

fuzzy-rough-learn 0.2 requires Python 3.7 or later. Its dependencies
are NumPy 1.17, SciPy 1.1 and scikit-learn 0.22. In addition, use of
the EIF data descriptor requires the eif library, and the SAE feature
preprocessor requires TensorFlow and Keras.

A.4 Design principles

The two primary design principles of fuzzy-rough-learn are consistency
and modularity. To achieve this, we have chosen a uniform structure
based on NumPy arrays and functions. As in scikit-learn, datasets are =
by < two-dimensional arrays, where = is the number of records, and
< the number of features. Machine learning models are functions that
take a (test) dataset and return one or more values for each record.
This means that machine learning algorithms are second-order functions,

3https://fuzzy-rough-learn.readthedocs.io
4https://github.com/oulenz/fuzzy-rough-learn
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Core algorithms Utility functions

Classifiers Array functions Parametrisations
FRNN div_or log_multiple

FRONEC first multiple

FROVOCO greatest

last T-norms
Data Descriptors least goguen_t_norm

ALP remove_diagonal heyting_t_norm

CD soft_head lukasiewicz_t_norm

EIF‡ soft_max

IF† soft_min Transformations
LNND soft_tail contract

LOF shifted_reciprocal

MD Dispersion measures truncated_complement

NND interquartile_range

SVM† maximum_absolute_value Vector size measures
standard_deviation MinkowskiSize

Feature Preprocessors total_range

FRFS Weights
LinearNormaliser Location measures ConstantWeights

IQRNormaliser maximum ExponentialWeights

MaxAbsNormaliser mean LinearWeights

RangeNormaliser median QuantifierWeights

Standardiser midhinge ReciprocallyLinearWeights

SAE midrange

VectorSizeNormaliser minimum Other (postprocessing)
discretise

Instance Preprocessors Neighbour search methods probabilities_from_scores

FRPS BallTree† select_class

KDTree†
Regressors
FRNN

Figure A.1: Schematic overview of the contents of fuzzy-rough-learn.
†Wrapper for implementation in scikit-learn. ‡Wrapper for implemen-
tation in eif library.
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Table A.1: Internal subdivision of fuzzy-rough-learn.

Name Description
neighbours Nearest neighbour algorithms
networks Neural networks
statistics Statistical functions
support_vectors Support vector machines
trees Decision trees
uncategorised Other functions

which take a (training) dataset and return a model. An algorithm is
supervised if, in addition to a dataset, it also takes an array of labels.

fuzzy-rough-learn uses classes, but in a restricted way. At present,
the classes only possess two user-facing methods: the initialisation
method __init__, and the call method __call__. Initialisation allows
users to set hyperparameter values, while __call__ determines that
an object of this class, once initialised, behaves just like a function.5
Therefore, we call this a parametrisable function. To make it clear for
users whether a function is a parametrisable function that must be
initialised, we use CamelCase if this is the case, and snake_case if not (in
line with the Python convention for class and function names).

The advantage of this design pattern is that it offers users a large
amount of flexibility. They can control the principal design choices
of each algorithm by setting one or more hyperparameter values. If a
user requires greater flexibility, they can substitute their own class by
inheriting from one of the abstract base classes. And finally, thanks to the
concept of duck typing in Python, they can also substitute any simple
function that accepts the relevant input and produces the required
output.

Conceptually, the functions in fuzzy-rough-learn can be subdivided
into core algorithms and utility functions (Figure A.1, Sections A.5 and
A.6). The source code is organised into domains of machine learning
(Table A.1). However, end users are presented with a flat hierarchy,
which only groups functions according to their functionality (the groups
in Figure A.1). Thus, e.g. the FRNN classifier can be imported with:

from frlearn.classifiers import FRNN

Among the algorithms, feature preprocessors play a special role,
since they are not generally used on their own, but in combination with
one of the other algorithms. For users, this can be impractical, since it is

5To use the technical term, it is a ‘callable’. Classes themselves are also callables, and
many so-called functions in the Python standard library are in fact classes.
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not enough to apply each feature preprocessor on the training data to
construct the respective models, but each model then has to be applied
to transform the training data, as well as any and all test data, in the
correct order. Therefore, we automate this process and allow users to
supply any number of feature preprocessors as a hyperparameter when
initialising any algorithm. We also use this functionality to equip some
algorithmswith default feature preprocessors, whichmay be overridden
by the user if so desired.

Algorithm 1 contains a small example illustrating the use of fuzzy-
rough-learn.

Algorithm 1 Application of FRNN classification to the iris dataset using
fuzzy-rough-learn.

from sklearn import datasets
from sklearn.metrics import accuracy_score, roc_auc_score
from sklearn.model_selection import train_test_split

from frlearn.base import probabilities_from_scores, select_class
from frlearn.classifiers import FRNN
from frlearn.feature_preprocessors import RangeNormaliser

# Import example data.
iris = datasets.load_iris()
X = iris.data
y = iris.target

# Split into train and test sets.
X_train, X_test, y_train, y_test = train_test_split(

X, y, stratify=y, random_state=0
)

# Create an instance of the FRNN classifier, construct the model,
# and query on the test set.
clf = FRNN(preprocessors=(RangeNormaliser(), ))
model = clf(X_train, y_train)
scores = model(X_test)

# Convert scores to probabilities and calculate AUROC.
probabilities = probabilities_from_scores(scores)
auroc = roc_auc_score(y_test, probabilities, multi_class='ovo')
print('AUROC:', auroc)

# Select classes with the highest scores and calculate accuracy.
classes = select_class(scores)
accuracy = accuracy_score(y_test, classes)
print('accuracy:', accuracy)
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A.5 Core algorithms

In this section, we discuss the main algorithms included in fuzzy-
rough-learn. As a general rule and where applicable, users can set the
dissimilarity measure, the number of nearest neighbours, the weights
used for aggregation, and the nearest neighbour search algorithm.

Classifiers

FRNN

See Chapter 1.

FROVOCO

Fuzzy Rough OVO COmbination (FROVOCO, Vluymans et al 2018b)
is an ensemble classifier specifically designed for, but not restricted
to, imbalanced data, which adapts itself to the Imbalance Ratio (IR)
between classes. It balances one-versus-one decomposition with two
global class afinity measures.

In a binary classification setting, the lower approximation of one
class corresponds to the upper approximation of the other class, so
when using OWA weights, the effective number of weight vectors to be
chosen is 2. FROVOCO uses the IR-weighting scheme, which depends
on the IR between the classes. If the IR is less than 9, both classes are
approximated with exponential weights. If the IR is 9 or more, the
smaller class is approximated with exponential weights, while the larger
class is approximated with a linear weight vector of length : equal to
10% of the number of records.

Provided with a training set -, and a new instance H, FROVOCO
calculates the class score of H for a class� from the following components:

+(�, H) weighted vote For each other class �′ ≠ �, calculate the upper
approximation memberships of H in � and �′, using the IR-
weighting scheme. Rescale each pair of values so they sum to 1,
then sum the resulting scores.

<4<(�, H) positive affinity Calculate the average of the membership
degrees of H in the upper and lower approximations of �, using
the IR-weighting scheme.

<B4=(�, H) negative affinity For each class �′, calculate the average
positive affinity of the members of � in �′. Combine these average
values to obtain the signature vector (� . Calculate the mean
squared error of the positive affinities of H for each class and (� ,
and divide it by the sum of the mean squared errors for all classes.
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The final class score is calculated from these components as follows:

�+(�, H) =
+(�, H) + <4<(�, H)

2 − 1
<
<B4=(�, H). (A.1)

We have added hyperparameters to FROVOCO that control the IR
threshold that determines which classification subtasks are considered
imbalanced, as well as the weights that are used for balanced and
imbalanced subtasks.

FRONEC

Fuzzy Rough Neighbourhood Consensus (FRONEC, Vluymans et al
2018a) is a multilabel classifier. It combines the instance similarity ',
based on the attribute values of instances, with the label similarity '3,
which is based on the label sets of instances. It offers two possible
definitions for '3. The first, '(1)3 , is simply Hamming similarity scaled
to [0, 1]. The second label similarity, '(2)

3
, takes into account the prior

probability ?; of a label ; in the training set. Let ! the set of possible
labels, and !1 , !2 two particular label sets. Then '

(2)
3

is defined as
follows:

0 =
∑

;∈!1∩!2

(1 − ?;);

1 =
∑

;∈!\(!1∪!2)
?; ;

'
(2)
3
=

0 + 1
0 + 1 + 1

2 |!1Δ!2 |
.

(A.2)

Provided with a training set -, and a new instance H, FRONEC
predicts the label set of H by identifying the training instance with
the highest ‘quality’ in relation to H. There are three possible quality
measures, based on the upper and lower approximations:

&1(H, G) = owa
F;
({�('(I, H), '3(G, I))|I ∈ #(H)});

&2(H, G) = owa
FD
({)('(I, H), '3(G, I))|I ∈ #(H)});

&3(H, G) =
&1(H, G) +&2(H, G)

2 ,

(A.3)

where '3 is a choice of label similarity, ) the Łukasiewicz t-norm, � the
Łukasiewicz implication, and #(H) the : nearest neighbours of H in -,
for a choice of :.

For a choice of quality measure &, FRONEC predicts the labels of
the training instance with the highest quality. If there are several such
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training instances, it predicts all labels that appear in at least half of the
cases.

Data descriptors

The data descriptors in fuzzy-rough-learn have for the most part been
discussed in Section 6.2, and will not be described in detail here. IF
and SVM are wrappers for the implementations in scikit-learn, EIF is a
wrapper for the implementation in the eif package6.

We note that NND can be initialised with a weight vector, resulting
in WNND (Definition 9.1), which is used internally to define FRNN
classification.

fuzzy-rough-learn also implements centre distance, a generalisation
of centroid distance (used in combination with the SAE preprocessor)
to any measure of central tendency.

Feature preprocessors

FRFS

Fuzzy Rough Feature Selection (FRFS, Cornelis et al 2010) greedily
selects features that induce the greatest increase in the size of the
positive region, until it matches the size of the positive region with all
features, or until the required number of features is selected.

The positive region is defined as the union of the lower approxima-
tions of the decision classes in -. Its size is the sum of its membership
values.

The similarity relation'� for a given subset of attributes � is obtained
by aggregating with a choice of t-norm (default: Łukasiewicz) the per-
attribute similarities '0 associated with the attributes 0 in �. These are
in turn defined, for any G, H ∈ -, as the complement of the difference
between the attribute values G0 and H0 after rescaling by the sample
standard deviation �0 :

'0(G, H) = max(1 −
��G0 − H0 ��

�0
, 0). (A.4)

LinearNormaliser

Unsupervised. Rescales the data by centring it on the specified measure
of central tendency and/or dividing by the specified measure of disper-
sion. We provide a number of convenience functions (Table A.2), but
the more general class allows users to define their own variants.

6https://github.com/sahandha/eif
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Table A.2: Convenience functions for linear normalisers in fuzzy-rough-
learn.

Centre Dispersion
IQRNormaliser midhinge interquartile_range
MaxAbsNormaliser maximum_absolute_value
RangeNormaliser midrange total_range
Standardiser mean standard_deviation

SAE

Shrink Autoencoder (Section 6.2). Unsupervised, designed to make
target data easier to separate from other data by data descriptors. Learns
a

⌊√
<

⌋
+ 1-dimensional latent representation of the target data, which

is induced to shrink around the origin by the cost function, which
balances reconstruction error against the Euclidean norm of the latent
representation.

This is a reimplementation using the Keras and TensorFlow frame-
work, based on the code provided by the original authors.7

The SAE neural network consists of six dense layers. The first three
layers encode the data by linearly decreasing the number of features from
< to

⌊√
<

⌋
+ 1, while the last three layers use the same (tied) weights to

decode the data again. We use the hyperbolic tangent activation function
and Glorot uniform weight initialisation (Glorot & Bengio 2010).

The target data is split into a training set (80%) and a validation set
(20%). Batch size is equal to 5%of the training set, with amaximumof 100.
Validation accuracy is calculated every 5 epochs. The network is trained
for 1000 epochs, or until the early stopping criterion is satisfied, which is
the case when validation accuracy has not substantially increased for a
number of epochs corresponding to 400 batches. The network is trained
with the ADADELTA optimiser (Zeiler 2012) with an initial learning
rate of 0.01.

VectorSizeNormaliser

Unsupervised. Projects all vectors onto the unit sphere. Typically used
in natural language processing (NLP) for frequency counts, when only
relative frequencies are deemed important. What is commonly called
the cosine dissimilarity can then be obtained by measuring the squared
Euclidean distance.

7https://github.com/vanloicao/SAEDVAE
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Instance preprocessors
FRPS

Fuzzy Rough Prototype Selection (FRPS, Verbiest et al 2013; Verbiest
2014) uses upper and/or lower approximation membership as a quality
measure to select instances. It follows the following steps:

1. Calculate the quality of each training instance. The resulting
values are the potential thresholds for selecting instances.

2. For each potential threshold and corresponding candidate instance
set, count the number of instances in the overall dataset that have
the same decision class as their nearest neighbour within the
candidate instance set (excluding itself).

3. Return the candidate instance set with the highest number of
matches. In case of a tie, return the largest such set.

There are a number of differences between the definition of FRPS
by Verbiest et al 2013 and Verbiest 2014. In each case, the present
implementation follows Verbiest 2014:

• While Verbiest et al (2013) use instances of all decision classes to
calculate upper and lower approximations, Verbiest 2014 calculates
the upper approximation membership of an instance using only
instances of the same decision class, and its lower approximation
membership using only instances of the other decision classes.
This choice affects the length of the weight vector.

• Verbiest (2014) excludes each instance from the calculation of its
own upper approximation membership, while Verbiest et al (2013)
do not.

• Verbiest et al 2013 use linear weights, while Verbiest 2014 uses
reciprocally linear weights.

• Verbiest et al 2013 define the similarity relation ' by aggregating
the per-attribute similarities '0 using the Łukasiewicz t-norm,
whereas Verbiest 2014 recommends using the mean.

• In case of a tie between several best-scoring candidate prototype
sets, Verbiest et al 2013 return the set corresponding to the median
of the corresponding thresholds, while Verbiest 2014 returns the
largest set (corresponding to the smallest threshold).

In addition, there are two implementation issues not addressed by
either Verbiest et al (2013) or Verbiest (2014):
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• It is unclear what distance measure the nearest neighbour search
should use. It seems reasonable that it should either correspond
to the similarity relation ' (and therefore incorporate the same
aggregation strategy from per-attribute similarities), or that it
should match whatever distance measure is used by the classi-
fication algorithm subsequent to FRPS. By default, the present
implementation uses scaled Boscovich distance.

• When the largest quality measure value corresponds to a singleton
candidate instance set, it cannot be evaluated (because the single
instance in that set has no nearest neighbour). Since this is an edge
case that would not score highly anyway, it is simply excluded
from consideration.

Regressors

FRNN

Fuzzy Rough Nearest Neighbour regression (FRNN, Jensen & Cornelis
2011). Let - be the training set and 3 : - −→ R the target value. For a
test instance H, the fuzzy tolerance class '3(·,NN8(H)) of its 8th nearest
neighbour NN8(H) is the fuzzy set defined as:

'3(·,NN8(H))(G) :=
|3(NN8(H)) − 3(G)|

max(3[-]) −min(3[-]) , (A.5)

for any G in -. We use this to define a weight F8 , equal to the mean
membership degrees of H in the strict upper and lower approximations
of '3(·,NN8(H)):

F8 := ('3(·,NN8(H))(H) + '3(·,NN8(H))(H))/2. (A.6)

The upper approximation membership is equal to at least the similarity
between H and NN8(H), but can be higher if there is a closer neighbour
with a sufficiently similar target value. The lower approximation
membership is equal to at least the distance to the closest neighbour
NN1(H), but can be higher if the target value of NN1(H) is sufficiently
similar to that of NN8(H). In sum, greater weight is given to the values
of closer neighbours, and to values of neighbours that reinforce each
other by having similar target values.

Finally, these weights are used to predict a target value for H as the
weighted sum of the target values of its : neighbours (default: 20):

3(H) :=
∑
8≤:

F8 · 3(NN8(H))/
∑
8≤:

F8 . (A.7)
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While the calculation of the upper approximation membership val-
ues can be restricted to the : nearest neighbours of H, the calculation of
the lower approximation membership values in principle requires con-
sidering all instances in the training data. Therefore, FRNN regression
does not at present scale well to large datasets.

A.6 Utilities

In this section, we discuss all the other functions included in fuzzy-
rough-learn. These can be used as input for various hyperparameters of
the algorithms discussed in the previous section.

Array functions

A collection of diverse utility functions for working with NumPy arrays.
first, last, least and greatest return, respectively, the : first, last,
least and greatest elements along the specified axis of an array. These
functions are used internally by the functions soft_head, soft_tail,
soft_min, soft_max, which additionally take a weight function (Subsec-
tion A.6), and use this to aggregate the : values along the specified axis.
soft_max and soft_min are implementations of the weighted maximum
and minimum (Definition 1.8).

remove_diagonal takes an = by = square matrix, and removes the
diagonal to obtain an = by = − 1 matrix. This can be used to remove
comparisons of an instance with itself. div_or is simple division of an
array, but wherever the division results in NaN (e.g. from 0/0), a fallback
value (default: 1) is substituted.

Dispersion measures

Functions that take a dataset, and return a one-dimensional array, indi-
cating thedispersionof thedataset in eachdimension. total_range is the
differencebetween the largest and smallest values. interquartile_range
ignores extreme values, and returns the difference between the third and
first quartile. maximum_absolute_value is the maximum of the absolute
values of the maximum and the minimum. standard_deviation is the
Euclidean distance between the dataset and its mean.

Location measures

Functions that take a dataset, and return a one-dimensional array, indi-
cating the relevant location of the dataset in each dimension. minimum,
maximum, mean and median are thin wrappers for the corresponding
NumPy functions, with the only specific difference that NaN values are
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ignored. midrange is the mean of the minimum and the maximum,
while midhinge is the mean of the first and third quartiles.

Neighbour search methods

Algorithms that construct a model which returns, for some 0 < : ≤ =,
the : nearest neighbours of each query instance and their distances. The
two algorithms BallTree (Omohundro 1989) and KDTree (Bentley 1975)
are wrappers for the corresponding implementations in scikit-learn.
By subclassing the abstract base class, users can substitute their own
nearest neighbour search algorithms, such as Hierarchical Navigable
Small World (HNSW, Section 5.1), which scales well to large datasets,
but delivers only approximately accurate results.

Parametrisations

Utility functions that can be used to express a dependency of a value on
another value. The concrete use case in this library is to let the number
of nearest neighbours : depend on the number of available instances =.
multiplemultiplies = with the provided coefficient (typically a fraction).
log_multiple multiplies log = with the provided coefficient.

T-norms

Triangular norms (Definition 0.3), expressed here as aggregation func-
tions that take an array and reduce it along the indicated axis. The
goguen_t_norm is the product. The heyting_t_norm (also known as the
Gödel norm) is the minimum. Finally, the lukasiewicz_t_norm is equal
to the sum of values, minus their count reduced by one.

Transformations

Functions to transform distance values in [0,∞] or signed distance
values in [−∞,∞] into similarity values in [0, 1]. shifted_reciprocal
transforms distance values with:

G ↦−→ 1
1 + G . (A.8)

truncated_complement transforms distance values with:

G ↦−→ max(0, 1 − G). (A.9)

contract transforms signed distance values with:

G ↦−→ G

2 · (|G | + 2) + 0.5. (A.10)
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Vector size measures

Functions from real vector spaces to [0,∞] like norms. Can also be used
as dissimilarity measures through application to H − G.

At present contains a single parametrisable function, MinkowskiSize,
which encompasses the family of measures discussed in Chapter 2. The
corresponding Minkowski mean and unrooted Minkowski size or mean
can be obtained with the boolean parameters scale_by_dimensionality
and unrooted.

Weights

Parametrisable functions that take a positive integer : and return a
weight vector. Can be used as input for the soft head, maximum,
minimum and tail functions (Subsection A.6).

In addition to the weight types in Table 1.1 (ExponentialWeights,
LinearWeights and ReciprocallyLinearWeights), wehave also included
ConstantWeights:

1
:
,

1
:
, . . . ,

1
:
, (A.11)

and QuantifierWeights (Yager 1988):

@( 1: )
@( 0: )

,
@( 2: )
@( 1: )

, . . . ,
@( :: )
@( :−1

: )
, (A.12)

where @ is a non-decreasing, regular quantifier [0, 1] −→ [0, 1].

Other: postprocessing functions

In addition to the utilities listed above, we also provide some functions
to help with postprocessing classifier predictions.

select_class takes a two-dimensional array of records and class
predictions, and returns a one-dimensional array that contains for each
record the class with the highest score. In addition, an abstention
threshold can be set, such that records with no class score above this
threshold are labelled separately.

discretise takes an array of label scores and discretises these to
either 0 or 1 depending on a threshold value. This can be used both for
the scores produced by data descriptors and for multilabel classifiers.

probabilities_from_scores divides class scores by their sum, such
that they sum to 1 for each record and can be used to calculate the
AUROC score.
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A.7 Future work

Like many software libraries, fuzzy-rough-learn is a permanent work-in-
progress. Since it is still in its early stages of development, its shape has
not crystallised into a definite form, and there are a number of unresolved
issues. We are still looking for a way to better handle components, like
the SAE preprocessor, that rely on optional dependencies. In addition,
we are looking for a way to show how algorithms from other libraries,
like approximative nearest neighbour search algorithms, can be used
together with the algorithms in fuzzy-rough-learn, without turning
those libraries into dependencies.

Another long-term goal is the inclusion of low-level algorithms, for
which we currently use scikit-learn as a backend. Apart from making
fuzzy-rough-learn more self-contained, this would also make it easier
to expand our algorithms with new functionality.

In the near term, we hope to make pre- and post-processing more
convenient to the user.

Not all of the results of this thesis have found their way into fuzzy-
rough-learn yet. In particular, we want to add options for handling
categorical and missing values, and to perform hyperparameter optimi-
sation.
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Datasets

In this appendix, we describe the datasets used in our experiments.
Section B.1 covers the numerical datasets that we used in Parts I and III,
Section B.2 the large datasets that we used in Part II, and Section B.3 the
datasets with missing values that we used in Part IV. Finally, Section B.4
contains three corresponding tables with dataset statistics.

B.1 Numerical two- and multiclass datasets

For our experiments with multiclass and one-class classification in
Chapter 3 and Part III of this thesis, we have selected fifty numerical
datasets. 48 of these are from the UCI repository, while the appendicitis
and texture datasets are, respectively, from the Keel repository and the
ELENA project. This selection includes datasets with attributes that
were originally represented with text labels, but which we converted
to integers because they were ordinal in nature. In particular, we have
represented all binary attributes with the values 0 and 1.

Table B.1 in Section B.4 lists the properties of each dataset and each
decision class.

appendicitis (Weiss & Kulikowski 1991)

106 patients who were admitted to the emergency room of Overlook
Hospital in Summit, New Jersey, and who subsequently underwent
surgery for appendicitis, during three months in 1980 and six months in
1981-1982. The task is to predict whether the patients in fact had accute
appendicitis (85) or not (21) based on 7 attributes, including the scores
from laboratory tests.

This dataset is based on the data from Marchand et al (1983). It
is unclear what exactly the attributes signify. Weiss & Kulikowski
(1991) state that the dataset originally consisted of the results from
eight laboratory tests, of which they removed one because it contained
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missing values. However, Marchand et al (1983) only consider four
laboratory tests, two of which are expressed both in absolute and in
relative terms, as well as the temperature of the patient and the time
since the onset of symptoms.

avila (De Stefano et al 2018)

20 867 sequences of four successive rows from the 12th century Avila
bible. The classes are twelve different copyists who have produced
different parts of the manuscript. The attributes consist of 10 physical
characteristics of the text.

banknote (Lohweg et al 2013)

1372 images of banknotes, to be classified as genuine or counterfeit
based on 4 attributes: the entropy, as well as the variance, skewness and
excess kurtosis of the wavelet transformed image, as well as the entropy
of the image.

Lohweg et al (2013) do not state how many records their dataset
contains, and it is not clear whether class 0 corresponds to genuine
banknotes and class 1 to counterfeit banknotes, or vice-versa.

biodeg (Mansouri et al 2013)

1055 molecules, 356 of which are biodegradable and 699 which are not,
to be classified on the basis of 41 molecular descriptors.

breasttissue (Estrela da Silva et al 2000)

106 impedivity spectra of samples of breast tissue (collected from 64
patients undergoing breast surgery), to be classified as one of six types
(three normal, three pathological) on the basis of 10 characteristics.

The dataset lacks three attributes (‘BREAK’, ‘NOTCH’ and ‘SLOPE’)
used by Estrela da Silva et al (2000). A larger collection of 120 samples
has been used in earlier work (Jossinet 1996) — 14 spectra were removed
by Estrela da Silva et al (2000) during preprocessing since they were
judged to exhibit poor tissue collection and/or data measurement.

coimbra (Patrício et al 2018)

116 people, of which 64 newly diagnosed breast cancer patients and
52 healthy volunteers, to be distinguished on the basis of 9 clinical
attributes.
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column (Da Rocha Neto 2006)

310 people, of which 60 patients diagnosedwith disc hernia, 150 patients
diagnosed with spondylolisthesis and 100 healthy volunteers, to be
distinguished on the basis of 6 biomechanical attributes.

The dataset is based ondata collected byDrHenrique deMota during
a medical residence at the Centre Medico-Chirurgical de Réadaptation des
Massues in Lyon in 2000–01.

debrecen (B Antal & Hajdu 2014)

1151 eye scans, to be classified as exhibiting signs of diabetic retinopathy
or not. Based on the Messidor database, which consists of 1200 images.
It is unclear why the number of records is fewer than 1200.

dermatology (Güvenir et al 1998)

366 patients with erythemato-squamous diseases, with 6 different diag-
noses and 34 attributes encoding symptoms.

divorce (Yöntem et al 2019)

170 people from Turkey, either happily married (84) or divorced (86), to
be classified on the basis of 54 questions about their marriage.

ecoli (Horton & Nakai 1996)

336 proteins from E.coli, to be classified by localisation site on the basis
of 7 measurement scores. The problem is strongly imbalanced. Of the 8
classes, two only occur twice, and one only five times.

faults (Buscema 1998)

1941 steel plates with 7 different types of defect, to be classified based
on 27 different physical characteristics. Buscema (1998) works with a
reduced version of this dataset consisting of 1268 plates with 6 types of
defect; the seventh class in the dataset consists of 673 ‘other faults’.

The data was collected by the Semeion Research Centre in Rome,
under commission by the Centro Sviluppo Materiali.

foresttypes (BA Johnson et al 2012)

523 pixels from three aerial images of the same 13 by 12 km area of
forested land in Ibaraki Prefecture, Japan, on three different dates (26
September 2010, 19 March 2011, 8 May 2011), to be classified as either
‘Sugi’, ‘Hinoki’ (two tree species), ‘mixed broadleaf’ or ‘other’ landcover.
Each record consists of 27 attribute values: nine spectral values for three
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different bands (green, red and near-infrared) on the three different
dates, as well as eighteen similarity values with the Sugi and Hinoki
classes. These similarity values are calculated by interpolating the
spectral values of training records with, respectively, Sugi and Hinoki
landcover, and subtracting the actual spectral values of each record.1

glass (Evett & Spiehler 1987)

214 samples of 6 different types of glass found on crime scenes, with 9
attributes: refractive index as well as levels of eight different oxides.

The six classes are labelled 1, 2, 3, 5, 6 and 7 in the dataset. Evett &
Spiehler (1987) only distinguish between five classes: ‘float window’,
‘non-float window’, ‘container’, ‘tableware’ and ‘headlamp’, and the
documentation of the dataset claims that these five classes correspond,
respectively, to the numbers 1, 2, 3, 4 and 5. However, on the basis
of the class frequencies (Bennett 1993) and the extract of the dataset
reproduced by Evett & Spiehler (1987) in their Table 1, it is clear that
1 = ‘float building window’, 2 = ‘non-float window’, 3 = ‘float vehicle
window’, 5 = ‘container’, 6 = ’tableware’ and 7 = ‘headlamp’.

In addition, there is at least one discrepancy between the extract of
records reproduced by Evett & Spiehler (1987) and the values in the
dataset. The first record in the extract has a value of 13.98 for sodium
oxide, but 13.89 in the dataset.2

The data was originally provided by Mr B German of the Home
Office Forensic Science Laboratory in Birmingham.

haberman (Haberman 1976)

306 female stage 1 or 2 breast cancer patients who had undergone radical
mastectomy at the University of Chicago’s Billings Hospital between
1958 and 1969 (Haberman (1976) says 1970, but there are no such patients
in the dataset), to be classified as whether they survived for at least five
years (225) or not (81), on the basis of the number of positive axillary
nodes detected, the year of the operation and the patient’s age at the
time. Although Haberman (1976) says that there are 307 records, he lists
only 306, and this is the number in the dataset that was handed down.

The data was originally provided by Dr Thomas Ferguson, who
analysed in Ferguson & Meier (1976) the complete set of breast cancer
patients who were first diagnosed between 1 January 1960 and 31

1The use of interpolated values on the basis of training records complicates the
division of this dataset into training and test sets. I have applied cross-validation on
the entire dataset, but in retrospect, I should perhaps only have used the nine attributes
expressing pure spectral values.

2Furthermore, I have accidentally used the version of this dataset from the Keel
repository, which, while not substantially different, is out of order and contains extraneous
digits, most likely due to the handling of floating point numbers.
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December 1969. If we restrict the dataset to the period 1960-69, we find
a corresponding number of 243 stage 1 or 2 patients who underwent
radical mastectomy. However, the number of patients that died within
five years is higher in the dataset (60) than in Ferguson & Meier (1976)
(53, as well as 1 ‘lost’). Perhaps this can be attributed to the fact that
follow-up was only ‘essentially complete’ by the time of Ferguson &
Meier (1976).

htru2 (Lyon et al 2016)

17 898 pulsar candidates collected during the High Time Resolution
Universe Survey (South) using the Parkes Observatory in New South
Wales, described by 8 attributes: the mean, standard deviation, excess
kurtosis and skewness of the integrated pulse profile and the DM-SNR
curve of the event in question. There are 1639 actual pulsars and 16 259
spurious events.

ilpd (Ramana et al 2012)

583 people from north east Andhra Pradesh, consisting of 416 liver
patients and 167 non-liver patients, to be classified on the basis of
10 attributes, consisting of basic patient characteristics and relevant
measurements. It is unclear how this dataset relates to the similar but
larger (751 records) dataset used by the same authors in Babu et al (2010)
and a number of other publications.

ionosphere (Sigillito et al 1989)

351 returns from multipulse patterns emitted by a radar to the iono-
sphere, collected in Goose Bay, Labrador, by the Space Physics Group of
the Johns Hopkins University Applied Physics Laboratory. The aim is to
distinguish ‘good’ returns from some kind of structure in the ionosphere
(225) from ‘bad’ returns (126) on the basis of 34 attributes, corresponding
to the real and imaginary parts of 17 complex numbers corresponding
to the pulses that make up one emitted pattern.

As acknowledged by the author in the dataset documentation, the
dataset contains one record more than the number given in the paper.

iris (RA Fisher 1936)

150 irises, 50 each of ‘Iris Setosa’, ‘Iris Versicolor’ and ‘Iris Virginica’, to
be distinguished on the basis of 4 attributes: sepal and petal length and
width. The flowers were collected and measured by Edgar Anderson.
The Iris Setosa and Iris Versicolor samples were collected by E Anderson
(1935) in the field running from Ile Verte to Trois Pistoles on the Gaspé
Peninsula in Quebec, on the shore of the St Lawrence, apparently in the
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early summer of 1935. Unwin & Kleinman (2021) argue convincingly
that the data from the remaining class, Iris Virginica, corresponds to
the sample taken from a single colony in Camden, Tennessee, in 1926,
analysed by E Anderson (1928) along with many other samples.

As pointed out by Bezdek et al (1999), two of the records in the
dataset as stored in the UCI repository contain mistakes. However, we
have used the uncorrected version.

landsat (Michie et al 1994)

6435 pixels from a single 82 by 100 pixel aerial image of a section of
Australia, to be classified as one of 6 types of land cover, on the basis
of 36 attributes, corresponding to four spectral values of the pixel in
question and its eight neighbours.

The image was purchased from NASA by the Australian Centre for
Remote Sensing, and its use dates back to at least Lee & Richards (1984).
The pixels of the image were annoted in situ by Karen Hall.

While the documentation warns against performing cross-validation
on this dataset, there does not appear to be any reason for this.

leaf (Silva 2013)

340 leaves, belonging to 30 different species, characterised by 14 at-
tributes, half of which describe the shape and the other half of which
describe the texture of the leaf. Based on a collection of 443 photographs
encompassing 40 different species, only species with simple leaves were
included in the dataset.

letter (Frey & Slate 1991)

20 000 capital letter shapes in twenty different fonts, with various forms
of added distortion, to be classified as one of 26 letters based on 16
physical attributes.

magic (Bock et al 2003)

19 020 Monte Carlo generated simulations of detection events by a
Cherenkov gamma telescope. The task is to distinguish Cherenkov
radiation caused by high energy gamma particles (12 332) from the
hadronic showers caused by the impact of cosmic rays in the upper
atmosphere (6688), based on 10 attributes describing the image produced
by the event.
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mfeat (AK Jain et al 2000)

2000 30 by 48 pixel images of handwritten digits extracted from nine
Dutch utility maps, with 200 records for each of the 10 digits. This
dataset has a very large number of 649 attributes, consisting of 76
Fourier coefficients of the character shapes, 216 profile correlations, 64
Karhunen-Love coefficients, 240 pixel averages of 2 by 3 pixel patches,
47 Zernike moments and 6 morphological features.

The same dataset appears to have been used first by Van Breukelen
et al (1997). The documentation indicates that thiswas a slightly different
dataset but the difference is not clear, and AK Jain et al (2000) refers
back to Van Breukelen et al (1997) for its description of the data.

miniboone (Neal 2006)

130 065 Monte Carlo simulations of particle detection events: 36 499
electron neutrinos and 93 565 muon neutrinos, to be distinguished based
on 50 particle identification variables.

This dataset was used by Radford Neal at the 2006 BIRS workshop.
It was provided by Byron Roe, who used an earlier version with 250 890
records and 52 attributes in Roe et al (2005).

new-thyroid (Coomans et al 1978)

215 patients from the Sint-Pietersziekenhuis in Brussels with normal
thyroid function (150), hypothyroidism (30) or hyperthyroidism (35), to
be classified based on the results of 5 laboratory tests.

page-blocks (Esposito et al 1995)

5473 rectangular page segments, taken from 53 documents, to be classi-
fied as ‘text’ (4913), ‘horizontal line’ (329), ‘graphic’ (28), ‘vertical line’
(88) or ‘picture’ (115) based on 10 physical attributes.

The data used for this dataset may date back to at least Esposito et al
(1990).

pop-failures (Lucas et al 2013)

540 simulations with POP2, the ocean simulation component of the
CCSM4 climate model. The task is to predict whether the simulation
crashes (46) or not (494), based on its 18 parameter values.

seeds (Charytanowicz et al 2010)

210 wheat kernels, 70 each of the varieties ‘Kama’, ‘Rosa’ and ‘Canadian’,
to be distinguished on the basis of 7 physical attributes.
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segment (Utgoff & Brodley 1991)

2310 pixels from seven outdoor images, 330 each from the 7 classes
‘brickface’, ‘sky’, ‘foliage’, ‘cement’, ‘window’, ‘path’ and ‘grass’, to be
classified on the basis of 19 attributes of the 3 by 3 pixel patch centred
on the relevant pixel.

This dataset is part of the Statlog project. The data was originally
collected by Bruce Draper and Robert Collins at the Visions lab of the
University of Massachusetts, who used an earlier version of this dataset
in i.a. Draper et al (1989).

seismic-bumps (Sikora 2011)

2584 shifts of eight hours in two longwalls of the Mysłowice–Wesoła
coal mine in Poland. The task is to predict hazardous shifts, defined as
shifts in which a seismic tremor with energy greater than 104� occurs, on
the basis of information from previous shifts expressed in 18 attributes.

This classification task is already implicitly mentioned by Sikora
& Wróbel (2010). There is a discrepancy between the dataset and the
data described in Sikora (2011) — both have 170 hazardous shifts, but
Sikora (2011) only has 1791 non-hazardous shifts, whereas the dataset
has 2414. Our best guess is that the the additional non-hazardous shifts
were removed during preprocessing.

sensorless (Paschke et al 2013)

58 509 runs of a demonstration model of a motor drive that is used in
conveyor belts, 5319 runs for each of 11 different defect states, expressed
by different configurations of components with various types of damage.
The task is to distinguish these defect states on the basis of 48 attributes,
corresponding to the mean, standard deviation, skewness and kurtosis
of the first three instrinsic mode functions (IMF) and their residuals of
two of the three electric phase currents of the synchronous motor (i.e.
no external sensors are used, hence sensorless).

While variants of this dataset have been used in a number of different
publications, it is unclear how exactly this dataset was generated, both
in terms of the classes and in terms of records.

The experiments use three components with respectively three, three
and four types of damage. Bayer et al (2013) and Lessmeier et al (2014)
argue that on the basis of “design of experiment” (DoE) principles,
it is sufficient to test 12 suitably chosen configurations of these three
damage types to cover all possibilities, of which the first configuration
corresponds to the absence of any damage (normal operating behaviour).
Bayer et al (2013) then remove the twelfth class from the training set,
to act as an ‘unknown’ state during testing. In contrast, Lessmeier et al
(2014) propose to add three defect states corresponding to damage to
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only one of each of the three components. Paschke et al (2013) start
with 11 defect states and use one of these as the unknown state during
testing, without explaining why there were only 11 states to begin with.
Dörksen & Lohweg (2014) and Dörksen et al (2014) use only 10 classes.
Consequently, it is possible that the dataset represents the situation of
Bayer et al (2013) with either the first or the twelfth class removed, or
the unexplained situation of Paschke et al (2013).

Similarly, the number of records in each class is somewhatmysterious.
Bayer et al (2013) andLessmeier et al (2014) bothpropose to let three types
of operating behaviour vary at three different levels each, which can
be covered by 9 different configurations on the basis of DoE principles,
although Lessmeier et al (2014) then again add threemore configurations
expressing only one of each of the three types of operating behaviour.
Paschke et al (2013) use 12 different configurations, without sayingwhich.
Only Dörksen & Lohweg (2014) and Dörksen et al (2014) explicitly give
the number of records per class as 5319, without explaining how this
number is arrived at. Its prime decomposition is 33 · 197, which suggests
that it could represent 591 runs for each of 9 configurations, but 591 is a
curiously specific number.

Lastly, while Dörksen et al (2014) announce the immininent submis-
sion of the dataset to the UCI repository, the version of the dataset used
by them and Dörksen & Lohweg (2014) has 72 attributes. Presumably
these correspond to all three electric phase currents, rather than just the
first two.

shuttle (Michie et al 1994)

58 000 sets of measurements of the space radiator subsystem of the Space
Shuttle, to be classified as one of seven states. Each record consists of
9 measurements from three sensors. According to the documentation,
the first (integer-valued) attribute corresponds to ‘time’, but it is unclear
what this means. The problem is highly imbalanced: class 1 contains
45 586 records, while classes 6 and 7 contain only 10 and 13 records,
respectively.

This dataset is part of the Statlog project. It is unclear how exactly it
relates to the earlier version used by Catlett (1991), containing 427 622
and 402 780 records from two flights (72 490 and 55 051 after removing
duplicates). This original data was provided by Roger Burke of the
Johnson Space Centre and the GHG Corporation, both in Houston.

skin (Bhatt et al 2009)

245 057 pixels from face images of awide range of people drawn from the
FERET and PAL databases, to be classified as skin (50 859) or non-skin
(194 198) on the basis of their 3 RGB values.
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There is no explanation for the different number of records in the
dataset and Bhatt et al (2009) (only 51 444).

somerville (Koczkodaj et al 2018)

143 responses to the Somerville Happiness Survey conducted in 2015 in
Somerville, Massachusetts. The task is to predict whether respondents
respond to the question “How satisfied are you with Somerville as a
place to live?” with a score of less than eight out of ten (66) or at least
eight out of ten (77), based on their responses on a scale of five to 6
questions about aspects of life in Somerville.

sonar (Gorman & Sejnowski 1988)

208 response signals from casting a sonar signal at mines (111) or rocks
(97). There are 60 attributes, corresponding to the energy within a
certain frequency band, integrated over a certain period of time.

spambase

4601 emails receivedbetween June and July 1999 atHewlett-PackardLabs
in Palo Alto, consisting either of spam (1813) or non-spam (2788). There
are 57 attributes, of which 48 correspond to specific word frequencies, 6
correspond to specific character frequencies and 3 characterise the use
of capital letters.

While the documentation promises that an external publication
is ‘forthcoming’, this dataset appears to have only been described
(supposedly) in a technical report internal to Hewlett-Packard. The data
was collected by Mark Hopkins during his internship under George
Forman and Jaap Suermondt.

spectf (Kurgan et al 2001)

267 sets of two cardiac Single Proton Emission Computed Tomography
(SPEC) images (at rest and under stress) of patients at the Medical
College of Ohio judged to be normal (55) or abnormal (212). The 44
attributes are levels of perfusion for 22 regions of interest of the two
images.

sportsarticles (Hajj et al 2019)

1000 English-language sports articles gathered from over fifty different
websites, labelled as objective (658) or subjective (342) using Amazon’s
Mechanical Turk service. The 59 attributes consist of syntactic and
morphological frequency counts, as well as a number of scores. Seven
of these attributes are absent from Hajj et al (2019).
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An earlier version of this dataset may have been used by Rizk &
Awad (2012).

texture

5500 images of 11 different textures (with 500 records each), to be
classified on the basis of 40 attributes, consisting of ten fourth order
modified moments in four orientations.

This dataset was created by the Laboratoire de Traitement d’Image et de
Reconnaissance de Formes of the Institut National Polytechnique de Grenoble
for the Esprit project 6891 ELENA, and the Esprit working group 6620
ATHOS, based on the textures of Brodatz (1966).

transfusion (IC Yeh et al 2009)

748 blood donors from a university in Hsinchu, 178 of which donated
blood in March 2007 and 570 of which did not, to be classified on the
basis of 4 attributes characterising the time since their first and last
donations and the total number and volume of past donations.

vehicle (Michie et al 1994)

846 silhouettes of 4 Corgi model cars (double decker bus, Chevrolet van,
Saab 9000 and Opel Manta 400). The task is to classify the silhouettes
on the basis of 18 physical attributes.

Part of the Statlog project. The dataset was created in 1986–87 by
Paul Siebert at the Turing Institute in Glasgow with partial financing by
Barr and Stroud Ltd.

The dataset originally contained 946 records, but 100 records were
kept behind for validation purposes. The original dataset contained
240 silhouettes for each model except the Chevrolet van, 60 images at
regular intervals of a full 360 degree rotation, at three different levels of
elevation (one level of elevation was repeated twice). For the Chevrolet
van, some angles were omitted at the highest elevation because the
model would not fit inside the frame.

waveform (Breiman et al 1984)

5000 functions belonging to 3 differentwave forms, characterised by their
y values corresponding to 21 fixed-interval x values, with additional
normally distributed noise.

wdbc (Street et al 1992)

569 images of aspirated breast tumor samples, to be classified as benign
(357) or malignant (212) on the basis of 30 attributes, consisting of the
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mean, standard deviation and pessimum of ten physical properties of
the cell nuclei in the image.

This dataset appears to be based on a subset of the breast tumor
aspirates used for the wisconsin dataset, but it uses a different set of
attributes, derived from a single photograph of each sample (Street
1991).

wifi (Narayanan et al 2016)

2000measurements ofWi-Fi signal strengthwith amobile phone running
Android at 4 different locations (500 measurements each) in an office
in Pittsburgh: conference room, kitchen, indoor sports room and work
areas. The location has to be predicted on the basis of the strength of
the Wi-Fi signal from the 7 different routers in the office.

An earlier version of this dataset with only three of the four classes
was used by Rohra et al (2016).

wilt (BA Johnson et al 2013)

4839 segments of a QuickBird multispectral aerial image of a 3 by 2.5
km area of forested land near Yonezawa, consisting of 261 diseased
trees and 4578 other segments, to be classified using 5 attributes: the
mean values of the green, red and near-infrared spectral bands, and the
standard deviation and grey-level co-occurrence matrix (GLCM) mean
of the panchromatic band.

wine (Aeberhard et al 1992)

178 wines from Piedmont with vintages between 1970–79. The classifica-
tion task is to predict the cultivar, Barolo (59), Grignolino (71) or Barbera
(48), based on 13 attributes describing their chemical composition.

Earlier versions of this dataset had 8 (Forina & Lanteri 1984) and 28
(Forina et al 1986) attributes. The dataset was apparently brought to
Australia by Danny Coomans.

wisconsin (Wolberg &Mangasarian 1990)

699 fine-needle aspirates (FNA) of breast tumors, to be classified as be-
nign (458) or malignant (241) on the basis of 9 cytological characteristics.

The original version of this dataset used by Wolberg & Mangasarian
(1990) contained 369 records, the remainder after preprocessing of a
larger collection of 482 FNAs, collected between 1984 and January 1989
by DrWilliamWolberg at the Department of Surgery of the University of
Wisconsin Clinical Sciences Center. According to its documentation, the
dataset was then updated seven times up toNovember 1991with batches
of new records, while two records were removed from the original batch.
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Thus, the version of the dataset in Bennett & Mangasarian (1990) had
487 records, and the version in Mangasarian & Wolberg (1990) 535.

The final version of the dataset doesn’t appear to have been described
explicitly in the literature by its creators. The closest match is probably
Bennett (1992), who used 681 records, of which 442 benign and 239
malignant. The intermediate version of Bennett & Mangasarian (1991),
with 566 records, may have formed the basis of thewdbc dataset, since its
number of benign (354) and malignant (212) patients is very similar to
that of wdbc. Note that the number of records in these last two versions
of the wisconsin dataset does not correspond to the total number of
records added in batches up to that point, so some form of preprocessing
must have been applied.

wpbc (Street et al 1996)

141 patients who have undergone surgery for an invasive malignant
breast cancer tumor with no evidence of distant metastases. The task is
to predict recurrence within two years (29) or not (112) on the basis of
32 attributes.

The dataset as provided contains 198 records. As suggested by the
documentation we preprocessed this by selecting only patients with
recurrence within two years and non-recurrence for at least two years.3

This dataset is based on the wdbc dataset, and it uses the same
attributes, complemented with tumor size and lymph node status. The
earlier version used by Bennett & Mangasarian (1992) had 122 records
and 11 attributes, the version used by Mangasarian et al (1994) had 175
records, the version used by Street (1994) and Street et al (1995) had 187
records, while the version used by Wolberg et al (1995) consisted of 190
records.

yeast (Horton & Nakai 1996)

1484 yeast proteins to be classified by localisation site on the basis of
8 measurement scores. The problem is quite imbalanced. Of the 10
classes, one only occurs five times.

B.2 Large datasets

In this section, we describe the large datasets from the UCI repository
that we have used in Part II of this thesis. Table B.2 in Section B.4
summarises the properties of these datasets.

3It would probably have been correcter to also include patients with recurrence
after two years, and count these as non-recurrent — I may have misinterpreted the
documentation on this point.
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hepmass (Baldi et al 2016)

10 500 000 Monte Carlo simulations of particle collisions, 5 250 124 of
which involve an exotic new particle and 5 249 876 of which do not.
There are 28 attributes: 22 low-level kinematic features, five high-level
features expressing the invariant masses of intermediate particles, and
themass of the potential exotic particle (the records are drawn uniformly
from five mass levels).

higgs (Baldi et al 2014)

11 000 000 Monte Carlo simulations of particle collisions with identical
decay products, 5 829 123 of which produce a Higgs boson and 5 170 877
of which do not. There are 28 attributes: 21 low-level kinematic
features and seven high-level features expressing the invariant masses
of intermediate particles.

poker-hand (Cattral et al 2002)

1 025 010 hands of five playing cards. The task is to classify the hand as
one of 10 possible poker hands, based on the 10 suits and ranks of the
cards.

This dataset is strongly imbalanced, the classes ‘Royal flush’ and
‘Straight flush’ only contain 8 and 17 records, respectively.

susy (Baldi et al 2014)

5 000 000 Monte Carlo simulations of particle collisions with identical
detectable decay products, 2 287 827 of which produce supersymmetric
particles and 2 712 173, of which do not. There are 18 attributes: 8
low-level kinematic features and 10 high-level features (unlike the
higgs and hepmass datasets, these do not express the invariant masses of
intermediate particles, since there are toomany unknowns to reconstruct
these).

Baldi et al (2014) appears to use a slightly different set of 17 attributes
(5 low-level and 12 high-level). It appears to be missing the low-level
features ‘lepton 1 eta’, ‘lepton 1 phi’, ‘lepton 2 eta’, ‘lepton 2 phi’,
‘missing energy magnitude’ and ‘missing energy phi’. Instead, it has the
additional low-level features ‘Sum jet ?) ’, ‘Missing trans. mom (GeV)’
and ‘# jets’, as well as the additional high-level features ‘�'’ and ‘�'+1’.

B.3 Datasets with missing values

For our experiments with missing values, we have selected twenty
datasets from the UCI repository with missing values, consisting of both
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numerical and categorical attributes.4 These datasets are quite varied —
they cover a number of different domains and contain between 155 and
76 000 records, between 4 and 590 attributes, between 2 and 21 decision
classes and missing value rates between 0.0032 and 0.43.

We have preprocessed these datasets in the following manner. When
it was clear from the description that an attribute was categorical, we
treated it as such, even if it was originally represented with numerals.
Conversely, where the possible values of an attribute admitted a semantic
order, we encoded them numerically. We have removed attributes that
were labelled non-informative by the accompanying documentation, as
well as identifiers and alternative target values.

Table B.3 in Section B.4 summarises the properties of these datasets,
including their missing value rate.

adult (Kohavi 1996)

48 842 1994 census records of American adults. The task is to predict
whether each person earns more than $50 000 per year (11 687) or not
(37 155), based on 13 census questions.

We have removed the ‘fnlwgt’ attribute, the weight that needs to be
applied to each record to obtain a representative socio-economic sample
within each US state.

The version of the dataset used by Kohavi (1996) has 45 222 records
— these are the records without missing values.

The data was extracted from the 1994 census database by Barry
Becker.

agaricus-lepiota (Schlimmer 1987)

8124 mushrooms from the Agaricus and Lepiota families, to be classi-
fied as edible (4208) or poisonous (3916) on the basis of 22 physical
characteristics.

It is unclear whether the missing values, all in ‘stalk-root’, represent
actually missing information, or a missing stalk-root.

This dataset was created on the basis of the information provided
by Lincoff (1981). The version of the dataset used by Schlimmer (1987)
contained only 3078mushrooms (from 23 species). Although Schlimmer
(1987) claims 23 attributes, he lists only 22, so this is most likely amistake
(possibly due to the number of mushroom species).

4These datasets are available at https://cwi.ugent.be/~oulenz/datasets/
missing-values.tar.gz.
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aps-failure (Ferreira Costa & Nascimento 2016)

76 000 component failures in Scania trucks. The task is to predictwhether
a specific component in the air pressure system (APS) has failed (1375)
or some other component (74 625), based on 170 measurements.

This dataset was provided by Tony Lindgren of the Department of
Computer and Systems Sciences at Stockholm University and Jonas
Biteus at Scania for the industrial challenge at the 15th International
Symposium on Intelligent Data Analysis (IDA) in 2016.

arrhythmia (Güvenir et al 1997)

452 patients in 13 classes, indicating the presence and type of arrhythmia.
The 279 attributes consist of the age, sex, height andweight of the patients
as well as a large number of characteristics of their ECG recordings.

This dataset is strongly imbalanced: 245 patients have no arrhythmia,
while there are five classes with fewer than 10 records.

bands (Evans & D Fisher 1994)

540 rotogravure printing cylinders, displaying banding (228) or not
(312), to be classified on the basis of 34 attributes describing the printing
press and its use.

We have preprocessed this dataset by removing the ‘timestamp’,
‘cylinder number’, ‘customer’ and ‘job number’ attributes, which do not
really form categories, as well as the ‘ink color’ attribute, which only has
one value. None of these attributes are used by Evans & D Fisher (1994).

There are additional differences with respect to the variant of this
dataset used by Evans & D Fisher (1994). That variant does not have the
‘cylinder division’, ‘press type’, ‘paper mill location’, ‘callper’ and ‘roller
durometer’ attributes, but does have additional ‘blade oscillation’ and
‘basis weight’ attributes, for a total of 31. It also covers a shorter time
period than is contained in the final version of the dataset.

ckd (Rubini & Eswaran 2015)

400 people, 250 ofwhichwith chronic kidney disease (CKD), 150without,
to be classified on the basis of 24 measurements.5

The origin of this dataset is not explained by Rubini & Eswaran
(2015).

5The provided file of this dataset contains a number of spurious tab characters that
escaped my attention and which may have had a minor effect on the experiments.
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crx (Quinlan 1987)

690 credit card applications, 307 of which were approved and 383 of
which were not.

The data was provided by a large bank. The meaning of the 15
attributes is confidential.

dress-sales

500 dresses offered for sale by AliExpress between August and October
2013, recommended (210) or not (290) on the basis of 12 properties.

We have preprocessed this dataset by eliminating spelling variations
and interpreting certain values as missing values.

This dataset was created by Muhammad Usman and Adeel Ahmed
at the Air University in Islamabad, who do not appear to have used it
in any publication. It is unclear what the meaning of the two classes is.
The documentation suggests that there is a connection with the number
of sales of each dress, which are also provided, but there doesn’t appear
to be any direct link.

exasens (Soltani Zarrin et al 2020)

399 patients of the medical clinic in Borstel, near Sülfeld, Germany,
and healthy controls, to be classified as healthy (160) or having chronic
obstructive pulmonary disease (COPD, 79), asthma (80) or a respiratory
infection (80) based on 7 attributes: age, gender, smoking status and
four values expressing saliva permittivity.

The dataset used by Soltani Zarrin et al (2020) only contains the
healthy and COPD patients.

hcc (Santos et al 2015)

165 hepatocellular carcinoma (HCC) patients of the Coimbra University
Hospital. The task is to predict 1-year survival (102) or not (63) on the
basis of 49 attributes expressing risk factors, comorbidies and a range of
tests.

heart-disease (Detrano et al 1989)

1611 patients from five hospitals, with (903) or without (708) heart
disease, defined as more than 50% narrowing of any major bloodvessel.
There are 14 attributes, including the hospital, the age and sex of the
patient and the results of a number of tests.

We have preprocessed this dataset by reducing the id-attribute to
only identify the source hospital.
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This dataset has a complicated history. The data was collected
by Dr Robert Detrano at the Cleveland Clinic and at the Veterans
Administration Medical Center in Long Beach, Dr Andras Janosi at the
Hungarian Institute of Cardiology in Budapest, Dr William Steinbrunn
at the University Hospital in Zürich, and Dr Matthias Pfisterer at the
University Hospital in Basel.

On the basis of the id-attribute, it is possible to identify several
batches of records: one batch from Cleveland (303 records), two batches
from Budapest (428 and 351 records), two batches from Long Beach
(200 and 201 records), one batch from Zürich (58 records) and one batch
from Basel (73 records). On the basis of these numbers, we can deduce
that the dataset used by Detrano et al (1989) does not contain the second
batches from Budapest and Long Beach, nor three records at the end of
the first batch from Budapest. It contains 85 records from Basel, which
means that 12 records are missing. The pilot study by Detrano et al
(1984) used only 154 patients from Cleveland.

The first batch of Long Beach records appears to have three duplicate
pairs of records, with the same or nearly the same name, social security
number, age, sex and other attribute values. Given that four of the
clinical attribute values are slightly different, it is unclear whether these
are truly duplicate records or separate examinations of the same patients.
Nevertheless, we have decided to remove the second record of each pair
during preprocessing.

hepatitis (Efron & Gong 1981)

155 chronic hepatitis patients, 33 of which died and 122 of which lived.
There are 19 attributes, consisting of patient characteristics, symptoms
and test results.

The data was collected by Dr Peter Gregory.

horse-colic (McLeish & Cecile 1990)

368horseswith colic presented to theOntarioVeterinaryCollege hospital
in Guelph. The task is to predict whether (in retrospect) the lesion was
surgical (232) or not (136), based on 20 symptoms and measurements.

We have preprocessed this dataset by deleting two non-informative
attributes and five attributes that are alternative prediction targets
(according to the documentation). It is not clear whether McLeish &
Cecile (1990) used the exact same attribute set.

mammographic-masses (Elter et al 2007)

961 full-field digital mammograms, to be classified as benign (516) or
malignant (445) on the basis of 4 attributes: the patient’s age and the
shape, margin and density of the masses.
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The data was collected at the Institute of Radiology of the University
of Erlangen-Nuremberg between 2003 and 2006.

mi (Golovenkin et al 2020)

1700 patients with myocardial infarction (MI). The 8 classes describe
whether the patient died, and if so, what the cause of death was. The 111
attributes consist of patient characteristics, comorbidies, test outcomes
and symptoms.

This dataset is very imbalanced, as the class with surviving patients
contains 1429 records.

The data was collected at the Krasnoyarsk Interdistrict Clinical
Hospital between 1992 and 1995. Earlier versions of this dataset were
used by e.g. Rossiev et al (1995).

nomao (Candillier & Lemaire 2012)

34 465 pairs of place records. The task is to predict whether the two
records refer to the same place (24 621) or to different places (9844), on
the basis of 118 attributes expressing the similarity or difference of the
attributes of the two original records.

The data for this dataset was provided by Nomao for the ‘Nomao
Challenge’ of the 2012 Active Learning in Real-world Applications
ECML-PKDDWorkshop.

primary-tumor (Cestnik et al 1987)

339 cancer patients. The task is to identify the site of the primary tumor
out of 21 possibilities, based on 17 attributes. Most attributes are boolean
and refer to body parts. Their meaning is slightly unclear, it is possible
that they refer to the locations that the cancer has spread to.

Many of the classes are very small. There are six classes with fewer
than 5 records. In fact, by design the number of classes is 22, but one
class is empty.

The data was collected at the University Medical Centre in Ljubljana
by M Zwitter and M Soklic.

secom (McCann et al 2008)

1567 producedwafers at a production line of a semiconductor fabrication
plant, 1463 of which passed testing and 104 of which failed, to be
classified on the basis of 590 signals.

This dataset was created for the ‘Causality Challenge’ of the 2008
NIPS Workshop on Causality.
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soybean (Michalski & Chilausky 1980)

683 soybean plants, displaying 19 different diseases, to be classified on
the basis of 35 symptoms.

Michalski & Chilausky (1980) omitted the four smallest classes, using
only 630 records.

thyroid0387 (Quinlan et al 1986)

9172 thyroid patients at St Vincent’s Hospital in Sydney between August
1984 and January 1987. The task is to predict the diagnosis out of 18
classes, based on 29 patient characteristics and test scores.

This dataset is strongly imbalanced: 6771 patients have no diagnosis,
while there are three classes with fewer than ten records.

We have had to preprocess this dataset because a small number of
records belonged to multiple classes. When one diagnosis was indicated
as being more likely than another, we retained the more likely diagnosis.
Otherwise, we resolved this by retaining the most specific class.

The variant of this dataset used by Quinlan et al (1986) only had 3066
records, and didn’t have the ‘I131 treatment’, ‘hypopituitary’, ‘psych’
and ‘referral source’ attributes.

B.4 Dataset statistics

In this section, we summarise the properties of the datasets used in this
thesis. Table B.1 lists the properties of the numerical datasets described
in Section B.1, as well as the properties each decision class. Table B.2
contains the large dataset described in Section B.2. Finally, Table B.3
summarises the properties of the incomplete datasets described in
Section B.3, including their missing value rate.

Table B.1: Numerical real-life datasets from the UCI repository. <:
number of attributes; =: number of records; B: sparsity.

Dataset < Class = B

appendicitis 7 0 85 0.05
1 21 0.12

avila 10 A 8572 0.08
B 10 0.57
C 206 0.14
D 705 0.11
E 2190 0.09
F 3923 0.09
G 893 0.13
H 1039 0.12

Continued on next page
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Table B.1: Numerical real-life datasets from the UCI repository. <:
number of attributes; =: number of records; B: sparsity.

Dataset < Class = B

I 1663 0.10
W 89 0.19
X 1044 0.09
Y 533 0.08

banknote 4 0 762 0.01
1 610 0.00

biodeg 41 NRB 699 0.46
RB 356 0.51

breasttissue 9 adi 22 0.06
car 21 0.05
con 14 0.08
fad 15 0.07
gla 16 0.12
mas 18 0.06

coimbra 9 1 52 0.04
2 64 0.04

column 6 DH 60 0.03
NO 100 0.02
SL 150 0.01

debrecen 19 0 540 0.28
1 611 0.25

dermatology 34 1 111 0.70
2 60 0.79
3 71 0.74
4 48 0.83
5 48 0.79
6 20 0.75

divorce 54 0 86 0.69
1 84 0.55

ecoli 7 cp 143 0.33
im 77 0.34
imL 2 0.64
imS 2 0.64
imU 35 0.36
om 20 0.38
omL 5 0.46
pp 52 0.36

faults 27 Bumps 402 0.14
Dirtiness 55 0.21
K_Scatch 391 0.22
Other_Faults 673 0.13
Pastry 158 0.17
Stains 72 0.31
Z_Scratch 190 0.19

Continued on next page
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Table B.1: Numerical real-life datasets from the UCI repository. <:
number of attributes; =: number of records; B: sparsity.

Dataset < Class = B

foresttypes 27 d 159 0.04
h 86 0.09
o 83 0.04
s 195 0.06

glass 9 1 70 0.23
2 76 0.21
3 17 0.27
5 13 0.32
6 9 0.43
7 29 0.29

haberman 3 1 225 0.22
2 81 0.16

htru2 8 0 16259 0.00
1 1639 0.00

ilpd 10 1 414 0.17
2 165 0.19

ionosphere 34 b 126 0.32
g 225 0.13

iris 4 Iris-setosa 50 0.29
Iris-versicolor 50 0.17
Iris-virginica 50 0.19

landsat 36 1 1533 0.10
2 703 0.13
3 1358 0.14
4 626 0.12
5 707 0.09
7 1508 0.12

leaf 14 1 12 0.12
2 10 0.16
3 10 0.13
4 8 0.14
5 12 0.08
6 8 0.13
7 10 0.11
8 11 0.11
9 14 0.08
10 13 0.09
11 16 0.07
12 12 0.09
13 13 0.13
14 12 0.10
15 10 0.11
22 12 0.09
23 11 0.09

Continued on next page
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Table B.1: Numerical real-life datasets from the UCI repository. <:
number of attributes; =: number of records; B: sparsity.

Dataset < Class = B

24 13 0.10
25 9 0.13
26 12 0.12
27 11 0.15
28 12 0.14
29 12 0.11
30 12 0.10
31 11 0.10
32 11 0.12
33 11 0.13
34 11 0.10
35 11 0.13
36 10 0.10

letter 16 A 789 0.35
B 766 0.35
C 736 0.31
D 805 0.35
E 768 0.33
F 775 0.27
G 773 0.32
H 734 0.39
I 755 0.49
J 747 0.28
K 739 0.30
L 761 0.28
M 792 0.32
N 783 0.32
O 753 0.41
P 803 0.30
Q 783 0.30
R 758 0.31
S 748 0.32
T 796 0.27
U 813 0.34
V 764 0.35
W 752 0.32
X 787 0.40
Y 786 0.31
Z 734 0.37

magic 10 g 12332 0.00
h 6688 0.00

mfeat 649 0 200 0.30
1 200 0.30
2 200 0.29
3 200 0.29
4 200 0.29
5 200 0.28

Continued on next page
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Table B.1: Numerical real-life datasets from the UCI repository. <:
number of attributes; =: number of records; B: sparsity.

Dataset < Class = B

6 200 0.29
7 200 0.31
8 200 0.27
9 200 0.29

miniboone 50 0 93565 0.03
1 36499 0.02

new-thyroid 5 1 150 0.08
2 35 0.13
3 30 0.11

page-blocks 10 1 4913 0.04
2 329 0.19
3 28 0.09
4 88 0.39
5 115 0.06

pop-failures 18 0 46 0.02
1 494 0.00

seeds 7 1 70 0.03
2 70 0.03
3 70 0.03

segment 19 1 330 0.17
2 330 0.17
3 330 0.20
4 330 0.16
5 330 0.26
6 330 0.16
7 330 0.16

seismic-bumps 18 0 2414 0.61
1 170 0.52

sensorless 48 1 5319 0.00
2 5319 0.00
3 5319 0.00
4 5319 0.00
5 5319 0.00
6 5319 0.00
7 5319 0.00
8 5319 0.00
9 5319 0.00
10 5319 0.00
11 5319 0.00

shuttle 9 1 45586 0.30
2 50 0.37
3 171 0.27
4 8903 0.31
5 3267 0.27
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B. Datasets

Table B.1: Numerical real-life datasets from the UCI repository. <:
number of attributes; =: number of records; B: sparsity.

Dataset < Class = B

6 10 0.31
7 13 0.49

skin 3 1 50859 0.02
2 194198 0.03

somerville 6 0 66 0.40
1 77 0.46

sonar 60 M 111 0.03
R 97 0.03

spambase 57 0 2788 0.81
1 1813 0.72

spectf 44 0 55 0.14
1 212 0.08

sportsarticles 59 objective 635 0.38
subjective 365 0.28

texture 40 2 500 0.00
3 500 0.00
4 500 0.00
6 500 0.00
7 500 0.00
8 500 0.00
9 500 0.00
10 500 0.00
12 500 0.00
13 500 0.00
14 500 0.00

transfusion 4 0 570 0.19
1 178 0.18

vehicle 18 bus 218 0.15
opel 212 0.10
saab 217 0.09
van 199 0.11

waveform 21 0 1657 0.01
1 1647 0.01
2 1696 0.01

wdbc 30 B 357 0.01
M 212 0.01

wifi 7 1 500 0.13
2 500 0.11
3 500 0.14
4 500 0.14

wilt 5 n 4578 0.00
w 261 0.01
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Table B.1: Numerical real-life datasets from the UCI repository. <:
number of attributes; =: number of records; B: sparsity.

Dataset < Class = B

wine 13 1 59 0.08
2 71 0.07
3 48 0.08

wisconsin 9 2 444 0.73
4 239 0.31

wpbc 32 N 110 0.04
R 28 0.06

yeast 8 CYT 463 0.36
ERL 5 0.47
EXC 35 0.44
ME1 44 0.42
ME2 51 0.41
ME3 163 0.38
MIT 244 0.38
NUC 429 0.33
POX 20 0.38
VAC 30 0.41

Table B.2: Large real-life datasets from the UCI repository. =: number
of records; <: number of attributes; 2: number of classes.

Dataset = Type < 2

hepmass 10 500 000 Numerical 28 2
higgs 11 000 000 Numerical 28 2
poker-hand 1 025 010 Categorical 10 10
susy 5 000 000 Numerical 18 2
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B. Datasets

Table B.3: Real-life classification datasets with missing values from the
UCI repository for machine learning. =: number of records; 2: number
of classes.

Dataset = 2 Attributes Missing value rate
Num Cat Total Num Cat Total

adult 48 842 2 5 8 13 0.0 0.017 0.010
agaricus-lepiota 8124 2 2 20 22 0.0 0.015 0.014
aps-failure 76 000 2 170 0 170 0.083 0.083
arrhythmia 452 13 279 0 279 0.0032 0.0032
bands 540 2 19 15 34 0.054 0.054 0.054
ckd 400 2 24 0 24 0.11 0.11
crx 690 2 6 9 15 0.0060 0.0068 0.0065
dress-sales 500 2 3 9 12 0.20 0.19 0.19
exasens 399 4 7 0 7 0.43 0.43
hcc 165 2 49 0 49 0.10 0.10
heart-disease 1611 2 13 1 14 0.18 0.0 0.17
hepatitis 155 2 19 0 19 0.057 0.057
horse-colic 368 2 19 1 20 0.25 0.39 0.26
mammographic-masses 961 2 2 2 4 0.042 0.041 0.042
mi 1700 8 111 0 111 0.085 0.085
nomao 34 465 2 89 29 118 0.38 0.37 0.38
primary-tumor 339 21 16 1 17 0.029 0.20 0.039
secom 1567 2 590 0 590 0.045 0.045
soybean 683 19 22 13 35 0.099 0.096 0.098
thyroid0387 9172 18 7 22 29 0.22 0.0015 0.055
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Appendix C

Full results

In this chapter, we list the results of some of our experiments in greater
detail.

C.1 One-class classification with default
hyperparameter values

Table C.1 is part of the experiment in Chapter 7. It contains the
mean AUROC of every data descriptor per one-class classification
problem, with default hyperparameter values determined by the leave-
one-dataset-out scheme.

Table C.1: 5-fold cross validation AUROC of each data descriptor with
leave-one-dataset-out optimal hyperparameter values (where applica-
ble).

Dataset Target class NND LNND LOF MD SVM IF EIF SAE ALP

appendicitis 0 0.741 0.644 0.744 0.691 0.665 0.765 0.734 0.518 0.721
1 0.688 0.741 0.787 0.683 0.686 0.799 0.787 0.603 0.780

avila A 0.914 0.759 0.844 0.622 0.743 0.599 0.596 0.582 0.891
B 1.000 1.000 1.000 0.844 1.000 0.910 1.000 0.894 1.000
C 0.964 0.825 0.944 0.591 0.923 0.631 0.706 0.566 0.959
D 0.974 0.887 0.959 0.692 0.952 0.665 0.688 0.685 0.966
E 0.967 0.828 0.934 0.567 0.857 0.649 0.672 0.569 0.953
F 0.936 0.785 0.878 0.698 0.804 0.698 0.697 0.634 0.912
G 0.987 0.889 0.962 0.789 0.959 0.762 0.844 0.803 0.981
H 0.973 0.884 0.951 0.871 0.929 0.840 0.847 0.739 0.974
I 0.996 0.915 0.980 0.799 0.994 0.837 0.852 0.900 0.982
W 0.969 0.788 0.954 0.958 0.896 0.627 0.801 0.920 0.950
X 0.983 0.876 0.972 0.732 0.960 0.699 0.678 0.751 0.981
Y 0.998 0.948 0.990 0.885 0.994 0.840 0.861 0.808 0.995

banknote 0 0.998 0.946 0.993 0.999 0.997 0.922 0.950 0.985 0.996
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Table C.1: 5-fold cross validation AUROC of each data descriptor with
leave-one-dataset-out optimal hyperparameter values (where applica-
ble).

Dataset Target class NND LNND LOF MD SVM IF EIF SAE ALP

1 1.000 0.993 0.999 0.994 0.997 0.884 0.941 0.999 1.000

biodeg NRB 0.597 0.557 0.502 0.496 0.558 0.443 0.587 0.516 0.538
RB 0.852 0.784 0.850 0.870 0.835 0.866 0.758 0.847 0.866

breasttissue adi 0.925 0.904 0.920 0.893 0.926 0.816 0.881 0.947 0.928
car 0.926 0.939 0.972 0.924 0.945 0.886 0.910 0.830 0.962
con 0.888 0.858 0.933 0.836 0.874 0.778 0.817 0.841 0.936
fad 0.896 0.847 0.851 0.862 0.888 0.814 0.858 0.822 0.854
gla 0.922 0.866 0.918 0.939 0.904 0.910 0.912 0.831 0.919
mas 0.737 0.739 0.696 0.741 0.715 0.728 0.661 0.672 0.707

coimbra 1 0.743 0.691 0.714 0.665 0.732 0.639 0.706 0.632 0.714
2 0.424 0.417 0.479 0.587 0.520 0.548 0.441 0.561 0.491

column DH 0.875 0.837 0.856 0.874 0.888 0.846 0.857 0.801 0.876
NO 0.875 0.875 0.881 0.869 0.870 0.871 0.880 0.866 0.880
SL 0.742 0.749 0.813 0.712 0.847 0.817 0.772 0.523 0.846

debrecen 0 0.619 0.642 0.636 0.768 0.631 0.678 0.622 0.660 0.643
1 0.404 0.448 0.432 0.370 0.386 0.400 0.388 0.415 0.450

dermatology 1 0.995 0.953 0.985 0.955 1.000 0.985 0.992 0.981 0.996
2 0.952 0.938 0.953 0.937 0.959 0.878 0.952 0.930 0.961
3 0.998 0.990 0.997 0.999 0.999 0.996 0.997 0.958 0.997
4 0.985 0.974 0.986 0.961 0.976 0.883 0.964 0.972 0.986
5 0.997 0.982 0.999 0.975 0.997 0.955 0.996 0.948 0.999
6 0.993 0.981 0.998 0.997 0.995 0.962 0.932 0.734 0.998

divorce 0 1.000 0.995 1.000 0.992 0.998 1.000 0.997 0.936 1.000
1 0.888 0.873 0.852 0.889 0.900 0.999 0.994 0.819 0.878

ecoli cp 0.968 0.966 0.979 0.974 0.966 0.972 0.969 0.951 0.978
im 0.869 0.831 0.886 0.894 0.885 0.906 0.890 0.730 0.891
imU 0.908 0.892 0.910 0.910 0.913 0.935 0.933 0.758 0.916
om 0.949 0.963 0.972 0.967 0.962 0.972 0.960 0.562 0.979
omL 0.985 0.991 0.983 0.985 0.985 0.632 0.655 0.852 0.988
pp 0.925 0.931 0.951 0.928 0.938 0.938 0.936 0.813 0.952

faults Bumps 0.841 0.777 0.823 0.826 0.834 0.821 0.792 0.777 0.833
Dirtiness 0.947 0.824 0.888 0.931 0.920 0.886 0.876 0.930 0.944
K_Scatch 0.986 0.804 0.892 0.983 0.983 0.972 0.972 0.967 0.904
Other_Faults 0.662 0.585 0.632 0.600 0.608 0.603 0.597 0.620 0.631
Pastry 0.854 0.779 0.815 0.870 0.837 0.852 0.786 0.840 0.840
Stains 0.997 0.995 0.997 0.994 0.986 0.994 0.994 0.981 0.997
Z_Scratch 0.972 0.932 0.936 0.958 0.975 0.915 0.946 0.922 0.971

foresttypes d 0.838 0.836 0.870 0.844 0.868 0.880 0.818 0.776 0.880
h 0.936 0.919 0.938 0.898 0.941 0.937 0.950 0.885 0.937
o 0.690 0.736 0.732 0.698 0.739 0.879 0.770 0.780 0.713
s 0.931 0.907 0.941 0.910 0.936 0.940 0.928 0.825 0.944

glass 1 0.803 0.820 0.874 0.797 0.840 0.800 0.795 0.813 0.893
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C. Full results

Table C.1: 5-fold cross validation AUROC of each data descriptor with
leave-one-dataset-out optimal hyperparameter values (where applica-
ble).

Dataset Target class NND LNND LOF MD SVM IF EIF SAE ALP

2 0.689 0.641 0.708 0.659 0.674 0.637 0.623 0.568 0.718
3 0.719 0.715 0.689 0.845 0.806 0.661 0.734 0.753 0.776
5 0.641 0.571 0.611 0.702 0.762 0.704 0.610 0.385 0.763
6 0.668 0.563 0.571 0.971 0.599 0.456 0.524 0.654 0.829
7 0.801 0.814 0.800 0.738 0.865 0.827 0.794 0.750 0.839

haberman 1 0.679 0.642 0.625 0.616 0.652 0.670 0.695 0.561 0.608
2 0.404 0.458 0.464 0.515 0.526 0.456 0.438 0.507 0.469

htru2 0 0.953 0.918 0.952 0.944 0.951 0.949 0.937 0.946 0.946
1 0.837 0.667 0.684 0.870 0.913 0.900 0.924 0.750 0.677

ilpd 1 0.346 0.371 0.342 0.453 0.365 0.400 0.345 0.428 0.389
2 0.753 0.725 0.729 0.703 0.753 0.705 0.738 0.697 0.734

ionosphere b 0.363 0.584 0.426 0.246 0.303 0.367 0.301 0.300 0.370
g 0.949 0.903 0.951 0.963 0.971 0.908 0.956 0.947 0.956

iris Iris-setosa 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Iris-versicolor 0.974 0.962 0.990 0.990 0.975 0.979 0.990 0.968 0.985
Iris-virginica 0.942 0.916 0.942 0.962 0.955 0.941 0.924 0.925 0.956

landsat 1 0.997 0.966 0.991 0.969 0.992 0.990 0.992 0.937 0.992
2 0.988 0.747 0.860 0.859 0.986 0.986 0.975 0.916 0.881
3 0.975 0.939 0.971 0.908 0.976 0.969 0.970 0.928 0.974
4 0.896 0.812 0.843 0.799 0.888 0.925 0.902 0.792 0.853
5 0.941 0.779 0.858 0.760 0.924 0.893 0.898 0.792 0.894
7 0.954 0.872 0.903 0.894 0.940 0.960 0.960 0.910 0.903

leaf 1 0.980 0.978 0.981 0.978 0.978 0.946 0.915 0.888 0.978
2 0.959 0.953 0.964 0.932 0.923 0.980 0.977 0.871 0.958
3 0.968 0.964 0.986 0.977 0.974 0.889 0.885 0.780 0.991
4 0.866 0.826 0.834 0.887 0.891 0.703 0.837 0.775 0.907
5 0.998 0.993 0.999 0.955 0.995 0.956 0.994 0.795 0.997
6 0.997 0.977 0.989 0.967 0.997 0.921 0.931 0.721 0.991
7 0.961 0.964 0.962 0.985 0.971 0.867 0.958 0.742 0.974
8 1.000 1.000 1.000 0.997 0.966 0.921 0.997 0.784 1.000
9 0.957 0.921 0.949 0.963 0.958 0.895 0.928 0.906 0.959
10 0.995 0.993 0.996 0.946 0.993 0.971 0.952 0.741 0.995
11 0.999 0.998 1.000 0.996 1.000 0.960 0.998 0.890 0.999
12 0.970 0.953 0.966 0.898 0.974 0.944 0.939 0.721 0.964
13 0.977 0.981 0.986 0.963 0.981 0.978 0.973 0.870 0.983
14 0.948 0.948 0.938 0.876 0.914 0.904 0.935 0.877 0.937
15 1.000 0.998 1.000 0.988 1.000 0.977 0.985 0.850 1.000
22 0.793 0.811 0.804 0.880 0.807 0.754 0.769 0.754 0.845
23 0.996 0.997 0.995 0.983 0.997 0.807 0.972 0.845 0.997
24 0.933 0.904 0.922 0.952 0.920 0.738 0.877 0.740 0.939
25 0.998 0.998 1.000 0.977 0.998 0.932 0.954 0.905 0.998
26 0.895 0.845 0.857 0.930 0.894 0.839 0.819 0.873 0.881
27 0.968 0.883 0.918 0.982 0.927 0.847 0.867 0.885 0.948
28 0.962 0.895 0.939 0.974 0.967 0.918 0.913 0.850 0.954

Continued on next page

225



Appendices

Table C.1: 5-fold cross validation AUROC of each data descriptor with
leave-one-dataset-out optimal hyperparameter values (where applica-
ble).

Dataset Target class NND LNND LOF MD SVM IF EIF SAE ALP

29 1.000 0.994 1.000 0.995 1.000 0.998 0.983 0.787 1.000
30 0.992 0.989 0.995 0.990 0.995 0.913 0.974 0.863 0.998
31 0.999 0.996 0.997 0.997 0.998 0.922 0.937 0.911 0.997
32 0.962 0.959 0.966 0.956 0.965 0.852 0.956 0.814 0.973
33 0.922 0.920 0.947 0.933 0.922 0.958 0.927 0.792 0.950
34 0.999 0.990 0.996 0.997 0.947 0.805 0.796 0.956 0.997
35 0.943 0.945 0.938 0.903 0.882 0.918 0.876 0.797 0.943
36 0.994 1.000 1.000 0.994 0.992 0.945 0.947 0.879 1.000

letter A 1.000 0.910 0.977 0.995 1.000 0.941 0.948 0.965 0.980
B 0.992 0.934 0.975 0.987 0.990 0.924 0.932 0.956 0.984
C 0.996 0.916 0.972 0.981 0.993 0.935 0.942 0.945 0.978
D 0.995 0.933 0.978 0.983 0.992 0.907 0.924 0.916 0.986
E 0.988 0.927 0.981 0.980 0.973 0.876 0.885 0.939 0.986
F 0.995 0.917 0.975 0.979 0.990 0.944 0.920 0.928 0.980
G 0.991 0.910 0.967 0.974 0.977 0.890 0.900 0.927 0.978
H 0.954 0.856 0.951 0.936 0.928 0.844 0.823 0.907 0.964
I 0.996 0.829 0.899 0.978 0.991 0.942 0.941 0.970 0.946
J 0.997 0.902 0.961 0.982 0.991 0.951 0.942 0.942 0.970
K 0.984 0.924 0.974 0.969 0.962 0.870 0.869 0.949 0.983
L 0.997 0.884 0.953 0.987 0.985 0.916 0.939 0.952 0.964
M 0.995 0.906 0.967 0.972 0.993 0.908 0.886 0.947 0.985
N 0.992 0.897 0.953 0.986 0.989 0.926 0.924 0.941 0.979
O 0.990 0.933 0.986 0.986 0.990 0.922 0.934 0.956 0.990
P 0.995 0.919 0.970 0.983 0.992 0.945 0.951 0.928 0.977
Q 0.985 0.941 0.988 0.976 0.975 0.877 0.884 0.938 0.992
R 0.993 0.952 0.985 0.983 0.986 0.930 0.934 0.939 0.989
S 0.980 0.902 0.978 0.966 0.973 0.835 0.828 0.932 0.983
T 0.996 0.924 0.973 0.987 0.985 0.944 0.959 0.947 0.983
U 0.996 0.915 0.972 0.989 0.989 0.906 0.900 0.968 0.981
V 0.997 0.937 0.976 0.993 0.995 0.949 0.958 0.978 0.985
W 0.999 0.926 0.986 0.994 0.998 0.965 0.978 0.975 0.989
X 0.982 0.911 0.973 0.984 0.983 0.889 0.888 0.945 0.984
Y 0.994 0.886 0.970 0.977 0.983 0.922 0.936 0.962 0.976
Z 0.991 0.895 0.975 0.977 0.988 0.900 0.899 0.954 0.988

magic g 0.845 0.808 0.860 0.803 0.787 0.757 0.777 0.777 0.873
h 0.453 0.486 0.483 0.435 0.491 0.442 0.406 0.455 0.484

mfeat 0 0.998 0.983 0.997 0.996 0.996 0.988 0.983 0.999 0.996
1 0.995 0.916 0.990 0.995 0.993 0.980 0.972 0.982 0.997
2 0.999 0.987 0.999 0.998 0.998 0.993 0.988 0.983 0.999
3 0.985 0.933 0.976 0.983 0.983 0.973 0.970 0.967 0.979
4 0.997 0.976 0.996 0.993 0.994 0.989 0.983 0.986 0.996
5 0.989 0.930 0.985 0.984 0.981 0.967 0.960 0.936 0.983
6 0.997 0.969 0.993 0.997 0.995 0.987 0.987 0.988 0.995
7 0.999 0.982 0.998 0.997 0.998 0.990 0.987 0.995 0.998
8 0.987 0.953 0.984 0.988 0.981 0.968 0.962 0.963 0.985
9 0.997 0.968 0.995 0.997 0.996 0.986 0.983 0.982 0.995
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C. Full results

Table C.1: 5-fold cross validation AUROC of each data descriptor with
leave-one-dataset-out optimal hyperparameter values (where applica-
ble).

Dataset Target class NND LNND LOF MD SVM IF EIF SAE ALP

miniboone 0 0.506 0.590 0.612 0.693 0.717 0.775 0.709 0.829 0.600
1 0.898 0.807 0.902 0.865 0.842 0.799 0.784 0.700 0.901

new-thyroid 1 0.972 0.957 0.991 0.987 0.988 0.992 0.987 0.965 0.992
2 0.963 0.937 0.956 0.965 0.966 0.879 0.944 0.960 0.971
3 0.808 0.779 0.863 0.938 0.851 0.918 0.785 0.978 0.878

page-blocks 1 0.908 0.899 0.934 0.957 0.964 0.924 0.930 0.925 0.940
2 0.916 0.869 0.916 0.898 0.924 0.875 0.916 0.853 0.935
3 0.909 0.793 0.846 0.991 0.934 0.506 0.821 0.852 0.887
4 0.962 0.938 0.946 0.954 0.938 0.946 0.949 0.953 0.961
5 0.783 0.766 0.831 0.816 0.784 0.760 0.769 0.687 0.856

pop-failures 0 0.836 0.862 0.885 0.814 0.903 0.856 0.914 0.573 0.903
1 0.619 0.556 0.645 0.697 0.678 0.658 0.717 0.538 0.686

seeds 1 0.919 0.947 0.932 0.950 0.941 0.955 0.963 0.840 0.945
2 0.989 0.968 0.982 0.992 0.998 0.988 0.993 0.989 0.987
3 0.978 0.956 0.981 0.986 0.990 0.973 0.977 0.913 0.982

segment 1 0.997 0.993 0.998 0.998 0.996 0.995 0.986 0.996 0.999
2 0.999 0.998 0.999 0.997 0.997 0.995 0.992 1.000 0.999
3 0.906 0.848 0.922 0.947 0.918 0.899 0.859 0.933 0.944
4 0.920 0.841 0.871 0.945 0.918 0.896 0.844 0.922 0.913
5 0.945 0.902 0.920 0.950 0.937 0.924 0.855 0.940 0.946
6 0.997 0.993 0.998 0.999 0.994 0.974 0.944 0.993 0.999
7 0.999 0.992 0.998 0.998 0.997 0.996 0.992 0.999 0.998

seismic-bumps 0 0.743 0.520 0.572 0.712 0.694 0.712 0.728 0.591 0.602
1 0.346 0.428 0.415 0.517 0.476 0.487 0.378 0.477 0.397

sensorless 1 0.980 0.974 0.987 0.947 0.969 0.897 0.909 0.947 0.990
2 0.973 0.961 0.977 0.926 0.956 0.883 0.909 0.936 0.980
3 0.984 0.978 0.994 0.954 0.974 0.876 0.889 0.946 0.995
4 0.985 0.977 0.992 0.938 0.966 0.893 0.877 0.883 0.993
5 0.972 0.961 0.981 0.890 0.946 0.858 0.867 0.846 0.984
6 0.971 0.960 0.982 0.910 0.946 0.877 0.866 0.917 0.985
7 0.996 0.989 0.997 0.997 0.986 0.941 0.932 0.991 0.998
8 0.970 0.962 0.981 0.893 0.941 0.873 0.852 0.868 0.985
9 0.972 0.963 0.984 0.871 0.939 0.869 0.830 0.854 0.987
10 0.988 0.977 0.985 0.963 0.980 0.893 0.950 0.944 0.988
11 0.997 0.988 0.997 0.998 0.990 0.969 0.938 0.990 0.998

shuttle 1 0.990 0.985 0.996 0.940 0.993 0.930 0.902 0.974 0.998
2 0.892 0.866 0.931 0.958 0.962 0.843 0.812 0.930 0.964
3 0.887 0.830 0.900 0.947 0.944 0.827 0.783 0.835 0.924
4 0.988 0.986 0.992 0.986 0.987 0.973 0.956 0.989 0.996
5 0.981 0.982 0.988 0.996 0.990 0.985 0.965 0.996 0.997
6 0.930 0.878 0.871 0.548 0.946 0.754 0.673 0.656 0.990
7 0.865 0.851 0.868 0.964 0.926 0.468 0.737 0.871 0.924

skin 1 1.000 0.968 0.955 1.000 1.000 0.991 0.999 0.999 1.000
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Table C.1: 5-fold cross validation AUROC of each data descriptor with
leave-one-dataset-out optimal hyperparameter values (where applica-
ble).

Dataset Target class NND LNND LOF MD SVM IF EIF SAE ALP

2 0.997 0.839 0.909 0.889 0.426 0.892 0.916 0.948 0.963

somerville 0 0.473 0.575 0.461 0.443 0.454 0.498 0.452 0.419 0.454
1 0.631 0.567 0.629 0.602 0.644 0.619 0.635 0.516 0.627

sonar M 0.573 0.557 0.641 0.680 0.672 0.597 0.520 0.666 0.679
R 0.680 0.626 0.674 0.591 0.674 0.664 0.675 0.585 0.705

spambase 0 0.794 0.576 0.646 0.798 0.756 0.842 0.691 0.779 0.681
1 0.498 0.604 0.676 0.849 0.641 0.710 0.488 0.851 0.734

spectf 0 0.842 0.820 0.847 0.640 0.841 0.787 0.838 0.712 0.840
1 0.240 0.283 0.208 0.247 0.290 0.265 0.249 0.326 0.249

sportsarticles objective 0.848 0.605 0.638 0.835 0.836 0.839 0.829 0.814 0.651
subjective 0.224 0.370 0.338 0.244 0.440 0.636 0.467 0.288 0.312

texture 2 0.993 0.939 0.987 0.996 0.989 0.951 0.964 0.976 0.991
3 0.999 0.988 0.999 1.000 0.999 0.973 0.989 0.986 0.999
4 1.000 0.998 1.000 1.000 1.000 0.995 0.998 0.999 1.000
6 0.999 0.990 0.999 1.000 0.999 0.983 0.993 0.993 0.999
7 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000 1.000
8 0.982 0.964 0.989 0.994 0.985 0.916 0.912 0.967 0.993
9 0.993 0.963 0.994 0.996 0.990 0.941 0.961 0.977 0.994
10 0.977 0.973 0.991 0.992 0.979 0.918 0.930 0.977 0.992
12 1.000 1.000 1.000 1.000 1.000 0.997 1.000 1.000 1.000
13 0.997 0.997 1.000 0.998 0.999 0.986 0.995 0.992 1.000
14 0.988 0.939 0.984 0.998 0.986 0.922 0.938 0.992 0.987

transfusion 0 0.572 0.523 0.514 0.510 0.537 0.597 0.574 0.571 0.562
1 0.554 0.549 0.556 0.688 0.617 0.672 0.660 0.566 0.559

vehicle bus 0.969 0.922 0.967 0.978 0.961 0.836 0.846 0.942 0.974
opel 0.768 0.665 0.696 0.850 0.719 0.714 0.721 0.702 0.736
saab 0.759 0.719 0.717 0.890 0.782 0.737 0.733 0.751 0.773
van 0.962 0.907 0.931 0.968 0.936 0.864 0.887 0.935 0.956

waveform 0 0.821 0.804 0.834 0.844 0.852 0.847 0.848 0.775 0.831
1 0.885 0.864 0.893 0.895 0.906 0.915 0.906 0.778 0.891
2 0.887 0.867 0.894 0.899 0.908 0.916 0.906 0.821 0.892

wdbc B 0.951 0.913 0.948 0.966 0.953 0.957 0.953 0.904 0.957
M 0.672 0.745 0.786 0.664 0.785 0.874 0.726 0.633 0.823

wifi 1 0.999 0.995 0.999 0.998 0.999 0.984 0.987 0.922 0.999
2 0.972 0.938 0.968 0.925 0.973 0.971 0.929 0.872 0.971
3 0.992 0.982 0.992 0.992 0.993 0.993 0.992 0.919 0.994
4 0.998 0.994 0.999 0.998 0.999 0.997 0.998 0.873 0.999

wilt n 0.828 0.830 0.923 0.728 0.725 0.490 0.555 0.421 0.940
w 0.933 0.870 0.927 0.972 0.947 0.881 0.900 0.862 0.943

wine 1 0.990 0.970 0.994 0.983 0.995 0.980 0.916 0.852 0.996
2 0.925 0.898 0.930 0.952 0.945 0.933 0.933 0.860 0.940
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C. Full results

Table C.1: 5-fold cross validation AUROC of each data descriptor with
leave-one-dataset-out optimal hyperparameter values (where applica-
ble).

Dataset Target class NND LNND LOF MD SVM IF EIF SAE ALP

3 0.999 0.982 0.997 1.000 1.000 0.989 0.997 0.805 0.997

wisconsin 2 0.993 0.752 0.676 0.987 0.990 0.995 0.994 0.970 0.864
4 0.566 0.848 0.781 0.820 0.903 0.959 0.809 0.304 0.881

wpbc N 0.565 0.593 0.550 0.517 0.528 0.550 0.572 0.621 0.532
R 0.503 0.586 0.577 0.492 0.559 0.602 0.543 0.508 0.565

yeast CYT 0.758 0.682 0.725 0.716 0.733 0.702 0.706 0.628 0.737
ERL 0.839 0.816 0.847 0.705 0.771 0.782 0.704 0.445 0.867
EXC 0.869 0.904 0.925 0.879 0.863 0.935 0.921 0.675 0.906
ME1 0.957 0.886 0.941 0.956 0.962 0.867 0.830 0.730 0.958
ME2 0.732 0.736 0.737 0.706 0.719 0.748 0.740 0.629 0.744
ME3 0.867 0.830 0.885 0.908 0.903 0.874 0.870 0.786 0.904
MIT 0.721 0.681 0.728 0.730 0.724 0.729 0.717 0.654 0.707
NUC 0.614 0.616 0.628 0.650 0.658 0.632 0.632 0.612 0.635
POX 0.564 0.516 0.553 0.595 0.572 0.661 0.551 0.640 0.585
VAC 0.608 0.563 0.606 0.585 0.593 0.592 0.609 0.581 0.613

C.2 Missing-indicators

The tables in this section correspond to the experiments in Chapter 10.
Table C.2 contains the mean AUROC across five-fold cross-validation

and five random states for each classifier, each dataset, each imputation
strategy, without and with missing-indicators. Table C.3 contains the
mean AUROC for CART, GBM and ERT with updated hyperparameter
values (as discussed in Subsection 10.3). Table C.4 contains the mean
AUROC obtained by imputing missing categorical values with the mean,
after one-hot encoding (Subsection 10.3).

Table C.2: AUROC, main experiment. Bold: higher value (without or
with missing-indicators) by at least 0.001.

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

NN-1 adult 0.857 0.858 0.858 0.858 0.858 0.858
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.928 0.926 0.926 0.922 0.928 0.923
arrhythmia 0.760 0.760 0.760 0.760 0.760 0.760
bands 0.836 0.838 0.834 0.847 0.836 0.848
ckd 0.998 0.994 0.991 0.993 0.989 0.991
crx 0.908 0.909 0.904 0.908 0.909 0.910
dress-sales 0.548 0.555 0.540 0.545 0.527 0.531
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Table C.2: AUROC, main experiment. Bold: higher value (without or
with missing-indicators) by at least 0.001.

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

exasens 0.710 0.726 0.703 0.713 0.717 0.726
hcc 0.699 0.760 0.707 0.745 0.712 0.753
heart-disease 0.846 0.847 0.841 0.844 0.843 0.846
hepatitis 0.849 0.841 0.841 0.850 0.839 0.847
horse-colic 0.716 0.733 0.738 0.734 0.726 0.738
mammographic-masses 0.821 0.827 0.821 0.825 0.824 0.831
mi 0.572 0.579 0.564 0.580 0.569 0.579
nomao 0.983 0.982 0.978 0.981 0.983 0.982
primary-tumor 0.675 0.687 0.678 0.693 0.676 0.687
secom 0.641 0.651 0.641 0.643 0.646 0.653
soybean 0.993 0.993 0.992 0.993 0.993 0.993
thyroid0387 0.879 0.877 0.878 0.877 0.875 0.875

NN-2 adult 0.860 0.861 0.861 0.861 0.861 0.860
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.920 0.922 0.918 0.920 0.921 0.921
arrhythmia 0.733 0.733 0.734 0.734 0.733 0.733
bands 0.830 0.832 0.818 0.835 0.825 0.836
ckd 0.999 0.996 0.992 0.995 0.991 0.993
crx 0.899 0.900 0.898 0.899 0.900 0.901
dress-sales 0.554 0.547 0.541 0.539 0.532 0.527
exasens 0.709 0.716 0.699 0.706 0.712 0.718
hcc 0.690 0.696 0.695 0.709 0.698 0.705
heart-disease 0.831 0.835 0.828 0.837 0.829 0.836
hepatitis 0.861 0.851 0.846 0.850 0.860 0.862
horse-colic 0.684 0.710 0.724 0.706 0.695 0.704
mammographic-masses 0.820 0.825 0.821 0.824 0.822 0.828
mi 0.561 0.563 0.555 0.560 0.563 0.563
nomao 0.980 0.982 0.976 0.980 0.980 0.981
primary-tumor 0.667 0.673 0.670 0.675 0.666 0.677
secom 0.607 0.612 0.614 0.617 0.607 0.613
soybean 0.986 0.988 0.987 0.988 0.986 0.988
thyroid0387 0.878 0.877 0.878 0.876 0.871 0.871

NN-1-D adult 0.838 0.838 0.837 0.839 0.837 0.838
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.929 0.926 0.927 0.922 0.928 0.923
arrhythmia 0.764 0.764 0.763 0.763 0.764 0.764
bands 0.871 0.875 0.865 0.879 0.870 0.880
ckd 0.998 0.994 0.991 0.993 0.989 0.991
crx 0.907 0.908 0.905 0.908 0.908 0.909
dress-sales 0.544 0.560 0.538 0.545 0.528 0.535
exasens 0.629 0.641 0.625 0.634 0.632 0.640
hcc 0.728 0.786 0.733 0.772 0.738 0.773
heart-disease 0.847 0.848 0.843 0.845 0.843 0.847
hepatitis 0.857 0.853 0.841 0.855 0.841 0.853
horse-colic 0.743 0.751 0.762 0.752 0.749 0.757
mammographic-masses 0.802 0.806 0.798 0.805 0.803 0.808
mi 0.572 0.580 0.564 0.580 0.569 0.579
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Table C.2: AUROC, main experiment. Bold: higher value (without or
with missing-indicators) by at least 0.001.

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

nomao 0.984 0.983 0.979 0.982 0.984 0.983
primary-tumor 0.665 0.676 0.667 0.684 0.665 0.677
secom 0.644 0.652 0.644 0.645 0.647 0.655
soybean 0.993 0.993 0.992 0.993 0.993 0.993
thyroid0387 0.881 0.879 0.880 0.879 0.877 0.877

NN-2-D adult 0.842 0.843 0.842 0.843 0.842 0.843
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.920 0.922 0.918 0.921 0.922 0.922
arrhythmia 0.735 0.736 0.736 0.736 0.735 0.735
bands 0.859 0.861 0.844 0.863 0.850 0.863
ckd 0.999 0.996 0.992 0.995 0.991 0.993
crx 0.898 0.899 0.898 0.900 0.900 0.901
dress-sales 0.548 0.548 0.543 0.538 0.534 0.532
exasens 0.628 0.635 0.623 0.629 0.629 0.634
hcc 0.710 0.723 0.716 0.737 0.719 0.729
heart-disease 0.833 0.838 0.830 0.839 0.831 0.839
hepatitis 0.862 0.856 0.847 0.852 0.859 0.865
horse-colic 0.712 0.731 0.745 0.730 0.719 0.729
mammographic-masses 0.802 0.805 0.799 0.804 0.802 0.807
mi 0.560 0.563 0.556 0.560 0.564 0.565
nomao 0.981 0.983 0.977 0.981 0.981 0.982
primary-tumor 0.659 0.666 0.660 0.667 0.657 0.669
secom 0.606 0.610 0.612 0.615 0.606 0.611
soybean 0.986 0.988 0.987 0.988 0.986 0.988
thyroid0387 0.880 0.878 0.879 0.878 0.872 0.872

SVM-L adult 0.905 0.906 0.905 0.906 0.905 0.906
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.966 0.969 0.961 0.969 0.963 0.966
arrhythmia 0.818 0.843 0.819 0.843 0.818 0.843
bands 0.796 0.817 0.791 0.809 0.760 0.801
ckd 1.000 1.000 0.999 1.000 0.999 1.000
crx 0.922 0.920 0.920 0.920 0.922 0.921
dress-sales 0.598 0.593 0.594 0.588 0.591 0.597
exasens 0.762 0.780 0.761 0.769 0.761 0.780
hcc 0.757 0.738 0.781 0.756 0.746 0.733
heart-disease 0.866 0.865 0.866 0.867 0.867 0.868
hepatitis 0.848 0.824 0.857 0.831 0.856 0.833
horse-colic 0.790 0.784 0.798 0.784 0.770 0.762
mammographic-masses 0.865 0.867 0.862 0.865 0.864 0.864
mi 0.641 0.666 0.639 0.669 0.636 0.671
nomao 0.986 0.988 0.986 0.988 0.985 0.988
primary-tumor 0.769 0.769 0.772 0.770 0.778 0.777
secom 0.626 0.629 0.671 0.659 0.631 0.628
soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.964 0.964 0.964 0.964 0.954 0.956

SVM-G adult 0.895 0.897 0.896 0.896 0.896 0.897
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
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Table C.2: AUROC, main experiment. Bold: higher value (without or
with missing-indicators) by at least 0.001.

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

aps-failure 0.967 0.968 0.960 0.965 0.965 0.966
arrhythmia 0.848 0.848 0.848 0.848 0.848 0.848
bands 0.855 0.865 0.858 0.870 0.857 0.869
ckd 1.000 1.000 1.000 1.000 1.000 1.000
crx 0.926 0.927 0.924 0.927 0.926 0.928
dress-sales 0.618 0.620 0.620 0.619 0.607 0.612
exasens 0.772 0.780 0.767 0.780 0.773 0.780
hcc 0.778 0.790 0.785 0.793 0.770 0.783
heart-disease 0.865 0.864 0.863 0.864 0.864 0.864
hepatitis 0.893 0.892 0.888 0.887 0.893 0.890
horse-colic 0.768 0.771 0.784 0.786 0.767 0.769
mammographic-masses 0.840 0.845 0.838 0.841 0.839 0.842
mi 0.635 0.643 0.637 0.645 0.639 0.648
nomao 0.991 0.992 0.988 0.991 0.989 0.991
primary-tumor 0.762 0.765 0.764 0.767 0.766 0.767
secom 0.699 0.694 0.702 0.698 0.689 0.685
soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.978 0.978 0.978 0.977 0.969 0.970

LR adult 0.905 0.906 0.906 0.906 0.906 0.906
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.971 0.979 0.971 0.980 0.967 0.978
arrhythmia 0.860 0.860 0.860 0.860 0.859 0.860
bands 0.819 0.833 0.811 0.830 0.808 0.828
ckd 1.000 1.000 1.000 1.000 1.000 1.000
crx 0.924 0.923 0.923 0.923 0.924 0.924
dress-sales 0.620 0.620 0.619 0.624 0.614 0.620
exasens 0.774 0.783 0.768 0.775 0.773 0.782
hcc 0.778 0.760 0.796 0.774 0.772 0.755
heart-disease 0.867 0.868 0.867 0.869 0.867 0.869
hepatitis 0.863 0.856 0.871 0.862 0.870 0.862
horse-colic 0.789 0.786 0.793 0.786 0.769 0.764
mammographic-masses 0.866 0.868 0.863 0.865 0.865 0.865
mi 0.654 0.685 0.645 0.685 0.650 0.688
nomao 0.986 0.988 0.986 0.988 0.985 0.988
primary-tumor 0.773 0.776 0.772 0.775 0.780 0.783
secom 0.686 0.678 0.687 0.680 0.676 0.673
soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.974 0.975 0.975 0.975 0.973 0.973

MLP adult 0.890 0.890 0.891 0.889 0.891 0.890
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.928 0.942 0.931 0.943 0.931 0.942
arrhythmia 0.831 0.846 0.831 0.845 0.831 0.845
bands 0.871 0.879 0.873 0.885 0.868 0.882
ckd 1.000 1.000 1.000 1.000 0.999 1.000
crx 0.902 0.906 0.901 0.905 0.900 0.905
dress-sales 0.549 0.553 0.560 0.561 0.544 0.545
exasens 0.759 0.762 0.746 0.755 0.757 0.763
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C. Full results

Table C.2: AUROC, main experiment. Bold: higher value (without or
with missing-indicators) by at least 0.001.

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

hcc 0.778 0.781 0.791 0.796 0.777 0.781
heart-disease 0.819 0.815 0.816 0.811 0.818 0.816
hepatitis 0.861 0.861 0.870 0.865 0.872 0.866
horse-colic 0.714 0.744 0.727 0.756 0.719 0.734
mammographic-masses 0.845 0.840 0.841 0.836 0.847 0.840
mi 0.659 0.695 0.656 0.697 0.660 0.697
nomao 0.991 0.991 0.987 0.990 0.990 0.991
primary-tumor 0.768 0.782 0.765 0.778 0.769 0.785
secom 0.693 0.701 0.699 0.704 0.686 0.697
soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.988 0.988 0.988 0.987 0.986 0.985

CART adult 0.776 0.775 0.776 0.775 0.776 0.774
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.855 0.858 0.858 0.857 0.854 0.857
arrhythmia 0.712 0.710 0.712 0.702 0.714 0.702
bands 0.716 0.713 0.697 0.716 0.706 0.717
ckd 0.965 0.964 0.979 0.978 0.972 0.970
crx 0.818 0.812 0.813 0.810 0.815 0.809
dress-sales 0.524 0.548 0.526 0.529 0.534 0.532
exasens 0.618 0.616 0.618 0.608 0.621 0.626
hcc 0.593 0.603 0.619 0.617 0.614 0.601
heart-disease 0.702 0.703 0.701 0.700 0.703 0.706
hepatitis 0.660 0.657 0.691 0.673 0.703 0.700
horse-colic 0.695 0.673 0.700 0.663 0.680 0.676
mammographic-masses 0.748 0.744 0.747 0.746 0.744 0.746
mi 0.572 0.572 0.549 0.574 0.557 0.571
nomao 0.935 0.935 0.922 0.925 0.926 0.927
primary-tumor 0.621 0.621 0.625 0.627 0.622 0.623
secom 0.547 0.552 0.555 0.558 0.542 0.538
soybean 0.975 0.977 0.973 0.974 0.971 0.973
thyroid0387 0.897 0.888 0.875 0.871 0.886 0.883

RF adult 0.890 0.890 0.890 0.891 0.891 0.890
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.988 0.989 0.988 0.989 0.988 0.988
arrhythmia 0.883 0.884 0.885 0.885 0.886 0.883
bands 0.893 0.896 0.886 0.898 0.896 0.896
ckd 1.000 1.000 1.000 1.000 1.000 1.000
crx 0.932 0.931 0.934 0.932 0.931 0.931
dress-sales 0.591 0.606 0.583 0.602 0.582 0.597
exasens 0.701 0.701 0.689 0.694 0.698 0.701
hcc 0.803 0.816 0.813 0.813 0.794 0.806
heart-disease 0.861 0.864 0.862 0.866 0.864 0.866
hepatitis 0.882 0.887 0.890 0.887 0.888 0.886
horse-colic 0.800 0.791 0.811 0.809 0.793 0.792
mammographic-masses 0.812 0.821 0.815 0.819 0.812 0.820
mi 0.687 0.687 0.676 0.681 0.687 0.679
nomao 0.994 0.994 0.991 0.992 0.993 0.993
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Table C.2: AUROC, main experiment. Bold: higher value (without or
with missing-indicators) by at least 0.001.

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

primary-tumor 0.749 0.758 0.730 0.761 0.748 0.761
secom 0.722 0.710 0.719 0.713 0.722 0.710
soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.994 0.994 0.993 0.992 0.995 0.992

ERT adult 0.846 0.847 0.847 0.847 0.846 0.847
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.989 0.989 0.989 0.988 0.989 0.989
arrhythmia 0.885 0.889 0.881 0.885 0.881 0.885
bands 0.889 0.890 0.874 0.890 0.885 0.892
ckd 1.000 1.000 1.000 1.000 1.000 1.000
crx 0.913 0.911 0.916 0.915 0.912 0.910
dress-sales 0.572 0.600 0.563 0.594 0.560 0.589
exasens 0.633 0.632 0.622 0.626 0.624 0.630
hcc 0.783 0.799 0.776 0.804 0.771 0.796
heart-disease 0.858 0.861 0.862 0.865 0.861 0.861
hepatitis 0.871 0.861 0.876 0.877 0.882 0.871
horse-colic 0.793 0.780 0.818 0.796 0.790 0.780
mammographic-masses 0.793 0.801 0.791 0.800 0.793 0.801
mi 0.689 0.683 0.661 0.683 0.676 0.686
nomao 0.994 0.993 0.991 0.992 0.993 0.993
primary-tumor 0.702 0.718 0.698 0.717 0.704 0.721
secom 0.718 0.713 0.716 0.705 0.706 0.716
soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.979 0.976 0.980 0.979 0.975 0.977

ABT adult 0.915 0.915 0.915 0.915 0.915 0.915
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.987 0.987 0.987 0.987 0.986 0.987
arrhythmia 0.634 0.632 0.634 0.633 0.634 0.632
bands 0.806 0.806 0.793 0.809 0.805 0.807
ckd 1.000 1.000 0.998 0.999 0.998 1.000
crx 0.905 0.906 0.907 0.906 0.909 0.905
dress-sales 0.590 0.582 0.584 0.578 0.587 0.589
exasens 0.720 0.720 0.705 0.717 0.713 0.711
hcc 0.715 0.724 0.739 0.735 0.708 0.687
heart-disease 0.860 0.860 0.857 0.861 0.861 0.858
hepatitis 0.797 0.804 0.824 0.830 0.805 0.814
horse-colic 0.753 0.752 0.749 0.742 0.735 0.729
mammographic-masses 0.856 0.857 0.855 0.856 0.854 0.855
mi 0.555 0.572 0.572 0.586 0.573 0.572
nomao 0.987 0.987 0.985 0.986 0.986 0.986
primary-tumor 0.661 0.660 0.670 0.668 0.668 0.671
secom 0.670 0.670 0.661 0.661 0.663 0.663
soybean 0.863 0.871 0.777 0.850 0.855 0.865
thyroid0387 0.685 0.685 0.666 0.666 0.674 0.674

GBM adult 0.921 0.921 0.921 0.921 0.921 0.921
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.989 0.988 0.988 0.989 0.988 0.988
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C. Full results

Table C.2: AUROC, main experiment. Bold: higher value (without or
with missing-indicators) by at least 0.001.

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

arrhythmia 0.873 0.874 0.880 0.875 0.879 0.878
bands 0.869 0.870 0.857 0.871 0.870 0.873
ckd 1.000 1.000 0.998 0.998 0.998 0.999
crx 0.932 0.932 0.930 0.931 0.929 0.931
dress-sales 0.612 0.606 0.597 0.601 0.612 0.609
exasens 0.725 0.725 0.720 0.724 0.723 0.725
hcc 0.759 0.780 0.762 0.773 0.747 0.742
heart-disease 0.872 0.872 0.869 0.870 0.873 0.872
hepatitis 0.837 0.828 0.837 0.838 0.854 0.854
horse-colic 0.793 0.789 0.794 0.789 0.798 0.789
mammographic-masses 0.850 0.853 0.847 0.851 0.846 0.853
mi 0.664 0.663 0.659 0.663 0.654 0.661
nomao 0.991 0.991 0.989 0.990 0.991 0.991
primary-tumor 0.760 0.763 0.762 0.762 0.754 0.752
secom 0.708 0.710 0.717 0.716 0.708 0.711
soybean 0.999 0.999 0.998 0.999 0.998 0.998
thyroid0387 0.916 0.914 0.896 0.896 0.903 0.905

Table C.3: AUROC, additional experiment for mean/mode imputation
and classifiers with adjusted hyperparameter values. Bold: higher value
(without or with missing-indicators) by at least 0.001.

Dataset Classifier, missing-indicators no/yes
CART GBM ERT
No Yes No Yes No Yes

adult 0.844 0.844 0.927 0.927 0.847 0.847
agaricus-lepiota 0.991 0.992 1.000 1.000 1.000 1.000
aps-failure 0.859 0.859 0.988 0.988 0.991 0.991
arrhythmia 0.749 0.748 0.850 0.852 0.897 0.899
bands 0.749 0.759 0.855 0.857 0.890 0.890
ckd 0.968 0.967 0.998 0.998 1.000 1.000
crx 0.897 0.897 0.934 0.933 0.914 0.914
dress-sales 0.568 0.570 0.608 0.614 0.572 0.602
exasens 0.723 0.732 0.755 0.757 0.626 0.626
hcc 0.577 0.588 0.737 0.745 0.791 0.808
heart-disease 0.777 0.777 0.870 0.871 0.861 0.862
hepatitis 0.626 0.578 0.812 0.809 0.877 0.873
horse-colic 0.742 0.724 0.789 0.783 0.799 0.782
mammographic-masses 0.823 0.823 0.857 0.859 0.795 0.802
mi 0.586 0.592 0.650 0.639 0.702 0.695
nomao 0.916 0.916 0.994 0.994 0.994 0.994
primary-tumor 0.703 0.707 0.766 0.767 0.705 0.714
secom 0.500 0.500 0.684 0.677 0.746 0.747
soybean 0.990 0.991 0.999 0.999 0.999 0.999
thyroid0387 0.909 0.909 0.913 0.923 0.987 0.987
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Table C.4: AUROC, additional experiment for imputation of categorical
attributes (mode imputation ormean imputation after one-hot encoding).
Bold: higher value by at least 0.001.

Classifier Dataset Without missing-indicators With missing-indicators
Mode Mean Mode Mean

NN-1 adult 0.857 0.858 0.858 0.858
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.836 0.839 0.838 0.843
crx 0.908 0.909 0.909 0.909
dress-sales 0.548 0.533 0.555 0.539
horse-colic 0.716 0.737 0.733 0.737
mammographic-masses 0.821 0.831 0.827 0.828
nomao 0.983 0.984 0.982 0.982
primary-tumor 0.675 0.679 0.687 0.693
soybean 0.993 0.993 0.993 0.993
thyroid0387 0.879 0.879 0.877 0.877

NN-2 adult 0.860 0.861 0.861 0.861
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.830 0.829 0.832 0.834
crx 0.899 0.898 0.900 0.900
dress-sales 0.554 0.548 0.547 0.531
horse-colic 0.684 0.688 0.710 0.719
mammographic-masses 0.820 0.824 0.825 0.825
nomao 0.980 0.981 0.982 0.982
primary-tumor 0.667 0.669 0.673 0.674
soybean 0.986 0.986 0.988 0.988
thyroid0387 0.878 0.879 0.877 0.876

NN-1-D adult 0.838 0.838 0.838 0.838
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.871 0.874 0.875 0.876
crx 0.907 0.908 0.908 0.908
dress-sales 0.544 0.537 0.560 0.544
horse-colic 0.743 0.763 0.751 0.756
mammographic-masses 0.802 0.810 0.806 0.807
nomao 0.984 0.985 0.983 0.983
primary-tumor 0.665 0.669 0.676 0.681
soybean 0.993 0.993 0.993 0.993
thyroid0387 0.881 0.880 0.879 0.879

NN-2-D adult 0.842 0.843 0.843 0.843
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.859 0.857 0.861 0.862
crx 0.898 0.898 0.899 0.900
dress-sales 0.548 0.543 0.548 0.535
horse-colic 0.712 0.716 0.731 0.739
mammographic-masses 0.802 0.806 0.805 0.806
nomao 0.981 0.982 0.983 0.983
primary-tumor 0.659 0.661 0.666 0.667
soybean 0.986 0.986 0.988 0.988
thyroid0387 0.880 0.880 0.878 0.877

SVM-L adult 0.905 0.905 0.906 0.906
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.796 0.797 0.817 0.817
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C. Full results

Table C.4: AUROC, additional experiment for imputation of categorical
attributes (mode imputation ormean imputation after one-hot encoding).
Bold: higher value by at least 0.001.

Classifier Dataset Without missing-indicators With missing-indicators
Mode Mean Mode Mean

crx 0.922 0.921 0.920 0.920
dress-sales 0.598 0.590 0.593 0.593
horse-colic 0.790 0.794 0.784 0.784
mammographic-masses 0.865 0.866 0.867 0.867
nomao 0.986 0.984 0.988 0.988
primary-tumor 0.769 0.769 0.769 0.769
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.964 0.965 0.964 0.964

SVM-G adult 0.895 0.896 0.897 0.897
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.855 0.856 0.865 0.867
crx 0.926 0.925 0.927 0.927
dress-sales 0.618 0.609 0.620 0.614
horse-colic 0.768 0.774 0.771 0.774
mammographic-masses 0.840 0.843 0.845 0.843
nomao 0.991 0.991 0.992 0.992
primary-tumor 0.762 0.764 0.765 0.766
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.978 0.978 0.978 0.978

LR adult 0.905 0.906 0.906 0.906
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.819 0.814 0.833 0.832
crx 0.924 0.924 0.923 0.924
dress-sales 0.620 0.611 0.620 0.620
horse-colic 0.789 0.788 0.786 0.787
mammographic-masses 0.866 0.867 0.868 0.868
nomao 0.986 0.984 0.988 0.988
primary-tumor 0.773 0.773 0.776 0.776
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.974 0.974 0.975 0.975

MLP adult 0.890 0.891 0.890 0.890
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.871 0.874 0.879 0.882
crx 0.902 0.902 0.906 0.906
dress-sales 0.549 0.540 0.553 0.549
horse-colic 0.714 0.727 0.744 0.749
mammographic-masses 0.845 0.844 0.840 0.841
nomao 0.991 0.991 0.991 0.991
primary-tumor 0.768 0.769 0.782 0.781
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.988 0.989 0.988 0.988

CART adult 0.844 0.844 0.844 0.844
agaricus-lepiota 0.991 0.991 0.992 0.991
bands 0.749 0.744 0.759 0.757
crx 0.897 0.899 0.897 0.899
dress-sales 0.568 0.568 0.570 0.568
horse-colic 0.742 0.728 0.724 0.723
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Table C.4: AUROC, additional experiment for imputation of categorical
attributes (mode imputation ormean imputation after one-hot encoding).
Bold: higher value by at least 0.001.

Classifier Dataset Without missing-indicators With missing-indicators
Mode Mean Mode Mean

mammographic-masses 0.823 0.822 0.823 0.821
nomao 0.916 0.916 0.916 0.916
primary-tumor 0.703 0.739 0.707 0.738
soybean 0.990 0.995 0.991 0.995
thyroid0387 0.909 0.909 0.909 0.909

RF adult 0.890 0.891 0.890 0.890
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.893 0.895 0.896 0.890
crx 0.932 0.933 0.931 0.930
dress-sales 0.591 0.589 0.606 0.589
horse-colic 0.800 0.802 0.791 0.795
mammographic-masses 0.812 0.823 0.821 0.822
nomao 0.994 0.994 0.994 0.994
primary-tumor 0.749 0.753 0.758 0.759
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.994 0.994 0.994 0.993

ERT adult 0.847 0.848 0.847 0.847
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.890 0.893 0.890 0.889
crx 0.914 0.914 0.914 0.914
dress-sales 0.572 0.589 0.602 0.591
horse-colic 0.799 0.806 0.782 0.785
mammographic-masses 0.795 0.804 0.802 0.801
nomao 0.994 0.994 0.994 0.994
primary-tumor 0.705 0.711 0.714 0.713
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.987 0.987 0.987 0.987

ABT adult 0.915 0.915 0.915 0.915
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.806 0.806 0.806 0.805
crx 0.905 0.906 0.906 0.904
dress-sales 0.590 0.582 0.582 0.579
horse-colic 0.753 0.763 0.752 0.764
mammographic-masses 0.856 0.857 0.857 0.858
nomao 0.987 0.987 0.987 0.987
primary-tumor 0.661 0.640 0.660 0.639
soybean 0.863 0.859 0.871 0.873
thyroid0387 0.685 0.685 0.685 0.685

GBM adult 0.927 0.927 0.927 0.927
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.855 0.855 0.857 0.854
crx 0.934 0.934 0.933 0.934
dress-sales 0.608 0.606 0.614 0.608
horse-colic 0.789 0.792 0.783 0.788
mammographic-masses 0.857 0.857 0.859 0.858
nomao 0.994 0.994 0.994 0.994
primary-tumor 0.766 0.770 0.767 0.769
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C. Full results

Table C.4: AUROC, additional experiment for imputation of categorical
attributes (mode imputation ormean imputation after one-hot encoding).
Bold: higher value by at least 0.001.

Classifier Dataset Without missing-indicators With missing-indicators
Mode Mean Mode Mean

soybean 0.999 0.999 0.999 0.999
thyroid0387 0.913 0.914 0.923 0.923

C.3 Polar encoding

The tables in this section correspond to the experiments in Chapter 12.
Table C.5 (distance-based classifiers) and Table C.6 (decision tree

classifiers) contain the mean AUROC across five-fold cross-validation
and five random states for each classifier and each dataset, for mean
imputation with missing-indicators as well as for polar encoding (our
proposal).

Table C.5: AUROC obtained with mean imputation and missing-
indicators (MI) and polar encoding (PE) for distance-based classifiers.
Bold: higher value.

Boscovich Euclidean
MI PE MI PE

Dataset dataset

FRNN adult 0.872 0.878 0.863 0.867
agaricus-lepiota 1.000 1.000 1.000 1.000
aps-failure 0.943 0.952 0.962 0.968
arrhythmia 0.889 0.887 0.868 0.875
bands 0.832 0.852 0.819 0.833
ckd 0.996 0.999 0.996 0.999
crx 0.918 0.921 0.918 0.920
dress-sales 0.592 0.577 0.586 0.572
exasens 0.719 0.745 0.736 0.749
hcc 0.784 0.792 0.769 0.780
heart-disease 0.858 0.863 0.848 0.854
hepatitis 0.882 0.884 0.879 0.880
horse-colic 0.760 0.772 0.766 0.772
mammographic-masses 0.816 0.838 0.824 0.837
mi 0.674 0.687 0.670 0.678
nomao 0.986 0.990 0.987 0.989
primary-tumor 0.794 0.790 0.791 0.784
secom 0.642 0.673 0.596 0.609
soybean 0.997 0.997 0.997 0.997
thyroid0387 0.886 0.906 0.892 0.902

NN adult 0.846 0.846 0.846 0.846
agaricus-lepiota 1.000 1.000 1.000 1.000
aps-failure 0.910 0.909 0.902 0.904
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Table C.5: AUROC obtained with mean imputation and missing-
indicators (MI) and polar encoding (PE) for distance-based classifiers.
Bold: higher value.

Boscovich Euclidean
MI PE MI PE

Dataset dataset

arrhythmia 0.757 0.757 0.733 0.723
bands 0.800 0.824 0.794 0.810
ckd 0.986 0.998 0.985 0.998
crx 0.910 0.912 0.910 0.911
dress-sales 0.560 0.552 0.560 0.548
exasens 0.717 0.719 0.713 0.717
hcc 0.751 0.717 0.733 0.699
heart-disease 0.833 0.841 0.827 0.832
hepatitis 0.815 0.818 0.815 0.828
horse-colic 0.723 0.728 0.727 0.730
mammographic-masses 0.831 0.830 0.830 0.830
mi 0.591 0.575 0.584 0.583
nomao 0.980 0.982 0.978 0.980
primary-tumor 0.719 0.687 0.718 0.697
secom 0.590 0.617 0.522 0.548
soybean 0.988 0.992 0.987 0.990
thyroid0387 0.835 0.836 0.828 0.828

NN-D adult 0.826 0.828 0.827 0.827
agaricus-lepiota 1.000 1.000 1.000 1.000
aps-failure 0.911 0.910 0.903 0.905
arrhythmia 0.759 0.760 0.735 0.726
bands 0.824 0.851 0.808 0.825
ckd 0.987 0.999 0.987 0.999
crx 0.906 0.909 0.906 0.909
dress-sales 0.564 0.552 0.563 0.548
exasens 0.636 0.637 0.632 0.634
hcc 0.762 0.738 0.744 0.720
heart-disease 0.837 0.843 0.832 0.837
hepatitis 0.823 0.821 0.819 0.827
horse-colic 0.747 0.754 0.745 0.749
mammographic-masses 0.808 0.808 0.808 0.808
mi 0.592 0.577 0.586 0.585
nomao 0.981 0.983 0.979 0.981
primary-tumor 0.703 0.679 0.704 0.688
secom 0.594 0.624 0.526 0.549
soybean 0.988 0.992 0.987 0.990
thyroid0387 0.837 0.838 0.830 0.830

SVM-G adult 0.893 0.900
agaricus-lepiota 1.000 1.000
aps-failure 0.942 0.974
arrhythmia 0.872 0.878
bands 0.833 0.843
ckd 1.000 1.000
crx 0.920 0.922
dress-sales 0.632 0.614
exasens 0.768 0.774

Continued on next page

240
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Table C.5: AUROC obtained with mean imputation and missing-
indicators (MI) and polar encoding (PE) for distance-based classifiers.
Bold: higher value.

Boscovich Euclidean
MI PE MI PE

Dataset dataset

hcc 0.800 0.789
heart-disease 0.861 0.869
hepatitis 0.857 0.858
horse-colic 0.776 0.788
mammographic-masses 0.845 0.835
mi 0.648 0.655
nomao 0.990 0.991
primary-tumor 0.781 0.789
secom 0.678 0.696
soybean 0.999 0.999
thyroid0387 0.891 0.917

Table C.6: AUROC obtained with mean imputation and missing-
indicators (MI) and polar encoding (PE) for decision tree classifiers.
Bold: higher value.

Dataset ABT CART ERT GBM RF
MI PE MI PE MI PE MI PE MI PE

Dataset ABT CART ERT GBM RF
MI PE MI PE MI PE MI PE MI PE

adult 0.915 0.915 0.844 0.844 0.847 0.856 0.927 0.927 0.890 0.897
agaricus-lepiota 1.000 1.000 0.992 0.992 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.987 0.987 0.859 0.859 0.991 0.991 0.988 0.987 0.989 0.989
arrhythmia 0.634 0.634 0.748 0.745 0.899 0.899 0.852 0.851 0.887 0.885
bands 0.806 0.813 0.759 0.768 0.890 0.904 0.857 0.859 0.896 0.894
ckd 1.000 1.000 0.967 0.965 1.000 1.000 0.998 0.998 1.000 1.000
crx 0.906 0.908 0.896 0.897 0.914 0.916 0.933 0.933 0.931 0.931
dress-sales 0.581 0.583 0.570 0.574 0.602 0.575 0.614 0.608 0.606 0.576
exasens 0.720 0.722 0.732 0.743 0.626 0.627 0.757 0.757 0.702 0.707
hcc 0.725 0.729 0.588 0.590 0.808 0.803 0.745 0.751 0.816 0.813
heart-disease 0.860 0.859 0.777 0.774 0.862 0.861 0.871 0.869 0.864 0.858
hepatitis 0.807 0.809 0.578 0.596 0.873 0.857 0.810 0.798 0.886 0.875
horse-colic 0.756 0.756 0.723 0.718 0.782 0.796 0.784 0.783 0.792 0.798
mammographic-masses 0.857 0.856 0.823 0.822 0.802 0.805 0.859 0.856 0.822 0.825
mi 0.572 0.582 0.592 0.607 0.695 0.709 0.637 0.646 0.686 0.696
nomao 0.987 0.987 0.916 0.916 0.994 0.994 0.994 0.994 0.994 0.994
primary-tumor 0.660 0.648 0.707 0.739 0.714 0.712 0.767 0.767 0.758 0.756
secom 0.668 0.663 0.500 0.500 0.746 0.747 0.679 0.680 0.709 0.722
soybean 0.870 0.892 0.991 0.993 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.685 0.685 0.909 0.908 0.987 0.990 0.923 0.934 0.994 0.993
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Summary

Fuzzy rough nearest neighbour classification (FRNN) is an algorithm
that calculates a score for each decision class based on the similarity of a
test record with the records in the decision class (upper approximation)
and its dissimilarity with the records not in the decision class (lower
approximation). Wepropose threemodificiations thatmake FRNNmore
practical and turn it into a true nearest neighbour algorithm. We then
show that this outperforms classical nearest neighbour classification
and determine how datasets should be scaled, which distance measure
should be used and how many neighbours should be included in the
calculation.

Next, we investigate how FRNN can be applied to very large datasets.
We demonstrate this can be achieved through distributed computing,
but conclude that this approach has only limited potential. We then
show that the computational complexity of FRNN can be reduced
substantially by using approximate nearest neighbour searches, allowing
us to perform cross-validation on datasets with ten million records.

Upper and lower approximations can be considered to be examples
of so-called data descriptors, algorithms that express similarity with a
target dataset, a prediction task known as one-class classification. We
introduce our own data descriptor, average localised proximity (ALP),
and show that it performs better than other data descriptors. We then
investigate how the hyperparameters of data descriptors can best be
optimised, and apply this in the fuzzy rough one-class ensemble, a
generalisation of FRNN where the upper and lower approximations are
calculated with different data descriptors than the default. However,
we find that this obtains worse classification performance than ordinary
FRNN, except for large multiclass datasets with not too many classes.

In the final part of the thesis, we evaluate three approaches towards
missing values. We find that including the information from missing-
values in the from of indicator attributes increases overall classification
performance for a range of algorithms. For distance-based and decision
tree algorithms, we present an alternative representation of missing
values (polar encoding) that can be applied when numerical values
are scaled to [0, 1], and which does not require imputation, and show
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that it leads to results that are as good or better than those obtained
with missing-indicators. For FRNN, it also performs better than an
alternative proposal that represents the uncertainty frommissing values
with interval-valued fuzzy sets.
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Samenvatting

Fuzzy rough nearest neighbours (FRNN) is een classificatie-algoritme dat
een score berekent voor iedere beslissingklasse op basis van de mate
waarin een testgeval lĳkt op de objecten in die beslissingingsklasse
(de bovenbenadering) en de mate waarin het testgeval niet lĳkt op de
objecten in de andere beslissingklassen (de onderbenadering). We stellen
drie aanpassingen voor die FRNN beter praktisch toepasbaar maken, en
het veranderen in een werkelĳk naasteburenalgoritme. We laten dan
zien dat dit beter presteert dan klassieke naasteburenclassificatie, en
bepalen hoe datasets geschaald dienen te worden, welke afstandsmaat
men dient te gebruiken en hoeveel buren men dient te betrekken in de
berekening.

Vervolgens onderzoekenwehoe FRNN toegepast kanworden op zeer
grote datasets. We laten zien dat dit bereikt kan worden door middel
van distributed computing, maar concluderen dat het potentieel van deze
aanpak slechts beperkt is. We laten dan zien dat de computationele
complexiteit van FRNN substantieel verminderd kan worden door een
algoritme te gebruiken dat naaste buren slechts bĳ benadering vindt,
hetgeen ons toestaat om kruisvalidatie toe te passen op datasets met
tien miljoen regels.

De boven- en onderbenadering kunnen worden beschouwd als voor-
beelden van zogenaamde data-descriptoren, algoritmes die gelĳkenis met
een doelklasse ten uitdrukking brengen, een voorspellingsopdracht die
éénklasseclassificatie genoemdwordt. We introduceren onze eigen data-
descriptor, average localised proximity (ALP), en laten zien dat deze beter
presteert dan andere data-descriptoren. We onderzoeken vervolgens hoe
de hyperparameters van data-descriptoren het beste geoptimaliseerd
dienen te worden, en passen dit toe in een vaagruw-éénklasse-ensemble,
een veralgemening van FRNNwaarbĳ boven- en onderbenadering berek-
end worden met andere data-descriptoren dan oorspronkelĳk. Echter,
we verkrĳgen hiermee slechtere classificatieresultaten dan met gewone
FRNN, behalve voor grote meerklassedatasets met niet te veel klassen.

In het laatste deel van de thesis evalueren we drie manieren om met
ontbrekende waarden om te gaan. We stellen vast dat het toevoegen
van de informatie uit ontbrekende waarden in de vorm van indicatoren
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de classificatieresultaten over het algemeen verbetert voor een reeks
aan algoritmes. Voor algoritmes gebaseerd op afstand en beslisbomen
stellen we ook een alternatieve representatie voor van ontbrekende
waarden (polar encoding) die toegepast kan worden wanneer numerieke
waarden naar [0, 1] geschaald worden, en die geen imputatie behoeft,
en we laten zien dat dit tot resultaten leidt die even goed of beter zĳn
dan de resultaten verkregen met indicatoren. Voor FRNN presteert deze
aanpak ook beter dan een alternatief voorstel dat de onzekerheid van
ontbrekende waarden representeert met behulp van intervalwaardige
vaagverzamelingen.
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pp 15–24.

Chaudhuri K, Dasgupta S (2014)
Rates of convergence for nearest neighbor classification. Advances in Neural
Information Processing Systems, vol 27.

Chen T, Guestrin C (2016)
XGBoost: a scalable tree boosting system. KDD ‘16: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp 785–794.

Chen WC, Schmidt JN, Yan D, Vohra YK, Chen CC (2021)
Machine learning and evolutionary prediction of superhard bcn compounds. npj
Computational Materials, vol 7, no 114.

ChowWK (1979)
A look at various estimators in logistic models in the presence of missing val-
ues. Technical report N-1324-HEW. Santa Monica, California: The Rand
Corporation.

CIA World Factbook (2022)
GDP — composition, by sector of origin. url: https://www.cia.gov/the-
world-factbook/field/gdp-composition-by-sector-of-origin/.

Cohen J (1968)
Multiple regression as a general data-analytic system. Psychological Bulletin,
vol 70, no 6, pp 426–443.

———, Cohen P (1975)
Applied multiple regression/correlation analysis for the behavioral sciences. Hills-

256



Bibliography

dale, New Jersey: Lawrence Erlbaum Associates. Chap. 7. Missing Data,
pp 265–290.

Coomans D, Jonckheer MH, Massart DL, Broeckaert I, Blockx P (1978)
The application of linear discriminant analysis in the diagnosis of thyroid diseases.
Analytica Chimica Acta, vol 103, no 4, pp 409–415.

Cornelis C, Verbiest N, Jensen R (2010)
Ordered weighted average based fuzzy rough sets. RSKT 2010: Proceedings of
the 5th International Conference on Rough Set and Knowledge Technology.
Lecture Notes in Artificial Intelligence 6401. Springer, pp 78–85.

Cortes C, Vapnik V (1995)
Support-vector networks. Machine Learning, vol 20, no 3, pp 273–297.

Couso I, Dubois D (2011)
Rough sets, coverings and incomplete information. Fundamenta Informaticae,
vol 108, no 3-4, pp 223–247.

Cover T, Hart P (1967)
Nearest neighbor pattern classification. IEEE Transactions on Information
Theory, vol 13, no 1, pp 21–27.

Cox DR (1966)
Some procedures connected with the logistic qualitative response curve. in (fn david,
ed.) research papers in statistics: essays in honour of j. neyman’s 70th birthday.
Research Papers in Statistics: Festschrift for J. Neyman. Ed. by FN David.
London: John Wiley & Sons, pp 55–71.

Dai J (2013)
Rough set approach to incomplete numerical data. Information Sciences, vol 241,
pp 43–57.

Das S, Datta S, Chaudhuri BB (2018)
Handling data irregularities in classification: foundations, trends, and future
challenges. Pattern Recognition, vol 81, pp 674–693.

De Stefano C, Maniaci M, Fontanella F, Scotto di Freca A (2018)
Reliable writer identification in medieval manuscripts through page layout features:
the “Avila” Bible case. Engineering Applications of Artificial Intelligence,
vol 72, pp 99–110.

D’eer L, Verbiest N, Cornelis C, Godo L (2015)
A comprehensive study of implicator–conjunctor-based and noise-tolerant fuzzy
rough sets: definitions, properties and robustness analysis. Fuzzy Sets and Systems,
vol 275, pp 1–38.

Demšar J (2006)
Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, vol 7, no 1, pp 1–30.

257



Bibliography

Detrano R, Yiannikas J, Salcedo EE, Rincon G, Go RT, Williams G, Leatherman J
(1984)

Bayesian probability analysis: a prospective demonstration of its clinical utility in
diagnosing coronary disease. Circulation, vol 69, no 3, pp 541–547.

———, Janosi A, Steinbrunn W, Pfisterer M, Schmid JJ, Sandhu S, Guppy KH,
Lee S, Froelicher V (1989)
International application of a new probability algorithm for the diagnosis of coronary
artery disease. The American Journal of Cardiology, vol 64, no 5, pp 304–310.

Ding Y, Simonoff JS (2010)
An investigation of missing data methods for classification trees applied to binary
response data. Journal of Machine Learning Research, vol 11, no 1, pp 131–170.

Dixon JK (1979)
Pattern recognition with partly missing data. IEEE Transactions on Systems,
Man, and Cybernetics, vol 9, no 10, pp 617–621.

Domingues R, Filippone M, Michiardi P, Zouaoui J (2018)
A comparative evaluation of outlier detection algorithms: experiments and analyses.
Pattern Recognition, vol 74, pp 406–421.

Dörksen H, Lohweg V (2014)
Combinatorial refinement of feature weighting for linear classification. ETFA
‘14: Proceedings of the 19th IEEE International Conference on Emerging
Technologies and Factory Automation.

———, Mönks U, Lohweg V (2014)
Fast classification in industrial big data environments. ETFA ‘14: Proceedings
of the 19th IEEE International Conference on Emerging Technologies and
Factory Automation.

Draper BA, Collins RT, Brolio J, Hanson AR, Riseman EM (1989)
The Schema System. International Journal of Computer Vision, vol 2, no 3,
pp 209–250.

Dua D, Graff C (2019)
UCI Machine Learning Repository. url: http://archive.ics.uci.edu/ml.

Dubois D, Prade H (1987)
Twofold fuzzy sets and rough sets — some issues in knowledge representation.
Fuzzy Sets and Systems, vol 23, no 1, pp 3–18.

———, Prade H (1990)
Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems,
vol 17, no 2-3, pp 191–209.

———, Prade H (2005)
Interval-valued fuzzy sets, possibility theory and imprecise probability. EUSFLAT-
LFA 2005: Proceedings of the Joint 4th Conference of the European Society

258



Bibliography

for Fuzzy Logic and Technology and the 11th Rencontres Francophones sur
la Logique Floue et ses Applications, pp 314–319.

Dudani SA (1973)
An experimental study of moment methods for automatic identification of three-
dimensional objects from television images. Doctoral thesis. The Ohio State
University.

——— (1976)
The distance-weighted :-nearest-neighbor rule. IEEE Transactions on Systems,
Man, and Cybernetics, vol 6, no 4, pp 325–327.

Dunn JC (1974)
A fuzzy relative of the ISODATA process and its use in detecting compact well-
separated clusters. Journal of Cybernetics, vol 3, no 3, pp 32–57.

Efron B, Gong G (1981)
Statistical theory and the computer. Computer Science and Statistics: Proceed-
ings of the 13th Symposium on the Interface. Springer, pp 3–7.

Eirola E (2014)
Machine learning methods for incomplete data and variable selection. Doctoral
thesis. Aalto University, Espoo.

Eisenhart C (1961)
Boscovich and the combination of observations. Roger Joseph Boscovich, S.J.,
F.R.S., 1711–1787: Studies of his Life and Work on the 250th Anniversary
of his Birth. Ed. by LL Whyte. London: George Allen & Unwin. Chap. 9,
pp 200–212.

Elter M, Schulz-Wendtland R, Wittenberg T (2007)
The prediction of breast cancer biopsy outcomes using two CAD approaches that
both emphasize an intelligible decision process. Medical Physics, vol 34, no 11,
pp 4164–4172.

Enders CK (2010)
Applied Missing Data Analysis. Methodology in the Social Sciences. New
York: The Guilford Press.

Esposito F, Malerba D, Semeraro G, Annese E, Scafuro G (1990)
An experimental page layout recognition system for office document automatic
classification: an integrated approach for inductive generalization. Proceedings
of the 10th International Conference on Pattern Recognition. Vol. 1. IEEE,
pp 557–562.

———, Malerba D, Semeraro G (1995)
A knowledge-based approach to the layout analysis. ICDAR ‘95: Proceedings
of Third International Conference on Document Analysis and Recognition.
Vol. I. IEEE Computer Society Press, pp 466–471.

Estrela da Silva J, Marques de Sá JP, Jossinet J (2000)

259



Bibliography

Classification of breast tissue by electrical impedance spectroscopy. Medical and
Biological Engineering and Computing, vol 38, no 1, pp 26–30.

Evans B, Fisher D (1994)
Overcoming process delays with decision tree induction. IEEE Expert, vol 9, no 1,
pp 60–66.

Evett IW, Spiehler EJ (1987)
Rule induction in forensic science. Proceedings of the KBS in Government
conference. Online Publications, pp 107–118.

Ferguson DJ, Meier P (1976)
Results of the treatment of mammary cancer at the university of chicago, 1960–1969.
Surgical Clinics of North America, vol 56, no 1, pp 103–109.

Ferreira Costa C, Nascimento MA (2016)
IDA 2016 industrial challenge: using machine learning for predicting failures. IDA
2016: Proceedings of the 15th International Symposium on Intelligent Data
Analysis. Lecture Notes in Computer Science 9897. Springer, pp 381–386.

Fisher RA (1936)
The use of multiple measurements in taxonomic problems. Annals of Eugenics,
vol 7, no 2, pp 179–188.

Fix E, Hodges Jr J (1951)
Discriminatory Analysis—Nonparametric Discrimination: Consistency Properties.
Technical report 21-49-004. Randolph Field, Texas: USAF School of Aviation
Medicine.

Forina M, Lanteri S (1984)
Data analysis in food chemistry. Chemometrics. Springer, pp 305–349.

———, Armanino C, Castino M, Ubigli M (1986)
Multivariate data analysis as a discriminating method of the origin of wines. Vitis,
vol 25, no 3, pp 189–201.

Fragoso RC, Cavalcanti GD, Pinheiro RH, Oliveira LS (2021)
Dynamic selection and combination of one-class classifiers for multi-class classifica-
tion. Knowledge-Based Systems, vol 228, p 107290.

Freund Y, Schapire RE (1995)
A desicion-theoretic generalization of on-line learning and an application to boost-
ing. EuroCOLT ‘95: Proceedings of the Second European Conference on
Computational Learning Theory. Lecture Notes in Computer Science 904.
Springer, pp 23–37.

Frey PW, Slate DJ (1991)
Letter recognition using Holland-style adaptive classifiers. Machine Learning,
vol 6, no 2, pp 161–182.

Friedman JH, Bentley JL, Finkel RA (1977)

260



Bibliography

An algorithm for finding best matches in logarithmic expected time. ACM Transac-
tions on Mathematical Software, vol 3, no 3, pp 209–226.

——— (2001)
Greedy function approximation: a gradient boosting machine. The Annals of
Statistics, vol 29, no 5, pp 1189–1232.

Fukushima K (1969)
Visual feature extraction by a multilayered network of analog threshold elements.
IEEE Transactions on Systems Science and Cybernetics, vol 5, no 4, pp 322–
333.

García S, Luengo J, Herrera F (2015)
Data preprocessing in data mining. Intelligent Systems Reference Library 72.
Cham, Zug: Springer. Chap. 4. Dealing with Missing Values.

Gautam C, Tiwari A, Ravindran S (2016)
Construction of multi-class classifiers by extreme learning machine based one-class
classifiers. 2016 International Joint Conference on Neural Networks (ĲCNN).
IEEE, pp 2001–2007.

Geurts P, Ernst D, Wehenkel L (2006)
Extremely randomized trees. Machine Learning, vol 63, no 1, pp 3–42.

Giacinto G, Perdisci R, Del Rio M, Roli F (2008)
Intrusion detection in computer networks by a modular ensemble of one-class
classifiers. Information Fusion, vol 9, no 1, pp 69–82.

Glorot X, Bengio Y (2010)
Understanding the difficulty of training deep feedforward neural networks. AISTATS
2010: Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics. Proceedings of Machine Learning Research 9.
JMLR Workshop and Conference Proceedings, pp 249–256.

Goh KS, Chang EY, Li B (2005)
Using one-class and two-class svms for multiclass image annotation. IEEE
Transactions on Knowledge and Data Engineering, vol 17, no 10, pp 1333–
1346.

Golovenkin SE, Bac J, Chervov A, Mirkes EM, Orlova YV, Barillot E, Gorban AN,
Zinovyev A (2020)
Trajectories, bifurcations, and pseudo-time in large clinical datasets: applications to
myocardial infarction and diabetes data. GigaScience, vol 9, no 11, giaa128.

Gorman RP, Sejnowski TJ (1988)
Analysis of hidden units in a layered network trained to classify sonar targets.
Neural Networks, vol 1, no 1, pp 75–89.

Graham JW (2009)
Missing data analysis: making it work in the real world. Annual Review of
Psychology, vol 60, pp 549–576.

261



Bibliography

Grzymala-Busse JW (1988)
Knowledge acquisition under uncertainty—a rough set approach. Journal of
Intelligent and Robotic Systems, vol 1, no 1, pp 3–16.

———, Hu M (2000)
A comparison of several approaches to missing attribute values in data mining.
RSCTC 2000: Proceedings of the Second International Conference on Rough
Sets and Current Trends in Computing. Lecture Notes in Artificial Intelli-
gence 2005. Springer, pp 378–385.

——— (2006)
Rough set strategies to data with missing attribute values. Foundations and novel
approaches in data mining. Springer, pp 197–212.

Güvenir HA, Acar B, Demiröz G, Çekin A (1997)
A supervised machine learning algorithm for arrhythmia analysis. Proceedings
of the 24th Annual Meeting of Computers in Cardiology. Computers in
Cardiology 24. IEEE, pp 433–436.

———, Demiröz G, İlter N (1998)
Learning differential diagnosis of erythemato-squamous diseases using voting feature
intervals. Artificial Intelligence in Medicine, vol 13, no 3, pp 147–165.

Haberman SJ (1976)
Generalized residuals for log-linear models. Proceedings of the 9th International
Biometrics Conference. Invited Papers I. The Biometric Society, pp 104–122.

Hadjadji B, Chibani Y, Guerbai Y (2014)
Multiple one-class classifier combination for multi-class classification. 2014 22nd
International Conference on Pattern Recognition. IEEE, pp 2832–2837.

———, Chibani Y, Guerbai Y (2017)
Combining diverse one-class classifiers by means of dynamic weighted average
for multi-class pattern classification. Intelligent Data Analysis, vol 21, no 3,
pp 515–535.

———, Chibani Y (2018)
Two combination stages of clustered one-class classifiers for writer identification
from text fragments. Pattern Recognition, vol 82, pp 147–162.

———, Chibani Y, Nemmour H (2019)
Hybrid one-class classifier ensemble based on fuzzy integral for open-lexicon
handwritten arabic word recognition. Pattern Analysis and Applications, vol 22,
no 1, pp 99–113.

Hajj N, Rizk Y, Awad M (2019)
A subjectivity classification framework for sports articles using improved cortical
algorithms. Neural Computing and Applications, vol 31, no 11, pp 8069–8085.

Haldemann J, Ksoll V, Walter D, Alibert Y, Klessen RS, Benz W, Koethe U,
Ardizzone L, Rother C (2022)

262



Bibliography

Exoplanet Characterization using Conditional Invertible Neural Networks. arXiv
preprint 2202.00027.

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009)
The WEKA data mining software: an update. ACM SIGKDD Explorations
Newsletter, vol 11, no 1, pp 10–18.

Hamming RW (1950)
Error detecting and error correcting codes. The Bell System Technical Journal,
vol 29, no 2, pp 147–160.

Hand DJ, Till RJ (2001)
A simple generalisation of the area under the ROC curve for multiple class classifi-
cation problems. Machine Learning, vol 45, no 2, pp 171–186.

Hanley JA, McNeil BJ (1982)
The meaning and use of the area under a receiver operating characteristic (ROC)
curve. Radiology, vol 143, no 1, pp 29–36.

Hariri S, Carrasco Kind M, Brunner RJ (2021)
Extended Isolation Forest. IEEE Transactions on Knowledge and Data Engi-
neering, vol 33, no 4, pp 1479–1489.

Hayashi T, Fujita H (2021)
One-class ensemble classifier for data imbalance problems. Applied Intelligence,
vol, pp 1–17.

Heidke P (1926)
Berechnung des erfolges und der güte der windstärkevorhersagen im sturmwar-
nungsdienst. Geografiska Annaler, vol 8, no 4, pp 301–349.

Van der Heĳden GJMG, Donders ART, Stĳnen T, Moons KGM (2006)
Imputation of missing values is superior to complete case analysis and the missing-
indicator method in multivariable diagnostic research: a clinical example. Journal
of Clinical Epidemiology, vol 59, no 10, pp 1102–1109.

Ho TK, Basu M, Law MHC (2006)
Measures of geometrical complexity in classification problems. Data complexity
in pattern recognition. Springer, pp 1–23.

Holm S (1979)
A simple sequentially rejective multiple test procedure. Scandinavian Journal of
Statistics, vol 6, no 2, pp 65–70.

Hong TP, Tseng LH, Chien BC (2010)
Mining from incomplete quantitative data by fuzzy rough sets. Expert Systems
with Applications, vol 37, no 3, pp 2644–2653.

Hooke R, Jeeves TA (1961)
‘‘direct search” solution of numerical and statistical problems. Journal of the ACM,
vol 8, no 2, pp 212–229.

263



Bibliography

Horton P, Nakai K (1996)
A probabilistic classification system for predicting the cellular localization sites of
proteins. ISMB-96: Proceedings of the Fourth International Conference on
Intelligent Systems for Molecular Biology. AAAI, pp 109–115.

Hu Q, Zhang L, Zhou Y, Pedrycz W (2018)
Large-scale multimodality attribute reduction with multi-kernel fuzzy rough sets.
IEEE Transactions on Fuzzy Systems, vol 26, no 1, pp 226–238.

Huang C, Rice DR, Steffen JH (2022)
MAGRATHEA: an open-source spherical symmetric planet interior structure code.
Monthly Notices of the Royal Astronomical Society, vol 513, no 4, pp 5256–
5269.

Hutcheson Jr JD, Prather JE (1981)
Interpreting the effects of missing data in survey research. Southeastern Political
Review, vol 9, no 2, pp 129–143.

Indyk P, Motwani R (1998)
Approximate nearest neighbors: towards removing the curse of dimensionality.
STOC ‘98: Proceedings of the Thirtieth Annual ACM Symposium on Theory
of Computing. ACM Press, pp 604–613.

Ipsen N, Mattei PA, Frellsen J (2020)
How to deal with missing data in supervised deep learning? Artemiss 2020: First
ICMLWorkshop on the Art of Learning with Missing Values.

Jain AK, Duin RPW, Mao J (2000)
Statistical pattern recognition: a review. IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol 22, no 1, pp 4–37.

Janssens JHM, Flesch I, Postma EO (2009)
Outlier detection with one-class classifiers from ML and KDD. ICMLA 2009:
Proceedings of the Eighth International Conference on Machine Learning
and Applications. IEEE, pp 147–153.

Jégou H, Douze M, Schmid C (2011)
Product quantization for nearest neighbor search. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol 33, no 1, pp 117–128.

Jensen R, Cornelis C (2008)
A new approach to fuzzy-rough nearest neighbour classification. RSCTC 2008:
Proceedings of the 6th International Conference on Rough Sets and Current
Trends in Computing. Lecture Notes in Artificial Intelligence 5306. Springer,
pp 310–319.

———, Cornelis C, Shen Q (2009)
Hybrid fuzzy-rough rule induction and feature selection. Proceedings of the 2009
IEEE International Conference on Fuzzy Systems. IEEE, pp 1151–1156.

———, Shen Q (2009)

264



Bibliography

Interval-valued fuzzy-rough feature selection in datasets with missing values.
FUZZ-IEEE 2009: Proceedings of the 18th IEEE International Conference on
Fuzzy Systems. IEEE, pp 610–615.

——— (2010)
Fuzzy-rough data mining with Weka. url: http://users.aber.ac.uk/rkj/
Weka.pdf.

———, Cornelis C (2011)
Fuzzy-rough nearest neighbour classification and prediction. Theoretical Com-
puter Science, vol 412, no 42, pp 5871–5884.

———, Mac Parthaláin N (2015)
Towards scalable fuzzy–rough feature selection. Information Sciences, vol 323,
pp 1–15.

Jiang Y, He X, Lee MLT, Rosner B, Yan J (2020)
Wilcoxon rank-based tests for clustered data with R package clusrank. Journal of
Statistical Software, vol 96, no 6, pp 1–26.

Jirina M, Jirina Jr M (2011)
Classifiers based on inverted distances. New fundamental technologies in data
mining. Ed. by K Funatsu, KHasegawa. Rĳeka: InTech. Chap. 19, pp 369–387.

Johnson BA, Tateishi R, Xie Z (2012)
Using geographically weighted variables for image classification. Remote Sensing
Letters, vol 3, no 6, pp 491–499.

———, Tateishi R, Hoan NT (2013)
A hybrid pansharpening approach and multiscale object-based image analysis for
mapping diseased pine and oak trees. International Journal of Remote Sensing,
vol 34, no 20, pp 6969–6982.

Johnson J, Douze M, Jégou H (2021)
Billion-scale similarity search with gpus. IEEE Transactions on Big Data, vol 7,
no 3, pp 535–547.

Jones DR (2001)
A taxonomy of global optimization methods based on response surfaces. Journal of
Global Optimization, vol 21, no 4, pp 345–383.

Jones MP (1996)
Indicator and stratification methods for missing explanatory variables in multiple
linear regression. Journal of the American Statistical Association, vol 91,
no 433, pp 222–230.

Josse J, Prost N, Scornet E, Varoquaux G (2020)
On the consistency of supervised learning with missing values. arXiv preprint
1902.06931.

Jossinet J (1996)

265



Bibliography

Variability of impedivity in normal and pathological breast tissue. Medical and
Biological Engineering and Computing, vol 34, no 5, pp 346–350.

Jović A, Brkić K, Bogunović N (2014)
An overview of free software tools for general data mining. Proceedings of the 37th
International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO 2014). IEEE, pp 1112–1117.

Kang S, Cho S, Kang P (2015)
Multi-class classification via heterogeneous ensemble of one-class classifiers. Engi-
neering Applications of Artificial Intelligence, vol 43, pp 35–43.

Kapelner A, Bleich J (2015)
Prediction with missing data via Bayesian additive regression trees. Canadian
Journal of Statistics, vol 43, no 2, pp 224–239.

Karau H, Konwinski A, Wendell P, Zaharia M (2015)
Learning spark: lightning-fast big data analysis. O’Reilly Media.

Kassab A (2021)
A sequentialmulti-stage one-class classificationmodel in network intrusion detection
systems. MA thesis. American University of Beirut.

Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017)
LightGBM: a highly efficient gradient boosting decision tree. NIPS 2017: Pro-
ceedings of the Thirty-first Conference on Neural Information Processing
Systems. Advances in neural information processing systems 30. NIPS
Foundation, pp 3146–3154.

Kim JO, Curry J (1977)
The treatment of missing data in multivariate analysis. Sociological Methods &
Research, vol 6, no 2, pp 215–240.

Kim M, Choi JK, Baek SK (2021)
Win-stay-lose-shift as a self-confirming equilibrium in the iterated prisoner’s
dilemma. Proceedings of the Royal Society B, vol 288, no 1953, 20211021.

King DE (2009)
Dlib-ml: a machine learning toolkit. Journal of Machine Learning Research,
vol 10, no 60, pp 1755–1758.

——— (2017)
A Global Optimization Algorithm Worth Using. http://blog.dlib.net/2017/
12/a-global-optimization-algorithm-worth.html. Last accessed 6 Jan
2021.

Kingma DP, Ba JL (2015)
Adam: a method for stochastic optimization. ICLR 2015: 3rd International
Conference on Learning Representations.

Klikowski J, Woźniak M (2020)

266



Bibliography

Employing one-class svm classifier ensemble for imbalanced data stream classifica-
tion. International conference on computational science. Springer, pp 117–
127.

Knorr EM, Ng RT (1997)
A unified notion of outliers: properties and computation. KDD-97: Proceedings
of the Third International Conference on Knowledge Discovery and Data
Mining. AAAI, pp 219–222.

Koczkodaj WW, Li F, Wolny–Dominiak A (2018)
RatingScaleReduction package: stepwise rating scale item reduction without pre-
dictability loss. The R Journal, vol 10, no 1, pp 43–55.

Kohavi R (1996)
Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid. KDD-
96: Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining. AAAI Press, pp 202–207.

Krawczyk B, Woźniak M (2012)
Combining diverse one-class classifiers. International Conference on Hybrid
Artificial Intelligence Systems. Springer, pp 590–601.

——— (2013)
Combining one-class support vector machines for microarray classification. 2013
Federated Conference on Computer Science and Information Systems. IEEE,
pp 83–89.

———, Filipczuk P (2014)
Cytological image analysis with firefly nuclei detection and hybrid one-class clas-
sification decomposition. Engineering Applications of Artificial Intelligence,
vol 31, pp 126–135.

———, Jeleń Ł, Krzyżak A, Fevens T (2014a)
One-class classification decomposition for imbalanced classification of breast cancer
malignancy data. International Conference on Artificial Intelligence and Soft
Computing. Springer, pp 539–550.

———, Woźniak M (2014a)
Diversity measures for one-class classifier ensembles. Neurocomputing, vol 126,
pp 36–44.

———, Woźniak M (2014b)
Hypertension type classification using hierarchical ensemble of one-class classifiers
for imbalanced data. International Conference on ICT Innovations. Springer,
pp 341–349.

———, Woźniak M, Cyganek B (2014b)
Clustering-based ensemble of one-class classifiers for hyperspectral image segmen-
tation. International Conference on Hybrid Artificial Intelligence Systems.
Springer, pp 678–688.

267



Bibliography

———, Woźniak M, Cyganek B (2014c)
Clustering-based ensembles for one-class classification. Information Sciences,
vol 264, pp 182–195.

———, Woźniak M, Herrera F (2015)
On the usefulness of one-class classifier ensembles for decomposition of multi-class
problems. Pattern Recognition, vol 48, no 12, pp 3969–3982.

———, Cyganek B (2017)
Selecting locally specialised classifiers for one-class classification ensembles. Pattern
Analysis and Applications, vol 20, no 2, pp 427–439.

———, Galar M, Woźniak M, Bustince H, Herrera F (2018)
Dynamic ensemble selection for multi-class classification with one-class classifiers.
Pattern Recognition, vol 83, pp 34–51.

Kryszkiewicz M (1998)
Rough set approach to incomplete information systems. Information Sciences,
vol 112, no 1-4, pp 39–49.

Kurgan LA, Cios KJ, Tadeusiewicz R, Ogiela M, Goodenday LS (2001)
Knowledge discovery approach to automated cardiac SPECT diagnosis. Artificial
Intelligence in Medicine, vol 23, no 2, pp 149–169.

Kushner HJ (1962)
A versatile stochastic model of a function of unknown and time varying form.
Journal of Mathematical Analysis and Applications, vol 5, no 1, pp 150–167.

——— (1964)
A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise. Journal of Basic Engineering, vol 86, no 1, pp 97–106.

Lantz B (2013)
Machine learning with R. Birmingham: Packt Publishing. Chap. 3. Lazy
Learning — Classification Using Nearest Neighbors, pp 65–87.

Le Morvan M, Josse J, Scornet E, Varoquaux G (2021)
What’s a good imputation to predict with missing values? NeurIPS 2021: Pro-
ceedings of the Thirty-fifth Conference on Neural Information Processing
Systems. Advances in neural information processing systems 34. NIPS
Foundation, pp 11530–11540.

Lee T, Richards JA (1984)
Piecewise linear classification using seniority logic committee methods, with appli-
cation to remote sensing. Pattern Recognition, vol 17, no 4, pp 453–464.

Lessmeier C, Enge-Rosenblatt O, Bayer C, Zimmer D (2014)
Data acquisition and signal analysis from measured motor currents for defect
detection in electromechanical drive systems. PHME ‘14: Proceedings of the
Second European Conference of the Prognostics and Health Management
Society.

268



Bibliography

Lincoff GH (1981)
The Audubon Society Field Guide to North American Mushrooms. New York:
Alfred A Knopf.

Lindqvist P, Peetre J (2000)
?-arclength of the @-circle. Preprint 2000:21 LUNFMA-5014-2000. Lund
University, Centre for Mathematical Sciences.

Liu FT, Ting KM, Zhou ZH (2008)
Isolation Forest. ICDM 2008: Proceedings of the Eighth IEEE International
Conference on Data Mining. IEEE, pp 413–422.

Liu J, Song J, Miao Q, Cao Y (2013)
Fenoc: an ensemble one-class learning framework for malware detection. 2013
Ninth International Conference on Computational Intelligence and Security.
IEEE, pp 523–527.

Lohweg V, Hoffmann JL, Dörksen H, Hildebrand R, Gillich E, Hofmann J,
Schaede J (2013)
Banknote authentication with mobile devices. MWSF 2013: Proceedings of the
Media Watermarking, Security, and Forensics Conference. Proceedings of
SPIE 8665. SPIE, pp 47–60.

Lucas DD, Klein R, Tannahill J, Ivanova D, Brandon S, Domyancic D, Zhang Y
(2013)

Failure analysis of parameter-induced simulation crashes in climate models. Geo-
scientific Model Development, vol 6, no 4, pp 1157–1171.

Luengo J, García S, Herrera F (2012a)
On the choice of the best imputation methods for missing values considering three
groups of classification methods. Knowledge and Information Systems, vol 32,
no 1, pp 77–108.

———, Sáez JA, Herrera F (2012b)
Missing data imputation for fuzzy rule-based classification systems. Soft Comput-
ing, vol 16, no 5, pp 863–881.

Lyon RJ, Stappers B, Cooper S, Brooke JM, Knowles JD (2016)
Fifty years of pulsar candidate selection: from simple filters to a new principled
real-time classification approach. Monthly Notices of the Royal Astronomical
Society, vol 459, no 1, pp 1104–1123.

MacDonald MG, Feil L, Quinn T, Rice D (2022)
Confirming the 3:2 resonance chain of K2-138. TheAstronomical Journal, vol 163,
no 4, 162, p 162.

Macleod JE, Luk A, Titterington DM (1987)
A re-examination of the distance-weighted k-nearest neighbor classification rule.
IEEE Transactions on Systems, Man, and Cybernetics, vol 17, no 4, pp 689–
696.

269



Bibliography

Mahalanobis PC (1936)
On the generalized distance in statistics. Proceedings of the National Institute
of Sciences of India, vol 2, no 1, pp 49–55.

Maillo J, Luengo J, García S, Herrera F, Triguero I (2017a)
Exact fuzzy k-nearest neighbor classification for big datasets. FUZZ-IEEE 2017:
Proceedings of the IEEE International Conference on Fuzzy Systems.

———, Ramírez S, Triguero I, Herrera F (2017b)
kNN-IS: an iterative spark-based design of the k-nearest neighbors classifier for big
data. Knowledge-Based Systems, vol 117, pp 3–15.

Malherbe C, Vayatis N (2017)
Global optimization of Lipschitz functions. ICML 2017: Proceedings of the 34th
International Conference on Machine Learning. Proceedings of Machine
Learning Research 70, pp 2314–2323.

Malkov YA, Ponomarenko A, Logvinov A, Krylov V (2014)
Approximate nearest neighbor algorithm based on navigable small world graphs.
Information Systems, vol 45, pp 61–68.

———, Yashunin DA (2020)
Efficient and robust approximate nearest neighbor search using hierarchical navigable
small world graphs. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol 42, no 4, pp 824–836.

Mangasarian OL, Wolberg WH (1990)
Cancer diagnosis via linear programming. Technical report 958. University of
Wisconsin – Madison, Department of Computer Sciences.

———, Street WN, Wolberg WH (1994)
Breast cancer diagnosis and prognosis via linear programming. Proceedings of the
AAAI Spring Symposium on Artificial Intelligence in Medicine: Interpreting
Clinical Data. Spring Symposium Series Technical Reports 94-01. AAAI,
pp 83–86.

Mansouri K, Ringsted T, Ballabio D, Todeschini R, Consonni V (2013)
Quantitative structure–activity relationship models for ready biodegradability of
chemicals. Journal of Chemical Information and Modeling, vol 53, no 4,
pp 867–878.

Marchand A, Van Lente F, Galen RS (1983)
The assessment of laboratory tests in the diagnosis of acute appendicitis. American
Journal of Clinical Pathology, vol 80, no 3, pp 369–374.

Marlin BM (2008)
Missing data problems in machine learning. Doctoral thesis. University of
Toronto.

McCann M, Li Y, Maguire L, Johnston A (2008)
Causality challenge: benchmarking relevant signal components for effective monitor-

270



Bibliography

ing and process control. NIPS 2008: Proceedings of Workshop on Causality.
Proceedings of Machine Learning Research 6. JMLR Workshop and Confer-
ence Proceedings, pp 277–288.

McLeish M, Cecile M (1990)
Enhancing medical expert systems with knowledge obtained from statistical data.
Annals of Mathematics and Artificial Intelligence, vol 2, no 1–4, pp 261–276.

Michalski RS, Chilausky RL (1980)
Learning by being told and learning from examples: an experimental comparison of
the two methods of knowledge acquisition in the context of developing an expert
system for soybean disease diagnosis. International Journal of Policy Analysis
and Information Systems, vol 4, no 2, pp 125–161.

Michie D, Spiegelhalter DJ, Taylor CC (1994), eds.
Machine learning, neural and statistical classification. Artificial intelligence.
Hemel Hempstead: Ellis Horwood.

Minkowski H (1896)
Geometrie der Zahlen. I. Lieferung. Leipzig: B.G. Teubner.

Möbius AF (1827)
Der barycentrische Calcul: ein Hülfsmittel zur analytischen Behandlung der
Geometrie. Leipzig: Verlag von Johann Ambrosius Barth.

Molter F, Thomas AW, Huettel SA, Heekeren HR, Mohr PN (2022)
Gaze-dependent evidence accumulation predicts multi-alternative risky choice
behaviour. PLoS Computational Biology, vol 18, no 7, e1010283.

Muja M, Lowe DG (2014)
Scalable nearest neighbor algorithms for high dimensional data. IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol 36, no 11, pp 2227–2240.

Muller RH (1944a)
Verification of short-range weather forecasts (a survey of the literature) i. Bulletin
of the American Meteorological Society, vol 25, no 1, pp 18–27.

——— (1944b)
Verification of short-range weather forecasts (a survey of the literature) ii (continued).
Bulletin of the American Meteorological Society, vol 25, no 2, pp 47–53.

——— (1944c)
Verification of short-range weather forecasts (a survey of the literature) iii (conclu-
sion)(concluded from february bulletin). Bulletin of theAmericanMeteorological
Society, vol 25, no 3, pp 88–95.

Mygdalis V, Alexandros I, Tefas A, Pitas I (2015)
Large-scale classification by an approximate least squares one-class support vector
machine ensemble. 2015 IEEE Trustcom/BigDataSE/ISPA. Vol. 2. IEEE,
pp 6–10.

271



Bibliography

Nadkarni P (2016)
Clinical research computing: a practitioner’s handbook. London: Academic Press.
Chap. 10. Core Technologies: Data Mining and “Big Data”, pp 187–204.

Narayanan SJ, Bhatt RB, Perumal B (2016)
Improving the accuracy of fuzzy decision tree by direct back propagation with
adaptive learning rate and momentum factor for user localization. IMCIP 2016:
Proceedings of the Twelfth International Multi-Conference on Information
Processing. Procedia Computer Science 89. Elsevier, pp 506–513.

Neal RM (2006)
Some notes for the BIRS Workshop on Statistical Inference for High Energy Physics.
url: https://glizen.com/radfordneal/BIRS-hep/notes1.pdf.

Nelder JA, Mead R (1965)
A simplex method for function minimization. The Computer Journal, vol 7, no 4,
pp 308–313.

Da Rocha Neto AR (2006)
SINPATCO— sistema inteligente para diagnóstico de patologias da coluna vertebral.
Doctoral thesis. Universidade Federal do Ceará, Fortaleza.

Ng CG, Yusoff MSB (2011)
Missing values in data analysis: ignore or impute? Education in Medicine
Journal, vol 3, no 1.

Nguyen G, Dlugolinsky S, Bobák M, Tran V, García ÁL, Heredia I, Malík P,
Hluch L (2019)
Machine learning and deep learning frameworks and libraries for large-scale data
mining: a survey. Artificial Intelligence Review, vol 52, no 1, pp 77–124.

Nolan AM, Wachsman ED, Mo Y (2021)
Computation-guided discovery of coating materials to stabilize the interface between
lithium garnet solid electrolyte and high-energy cathodes for all-solid-state lithium
batteries. Energy Storage Materials, vol 41, pp 571–580.

Omohundro SM (1989)
Five Balltree Construction Algorithms. Technical report TR-89-063. Berkeley,
California: International Computer Science Institute.

Orme JG, Reis J (1991)
Multiple regression with missing data. Journal of Social Service Research, vol 15,
no 1–2, pp 61–91.

Paleyes A, Pullin M, Mahsereci M, Lawrence N, González J (2019)
Emulation of physical processes with Emukit. NeurIPS 2019: Workshop on
Machine Learning and the Physical Sciences. NeurIPS.

Paschke F, Bayer C, Bator M, Mönks U, Dicks A, Enge-Rosenblatt O, Lohweg V
(2013)

Sensorlose zustandsüberwachung an synchronmotoren. Proceedings of the 23rd

272



Bibliography

Workshop on Computational Intelligence. Schriftenreihe des Instituts für
angewandte Informatik / Automatisierungstechnik am Karlsruher Institut
für Technologie 46. KIT Scientific Publishing, pp 211–226.

Patrício M, Pereira J, Crisóstomo J, Matafome P, Gomes M, Seiça R, Caramelo F
(2018)

Using resistin, glucose, age and BMI to predict the presence of breast cancer. BMC
Cancer, vol 18, no 29.

Pawlak Z (1981)
Rough sets. Report 431. ICS PAS.

——— (1982)
Rough sets. International Journal of Computer & Information Sciences, vol 11,
no 5, pp 341–356.

Pedregosa F, VaroquauxG, Gramfort A,Michel V, Thirion B, Grisel O, BlondelM,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D,
Brucher M, Perrot M, Duchesnay É (2011)
Scikit-learn: machine learning in Python. Journal ofMachine Learning Research,
vol 12, no 85, pp 2825–2830.

Pelillo M (2014)
Alhazen and the nearest neighbor rule. Pattern Recognition Letters, vol 38,
pp 34–37.

Pereira Barata A, Takes FW, Herik HJ van den, Veenman CJ (2019)
Imputation methods outperform missing-indicator for data missing completely at
random. ICDM 2019: Proceedings of the Workshops. IEEE, pp 407–414.

Perez-Lebel A, Varoquaux G, Le Morvan M, Josse J, Poline JB (2022)
Benchmarking missing-values approaches for predictive models on health databases.
GigaScience, vol 11, no 1, giac013.

Pigott TD (2001)
A review of methods for missing data. Educational Research and Evaluation,
vol 7, no 4, pp 353–383.

Powell MJD (2004)
The NEWUOA software for unconstrained optimization without derivatives. Tech-
nical report NA2004/08. University of Cambridge, Department of Applied
Mathematics and Theoretical Physics.

——— (2009)
The BOBYQA algorithm for bound constrained optimization without derivatives.
Technical report NA2009/06. University of Cambridge, Department of
Applied Mathematics and Theoretical Physics.

Qian Y, Wang Q, Cheng H, Liang J, Dang C (2015)
Fuzzy-rough feature selection accelerator. Fuzzy Sets and Systems, vol 258,
pp 61–78.

273



Bibliography

Quinlan JR (1986)
Induction of decision trees. Machine Learning, vol 1, no 1, pp 81–106.

———, Compton PJ, Horn KA, Lazarus L (1986)
Inductive knowledge acquisition: a case study. Proceedings of the Second
Australian Conference on Applications of Expert Systems. Turing Institute
Press, pp 157–173.

——— (1987)
Simplifying decision trees. International Journal of Man-Machine Studies,
vol 27, no 3, pp 221–234.

——— (1989)
Unknown attribute values in induction. Proceedings of the Sixth International
Workshop on Machine Learning. Morgan Kaufmann, pp 164–168.

Ramana BV, Babu MSP, Venkateswarlu NB (2012)
A critical comparative study of liver patients from USA and India: an exploratory
analysis. International Journal of Computer Science Issues, vol 9, no 3, pp 506–
516.

Ramentol E, Vluymans S, Verbiest N, Caballero Y, Bello R, Cornelis C, Herrera F
(2015)

IFROWANN: imbalanced fuzzy-rough ordered weighted average nearest neighbor
classification. IEEE Transactions on Fuzzy Systems, vol 23, no 5, pp 1622–1637.

Ribeiro RP, Pereira P, Gama J (2016)
Sequential anomalies: a study in the railway industry. Machine Learning, vol 105,
no 1, pp 127–153.

Ridder D de, Tax DMJ, Duin RPW (1998)
An experimental comparison of one-class classification methods. ASCI‘98: Pro-
ceedings of the Fourth Annual Conference of the Advanced School for
Computing and Imaging. ASCI, pp 213–218.

Riza LS, Janusz A, Bergmeir C, Cornelis C, Herrera F, Ślzak D, Benítez JM (2014)
Implementing algorithms of rough set theory and fuzzy rough set theory in the R
package “RoughSets”. Information Sciences, vol 287, pp 68–89.

Rizk Y, Awad M (2012)
Syntactic genetic algorithm for a subjectivity analysis of sports articles. Proceedings
of the 11th IEEE International Conference on Cybernetic Intelligent Systems.
IEEE, pp 93–98.

Rodríguez-Ruiz J, Mata-Sánchez JI, Monroy R, Loyola-Gonzalez O, López-
Cuevas A (2020)
A one-class classification approach for bot detection on Twitter. Computers &
Security, vol 91, p 101715.

Roe BP, Yang HJ, Zhu J, Liu Y, Stancu I, McGregor G (2005)
Boosted decision trees as an alternative to artificial neural networks for particle

274



Bibliography

identification. Nuclear Instruments and Methods in Physics Research Section
A:Accelerators, Spectrometers, Detectors andAssociatedEquipment, vol 543,
no 2–3, pp 577–584.

Rohra JG, Perumal B, Narayanan SJ, Thakur P, Bhatt RB (2016)
User localization in an indoor environment using fuzzy hybrid of particle swarm
optimization & gravitational search algorithm with neural networks. SocPros
2016: Proceedings of the Sixth International Conference on Soft Computing
for Problem Solving. Advances in Intelligent Systems and Computing 546.
Springer, pp 286–295.

Rosenblatt F (1961)
Principles of neurodynamics — Perceptrons and the theory of brain mechanisms.
Technical report VG-1196-G-8. Buffalo, New York: Cornell Aeronautical
Laboratory.

Rosner B, Glynn RJ, Lee MLT (2006)
The Wilcoxon signed rank test for paired comparisons of clustered data. Biometrics,
vol 62, no 1, pp 185–192.

Rossiev DA, Golovenkin SE, Shulman V, Matjushin G (1995)
Neural networks for forecasting of myocardial infarction complications. Proceed-
ings of the Second International Symposium on Neuroinformatics and
Neurocomputers. IEEE, pp 292–298.

Rossum G van, Boer J de (1991)
Interactively testing remote servers using the Python programming language. CWI
Quarterly, vol 4, no 4, pp 283–303.

Rousseeuw PJ, Croux C (1993)
Alternatives to the median absolute deviation. Journal of the American Statistical
Association, vol 88, no 424, pp 1273–1283.

Rubin DB (1976)
Inference and missing data. Biometrika, vol 63, no 3, pp 581–592.

Rubini LJ, Eswaran P (2015)
Generating comparative analysis of early stage prediction of chronic kidney disease.
International Journal of Modern Engineering Research, vol 5, no 7, pp 49–55.

Ruspini EH (1969)
A new approach to clustering. Information and Control, vol 15, no 1, pp 22–32.

Saltzer JH (2020)
The origin of the “MIT license”. IEEE Annals of the History of Computing,
vol 42, no 4, pp 94–98.

Sangma JW, Rani Y, Pal V, Kumar N, Kushwaha R (in press)
FHC-NDS: fuzzy hierarchical clustering of multiple nominal data streams. IEEE
Transactions on Fuzzy Systems, vol. doi: 10.1109/TFUZZ.2022.3189083.

275



Bibliography

Santos MS, Abreu PH, García-Laencina PJ, Simão A, Carvalho A (2015)
A new cluster-based oversampling method for improving survival prediction of
hepatocellular carcinoma patients. Journal of Biomedical Informatics, vol 58,
pp 49–59.

Schafer JL (1997)
Analysis of IncompleteMultivariateData. Monographs on Statistics andApplied
Probability 72. London: Chapman & Hall.

———, Graham JW (2002)
Missing data: our view of the state of the art. Psychological Methods, vol 7, no 2,
pp 147–177.

Schlimmer JC (1987)
Concept acquisition through representational adjustment. Doctoral thesis. Tech-
nical report 87-19. University of California, Irvine.

Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC (1999)
Estimating the support of a high-dimensional distribution. Technical report
MSR-TR-99-87. Redmond, Washington: Microsoft Research.

———, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC (2001)
Estimating the support of a high-dimensional distribution. Neural Computation,
vol 13, no 7, pp 1443–1471.

Shelupsky D (1959)
A generalization of the trigonometric functions. The American Mathematical
Monthly, vol 66, no 10, pp 879–884.

Sigillito VG, Wing SP, Hutton LV, Baker KB (1989)
Classification of radar returns from the ionosphere using neural networks. Johns
Hopkins APL Technical Digest, vol 10, no 3, pp 262–266.

Sikora M, Wróbel Ł (2010)
Application of rule induction algorithms for analysis of data collected by seismic
hazard monitoring systems in coal mines. Archives of Mining Sciences, vol 55,
no 1, pp 91–114.

——— (2011)
Induction and pruning of classification rules for prediction of microseismic hazards
in coal mines. Expert Systems with Applications, vol 38, no 6, pp 6748–6758.

Silva PFB (2013)
Development of a system for automatic plant species recognition. MA thesis.
Universidade do Porto.

Śmieja M, Struski Ł, Tabor J, Zieliński B, Spurek P (2018)
Processing of missing data by neural networks. NeurIPS 2018: Proceedings of
the Thirty-second Annual Conference on Neural Information Processing
Systems. Advances in neural information processing systems 31. NIPS
Foundation, pp 689–696.

276



Bibliography

———, Struski Ł, Tabor J, Marzec M (2019)
Generalized RBF kernel for incomplete data. Knowledge-Based Systems, vol 173,
pp 150–162.

Sokolov A, Paull EO, Stuart JM (2016)
One-class detection of cell states in tumor subtypes. PSB 2016: Proceedings of
the 21st Pacific Symposium on Biocomputing. World Scientific, pp 405–416.

Soltani Zarrin P, Röckendorf N, Wenger C (2020)
In-vitro classification of saliva samples of COPD patients and healthy controls
using machine learning tools. IEEE Access, vol 8, pp 168053–168060.

Spendley W, Hext GR, Himsworth FR (1962)
Sequential application of simplex designs in optimisation and evolutionary operation.
Technometrics, vol 4, no 4, pp 441–461.

Sperrin M, Martin GP, Sisk R, Peek N (2020)
Missing data should be handled differently for prediction than for description or
causal explanation. Journal of Clinical Epidemiology, vol 125, pp 183–187.

Stemplinger S, Prévost S, Zemb T, Horinek D, Dufrêche JF (2021)
Theory of ternary fluids under centrifugal fields. The Journal of Physical
Chemistry B, vol 125, no 43, pp 12054–12062.

Stephenson W, Frangella Z, Udell M, Broderick T (2021)
Can we globally optimize cross-validation loss? quasiconvexity in ridge regression.
NeurIPS 2021: Proceedings of the Thirty-fifth Conference on Neural Infor-
mation Processing Systems. Advances in Neural Information Processing
Systems 34. NeurIPS, pp 24352–24364.

Stigler SM (1986)
The history of statistics: the measurement of uncertainty before 1900. Cambridge,
Massachusetts: The Belknap Press of Harvard University Press. Chap. 1.
Least Squares and the Combination of Observations, pp 46–47.

Street WN (1991)
Toward automated cancer diagnosis: an interactive system for cell feature extraction.
Technical report 1052. University of Wisconsin – Madison, Department of
Computer Sciences.

———, Wolberg WH, Mangasarian OL (1992)
Nuclear Feature Extraction for Breast Tumor Diagnosis. Technical report 1131.
University of Wisconsin – Madison, Department of Computer Sciences.

——— (1994)
Cancer diagnosis and prognosis via linear-programming-based machine learning.
Doctoral thesis. Technical Report 94-14. University of Wisconsin – Madison,
Department of Computer Sciences, Mathematical Programming Group.

———, Mangasarian OL, Wolberg WH (1995)
An inductive learning approach to prognostic prediction. ML95: Proceedings

277



Bibliography

of the Twelfth International Conference on Machine Learning. Morgan
Kaufmann, pp 522–530.

———, Mangasarian OL, Wolberg WH (1996)
Individual and collective prognostic prediction. Technical report 96-01. University
of Wisconsin – Madison, Department of Computer Sciences, Mathematical
Programming Group.

Stumpf SA (1978)
A note on handling missing data. Journal of Management, vol 4, no 1, pp 65–73.

Suits DB (1957)
Use of dummy variables in regression equations. Journal of the American
Statistical Association, vol 52, no 280, pp 548–551.

Swersky L, Marques HO, Sander J, Campello RJGB, Zimek A (2016)
On the evaluation of outlier detection and one-class classification methods. DSAA
2016: Proceedings of the 3rd IEEE International Conference on Data Science
and Advanced Analytics. IEEE, pp 1–10.

Tax DMJ, Duin RPW (1998)
Outlier detection using classifier instability. SSPR/SPR 1998: Proceedings of
the Joint IAPR International Workshops on Statistical Techniques in Pattern
Recognition and Structural and Syntactic Pattern Recognition. Lecture Notes
in Computer Science 1451. Springer, pp 593–601.

———, Duin RPW (1999a)
Data domain description using support vectors. ESANN 1999: Proceedings of
the Seventh European Symposium on Artificial Neural Networks. D-Facto,
pp 251–256.

———, Duin RPW (1999b)
Support vector domain description. Pattern Recognition Letters, vol 20, no 11–13,
pp 1191–1199.

——— (2001)
One-class classification: concept learning in the absence of counter-examples.
Doctoral thesis. Technische Universiteit Delft.

———, Duin RPW (2004)
Support vector data description. Machine Learning, vol 54, no 1, pp 45–66.

Tchebyshev PL (1854)
Théorie des mécanismes connus sous le nom de parallélogrammes. Mémoires
présentés à l’Académie impériale des Sciences de St. Petersbourg par divers
Savants et lus dans ses Assamblées, vol 7, pp 537–568.

——— (1859)
Sur les questions deminimima qui se rattachent à la representation approximative des
fonctions. Mémoires de l’Académie impériale des Sciences de St. Petersbourg,

278



Bibliography

sixième Série, première Partie: Sciences mathématiques et physiques, vol 7,
pp 199–291.

Thangavel K, Pethalakshmi A (2009)
Dimensionality reduction based on rough set theory: a review. Applied Soft
Computing, vol 9, no 1, pp 1–12.

Tian ZP, Nie RX, Wang JQ, Long RY (2021)
Adaptive consensus-based model for heterogeneous large-scale group decision-
making: detecting and managing noncooperative behaviors. IEEE Transactions on
Fuzzy Systems, vol 29, no 8, pp 2209–2223.

Tipping ME (2001)
Sparse Bayesian learning and the relevance vector machine. Journal of Machine
Learning Research, vol 1, pp 211–244.

Todhunter I (1873)
A history of the mathematical theories of attraction and the figure of the earth, from
the time of Newton to that of Laplace. Vol. 1. London: Macmillan. Chap. 14.
Boscovich and Stay, pp 331–332.

Tohmé M, Lengellé R (2011)
Maximum margin one class support vector machines for multiclass problems.
Pattern Recognition Letters, vol 32, no 13, pp 1652–1658.

Tönsmann M, Ewald DT, Scharfer P, Schabel W (2021)
Surface tension of binary and ternary polymer solutions: experimental data of
poly(vinyl acetate), poly(vinyl alcohol) and polyethylene glycol solutions and mixing
rule evaluation over the entire concentration range. Surfaces and Interfaces,
vol 26, no 101352.

Torczon VJ (1989)
Multidirectional search: a direct search algorithm for parallel machines. Doctoral
thesis. Rice University.

Tresp V, Neuneier R, Ahmad S (1994)
Efficient methods for dealing with missing data in supervised learning. NIPS-
94: Proceedings of the Eighth Annual Conference on Neural Information
Processing Systems. Advances in neural information processing systems 7.
MIT Press, pp 689–696.

Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein
D, Altman RB (2001)
Missing value estimation methods for DNA microarrays. Bioinformatics, vol 17,
no 6, pp 520–525.

Twala BE, Jones M, Hand DJ (2008)
Good methods for coping with missing data in decision trees. Pattern Recognition
Letters, vol 29, no 7, pp 950–956.

Twala B (2009)

279



Bibliography

An empirical comparison of techniques for handling incomplete data using decision
trees. Applied Artificial Intelligence, vol 23, no 5, pp 373–405.

Unwin A, Kleinman K (2021)
The iris data set: in search of the source of virginica. Significance, vol 18, no 6,
pp 26–29.

Utgoff PE, Brodley CE (1991)
Linear machine decision trees. COINS Technical Report 91-10. Amherst,
Massachusetts: University of Massachusetts, Department of Computer and
Information Science.

Vamplew P, Adams A (1992)
Missing values in a backpropagation neural net. ACNN ‘92: Proceedings of
the Third Australian Conference on Neural Networks. Sydney University
Electrical Engineering, pp 64–66.

Verbiest N, Cornelis C, Jensen R (2012)
Fuzzy rough positive region based nearest neighbour classification. FUZZ-IEEE
2012: Proceedings of the IEEE International Conference on Fuzzy Systems.

———, Cornelis C, Herrera F (2013)
OWA-FRPS: a prototype selection method based on ordered weighted average fuzzy
rough set theory. RSFDGrC 2013: Proceedings of the 14th International Con-
ference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing.
Lecture Notes in Computer Science 8170. Springer, pp 180–190.

——— (2014)
Fuzzy rough and evolutionary approaches to instance selection. Doctoral thesis.
Universiteit Gent.

Vigna S (2015)
A weighted correlation index for rankings with ties. WWW ‘15: Proceedings of
the 24th international conference on World Wide Web, pp 1166–1176.

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D,
Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M,
Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E,
Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J,
Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro
AH, Pedregosa F, van Mulbregt P, SciPy 1.0 Contributors (2020)
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, vol 17, no 3, pp 261–272.

Vluymans S, Asfoor H, Saeys Y, Cornelis C, Tolentino M, Teredesai A, De Cock
M (2015a)
Distributed fuzzy rough prototype selection for big data regression. NAFIPS
2015: Proceedings of the Annual Meeting of the North American Fuzzy
Information Processing Society.

———, D’eer L, Saeys Y, Cornelis C (2015b)

280



Bibliography

Applications of fuzzy rough set theory in machine learning: a survey. Fundamenta
Informaticae, vol 142, no 1-4, pp 53–86.

———, Sánchez Tarragó D, Saeys Y, Cornelis C, Herrera F (2016)
Fuzzy rough classifiers for class imbalanced multi-instance data. Pattern Recogni-
tion, vol 53, pp 36–45.

——— (2018)
Dealing with imbalanced and weakly labelled data in machine learning using fuzzy
and rough set methods. Doctoral thesis. Universiteit Gent.

———, Cornelis C, Herrera F, Saeys Y (2018a)
Multi-label classification using a fuzzy rough neighborhood consensus. Information
Sciences, vol 433, pp 96–114.

———, Fernández A, Saeys Y, Cornelis C, Herrera F (2018b)
Dynamic affinity-based classification of multi-class imbalanced data with one-versus-
one decomposition: a fuzzy rough set approach. Knowledge and Information
Systems, vol 56, no 1, pp 55–84.

———, Mac Parthaláin N, Cornelis C, Saeys Y (2019)
Weight selection strategies for ordered weighted average based fuzzy rough sets.
Information Sciences, vol 501, pp 155–171.

Wang F, Yu J, Liu Z, Kong M, Wu Y (2021)
Study on offshore seabed sediment classification based on particle size parameters
using XGBoost algorithm. Computers & Geosciences, vol 149, no 104713.

Wang Z, Liu K, Li J, Zhu Y, Zhang Y (in press)
Various frameworks and libraries of machine learning and deep learning: a survey.
Archives of Computational Methods in Engineering, vol. doi: 10.1007/
s11831-018-09312-w.

Weiss SM, Kulikowski CA (1991)
Computer systems that learn: classification and prediction methods from statistics,
neural nets, machine learning, and expert systems. SanMateo, California:Morgan
Kaufmann Publishers.

Wettschereck D (1994)
A study of distance-based machine learning algorithms. Doctoral thesis. Oregon
State University.

Wilcoxon F (1945)
Individual comparisons by ranking methods. Biometrics Bulletin, vol 1, no 6,
pp 80–83.

Wilk T, Wozniak M (2010)
Combination of one-class classifiers for multiclass problems by fuzzy logic. Neural
Network World, vol 20, no 7, p 853.

———, Wozniak M (2012)

281



Bibliography

Soft computing methods applied to combination of one-class classifiers. Neurocom-
puting, vol 75, no 1, pp 185–193.

Wolberg WH, Mangasarian OL (1990)
Multisurface method of pattern separation for medical diagnosis applied to breast
cytology. Proceedings of the National Academy of Sciences of the United
States of America, vol 87, no 23, pp 9193–9196.

———, Street WN, Heisey DM, Mangasarian OL (1995)
Computerized breast cancer diagnosis and prognosis from fine-needle aspirates.
Archives of Surgery, vol 130, no 5, pp 511–516.

Wright MH (1995)
Direct search methods: once scorned, now respectable. Numerical analysis 1995:
Proceedings of the 16th Dundee Biennial Conference on Numerical Analysis.
Pitman Research Notes in Mathematics Series 344. Longman, pp 191–208.

Xing HJ, Liu WT (2020)
Robust adaboost based ensemble of one-class support vector machines. Information
Fusion, vol 55, pp 45–58.

Yager RR (1988)
On ordered weighted averaging aggregation operators in multicriteria decision-
making. IEEE Transactions on Systems, Man, and Cybernetics, vol 18, no 1,
pp 183–190.

Yeh CY, Lee ZY, Lee SJ (2009)
Boosting one-class support vector machines for multi-class classification. Applied
Artificial Intelligence, vol 23, no 4, pp 297–315.

Yeh IC, Yang KJ, Ting TM (2009)
Knowledge discovery on RFM model using bernoulli sequence. Expert Systems
with Applications, vol 36, no 3, pp 5866–5871.

Yöntem MK, Adem K, İlhan T, Kılıçarslan S (2019)
Divorce prediction using correlation based feature selection and artificial neural
networks. Nevşehir Hacı Bektaş Veli Üniversitesi SBE Dergisi, vol 9, no 1,
pp 259–273.

Yu CD, Huang J, Austin W, Xiao B, Biros G (2015)
Performance optimization for the k-nearest neighbors kernel on x86 architectures.
SC15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 7. Austin, TX.

Zadeh LA (1965)
Fuzzy sets. Information and Control, vol 8, no 3, pp 338–353.

Zavrel J (1997)
An empirical re-examination of weighted voting for :-NN. BENELEARN-97:
Proceedings of the 7th Belgian-Dutch Conference on Machine Learning.
Tilburg University, pp 139–145.

282



Zeiler MD (2012)
ADADELTA: An Adaptive Learning Rate Method. arXiv preprint 1212.5701.

Zeng A, Li T, Liu D, Zhang J, Chen H (2015)
A fuzzy rough set approach for incremental feature selection on hybrid information
systems. Fuzzy Sets and Systems, vol 258, pp 39–60.

———, Li T, Hu J, Chen H, Luo C (2017)
Dynamical updating fuzzy rough approximations for hybrid data under the variation
of attribute values. Information Sciences, vol 378, pp 363–388.

Zhang Y, Zhang B, Coenen F, Xiao J, Lu W (2014)
One-class kernel subspace ensemble for medical image classification. EURASIP
Journal on Advances in Signal Processing, vol 2014, no 1, pp 1–13.

Zhao R, Mao K (2018)
Fuzzy bag-of-words model for document representation. IEEE Transactions on
Fuzzy Systems, vol 26, no 2, pp 794–804.

Zhu J, Zou H, Rosset S, Hastie T (2009)
Multi-class AdaBoost. Statistics and Its Interface, vol 2, no 3, pp 349–360.












