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Abstract. Angular Minkowski p-distance is a dissimilarity measure that
is obtained by replacing Euclidean distance in the definition of cosine
dissimilarity with other Minkowski p-distances. Cosine dissimilarity is
frequently used with datasets containing token frequencies, and angular
Minkowski p-distance may potentially be an even better choice for cer-
tain tasks. In a case study based on the 20-newsgroups dataset, we eval-
uate clasification performance for classical weighted nearest neighbours,
as well as fuzzy rough nearest neighbours. In addition, we analyse the
relationship between the hyperparameter p, the dimensionality m of the
dataset, the number of neighbours k, the choice of weights and the choice
of classifier. We conclude that it is possible to obtain substantially higher
classification performance with angular Minkowski p-distance with suit-
able values for p than with classical cosine dissimilarity.

Keywords: Cosine dissimilarity · Fuzzy rough sets · Minkowski distance
· Nearest Neighbours.

1 Introduction

Cosine (dis)similarity [12, 13] is a popular measure for data that can be charac-
terised by a collection of token frequencies, such as texts, because it only takes
into account the relative frequency of each token. Cosine dissimilarity is par-
ticularly relevant for distance-based algorithms like classical (weighted) nearest
neighbours (NN) and fuzzy rough nearest neighbours (FRNN). In the latter case,
cosine dissimilarity has been used to detect emotions, hate speech and irony in
tweets [9].

A common way to calculate cosine dissimilarity is to normalise each record
(consisting of a number of frequencies) by dividing it by its Euclidean norm, and
then considering the squared Euclidean distance between normalised records.
Euclidean distance can be seen as a special case of a larger family of Minkowski
p-distances (namely the case p = 2). It has previously been argued that in
high-dimensional spaces, classification performance can be improved by using
Minkowski p-distance with fractional values for p between 0 and 1 [1].

In light of this, we propose angular Minkowski p-distance: a natural gen-
eralisation of cosine dissimilarity obtained by substituting other Minkowski p-
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distances into its definition. The present paper is a case study of angular Min-
kowski p-distance using the well-known 20-newsgroups classification dataset. In
particular, we investigate the relationship between the hyperparameter p, the
dimensionality m, the number of neighbours k, and the choice of classification
algorithm and weights.

To the best of our knowledge, this topic has only been touched upon once
before in the literature. Unlike the present paper, the authors of [5] do not
evaluate classification performance directly, but rather the more abstract notion
of ‘neighbourhood homogeneity’, and they only consider a limited number of
values for p and m.

The remainder of this paper is organised as follows. In Section 2, we motivate
and define angular Minkowski p-distance. In Section 3, we recall the definitions of
NN and FRNN classification. Then, in Section 4, we describe our experiment, and
in Section 5 we present and analyse our results, before concluding in Section 6.

2 Angular Minkowski p-distance

In this section, we will work in a general m-dimensional real vector space Rm,
for some m ∈ N.

The cosine similarity between any two points x, y ∈ Rm is defined as the
cosine of the angle θ between x and y. We obtain the cosine dissimilarity by
subtracting the cosine similarity from 1. Defined thus, cosine similarity and dis-
similarity take values in, respectively, [−1, 1] and [0, 2]. However, when all records
are located in Rm

≥0, such as token frequencies, both measures take values in [0, 1].

It is a well-known fact that cosine dissimilarity is proportional to the squared
Euclidean distance between x and y once these points have been normalised by
their Euclidean norm (note that · denotes the vector in-product):
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The Euclidean norm is the special case p = 2 of the more general Minkowski
p-size, defined for any x ∈ Rm as:
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where p is allowed to be any positive real number. Note that this is only a norm
for p ≥ 1. The Minkowski p-distance between any two x, y ∈ Rm is defined as
the p-size of their difference |y − x|p. This is a metric if p ≥ 1.

Similarly, we can also view the squared Euclidean norm (distance) as the
special case p = 2 of the rootless Minkowski p-size (distance), defined for any
x ∈ Rm as:

|x|pp =
∑

|xp
i | , (3)

The rootless p-size is not a norm for any p (other than p = 1, for which it
coincides with the ordinary 1-norm); rootless p-distance is a metric for p ≤ 1.

With these definitions in place, we can define the angular Minkowski p-
distance between any two vectors x, y ∈ Rm as:∣∣∣∣∣ y
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as well as their rootless angular Minkowski p-distance:∣∣∣∣∣ y
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Thus, cosine dissimilarity corresponds to rootless angular Minkowski 2-distance,
and we can consider angular Minkowski p-distance with different values for p as
alternatives to cosine dissimilarity.

3 Classical and fuzzy rough nearest neighbour
classification

We will now briefly review the definition of classical weighted nearest neigh-
bour (NN) classification [4, 2, 3] and fuzzy rough nearest neighbour classification
(FRNN) [7, 10]. Both approaches require a choice of a dissimilarity measure,
weights, and a positive integer k determining the number of nearest neighbours
to be considered. In what follows, we will specify the class prediction that each
method makes for a test instance y, given a training set X and a decision class
C ⊆ X.

3.1 Nearest neighbour classification

For NN, let xi be the ith nearest neighbour of y in X. Then the class score for
C is given by:

∑
i≤k|xi∈C

wi

/∑
i≤k

wi (6)
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where wi is the weight attributed to the ith nearest neighbour of y. Two popular
choices [2, 3] for the weights are linear distance weights:

wi =


dk − di
dk − d1

k > 1;

1 k = 1,

(7)

and reciprocally linear distance weights:

wi =
1

di
, (8)

where di is the distance between y and xi.

3.2 Fuzzy rough nearest neighbour classification

Properly speaking, FRNN consists of two different classifiers, the upper and the
lower approximation, which can be combined to form the mean approximation.
For the upper approximation, let di be the distance between y and its ith nearest
neighbour in C. Then the class score for C is given by:

C(y) =
∑
i≤k

wi ·min(0, 1− di/2). (9)

For the lower approximation, let di be the distance between y and its ith nearest
neighbour in X \ C. Then the class score for C is given by:

C(y) =
∑
i≤k

wi ·max(di/2, 1). (10)

For the mean approximation, the class score for C is given by:

(
C(y) + C(y)

)
/2. (11)

In the definition of both the upper and the lower approximation, ⟨wi⟩i≤k is a
weight vector of values in [0, 1] that sum to 1. As with NN, two popular weight
choices are linear weights:

wi =
2(k + 1− i)

k(k + 1)
, (12)

and reciprocally linear weights:

wi =
1

i ·
∑

i≤k
1
i

. (13)
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4 Experimental setup

To evaluate angular Minkowski p-distance, we conduct a case study on the well
known text dataset 20-newsgroups [8]. Originally, this contained 20 000 usenet
posts from 20 different newsgroups (1000 each) from the period February-May
1993, and was collected by Ken Lang. We use the version of this dataset pro-
vided by the Python machine learning library scikit-learn [11], which comprises
a training set (11 314 records) and a test set (7532 records, consisting of later
posts than those in the training set), preprocessed to remove headers, footers
and quotes.

We first convert each text into a set of words, defined as any sequence of
at least two alphanumeric characters separated by non-alphanumeric characters,
regardless of case. Next, we count the word frequencies per text and transform
this into an m-dimensional dataset by selecting the top-m overall most frequent
words, and discarding the rest.

In order to evaluate the behaviour of NN and FRNN with angular Minkowski
p-distance, we systematically vary different values for p, m as well as the number
of nearest neighbours k. In the case of FRNN, we consider the upper, lower and
mean approximations separately. For both NN and FRNN, we will consider linear
and reciprocally linear weights, as described in Section 3.

For p, we consider all multiples of 0.1 in the range of [0.1, 4], centred on the
canonical values of 1 and 2. Since k and m encode magnitudes, we investigate
them on a logarithmic scale, with values corresponding to powers of 2 in the
range of, respectively, [1, 256] and [2, 4096].

We measure classification performance using the area under the receiver op-
erator characteristic (AUROC) [6].

5 Results

Figures 1 and 2 display AUROC as a function of dimensionality (the number
of most frequent tokens taken into consideration) and as a function of p, for
k = 256. There are a few things to be noted from these response curves:

– The choice of weights doesn’t appear to play a role in the overall behaviour
of these response curves.

– The response curves are substantially smoother for the upper approximation
than for the lower approximation and for NN. The mean approximation ap-
pears to inherit some of this smoothness from the upper approximation. This
qualitative difference is somewhat surprising, but it can perhaps be explained
by the fact that for the upper approximation, neighbours are drawn from a
uniform concept (each decision class), whereas for the lower approximation
and NN, neighbours are drawn from across decision classes.

– The upper approximation is a better classifier (in terms of AUROC) than
the lower approximation and NN for the 20-newsgroups dataset. Given the
relatively poor performance of the lower approximation, it is surprising that
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Fig. 1. AUROC obtained on the 20-newsgroups dataset with FRNN, number of neigh-
bours k = 256, dimensionality m = 2q and angular Minkowski p-distance.
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Fig. 2. AUROC obtained on the 20-newsgroups dataset with NN, number of neighbours
k = 256, dimensionality m = 2q and angular Minkowski p-distance.
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Fig. 3. AUROC obtained on the 20-newsgroups dataset with NN, dimensionality m =
4096, number of neighbours k = 2r and angular Minkowski p-distance.
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Fig. 4. AUROC obtained on the 20-newsgroups dataset with FRNN, dimensionality
m = 4096, number of neighbours k = 2r and angular Minkowski p-distance.
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Fig. 5. AUROC obtained on the 20-newsgroups dataset with FRNN, number of neigh-
bours k = 256, dimensionality m = 4096 and rooted and rootless angular Minkowski
p-distance.
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Fig. 6. AUROC obtained on the 20-newsgroups dataset with NN, number of neighbours
k = 256, dimensionality m = 4096 and rooted and rootless angular Minkowski p-
distance.

the mean approximation produces even better results than the upper ap-
proximation.

– AUROC increases with dimensionality, but the difference between 2048 and
4096 dimensions is quite small. It appears that up until that point, the
additional information encoded in each additional dimension outweighs the
noise. Note, however, that even before that point, we get diminishing returns.
For each subsequent curve we need to double the dimensionality, and we
obtain a performance increase that is smaller than the previous one.

– For NN and the lower approximation, the choice for p becomes more impor-
tant as dimensionality increases. Not only is a good choice for p necessary
to make use of the potential performance increase from adding more dimen-
sions, choosing p poorly can actually cause performance to decrease with
dimensionality.

– There is a marked difference with respect to the optimal values for p between
the different classifiers. For NN and the lower approximation, higher values
appear to be better within the range [0.1, 4] that we have investigated, al-
beit with diminishing returns. For the upper and mean approximations, the
optimum is located near p = 1 for high dimensionalities.

As mentioned above, Figures 1 and 2 reflect a choice of the number of neigh-
bours k = 256. The effect of k on performance is illustrated in Figures 3 and 4,
for m = 4096.

– For NN and the lower approximation, the overall behaviour of the response
curve does not change with k. Higher values for k lead to higher AUROC,
and within the range of investigated values, the relationship appears to be
similar to the relationship between AUROC and m: each doubling of k leads
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to an increase in AUROC that is slightly smaller than the previous increase.
From k = 128 to k = 256, the increase is already quite small.

– In contrast, for the upper and mean approximations, AUROC starts out
quite high for high values of p, and increases only little thereafter. Howewer,
from k = 8 upwards, AUROC starts to strongly increase for lower values of
p, eventually surpassing the AUROC obtained with higher values of p from
k = 64 upwards. This means that the good performance of the mean and
upper approximations around p = 1 is only realised for high values of k.

Finally, we may also ask whether it makes a difference whether we use
rooted (‘ordinary’) or rootless angular Minkowski p-distance. The results dis-
cussed above were obtained using rooted angular Minkowski p-distance. It turns
out that using rootless angular Minkowski p-distance, which generalises cosine
dissimilarity more closely, does not make much difference (Figures 5 and 6).
In particular, there is (by definition) no difference for p = 1, which maximises
classification performance for the upper and mean approximations.

Table 1. Highest AUROC and corresponding value for p obtained on the 20-newsgroups
dataset, with linear weights, number of neighbours k = 256, dimensionality m = 4096
and rooted angular Minkowski p-distance.

Classifier p AUROC

NN 4.0 0.731
FRNN (lower approximation) 3.9 0.725
FRNN (mean approximation) 0.9 0.788
FRNN (upper approximation) 1.1 0.777

In summary (Table 1), we obtain the best classification performance on the
20-newsgroups dataset with the upper and mean approximation and angular
Minkowski p-distance with values of p around 1, but only when k is high enough
(≥ 64).

6 Conclusion

We have presented angular Minkowski p-distance, a generalisation of the popular
cosine (dis)similarity measure. In an exploratory case study of the large 20-
newsgroups text dataset, we showed that the choice of p can have a large effect
on classification performance, and in particular that the right choice of p can
increase classification performance over cosine dissimilarity (which corresponds
to p = 2).

We have also examined the interaction between p and the dimensionality m
of a dataset, the choice of classification algorithm (NN or FRNN), the choice of
weights (linear or reciprocally linear), and the choice of the number of neigh-
bours k. We found that while the choice of weights was not important, the best
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value for p can depend on m, k and the classification algorithm. Under optimal
circumstances (high k and high m), the best-performing values for p are in the
neighbourhood of 1 (FRNN with upper or mean approximation) and around 4
(NN and FRNN with lower approximation).

A major advantage of angular Minkowski p-distance is that it is defined in
terms of ordinary Minkowski p-distance, which is widely available. Thus, angular
Minkowski p-distance does not require any dedicated implementation and can
easily be used in experiments by other researchers.

The most important open question to be investigated in future experiments
is to which extent these results generalise to other text datasets, as well as to
other datasets containing token frequencies. Depending on the outcome of these
experiments, it may be possible to formulate more general conclusions about the
best choice for p, or we may be forced to conclude that this is a hyperparameter
that must be optimised for each individual dataset.
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