fuzzy-rough-learn 0.1: a Python library for
machine learning with fuzzy rough sets

Oliver Urs Lenzl[0000—0001—9925—9482]7 Daniel Peraltal’Q[0000_0002_7544_8411],
and Chris Cornehsl[0000700027785476025]

! Department of Applied Mathematics, Computer Science and Statistics, Ghent
University {oliver.lenz,chris.cornelis}@ugent.be http://www.cwi.ugent.be
2 Data Mining and Modelling for Biomedicine group, VIB Center for Inflammation
Research, Ghent University daniel.peralta@irc.vib-ugent.be
https://www.irc.ugent.be

Abstract. We present fuzzy-rough-learn, the first Python library of fuzzy
rough set machine learning algorithms. It contains three algorithms pre-
viously implemented in R and Java, as well as two new algorithms from
the recent literature. We briefly discuss the use cases of fuzzy-rough-learn
and the design philosophy guiding its development, before providing an
overview of the included algorithms and their parameters.

Keywords: Fuzzy rough sets - OWA operators - Machine learning -
Python package - Open-source software

1 Background

Since its conception in 1990, fuzzy rough set theory [2] has been applied as
part of a growing number of machine learning algorithms [17]. Simultaneously,
the distribution and communication of machine learning algorithms has spread
beyond academic literature to a multitude of publicly available software imple-
mentations [7,10,19]. And also during the same period, Python has grown from
its first release in 1991 [13] to become one of the world’s most popular high-level
programming languages.

Python has become especially popular in the field of data science, in part
due to the self-reinforcing growth of its package ecosystem. This includes scikit-
learn [11], which is currently the go-to general purpose Python machine learning
library, and which contains a large collection of algorithms.

Only a limited number of fuzzy rough set machine learning algorithms have
received publicly available software implementations. Variants of Fuzzy Rough
Nearest Neighbours (FRNN) [5], Fuzzy Rough Rule Induction [6], Fuzzy Rough
Feature Selection (FRFS) [1] and Fuzzy Rough Prototype Selection (FRPS)
[15,14] are included in the R package RoughSets [12], and have also been released
for use with the Java machine learning software suite WEKA [4,3].

So far, none of these algorithms seem to have been made available for Python
in a systematic way. In this paper, we present an initial version of fuzzy-rough-
learn, a Python library that fills this gap. At present, it includes FRNN, FRFS,

http://www.cwi.ugent.be
https://www.irc.ugent.be

2 O. U. Lenz et al.

FRPS, as well as FROVOCO [18] and FRONEC [16], two more recent algorithms
designed for imbalanced and multilabel classification. These implementations all
make use of a significant modification of classical fuzzy rough set theory: the in-
corporation of Ordered Weighted Averaging (OWA) operators in the calculation
of upper and lower approximations for increased robustness [1].

We discuss the use cases and design philosophy of fuzzy-rough-learn in Section
2, and provide an overview of the included algorithms in Section 3.

2 Use cases and design philosophy

The primary goal of fuzzy-rough-learn is to provide implementations of fuzzy
rough set algorithms. The target audience is researchers with some programming
skills, in particular those who are familiar with scikit-learn. We envision two
principal use cases:

— The application of fuzzy rough set algorithms to solve concrete machine
learning problems.

— The creation of new or modified fuzzy rough set algorithms to handle new
types of data or to achieve better performance.

A third use case falls somewhat in between these two: reproducing or bench-
marking against results from existing fuzzy rough set algorithms.

To facilitate the first use case, fuzzy-rough-learn is available from the two
main Python package repositories, pipy and conda-forge, making it easy to install
with both pip and conda. fuzzy-rough-learn has an integrated test suite to limit
the opportunities for bugs to be introduced. API documentation is integrated in
the code and automatically updated online! whenever a new version is released,
and includes references to the literature.

We believe that it is important to make fuzzy rough set algorithms available
not just for use, but also for adaptation, since it is impossible to predict or
accommodate all requirements of future researchers. Therefore, the source code
for fuzzy-rough-learn is hosted on GitHub? and freely available under the MIT
license. We have attempted to write accessible code, by striving for consistency
and modularity. The coding style of fuzzy-rough-learn is a compromise between
object-oriented and functional programming. It makes use of classes to model the
different components of the classification algorithms, but as a rule, functions and
methods have no side-effects. Finally, subject to these design principles, fuzzy-
rough-learn generally follows the conventions of scikit-learn and the terminology
of the cited literature.

3 Contents

fuzzy-rough-learn implements three of the fuzzy rough set algorithms mentioned
in Section 1: FRFS, FRPS and FRNN, making them available in Python for the

! https://fuzzy-rough-learn.readthedocs.io
2 https://github.com/oulenz/fuzzy-rough-learn

https://fuzzy-rough-learn.readthedocs.io
https://github.com/oulenz/fuzzy-rough-learn

fuzzy-rough-learn 0.1 3

first time. In addition, we have included two recent, more specialised classifiers:
the ensemble classifier FROVOCO, designed to handle imbalanced data, and the
multi-label classifier FRONEC.

Together, these five algorithms form a representative cross-section of fuzzy
rough set algorithms in the literature. In the future, we intend to build upon
this basis by adding more algorithms.

3.1 Fuzzy Rough Feature Selection (FRFS)

Table 1. Parameters of FRF'S in fuzzy-rough-learn

Name Default value Description

n_features None Number of features to select. If None, will con-
tinue to add features until positive region size
becomes maximal.

owa_weights deltaquadsigmoid OWA weights to use for calculation of soft min-
(0.2, 1) imum in lower approximations.
t_norm 'lukasiewicz' T-norm used to aggregate the similarity relation

R from per-attribute similarities.

Fuzzy Rough Feature Selection (FRFS) [1] greedily selects features that in-
duce the greatest increase in the size of the positive region, until it matches
the size of the positive region with all features, or until the required number of
features is selected.

The positive region is defined as the union of the lower approximations of
the decision classes in X . Its size is the sum of its membership values.

The similarity relation Rp for a given subset of attributes B is obtained by
aggregating with a t-norm the per-attribute similarities R, associated with the
attributes a in B. These are in turn defined, for any x,y € X, as the complement
of the difference between the attribute values x, and y, after rescaling by the
sample standard deviation o, (1).

|ma _ya|

a\L, = 1-
R,(x,y) = max(.

,0) (1)

3.2 Fuzzy Rough Prototype Selection (FRPS)

Fuzzy Rough Prototype Selection (FRPS) [15,14] uses upper and/or lower ap-
proximation membership as a quality measure to select instances. It follows the
following steps:

1. Calculate the quality of each training instance. The resulting values are the
potential thresholds for selecting instances.

4 O. U. Lenz et al.
Table 2. Parameters of FRPS in fuzzy-rough-learn

Name Default value Description

quality_measure 'lower' Quality measure to use for calculating thresh-
olds. Either the upper approximation of the de-
cision class of each attribute, the lower approx-
imation, or the mean value of both.

aggr_R np.mean Function used to aggregate the similarity rela-
tion R from per-attribute similarities.

owa_weights invadd() OWA weights to use for calculation of soft max-
imum and/or minimum in quality measure.

nn_search KDTree() Nearest neighbour search algorithm to use.

2. For each potential threshold and corresponding candidate instance set, count

the number of instances in the overall dataset that have the same decision
class as their nearest neighbour within the candidate instance set (excluding
itself).

. Return the candidate instance set with the highest number of matches. In

case of a tie, return the largest such set.

There are a number of differences between the implementations in [15] and

[14]. In each case, the present implementation follows [14]:

While [15] uses instances of all decision classes to calculate upper and lower
approximations, [14] calculates the upper approximation membership of an
instance using only instances of the same decision class, and its lower ap-
proximation membership using only instances of the other decision classes.
This choice affects over what length the weight vector is ‘stretched’.

In addition, [14] excludes each instance from the calculation of its own upper
approximation membership, while [15] does not.

[15] uses additive weights, while [14] uses inverse additive weights.

[15] defines the similarity relation R by aggregating the per-attribute sim-
ilarities R, using the Lukasiewicz t-norm, whereas [14] recommends using
the mean.

In case of a tie between several best-scoring candidate prototype sets, [15]
returns the set corresponding to the median of the corresponding thresholds,
while [14] returns the largest set (corresponding to the smallest threshold).

In addition, there are two implementation issues not addressed in [15] or [14]:

It is unclear what metric the nearest neighbour search should use. It seems
reasonable that it should either correspond to the similarity relation R (and
therefore incorporate the same aggregation strategy from per-attribute sim-
ilarities), or that it should match whatever metric is used by nearest neigh-
bour classification subsequent to FRPS. By default, the present implemen-
tation uses Manhattan distance on the scaled attribute values.

fuzzy-rough-learn 0.1 5

— When the largest quality measure value corresponds to a singleton candidate
instance set, it cannot be evaluated (because the single instance in that set
has no nearest neighbour). Since this is an edge case that would not score
highly anyway, it is simply excluded from consideration.

3.3 Fuzzy Rough Nearest Neighbour (FRNN) multiclass
classification

Table 3. Parameters of FRNN in fuzzy-rough-learn

Name Default value Description

upper_weights additive() OWA weights to use in calculation of upper ap-
proximation of decision classes.

upper_k 20 Effective length of upper weights vector (num-
ber of nearest neighbours to consider).

lower_weights additive() OWA weights to use in calculation of lower ap-
proximation of decision classes.

lower_k 20 Effective length of lower weights vector (number
of nearest neighbours to consider).

nn_search KDTree() Nearest neighbour search algorithm to use.

Fuzzy Rough Nearest Neighbours (FRNN) [5] provides a straightforward way
to apply fuzzy rough sets for classification. Given a new instance y, we obtain
class scores by calculating the membership degree of y in the upper and lower
approximations of each decision class and taking the mean. This implementation
uses OWA weights, but limits their application to the k nearest neighbours of
each class, as suggested by [8].

3.4 Fuzzy Rough OVO Combination (FROVOCO) multiclass
classification

Table 4. Parameters of FROVOCO in fuzzy-rough-learn

Name Default value Description

nn_search KDTree() Nearest neighbour search algorithm to use.

Fuzzy Rough OVO COmbination (FROVOCO) [18] is an ensemble classifier
specifically designed for, but not restricted to, imbalanced data, which adapts
itself to the Imbalance Ratio (IR) between classes. It balances one-versus-one
decomposition with two global class afinity measures.

6 O. U. Lenz et al.

In a binary classification setting, the lower approximation of one class cor-
responds to the upper approximation of the other class, so when using OWA
weights, the effective number of weight vectors to be chosen is 2. FROVOCO
uses the IR-weighting scheme, which depends on the IR between the classes. If
the IR is less than 9, both classes are approximated with exponential weights. If
the IR is 9 or more, the smaller class is approximated with exponential weights,
while the larger class is approximated with a reduced additive weight vector of
effective length k equal to 10% of the number of instances.

Provided with a training set X, and a new instance y, FROVOCO calculates
the class score of y for a class C from the following components:

V(C,y) weighted vote For each other class C’ # C, calculate the upper ap-
proximation memberships of y in C' and C’, using the IR-weighting scheme.
Rescale each pair of values so they sum to 1, then sum the resulting scores.

mem/(C,y) positive affinity Calculate the average of the membership degrees
of y in the upper and lower approximations of C, using the IR-weighting
scheme.

mse, (C,y) negative affinity For each class C’, calculate the average positive
affinity of the members of C' in C’. Combine these average values to obtain
the signature vector S¢. Calculate the mean squared error of the positive
affinities of y for each class and S¢, and divide it by the sum of the mean
squared errors for all classes.

The final class score is calculated from these components in (2).

AV(C.y) = V(C,y) Jr2mem(C7 y)

- %msen(c, Y). (2)

3.5 Fuzzy Rough Neighbourhood Consensus (FRONEC) multilabel
classification

Table 5. Parameters of FRONEC in fuzzy-rough-learn

Name Default value Description

Q_type 2 Quality measure to use for identifying most rel-
evant instances: based on lower (1), upper (2)
or both approximations (3).

R_d_type 1 Label similarity relation to use: Hamming sim-
ilarity (1) or based on prior probabilities (2).

k 20 Number of neighbours to consider for neigh-
bourhood consensus.

weights additive() OWA weights to use for calculation of soft max-

imum and/or minimum.
nn_search KDTree() Nearest neighbour search algorithm to use.

fuzzy-rough-learn 0.1 7

Fuzzy Rough Neighbourhood Consensus (FRONEC) [16] is a multilabel clas-
sifier. It combines the instance similarity R, based on the instance attributes,
with label similarity R4, based on the label sets of instances. It offers two pos-
sible definitions for Rg4. The first, Rg), is simply Hamming similarity scaled to
[0,1]. The second label similarity, REIQ), takes into account the prior probability
p; of a label [in the training set. Let L the set of possible labels, and L, Ly two
particular label sets. Then R((f) is defined as follows:

a= Z (1—m)

leLiNLy
b= >, m (3)
1€L\(L1UL>)
(2) - a+ b

¢ a+b+ 5 |LIAL

Provided with a training set X, and a new instance y, FRONEC predicts the
label set of y by identifying the training instance with the highest ‘quality’ in
relation to y. There are three possible quality measures, based on the upper and
lower approximations.

Ql(yvx) = OWsz({I(R(Za y)7 Rd($7 Z))|Z € N(y)}
Q2(y,z) = OW Ay, {T(R(2,y), Ra(z,2))|z € N(y)

) = 22 Qoo

Where R, is a choice of label similarity, 7' the Lukasiewicz t-norm, I the
Lukasiewicz implication, and N(y) the k nearest neighbours of y in X, for a
choice of k.

For a choice of quality measure @, FRONEC predicts the labels of the training
instance with the highest quality. If there are several such training instances, it
predicts all labels that appear with at least half.

)
) (4)

3.6 OWA operators and nearest neighbour searches

Each of the algorithms in fuzzy-rough-learn uses OWA operators [20] to calculate
upper and lower approximations. OWA operators take the weighted average of
an ordered collection of real values. By choosing suitably skewed weight vectors,
OWA operators can thus act as soft maxima and minima. The advantage of
defining upper and lower approximations with soft rather than strict maxima and
minima is that the result is more robust, since it no longer depends completely
on a single value.

To allow experimentation with other weights, we have included a range of
pre-defined weight types, as well as a general OWAOperator class that can be
extended and instantiated by users and passed as a parameter to the various
classes.

8

O. U. Lenz et al.

Similarly, users may customise the nearest neighbour search algorithm that

is used in all classes except FRFS by defining their own subclass of NNSearch.
For example, by choosing an approximative nearest neighbour search like Hier-
archical Navigable Small World [9], we obtain Approximate FRNN [8].

Acknowledgement

The research reported in this paper was conducted with the financial support
of the Odysseus programme of the Research Foundation — Flanders (FWO). D.
Peralta is a Postdoctoral Fellow of the Research Foundation — Flanders (FWO,
170303/12X1619N).

References

10.

. Cornelis, C., Verbiest, N., Jensen, R.: Ordered weighted average based fuzzy rough

sets. In: Proceedings of the 5th International Conference on Rough Set and Knowl-
edge Technology (RSKT 2010). Lecture Notes in Artificial Intelligence, vol. 6401,
pp. 78-85. Springer (2010)

Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal
of General Systems 17(2-3), 191-209 (1990)

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD explorations newsletter
11(1), 10-18 (2009)

Jensen, R.: Fuzzy-rough data mining with Weka (2010), http://users.aber.ac.uk/
rkj/Weka.pdf

Jensen, R., Cornelis, C.: A new approach to fuzzy-rough nearest neighbour clas-
sification. In: Proceedings of the 6th International Conference on Rough Sets and
Current Trends in Computing (RSCTC 2008). Lecture Notes in Artificial Intelli-
gence, vol. 5306, pp. 310-319. Springer (2008)

Jensen, R., Cornelis, C., Shen, Q.: Hybrid fuzzy-rough rule induction and feature
selection. In: Proceedings of the 2009 IEEE International Conference on Fuzzy
Systems. pp. 1151-1156. IEEE (2009)

Jovié, A., Brki¢, K., Bogunovié, N.: An overview of free software tools for general
data mining. In: Proceedings of the 37th International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO 2014).
pp. 1112-1117. IEEE (2014)

Lenz, 0O.U., Peralta, D., Cornelis, C.: Scalable approximate FRNN-OWA
classification. IEEE Transactions on Fuzzy Systems (to be published).
https://doi.org/10.1109/TFUZZ.2019.2949769

Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neigh-
bor search using hierarchical navigable small world graphs. IEEE Transactions on
Pattern Analysis and Machine Intelligence 42(4), 824-836 (2020)

Nguyen, G., Dlugolinsky, S., Bobdk, M., Tran, V., Garcfa, /—I\.L.7 Heredia, 1., Malik,
P., Hluchy, L.: Machine learning and deep learning frameworks and libraries for
large-scale data mining: a survey. Artificial Intelligence Review 52(1), 77-124
(2019)

http://users.aber.ac.uk/rkj/Weka.pdf
http://users.aber.ac.uk/rkj/Weka.pdf
https://doi.org/10.1109/TFUZZ.2019.2949769

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

fuzzy-rough-learn 0.1 9

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research 12(85), 2825-2830
(2011)

Riza, L.S., Janusz, A., Bergmeir, C., Cornelis, C., Herrera, F., Sl@zak, D., Benitez,
J.M.: Implementing algorithms of rough set theory and fuzzy rough set theory in
the R package “RoughSets”. Information Sciences 287, 68-89 (2014)

van Rossum, G., de Boer, J.: Interactively testing remote servers using the Python
programming language. CWI Quarterly 4(4), 283-303 (1991)

Verbiest, N.: Fuzzy rough and evolutionary approaches to instance selection. Ph.D.
thesis, Ghent University (2014)

Verbiest, N., Cornelis, C., Herrera, F.: OWA-FRPS: A prototype selection method
based on ordered weighted average fuzzy rough set theory. In: Proceedings of the
14th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granu-
lar Computing (RSFDGrC 2013). Lecture Notes in Artificial Intelligence, vol. 8170,
pp. 180-190. Springer (2013)

Vluymans, S., Cornelis, C., Herrera, F., Saeys, Y.: Multi-label classification using
a fuzzy rough neighborhood consensus. Information Sciences 433, 96-114 (2018)
Vluymans, S., D’eer, L., Saeys, Y., Cornelis, C.: Applications of fuzzy rough set
theory in machine learning: a survey. Fundamenta Informaticae 142(1-4), 53-86
(2015)

Vluymans, S., Fernandez, A., Saeys, Y., Cornelis, C., Herrera, F.: Dynamic affinity-
based classification of multi-class imbalanced data with one-versus-one decompo-
sition: a fuzzy rough set approach. Knowledge and Information Systems 56(1),
55-84 (2018)

Wang, Z., Liu, K., Li, J., Zhu, Y., Zhang, Y.: Various frameworks and libraries of
machine learning and deep learning: a survey. Archives of Computational Methods
in Engineering pp. 1-24 (to be published). https://doi.org/10.1007/s11831-018-
09312-w

Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria
decisionmaking. IEEE Transactions on systems, Man, and Cybernetics 18(1), 183—
190 (1988)

https://doi.org/10.1007/s11831-018-09312-w
https://doi.org/10.1007/s11831-018-09312-w

	fuzzy-rough-learn 0.1: a Python library for machine learning with fuzzy rough sets

