
!
This is the accepted manuscript corresponding to the article:

Exact and heuristic methods for solving Boolean games

Sofie De Clercq , Kim Bauters, Steven Schockaert, Mihail Mihaylov,
Ann Nowé, Martine De Cock

Autonomous Agents and Multi-Agent Systems, 2015,

10.1007/s10458-015-9313-5

Please consult the final publication for the most recent version of
this article.

The final publication is available at link.springer.com via

http://link.springer.com/article/10.1007%2Fs10458-015-9313-5

Autonomous Agents and Multi-Agent Systems manuscript No.

(will be inserted by the editor)

Exact and Heuristic Methods for Solving Boolean
Games

Sofie De Clercq · Kim Bauters ·
Steven Schockaert · Mihail Mihaylov ·
Ann Nowé · Martine De Cock

Received: date / Accepted: date

Abstract Boolean games are a framework for reasoning about the rational behav-
ior of agents whose goals are formalized using propositional formulas. Compared
to normal form games, a well-studied and related game framework, Boolean games
allow for an intuitive and more compact representation of the agents’ goals. So far,
Boolean games have been mainly studied in the literature from the Knowledge Rep-
resentation perspective, and less attention has been paid on the algorithmic issues
underlying the computation of solution concepts. Although some suggestions for
solving specific classes of Boolean games have been made in the literature, there
is currently no work available on the practical performance. In this paper, we pro-
pose the first technique to solve general Boolean games that does not require an
exponential translation to normal-form games. Our method is based on disjunctive
answer set programming and computes solutions (equilibria) of arbitrary Boolean
games. It can be applied to a wide variety of solution concepts, and can naturally
deal with extensions of Boolean games such as constraints and costs. We present
detailed experimental results in which we compare the proposed method against a
number of existing methods for solving specific classes of Boolean games, as well

This research is funded by the Research Foundation Flanders (FWO).

S. De Clercq · M. De Cock
Dept. Applied Mathematics, CS & Statistics, Ghent Universtiy, Ghent, Belgium
E-mail: sofier.declercq@ugent.be,martine.decock@ugent.be

K. Bauters
School of Electronics, Electrical Engineering and CS, Queen’s University, Belfast, UK
E-mail: k.bauters@qub.ac.uk

S. Schockaert
School of Computer Science and Informatics, Cardi↵ University, Cardi↵, UK
E-mail: s.schockaert@cs.cardi↵.ac.uk

M. Mihaylov · A. Nowé
Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussel, Belgium
E-mail: mmihaylo@vub.ac.be,ann.nowe@vub.ac.be

M. De Cock
Center for Data Science, University of Washington, Tacoma, USA
E-mail: mdecock@uw.edu

2 Sofie De Clercq et al.

as adaptations of methods that were initially designed for normal-form games. We
found that the heuristic methods that do not require all payo↵ matrix entries per-
formed well for smaller Boolean games, while our ASP based technique is faster
when the problem instances have a higher number of agents or action variables.

Keywords Boolean games · Heuristic methods · Answer set programming

1 Introduction

Boolean games are a compact game-theoretic framework that uses propositional
formulas to represent agents’ goals [24]. In contrast, in normal form games, these
goals are encoded implicitly in the form of a payo↵ or utility function, which might
complicate the understanding of the goal in games with many possible outcomes.
We illustrate the concept of a Boolean game with the following example [8].

Example 1 (Boolean game G1) Consider a set of agents N = {1, 2, 3} and a set
of action variables V = {p1, p2, p3}. Agent 1 controls p1, agent 2 controls p2 and
agent 3 controls p3. Agent 1’s goal is to make the formula '1 = ¬p1_(p1^p2^¬p3)
true, whereas agents 2 and 3 respectively aim to make '2 = (p1 $ (p2 $ p3))
and '3 = ((p1 ^ ¬p2 ^ ¬p3) _ (¬p1 ^ p2 ^ p3)) true.

A possible intuition underlying this game could be the following: three persons
1, 2 and 3 can individually decide to go to a bar (set their action variable to
true) or to stay at home (set their action variable to false). These persons have no
a priori preference for going to the bar or staying at home, as long as their goal is
fulfilled (the propositional formula is true). Person 1 either wants to meet person 2
without person 3 or wants to stay at home. Person 2 either wants to meet both
the first and third person or wants just one person to go to the bar. The goal of
person 3 is to either only meet the second person or to let the first person be alone
in the bar. Note that the equivalent normal form game would require two 2 ⇥ 2
matrices or one 3-dimensional 2⇥ 2⇥ 2 matrix of triplets to represent the payo↵
of all agents for every outcome (1 if the goal is fulfilled, 0 otherwise). In general,
agents in Boolean games aim to satisfy their individual goal, which is formulated
as a propositional combination of the action variables in the game.

In this paper we tackle the problem of computing solutions of Boolean games.
Two well-known solution concepts in game theory are pure Nash equilibria (PNEs)
and core elements. A PNE is characterized by the fact that no agent is better o↵
by individually deviating from the PNE. A core element is characterized by the
fact that no coalition of agents can jointly deviate and all be strictly better o↵.
In Example 1 a core element – and thus also a PNE – is reached when person
3 is the only one to go to the bar: in that case, no group of agents can jointly
change actions and all be better o↵. The two main problems we focus on in our
experiments are (i) the computation of a sample PNE and (ii) the computation of
a sample core element, with a Boolean game as the problem input. Additionally,
we also investigate the computation of Pareto optimal PNEs and core elements.
An outcome is Pareto optimal if there exists no outcome such that all agents are
at least as well o↵ and at least one agent is strictly better o↵.

The strength of Boolean games lies in their transparent and compact repre-
sentation, since Boolean games mention the goal of each agent but do not require

Methods for Solving BGs 3

utility functions to be explicitly mentioned for every strategy profile. Indeed, the
utility of a strategy can be derived from the agents’ goals. This advantage in the
form of a more compact notation also has a downside: computing a PNE or a core
element is harder in Boolean games than in most other game representations, as
we explain in the following paragraph. This higher complexity is undoubtedly part
of the reason why, to the best of our knowledge, no general methods for computing
a PNE or a core element of a Boolean game have yet been proposed.

In normal form games, the problem of deciding whether a PNE exists is NP-
complete when the game is represented by: (i) a set of agents, (ii) a finite set
of actions per agent, (iii) a function defining for each agent which other agents
may influence their utility, and (iv) the utility of each agent, explicitly given for
all joint strategies of the agent and the agents influencing it [21,22]. Deciding
whether a Boolean game has a PNE, on the other hand, is ⌃P

2 -complete1, even for
2-player zero-sum games [8]. In zero-sum games, the utility of all agents sums up
to 0 for every outcome. Deciding whether there exists a core element of a Boolean
game is also ⌃

P
2 -complete [15].

Although no methods for solving general Boolean games have yet been pro-
posed, two categories of existing techniques can be applied to this computational
problem. First, given that translations from Boolean games to normal form games
are available, we can readily use solvers for normal form games. However, such
a translated game is exponential in the number of action variables. Especially
methods that require the computation of the entire payo↵ matrix are likely to
only be suitable when the number of agents and actions is su�ciently small. Meth-
ods that avoid the usage of all payo↵ matrix entries, such as tabu best-response
search [28], might be more suitable for Boolean games. A detailed description of
techniques in this category is given in Section 4.2. Second, a number of authors have
proposed methods for special sub-classes of Boolean games, e.g. to find PNEs [5,
6] or to find Pareto optimal outcomes for a certain class of Boolean games [15].
It is important to note that none of the techniques in this category can com-
pute a PNE of general Boolean games. More details on these techniques and the
di↵erences with the methods proposed in this paper are discussed in Section 4.1.

The aim of this paper is twofold. First, we introduce a novel method for com-
puting solutions of general Boolean games that does not require an exponential
translation to normal-form games. Our technique is based on disjunctive answer set
programming (ASP) and is able to compute a wide variety of solution concepts for
arbitrary Boolean games due to its flexibility. Moreover, it can for instance easily
be extended to take constraints [7], costs [15] or prioritized goals [9] into account.

The second aim of this paper is to experimentally assess the strengths and
weaknesses of the three aforementioned classes of solution methods: the ASP
method we introduce in this paper, exact methods for particular classes of Boolean
games and (mainly heuristic) methods that were initially designed for normal-form
games. To the best of our knowledge, no such evaluation has been done yet. All
methods and data discussed in this paper have been made available online [13].
As such, our work yields the first benchmarks and implementations for solving
Boolean games.

1 The class of ⌃P
2 -complete or NPNP-complete problems – at the 2nd level of the Polynomial

Hierarchy – consists of all decision problems that can be solved in polynomial time by a non-
deterministic Turing machine with the help of an NP oracle having unitary cost [27].

4 Sofie De Clercq et al.

The paper is organized as follows. We first give some background on Boolean
games. In Section 3, we discuss our method to solve Boolean games. In addition, we
prove the correctness and discuss several extensions, enlarging the set of problems
that our technique can tackle. In Section 4 we discuss several methods that can
alternatively be used to address the considered problems. All these techniques are
evaluated in our experiments in Section 5. Finally, we conclude the paper with a
discussion in Section 6.

This paper extends our previous work [12,11]. In particular, we introduce a
new variant of the WSLpS algorithm to extend its range of application to general
Boolean games. Moreover, we have extended our experimental set-up, by adding
new benchmarks and implementing additional methods for comparison.

2 Background on Boolean Games

We write LV for the propositional language associated with a set of atomic propo-
sitions V in the usual way, i.e. LV contains the following formulas:

– every atomic proposition of V ,
– the logical constants ? and > to denote contradiction and tautology, respec-

tively, and
– the formulas '! , ¬', '$, ' ^ and ' _ for every ', 2 LV .

An interpretation of V is defined as a subset ⇠ of V , with the convention that all
atoms in ⇠ are considered to be true (>) and all atoms in V \⇠ are considered to be
false (?). An interpretation can be used to derive the truth-value of any ' 2 LV

in the usual way. If a formula ' in LV is satisfied by an interpretation ⇠, we denote
this as ⇠ |= '. A formula ' 2 LV is independent of p 2 V if there exists a logically
equivalent formula in which p does not occur. The set of variables on which '
depends, is denoted as DV ('). In this paper, we use the following definition of
Boolean games [8].

Definition 1 (Boolean Game) A Boolean game is a 4-tuple G = (N,V,⇡,�)
with N = {1, . . . , n} a set of agents, V a set of atomic propositions, ⇡ : N ! 2V

a control assignment function such that {⇡(1), . . . ,⇡(n)} forms a partition of V ,
and � = {'1, . . . ,'n} a collection of formulas in LV .

The set V consists of all action variables. When we say that agent i undertakes
action p, this means that the action variable p 2 ⇡(i) is set to true. Similarly, not
undertaking an action is considered as setting the variable to false. We adopt the
notation ⇡i for ⇡(i), i.e. the set of action variables under agent i’s control [8]. Since
⇡ defines a partition, every action variable is controlled by exactly one agent. The
formula 'i is the goal of agent i. For every p 2 V we define ⇡�1(p) = i i↵ p 2 ⇡i,
hence ⇡�1 maps every action variable to the agent controlling it.

Definition 2 (Relevant agents, neighbors) Let G = (N,V,⇡,�) be a Boolean
game. The set of relevant variables for agent i is defined as DV ('i). The set of
relevant agents RA(i) for agent i is defined as {⇡�1(p) 2 N | p 2 DV ('i)}. The
neighborhood of agent i is the set of agents for which i is relevant, i.e. Neigh(i) =
{j 2 N | i 2 RA(j)}.

Methods for Solving BGs 5

Note that the relevant agents for agent i are all agents controlling a variable on
which agent i’s goal depends [5,6]. The neighbors of i are all agents whose goal
depends on a variable controlled by agent i. The dependency graph of a Boolean
game is the graph (N,E), where the set of vertices N corresponds to the set
of agents and where E contains an edge (i, j) for every agent j in RA(i) [5,6].
We illustrate these concepts in the following example.

Example 2 (Boolean game G2) Let G2 be a 3-player Boolean game with ⇡i = {pi},
'1 = p2, '2 = p1 _ ¬p2 and '3 = p1 ^ p2 ^ p3. Then 1 is a relevant agent
for 2, but not for itself. The neighborhoods in the game are Neigh(1) = {2, 3},
Neigh(2) = {1, 2, 3} and Neigh(3) = {3}. The dependency graph of G2 is:

1 2

3

Since there is an arrow from agent 3 to agent 1, 3 depends on 1, but not the other
way around. Or similarly, 1 is relevant for 3, i.e. 3 is a neighbor of 1.

Definition 3 (Strategy profile) Let G = (N,V,⇡,�) be a Boolean game. An
interpretation si of ⇡i is called a strategy of agent i 2 N . A strategy profile of the
Boolean game G is an n-tuple S = (s1, . . . , sn), with si a strategy of agent i for
every i 2 N .

Because ⇡ partitions V and si ✓ ⇡i, for every i 2 N , we can unambiguously use
the set notation [n

i=1si ✓ V for a strategy profile S = (s1, . . . , sn). For example,
in the Boolean game G2 from Example 2 the strategy profile {p1} corresponds to
agent 1 setting p1 to true, agent 2 setting p2 to false and agent 3 setting p3 to
false. With s�i we denote the projection of the strategy profile S = (s1, . . . , sn)
on N \ {i}, i.e. s�i = (s1, . . . , si�1, si+1, . . . , sn). If s

0
i is a strategy of agent i,

then (s�i, s
0
i) is a shorthand for (s1, . . . , si�1, s

0
i, si+1, . . . , sn). We illustrate these

concepts for the Boolean game G2 from Example 2.

Example 2 (Boolean game G2 – continued) The strategy profile S = ({p1}, ;, {p3})
= {p1, p3} corresponds to the outcome in which agents 1 and 3 set their action
variables to true and agent 2 sets its action variable to false. We have s�1 =
(;, {p3}), s�2 = ({p1}, {p3}) and s�3 = ({p1}, ;).

The definition of a Boolean game can be extended with constraints [7]: with
each agent i 2 N a satisfiable formula �i 2 L⇡i is associated. A strategy of agent i
is then required to be a model of �i.
A Boolean utility function can be defined from the goals of the agents in a natural
way.

Definition 4 (Utility function) Let G = (N,V,⇡,�) be a Boolean game. For
every agent i 2 N and every strategy profile S of G, the utility function ui is
defined as ui(S) = 1 i↵ S |= 'i and ui(S) = 0 otherwise.

6 Sofie De Clercq et al.

This binary utility is often seen as an obvious limitation of Boolean games.
Several proposals have been made in the literature to overcome this restriction.
First, Boolean games can be extended with costs, imposed on agents depending
on their actions. We denote {¬p | p 2 V } as ¬V . If G includes a cost function
c : V [¬V ! R+, then playing a certain strategy si imposes a cost ci(si) =P

p2si
c(p) +

P
p2⇡i\si

c(¬p) on agent i. The utility function of agent i is then
a function which values the utility of a strategy profile S higher than a strategy
profile S0 i↵ (i) S satisfies agent i’s goal and S

0 does not, or (ii) S and S

0 both satisfy
agent i’s goal but the cost for agent i is lower in S than in S

0 (ci(S) < ci(S
0)),

or (iii) neither S nor S0 satisfy agent i’s goal but ci(S) < ci(S
0). Some definitions

impose no cost for not undertaking an action, i.e. c(¬p) = 0 for every p 2 V [15].
A second approach to overcome the limitation of binary utility degrees is the use
of compactly represented preference relations on the set of strategy profiles [9].
We demonstrate Boolean games with costs in the following example.

Example 3 (Boolean game G3) Consider the Boolean game G3. Two students
can work on two projects: V = {p11, p21, p12, p22}. If p

j
i is true, student i works

on project j. Not working on the project requires no energy (cost of 0). For the
first student, working on the first project is harder than working on the second:
c(p11) = 2 and c(p21) = 1. For the second student, the costs are the other way
around. Note that, in contrast to the Boolean game in Example 1, the agents have
an a priori preference on the actions, although this preference is subordinated
to the satisfaction of their goal. The students can work on at most one project,
i.e. �i = ¬(p1i ^ p

2
i). Student 1 wants to work on either one of the projects i.e.

'1 = p

1
1 _ p

2
1. Student 2 wants to cooperate on any project if student 1 joins him,

i.e. ((p12 ! p

1
1) ^ (p22 ! p

2
1).

We now discuss solution concepts in Boolean games. A common, intuitive and
straightforward solution concept in game theory is the notion of pure Nash equi-
librium.

Definition 5 (Pure Nash Equilibrium) A strategy profile S = (s1, . . . , sn) for
a Boolean game G is a pure Nash equilibrium (PNE) i↵, for every agent i 2 N , si
is a best response to s�i, i.e. ui(S) � ui(s�i, s

0
i) for all strategies s

0
i ✓ ⇡i.

Deciding whether a Boolean game has a PNE is⌃P
2 -complete [8]. An alternative

solution concept for Boolean games is the core, which is related to strong Nash

equilibria [2]. Checking whether the core is non-empty is also ⌃

P
2 -complete [15].

Definition 6 (Core) A strategy profile S is blocked by a coalition C ✓ N (C 6=
;) if there exists a strategy profile S

0 such that

– all agents outside C undertake the same actions in S and S

0; and
– all agents in C strictly prefer S

0 to S, i.e. they have a strictly higher utility
in S

0 than in S.

The core of a Boolean game G is defined as the set Core(G) of strategy profiles S
that are not blocked by any non-empty coalition C ✓ N .

Note that in the context of Definition 6, a coalition can be assumed to be such that
all members change their actions. Indeed, in case a coalition does not satisfy this
property, we can remove all agents that do not change actions and still satisfy the

Methods for Solving BGs 7

conditions of Definition 6. Definition 6 also entails that, in particular, an element
of Core(G) is not blocked by a single agent, implying that every core element is a
PNE. Another desirable property of strategy profiles is Pareto optimality.

Definition 7 (Pareto optimality) A strategy profile S is Pareto optimal if
there exists no strategy profile S

0 such that ui(S)  ui(S
0) for every i 2 N and

ui(S) < ui(S
0) for at least one i 2 N .

As we show further on, the PNEs and core elements of G1, G2 and G3 coincide.
To demonstrate that this is not generally true, we introduce another example
of Boolean games.

Example 4 (Boolean game G4) A project is set up and 4 students have the op-
portunity to cooperate. Student 1 wants to join i↵ all other students also join, i.e.
'1 = (p1 ^ p2 ^ p3 ^ p4) _ ¬p1. Student 2 wants to cooperate with at least one
partner, i.e. '2 = p2 ^ (p1 _ p3 _ p4). Student 3 also wants to join, but he wants
the second or fourth student as a partner, i.e. '3 = p3 ^ (p2 _ p4). The fourth
student wants to do the project by himself or does not want to do the project, i.e.
'4 = (p4 ^¬p1 ^¬p2 ^¬p3)_¬p4. The resulting Boolean game is denoted as G4.

In Table 1, the PNEs and core elements of the Boolean games of Example 1,
2, 3 and 4 are listed, using set notation.

Table 1: The PNEs and core elements of the Boolean games G{1,2,3,4}.

Boolean game G1 G2 G3 G4

PNEs {p3} ;, {p1}, {p3}, {p1, p3}, {p1, p2, p3} {p21} ;, {p2, p3}

Core elements {p3} ;, {p1}, {p3}, {p1, p3}, {p1, p2, p3} {p21} {p2, p3}

Recall that the goals of the agents in Example 1 are respectively '1 = ¬p1 _ (p1 ^
p2 ^ ¬p3), '2 = (p1 $ (p2 $ p3)) and '3 = ((p1 ^ ¬p2 ^ ¬p3) _ (¬p1 ^ p2 ^ p3)).
The action variable pi represents whether agent i goes to the bar. The fact that
S = {p3} is a PNE of G1 means that, if the third person goes to the bar, no
individual person can change his action to improve the outcome for himself. Indeed,
the third person cannot improve his own situation by leaving. Similarly, the first
and second person could decide (individually) to come to the bar but this isolated
decision will not lead to a strictly better outcome for them, since they already
reach their goal in S. For G1, G2 and G3, the PNEs and core elements coincide,
but in G4 there is a unique core element, whereas there are two PNEs. The core
element is the only solution that is also Pareto optimal and in which every agent
reaches its goal. The PNE ; is a less satisfactory solution than {p2, p3}, since only
two agents succeed in fulfilling their goal in the outcome ;, versus four satisfied
agents in {p2, p3}.

Alternative solution concepts in Boolean games include the weak and strong
core [7], k-bounded Nash equilibria [16] and stable sets [15], although this latter
term is also used to describe certain coalitions [5,6]. In this paper, we focus the
discussion on PNEs, cores and Pareto optimality, since these are the most com-
mon solution concepts in the context of Boolean games. However, our reduction to

8 Sofie De Clercq et al.

disjunctive ASP can readily be generalized to these alternative solution concepts.
Still other solution concepts have been studied recently, such as verifiable equilib-
ria [1], which require the Boolean game framework to be extended with a visibility
set for every agent i. These visibility sets restrict the agents’ knowledge of the
game by specifying the action variables whose values can be observed by agent i.
Verifiable equilibria di↵er from normal PNEs because, when playing the strate-
gies corresponding to a verifiable equilibrium, it is guaranteed that the agents are
able to know whether they have reached an equilibrium. Although we have not
implemented these solution concepts, it is plausible that, based on the complexity
of the associated decision problems, an ASP encoding can be found to compute
these solutions as well.

3 Computing Solutions using Answer Set Programming

We first recall answer set programming or ASP, which is a form of declarative
programming [10]. Its transparency and non-monotonic character, as well as the
existence of e�cient ASP solvers, make it an attractive method for solving opti-
mization and combinatorial search problems. In recent years, a range of ⌃P

2 prob-
lems have been identified on which ASP solvers outperform other state-of-the-art
methods [18].

A ground disjunctive ASP program has atoms, literals and rules as building
blocks. The most elementary are atoms, which are atomic propositions from a fixed
set A, that can be true or false. A literal is an atom a or a negated atom ¬a. Apart
from strong negation, denoted as ¬, ASP uses a special kind of negation, called
negation-as-failure and denoted with ‘not’. Intuitively, ¬a is true when there is
proof that a is not true, whereas not a is true when there is no proof that a is true.
A ground disjunctive rule has the following form

a1 _ . . . _ ak b1, . . . , bm, not c1, . . . , not cn

where a1, . . . , ak, b1, . . . , bm, c1, . . . , cn are literals. We call a1 _ . . . _ ak the head
of the rule while b1, . . . , bm, not c1, . . ., not cn is called the body. The rule above
intuitively encodes that at least one of a1, . . . , ak is true when all of b1, . . . , bm
are known to be true and none of c1, . . . , cn is known to be true. When a rule
has an empty body, we call it a fact ; when the head is empty, it is called a
constraint. A rule without occurrences of not is called a simple disjunctive rule.
A simple disjunctive ASP program is a finite collection of simple disjunctive rules
and similarly, a disjunctive ASP program P is a finite collection of disjunctive
rules.

Example 5 Let P be the ASP program with the following 5 rules:

man(john)
person(john)
person(fiona)

woman(john) _ child(john) person(john), notman(john)

woman(fiona) _ child(fiona) person(fiona), notman(fiona)

Methods for Solving BGs 9

The first 3 rules are facts, hence their heads will be in any answer set. The last
two rules encode that if john (respectively fiona) are known to be persons, but not
known to be men, then they are assumed to be women or children. This program
contains two constants, namely john and fiona. An example of a literal in P is
man(john).

An interpretation I of a ground disjunctive ASP program is a consistent subset
of L = A[¬A, with ¬A = {¬a | a 2 A}. A simple disjunctive rule a1 _ . . . _ ak

 b1, . . . , bm is satisfied by an interpretation I when {a1, . . . , ak} \ I 6= ; or
{b1, . . . , bm} 6✓ I. A model of a simple disjunctive program P is an interpretation
satisfying all rules of P. An interpretation I is an answer set of a simple disjunctive
program P i↵ it is a minimal model of P, i.e. I is a model and there does not exist
a strict subset of I that is also a model of P [19,20]. The reduct PI of a ground
disjunctive ASP program P w.r.t. an interpretation I is the simple disjunctive
ASP program defined by:

PI = {a1 _ . . . _ ak b1, . . . , bm | {c1, . . . , cn} \ I = ;,
(a1 _ . . . _ ak b1, . . . , bm, not c1, . . . , not cn) 2 P}.

Intuitively, we guess an interpretation I and use it to remove negation-as-failure
from P, which results in the reduct PI . An interpretation I of a ground disjunctive
ASP program P is an answer set of P i↵ I is an answer set of PI . In Example 5,
the interpretation I = {man(john),woman(fiona), person(john), person(fiona)} is
an answer set of P. Indeed, if we compute the reduct, the fourth rule is deleted
since man(john) is in I, i.e. the body is false. The reduct PI is:

man(john)
person(john)
person(fiona)

woman(fiona) _ child(fiona) person(fiona)

It is clear that I is a minimal model of this simple program, hence I is an answer
set of P. Note that I \{woman(fiona)}[{child(fiona)} is another answer set of P.
Although I [{child(fiona)} also satisfies the rules of P, it is not an answer set
since the minimality condition is not fulfilled.

The ASP syntax also uses variables, denoted in upper case, to write related
rules in a more compact or general fashion. For instance, the last two rules in
Example 5 are used to encode that any person who is not known to be a man,
is assumed to be a woman or child. This can be written as:

woman(X) _ child(X) person(X), notman(X)

with X a variable. Hence a (disjunctive) ASP rule is written as:

A1 _ . . . _Ak B1, . . . , Bm, notC1, . . . , notCn

where A1, . . . , Ak, B1, . . . , Bm, C1, . . . , Cn are literals which may contain variables.
The semantics are defined by the ground version of the rule, i.e. all ground instan-
tiations of the rule w.r.t. the constants that appear in the program – see e.g. [10]
for a thorough overview.

10 Sofie De Clercq et al.

We now associate disjunctive ASP programs with Boolean games to compute
either PNEs or to find strategy profiles in their core. Additionally, we can require
these PNEs or core elements to be Pareto optimal. In our case, the answer sets
correspond to strategy profiles. Intuitively, the idea is to create a program with
3 parts: (i) a part generating a strategy profile and checking the satisfaction of
the agents’ goals, (ii) a part generating alternative strategies for all agents and
checking the corresponding satisfaction of the agents’ goals, (iii) a part checking
whether or not the agents can improve their utility by deviating from the strategy
profile in the first part and selecting the PNEs or core elements by saturation,
a powerful technique for implementing optimization problems in ASP [17]. We
will demonstrate our approach in detail next.

3.1 Computing PNEs with Disjunctive ASP

Let G = (N,V,⇡,�) be a Boolean game. We define the first program part P1 and
start by adding the facts agent(1..n) and action(p) for every p 2 V . The
‘rule’ agent(1..n) is an abbreviation for the n facts agent(1) ; . . .; agent(n) .
Next, we add a rule that expresses that every p 2 V is either undertaken or not:

act(P) _ ¬act(P) action(P) (1)

For every agent i 2 N , we add a ‘rule’ that checks whether its goal is satisfied or
not:

goal(i) 'i(act(V)) (2)

The notation 'i(act(V)) represents the formula 'i in which every occurrence of
p 2 V is replaced by act(p). Note that (2) is not a valid ASP rule, since ASP does
not allow an arbitrary formula in the body. However, as we explain next, we can
easily translate these ‘rules’ into valid ASP rules. Our solver first transforms the
goals of the agents into negation-normal form (NNF). ‘Rules’ of the form goal ',
with ' a propositional formula in NNF, can then be recursively translated to ASP
rules by introducing new atoms. The objective is to write rules that derive goal

whenever the formula ' is true. For instance, a ‘rule’ goal ((a ^ b) _ ¬c) ^ d

can be replaced with the set of rules {goal x, d;x a, b;x ¬c}, with
x a newly introduced atom. To this end, a recursive method transforms a ‘rule’
goal f1(y1, f2(y2, . . . ,fk�1(yk�1, fk(yk, yk+1)) . . .)) into a set of valid ASP rules,
with fi a binary logical operator 2 {^,_} for every i 2 {1, . . . , k} and yi a literal
for every i 2 {1, . . . , k + 1}. The first step of this recursive method yields the
‘rule’ goal f1(y1, f2(y2, . . . , fk�1(yk�1, xk) . . .)) together with the rules in the
middle or right column of Table 2, depending on fk. Here xk is a newly introduced
atom.
We now recursively apply this approach for each obtained ‘rule’ of the form

goal f1(y1, f2(y2, . . . , fk�1(yk�1, xk) . . .))

until the remaining rule with goal in the head is a valid ASP rule. Note that when
fi = fi+1 = . . . fj , we can take advantage of the associativity of ^ and _ to obtain
a slightly more compact translation, as we illustrate in Example 6 below. It is
easy to see that every ‘rule’ of the form (2) with k binary operators (_ and ^) is

Methods for Solving BGs 11

Table 2: Translation rules

logical operator fk = ^ fk = _

ASP rules xk yk, yk+1 xk yk

xk yk+1

translated to a set of at most 2k ASP rules and that the translation involves at
most k newly introduced atoms. With X we denote the set of all atoms that were
introduced during the translation of the rules of the form (2).

The second program part is denoted as P2 and intuitively encodes the alterna-
tive strategies of the agents. We add the following rules to P2, stating that every
action is either undertaken or not in the alternative strategies:

act

0(P) _ nact

0(P) action(P) (3)

Note that, in this program part, we simulate the strong negation with a prefix
‘n’. The intuitive idea is to make all the literals of P2 true in the final part of
the program, but this would lead to contradictions if we used ¬act 0(P) instead of
nact

0(P). The literals of P2 correspond to an alternative strategy for every agent
in the Boolean game. Further on, we will explain how we use saturation in the
third program part to ensure that not one, but all possible alternative strategies
are taken into account.

The definition of PNEs states that the utility of every agent that individu-
ally deviates from a PNE cannot be strictly higher than its utility in the PNE.
To know if the strategy si is a best response to s�i for agent i it su�ces that
either ui(s�i, si) = 1 or ui(s�i, s

0
i) = 0, 8s0i ✓ ⇡i. Therefore it su�ces to know

whether 'i is false for the alternative strategy of i in the second program part.
To this end, we add the following rules to P2 for every i 2 N :

ngoal

0(i) ⇠'i(act(⇡�i),nact
0(¬⇡i), act

0(⇡i)) (4)

with ⇠'i the notation for a formula, equivalent to ¬'i, in NNF. We introduce the
notation ⇠'i(act(⇡�i),nact

0(¬⇡i), act
0(⇡i)) for the formula ⇠'i in which every

occurrence of p 2 ⇡�i is replaced by act(p), every occurrence of ¬p with p 2 ⇡i is
replaced by nact

0(p) and every other occurrence of p 2 ⇡i is replaced by act

0(p).
Note that (4) implicitly encodes the control assignment function of the Boolean
game. As for (2), we translate (4) into valid ASP rules. With X

0 we denote the
set of all newly introduced atoms during the translation of (4).

The third program part P3 is used to check whether the strategy of agent i

chosen in P1 is a better response than its alternative strategy defined in P2, given
the strategies of the other agents chosen in P1. If so, we derive pleased(i) with the
following rules of P3:

pleased(I) goal(I)

pleased(I) ngoal

0(I) (5)

These rules are added only once since I is a variable, whereas e.g. rule (4) is added
for every agent i 2 N . If all agents have a better response in P1 than in P2, we

12 Sofie De Clercq et al.

derive sat using the following rule of P3, where we identify the body with a set of
literals for the ease of presentation:

sat {pleased(i) | i 2 N} (6)

Moreover, we use the following rule to exclude answer sets in which sat is not
derived:

 not sat (7)

As part of the saturation technique, which we describe next, we set the literals
introduced in P2 to true if sat is derived, by adding the following rules to P3 for
every x 2 X

0:

act

0(P) sat, action(P)

nact

0(P) sat, action(P)

x sat

ngoal

0(I) sat, agent(I) (8)

Together with (5), (8) implies that all literals of the form pleased will also be made
true if sat is derived. The intuition of the saturation is to impose that sat should
be in every answer set with rule (7). Since rule (6) is the only rule in the program
that can derive sat, pleased(i) should also be in every answer set, which is only the
case if all agents play a better response in P1 than in P2, due to (5). The rules (8)
ensure that every possible alternative strategy encoded by P2 is in every answer
set. By definition of the reduct of an ASP program, sat needs to be in the minimal
model of the reduct in order to obtain an answer set. Intuitively, there will exist
an answer set if and only if there exists no alternative strategy for an agent such
that it plays a better response than in P1.

Remark 1 Note that while the heads of the last two rules in (8) will generally
follow from the saturation of the literals act

0(.) and act

0(.), these rules are not
redundant. In particular consider a game with an agent i whose goal is p2_(p3^p4),
where none of the occurring action variables is controlled by i itself. The negation
of the goal is ¬p2 ^ (¬p3 _¬p4). We would introduce an extra variable x to model
the disjunction, i.e. x ¬act(p3) and x ¬act(p4). Clearly, x would not follow
from the atoms act 0(.) and act

0(.), and neither would ngoal

0(i).

We denote the entire program P1 [P2 [P3 as P and call it the PNE-program

induced by G. Note that the ⌃

P
2 -complexity of deciding whether there is a PNE

in a Boolean game matches the ⌃

P
2 -complexity of our grounded disjunctive ASP

programs [3]. Ifm is the maximum number of binary operators (_ and ^) appearing
in the NNF of the goals in G, and p is the maximum number of action variables
per agent, i.e. p = maxi2N |⇡i|, then the number of ASP rules in the ungrounded
program P is bounded by n+ pn+9+5mn = (p+5m+1)n+9. Hence the size of
the translation to ASP is polynomial in the size of the original problem description
as a Boolean game.

Methods for Solving BGs 13

Example 6 Reconsider the Boolean game of Example 1. The associated program
(syntactically not yet a valid ASP program) consists of P1:

agent(1..3) ; action(p1) ; action(p2) ; action(p3)
act(P) _ ¬act(P) action(P)

goal(1) ¬act(p1) _ (act(p1) ^ act(p2) ^ ¬act(p3))
goal(2) (act(p1) ^ ((act(p2) ^ act(p3)) _ (¬act(p2) ^ ¬act(p3))))

_ (¬act(p1) ^ (¬act(p2) _ ¬act(p3)) ^ (act(p2) _ act(p3)))

goal(3) (act(p1) ^ ¬act(p2) ^ ¬act(p3))
_ (¬act(p1) ^ act(p2) ^ act(p3))

After the translation into valid ASP rules, the rules with heads goal(i) from P1

become:

goal(1) ¬act(p1);
x3 act(p2), act(p3);

x2 ¬act(p2);
x1 act(p2);

goal(2) act(p1), x3;

goal(3) act(p1),¬act(p2),¬act(p3);

goal(1) act(p1), act(p2),¬act(p3)
x3 ¬act(p2),¬act(p3)
x2 ¬act(p3)
x1 act(p3)

goal(2) ¬act(p1), x1, x2

goal(3) ¬act(p1), act(p2), act(p3)

Program part P2 contains the following rules:

act

0(P) _ nact

0(P) action(P)

ngoal

0(1) act

0(p1) ^ (nact 0(p1) _ ¬act(p2) _ act(p3))

ngoal

0(2) (¬act(p1) _ ((nact 0(p2) _ ¬act(p3)) ^ (act 0(p2) _ act(p3))))

^ (act(p1) _ (act 0(p2) ^ act(p3)) _ (nact 0(p2) ^ ¬act(p3)))
ngoal

0(3) (¬act(p1) _ act(p2) _ act

0(p3))

^ (act(p1) _ ¬act(p2) _ nact

0(p3))

The rules with heads ngoal 0(i) from P2 become:

x

0
1 nact

0(p1);

ngoal

0(1) act

0(p1), x
0
1;

x

0
2 act

0(p2);

x

0
5 nact

0(p2),¬act(p3);
x

0
4 x

0
2, x

0
3;

x

0
6 act(p2);

x

0
7 ¬act(p2);

x

0
1 ¬act(p2);

x

0
3 nact

0(p2);

x

0
2 act(p3);

x

0
5 act

0(p2), act(p3);

ngoal

0(2) x

0
4, x

0
5;

x

0
6 act

0(p3);

x

0
7 nact

0(p3);

x

0
1 act(p3)

x

0
3 ¬act(p3)

x

0
5 act(p1)

x

0
4 ¬act(p1)

x

0
6 ¬act(p1)

x

0
7 act(p1)

ngoal

0(3) x

0
6, x

0
7

The final program part P3 is given by:

pleased(I) goal(I); pleased(I) ngoal

0(I)

sat pleased(1), pleased(2), pleased(3); not sat

14 Sofie De Clercq et al.

act

0(P) sat, action(P) nact

0(P) sat, action(P)

x

0
1 sat; x

0
2 sat; x

0
3 sat

x

0
4 sat; x

0
5 sat; x

0
6 sat

x

0
7 sat; ngoal

0(I) sat, agent(I)

The only answer set of the induced PNE-program is the one containing ¬act(p1),
¬act(p2), act(p3), goal(1), goal(2), ¬goal(3), corresponding to the unique PNE in
which agent 1 sets action variable p1 to false, agent 2 sets p2 to false and agent
3 sets p3 to true. Consequently agent 3 is the only agent that does not reach its
goal.

Remark 2 Many ASP based approaches are set up in such a way that the only
rules depending on the particular problem instance (in our case, a Boolean game)
are facts. When tackling the problem of finding PNEs in Boolean games, however,
translating the goals of the agents to plain facts is not feasible.

Proposition 1 Let G = (N,V,⇡,�) be a Boolean game and P its induced PNE-

program. For every answer set I of P the strategy profile SI = {p | act(p) 2 I} is

a PNE of G. Moreover, the goal of agent i 2 N is satisfied for SI i↵ goal(i) 2 I.

Conversely, for every PNE S = (s1, . . . , sn) of G there exists an answer set IS

of P such that

1. for every p 2 V it holds that act(p) 2 IS i↵ p 2 S and ¬act(p) 2 IS otherwise,

and

2. for every i 2 N it holds that goal(i) 2 IS i↵ ui(S) = 1.

The proof is given in Appendix A.

Remark 3 Our approach can easily be extended to Boolean games with con-
straints [7]. Assuming without loss of generality that the constraint �i and its
negation ⇠�i are in negation normal form, we add the ‘rule’ ⇠�i(act(⇡i))
to P1 for every i 2 N and sat ⇠�i(nact 0(¬⇡i), act

0(⇡i)) to P2. Again
⇠�i(nact 0(¬⇡i), act

0(⇡i)) is the formula ⇠�i in which every occurrence of p 2 ⇡i

preceded by ¬ is replaced by nact

0(p) and every other occurrence of p 2 ⇡i by
act

0(p).

Remark 4 Similarly, our method can also take into account cost functions [15] in
a natural way. Let us write {pi1, . . . , pi|⇡i|} for the actions in ⇡i, for every agent i.
To define the ASP program induced by a Boolean games with costs, we add the
following rules2 to P1:

cost(i, j, c(pij)) act(pij)

cost(i, j, c(¬pij)) ¬act(pij)
sum(i, |⇡i|, X) cost(i, |⇡i|, X)

sum(I, J,X + Y) sum(I, J + 1, X), cost(I, J, Y)

costs(I, Z) sum(I, 1, Z)

2 The ASP solver clingo can use these rules as such, but the WASP implementation requires
the built-in aggregate functions #int and #succ, see the solver implementation for details.

Methods for Solving BGs 15

for every agent i 2 N and every j 2 {1, . . . , |⇡i|}. We add similar rules to P2:

cost

0(i, j, c(pij)) act

0(pij)

cost

0(i, j, c(¬pij)) nact

0(pij)

sum

0(i, |⇡i|, X) cost

0(i, |⇡i|, X)

sum

0(I, J,X + Y) sum

0(I, J + 1, X), cost 0(I, J, Y)

costs

0(I, Z) sum

0(I, 1, Z)

The rules above compute the total cost per agent by going through its actions one
by one and add exactly one cost per action to the subtotal. Note that saturating
the new literals cost

0, sum 0 and costs

0 is unnecessary since they will already be
set to true because of the literals of the form act

0(p) and nact

0(p). Indeed, if sat
is true, which is the case in every answer set due to (7), then act

0(p) and nact

0(p)
will be in any answer set, for every p, due to (8). Hence the rules stated above
imply that all possible costs associated with an action will be in every answer set,
for every action. Consequently, all possible total costs per agent that can occur in
the game will be in every answer set automatically, without using extra saturation
rules. Finally, we replace rules (5) by:

pleased(I) goal(I),ngoal 0(I)

pleased(I) goal(I), costs(I,X), costs 0(I, Y), X  Y

pleased(I) ngoal

0(I), costs(I,X), costs 0(I, Y), X  Y

These rules encode the best response condition for Boolean games with costs.

Remark 5 Pareto optimality is an important property of strategies. We can easily
extend the previous ASP encoding to find Pareto optimal PNEs. It su�ces to add
rules expressing that for an arbitrary alternative strategy profile, defined by the
literals act

0 and nact

0, there is either an agent which is strictly better o↵ in the
original strategy profile or all agents are at least as well o↵ in the original strategy
profile. We therefore add the following rules to P2 and P3:

ngoal

00(i) ⇠'i(nact
0(¬V), act 0(V))

cond goal(I),ngoal 00(I)

pleased

0(I) goal(I)

pleased

0(I) ngoal

00(I)

with ⇠'i(nact
0(¬V), act 0(V)) the formula ⇠'i in which every occurrence of ¬p

(with p 2 V) is replaced with nact

0(p) and every occurrence of p with act

0(p).
These rules derive cond i↵ one agent is strictly better o↵ in the strategy profile
encoded by P1 and they derive pleased

0(i) i↵ agent i is at least as good o↵ in the
strategy profile encoded by P1. Furthermore, we add rules of the form x sat

to saturate every literal x introduced when transforming the ‘rules’ with head
ngoal”(.) into valid ASP rules. We also saturate all literals of the form ngoal

00 by
adding ngoal

00(I) sat, agent(I). Finally, we replace rule (6) with:

sat {pleased(i), pleased 0(i) | i 2 N}
sat {pleased(i) | i 2 N}, cond

16 Sofie De Clercq et al.

Intuitively, we saturate whenever (i) all agents play a best response and are at
least as well o↵ in the strategy profile encoded by P1; or (ii) all agents play
a best response and at least one agent is strictly better o↵ in the strategy profile
encoded by P1. The correctness of this encoding can be proven in a similar way
as Proposition 1.

3.2 Computing Core Elements with Disjunctive ASP

We now describe an ASP program with the property that its answer sets corre-
spond to the core elements of a Boolean game. To this end, we adjust the in-
duced PNE-program to define the core-program induced by the Boolean game
G = (N,V,⇡,�). This program contains all rules from the PNE program, with the
exception of (4) and (6). In addition, we add the facts control(i, p) for every
i 2 N and every p 2 ⇡i to P1, to express that agent i controls action p. We add
the following rules to divide the agents into coalition members and non-coalition
members, demanding non-empty coalitions:

coalition(I) _ ncoalition(I) agent(I) (9)

sat {ncoalition(i) | i 2 N} (10)

We add the following rules to express that non-coalition members do not alter
their actions:

act

0(P) control(I, P),ncoalition(I), act(P)

nact

0(P) control(I, P),ncoalition(I),¬act(P) (11)

We replace rule (4) with:

ngoal

0(i) ⇠'i(nact
0(¬V), act 0(V)) (12)

and rule (6) with:

sat pleased(I), coalition(I) (13)

i.e. we saturate whenever a coalition member does not strictly prefer the alternative
strategy of the coalition. To P3 we add the following rules:

coalition(I) sat, agent(I) (14)

ncoalition(I) sat, agent(I) (15)

Example 7 Let us reconsider the Boolean game of Example 1. The associated
program consists of P1, which contains exactly the same rules as in Example 6,
with the addition of the following facts:

control(1, p1) ; control(2, p2) ; control(3, p3)

Program part P2 contains the following rules:

act

0(P) _ nact

0(P) action(P)

coal(I) _ ncoal(I) agent(I)

Methods for Solving BGs 17

act

0(P) control(I, P),ncoal(I), act(P)

nact

0(P) control(I, P),ncoal(I),¬act(P)

ngoal

0(1) act

0(p1) ^ (nact 0(p1) _ ¬act(p2) _ act(p3))

ngoal

0(2) (¬act(p1) _ ((nact 0(p2) _ ¬act(p3)) ^ (act 0(p2) _ act(p3))))

^ (act(p1) _ (act 0(p2) ^ act(p3)) _ (nact 0(p2) ^ ¬act(p3)))
ngoal

0(3) (¬act(p1) _ act(p2) _ act

0(p3))

^ (act(p1) _ ¬act(p2) _ nact

0(p3))

The rules with heads ngoal

0(i) from P2 become the same as in Example 6. The
final program part P3 is given by:

pleased(I) goal(I); pleased(I) ngoal

0(I)

sat pleased(I), coal(I); not sat

sat ncoal(1),ncoal(2),ncoal(3)

act

0(P) sat, action(P) nact

0(P) sat, action(P)

coal(I) sat, agent(I) ncoal(I) sat, agent(I)

x

0
1 sat; x

0
2 sat; x

0
3 sat

x

0
4 sat; x

0
5 sat; x

0
6 sat

x

0
7 sat; ngoal

0(I) sat, agent(I)

The only answer set of the induced core-program is the one containing ¬act(p1),
¬act(p2), act(p3), goal(1), goal(2), ¬goal(3), corresponding to the unique core ele-
ment.

Proposition 2 Let G = (N,V,⇡,�) be a Boolean game and P be its induced

core-program. For every answer set I of the program P the strategy profile SI =
{p | act(p) 2 I} is an element of Core(G). Moreover, the goal of agent i 2 N is

satisfied for SI i↵ goal(i) 2 I. Conversely, for every element S = (s1, . . . , sn) of

Core(G) there exists an answer set IS of P such that

1. for every p 2 V it holds that act(p) 2 IS i↵ p 2 S and ¬act(p) 2 IS otherwise,

and

2. for every i 2 N it holds that goal(i) 2 IS i↵ ui(S) = 1.

The proof is given in Appendix A.

Remark 6 As in the case of PNEs, we can easily extend the core-program induced
by a Boolean game to take constraints, weights, or Pareto optimality into account.
For example, to impose Pareto optimality, we add the following rules:

act

00(P) _ nact

00(P) action(P)

ngoal

00(I) ⇠'i(nact
00(¬V), act 00(V))

cond goal(I),ngoal 00(I)

pleased

0(I) goal(I)

pleased

0(I) ngoal

00(I)

18 Sofie De Clercq et al.

together with saturation rules for act, nact, ngoal 00 and newly introduced atoms
in P2. Furthermore, rule (13) must be replaced with:

sat pleased(I), coalition(I), {pleased 0(i) | i 2 N}
sat pleased(I), coalition(I), cond

We refer to the implementation for details on the extension of our encoding of core
strategies to Boolean games with constraints and costs.

The implementation of our ASP encodings to compute PNEs or core elements
of Boolean games with costs and constraints, with the option of demanding Pareto
optimality, has been made available online [13]. Our solver takes a Boolean game
as input, generates the ASP encoding of the problem for either WASP or clingo,
then uses the corresponding ASP solver to find an answer set, and finally distills
the solution from this answer set.

4 Alternative Methods to Solve Boolean Games

In this section, we give an overview of alternative methods which take a Boolean
game as input and return a PNE or a core element as output, assuming one
exists. Since there are currently no methods to solve general Boolean games, every
approach in this section is either designed for a specific class of Boolean games or
designed for normal form games. In Section 5, we will experimentally compare the
e�ciency of these techniques with the method discussed in Section 3.

4.1 Alternative Methods Designed for Boolean Games

4.1.1 Win-Stay Lose-probabilistic Shift

The Win-Stay Lose-probabilistic Shift (WSLpS) algorithm was originally intro-
duced to tackle coordination and anti-coordination games [25,26], with the pur-
pose of coordinating agents towards a solution in a distributed manner. Recently,
we have proposed WSLpS to coordinate agents towards a Pareto optimal PNE
for a specific class of Boolean games [12]. In this paper, the algorithm is modified
to enable the computation of a PNE in general Boolean games. Algorithm 1 de-
scribes one iteration of WSLpS. The strategy profile in the current iteration is St,
the strategy profile in the next iteration is St+1. The function rand subset(uniform,
Neigh(i), ki) computes a uniformally random subset of the set of neighbors Neigh(i)
of agent i (see Definition 2) of size ki.

The function i.shiftActions(�i(S
t
, r)) is defined as stated in Algorithm 2. The

notation s

t
i[a] stands for the truth value of action variable a, which is controlled

by agent i, in the strategy profile S

t.
WSLpS can be viewed as an iterative solver for Boolean games. Initially, every

agent randomly sets each of the variables under its control to true or false, without
knowledge of the actions or goals of the other agents. The strategy profile corre-
sponding with this initial choice is denoted as S0, with 0 the iteration number. In
every iteration, it is checked whether the current strategy profile S

t is a solution
or not. If so, we are finished; if not, the agents choose new actions, depending on

Methods for Solving BGs 19

Algorithm 1 One iteration of WSLpS

Input: St

Output: St+1

1: if St is PNE then
2: St+1 = St

3: else
4: for agent i 2 N do
5: r rand subset(uniform,Neigh(i), ki)
6: if success(St, r) = 1 then

7: st+1
i sti

8: else
9: st+1

i i.shiftActions(�i(St, r))
10: end if
11: end for
12: end if

Algorithm 2 i.shiftActions(�i(S
t
, r))

Input: sti, �i(St, r)

Output: st+1
i

1: for each variable a in ⇡i do
2: p rand double(uniform,[0,1])
3: if p  �i(St, r) then

4: st+1
i [a] 1� sti[a]

5: else
6: st+1

i [a] sti[a]
7: end if
8: end for

a random subset of ki neighbors and a function success, which the agents try to
maximize. In this paper, we define the binary function success : 2V ⇥ 2N ! {0, 1}
for a Boolean game G = (N,V,⇡,�) as

success(S, r) =

(
1 i↵ uj(S) = 1, 8j 2 r

0 otherwise

Intuitively, the success function returns 1 if and only if all agents in the subset r

of N reach their goal. Note that if for every agent i it holds that success(S, r) = 1
for every subset r of neighbors of i, then every agent’s goal (6= ?) is fulfilled in S.

Given a certain strategy profile S

t in iteration t + 1, each agent evaluates its
success function. If its value is 0 (i.e. the agent gets negative feedback), the agent
independently flips each of the variables under its control with probability �i.
Flipping a variable means setting the corresponding variable to true if it was false
and vice versa. In case of positive feedback, the agent does not alter its strategy
choice.

WSLpS uses a parameter k, ranging from 1 to n, which determines the maxi-
mum number of neighbors we take into account to evaluate the success function.
If an agent i has fewer than k neighbors, we just take all neighbors of i into
account. The actual number of neighbors taken into account is thus defined as
ki = min(k, |Neigh(i)|).

Remark 7 If we omit lines 1, 2, 3 and 12 from Algorithm 1, we obtain a WSLpS
variant that is able to coordinate agents in a distributed manner towards a Pareto

20 Sofie De Clercq et al.

optimal pure Nash equilibrium, under the condition that the game has an outcome
such that every agent reaches its goal [12]. Note that the decentralized aspect
here is crucial, as methods which rely on central entities, such as SAT solvers, are
obviously more e�cient to compute these solutions, yet fail to work in a distributed
manner.

To execute line 1, it is checked whether every agent plays a best response in S

t.
In the worst case, this requires

P
i2N 2|⇡i| goal evaluations.

The shift probability �i depends on a parameter ↵ 2]0, 1[, the subset r of
neighbors of agent i and the strategy profile S that was chosen in the current
iteration:

�i(S, r) = max

✓
↵� |{j 2 r |uj(S) = 1}|

ki
, 0

◆

Thus the probability of an agent changing its strategy increases with the number
of unsatisfied neighbors. Note that ↵ is the probability with which an agent shifts
actions in case none of its neighbors in r has reached their goal. The stochastic
algorithm WSLpS has converged if the condition on line 1 is fulfilled.

Analogously as in [12], the convergence of WSLpS can be proven using Markov
chains. A finite Markov chain [23] is a random process that transitions from one
state to another, where the total number of possible states is finite, and that
satisfies the Markov property. The Markov property states that the probability of
transitioning from one state S to another state S

0 depends on S and S

0, but not
on the states the system was previously in. If the transition probabilities between
states do not alter over time, in other words, if the transition probabilities are
time-independent, then the Markov chain is called homogeneous. It is easy to see
that WSLpS, applied to a Boolean game, induces a homogeneous Markov chain,
in which states are strategy profiles and each transition between states corresponds
to an iteration of WSLpS.

An absorbing state S of a Markov chain is a state such that the transition
probability from S to itself is 1, i.e. once the system reaches this state, it cannot
escape from it. An absorbing Markov chain satisfies two conditions: (i) there is
at least one absorbing state and (ii) for each non-absorbing state there exists an
accessible absorbing state, where a state S

0 is called accessible from a state S

if there exists a positive m 2 N such that the probability of transitioning from
state S to state S

0 in m steps is strictly positive. Absorbing Markov chains have
an interesting property [23]: regardless of the initial state, the Markov chain will
eventually end up in an absorbing state with probability 1. Therefore, the theory
and terminology of Markov chains o↵er an alternative formulation for convergence
of WSLpS: when applied to a Boolean game G, WSLpS converges if and only if the
induced random process is an absorbing Markov chain. When ↵ is chosen larger
than k�1

k , the induced random process is an absorbing Markov chain if and only
if G has a PNE.

Proposition 3 Let G = (N,V,⇡,�) be a Boolean game and ↵ >

k�1
k . WSLpS

applied to G converges to a PNE if and only if G has a PNE.

The proof is given in Appendix A. Note that the algorithm is not able to determine
whether a Boolean game has a PNE or not. Moreover, if the game does not have
a PNE, the algorithm will not converge. It has therefore been implemented with
an adjustable time-out function.

Methods for Solving BGs 21

Remark 8 Note that constraints can easily be incorporated in WSLpS by avoiding
that an agent changes its actions to an excluded strategy, i.e. a strategy violat-
ing the agent’s constraint. Concretely, the agent keeps changing strategies until
an allowed strategy is obtained. However, through this adaptation the algorithm
loses the advantage of shifting actions in constant time. For instance, when the
constraint excludes many strategies, the computation time can rapidly increase.
It is easy to see that the convergence of WSLpS is no longer theoretically guar-
anteed when we add costs to the games. Indeed, in such a case a Boolean game
might have outcomes such that every agent reaches its goal, but which are not
PNEs because the costs of at least one agent is not minimal. If WSLpS reaches
such an outcome, no agent will change its strategy with the current success func-
tion, and the algorithm will be stuck. For Boolean games with costs, alternative
success functions can be used to address this issue. One could, for instance, define
a success function that counts the number of neighbors playing a best response.
However, investigating these computationally more complex variants lies beyond
the scope of this paper.

Remark 9 Very recently, new notions of dependencies between agents in Boolean
games have been introduced and investigated, based on postulates on the depen-
dency function [4]. These dependency notions can be used to define alternative
notions of neighborhoods, which lead to new variants of WSLpS. Investigating
these variants is beyond the scope of this paper.

Alternatively, one can employ WSLpS as a heuristic algorithm to compute
a core element of Boolean games by replacing the condition in line 1 by S is a core

element. In that case we check whether any coalition blocks the strategy profile.
Note that this is computationally more challenging than the original condition:
in the worst case, we have to iterate over every coalition C of agents (2n � 1)

and over all their alternative strategies
⇣
2
P

i2C|⇡i| � 1
⌘
to see if one blocks the

current strategy profile.
We have implemented WSLpS to compute either PNEs or core elements, al-

lowing Boolean games with costs and constraints (available online [13]).

4.1.2 CompPNEAcycl

The algorithm CompPNEAcycl has been provided to compute PNEs of Boolean
games for which the irreflexive part of the dependency graph is acyclic [5,6].
The dependency graph of a Boolean game connects every agent with its relevant
agents. A Boolean game for which the irreflexive part of the dependency graph
is acyclic has at least one PNE [5,6]. Moreover, the authors show that PNEs of
Boolean games can also be found by computing the PNEs of subgames of the
Boolean game. More specifically, a Boolean game is decomposed using a collec-
tion of stable sets which covers the total set of agents. It is shown that if there
exists a collection of PNEs of the subgames – with exactly one PNE for every sub-
game – such that the strategies of agents belonging to multiple stable sets of the
covering agree, then the strategy profile obtained by combining these strategies
is a PNE of the original Boolean game. It is, however, important to note that a
decomposition based on stable sets cannot remove or break cycles in the depen-
dency graph. Indeed, the decomposition is only used to speed up the computation

22 Sofie De Clercq et al.

of the PNEs by dividing the problem in smaller problems (divide-and-conquer).
Therefore, the usage of the algorithm combined with the decomposition is still re-
stricted to Boolean games for which the irreflexive part of the dependency graph
is acyclic. In the pseudocode of Algorithm 3, the dependency graph of the Boolean
game is denoted as hV,RAi, where V is the set of nodes and RA the set of edges
of the graph. Note that this pseudocode is slightly di↵erent from the original al-

Algorithm 3 CompPNEAcycl

Input: Boolean game G with acyclic irreflexive part of dependency graph
Output: PNE S
1: hV,RAi G.dependencygraph(), T V , I ;, S ;
2: while T 6= ; do
3: PI ;
4: for each agent i 2 T do
5: if RA(i) ✓ I [{i} then
6: PI PI [{i}
7: end if
8: end for
9: for each agent i 2 PI do
10: si i.bestresponse(S)
11: I I [{i}, T T \ {i}
12: end for
13: end while

gorithm [5,6] in the sense that the dependency graph is not part of the input of
CompPNEAcycl. Moreover, the output is one PNE (instead of all of them), but
we have implemented both variants of the algorithm (available online [13]).

4.2 Alternative Methods Designed for Normal Form Games

An obvious way to obtain PNEs of Boolean games is to translate a Boolean game
to an equivalent normal form game. However, the size of the resulting normal form
game may be exponential in the size of the initial Boolean game. In normal form
games, agents choose one action out of a (finite) set. When translating Boolean
games to normal form games, agent i will have 2|⇡i| possible actions. Therefore, as
we show in Section 5.2, normal form game techniques that require the computation
of the entire payo↵matrix – such as the ASP approach for normal form games [14] –
are unsuitable for larger problem instances of Boolean games. However, there are
methods that have been specifically proposed for solving normal form games whose
payo↵ matrix is expensive to compute, such as tabu best-response search. Such
techniques may thus be more appropriate for solving Boolean games.

4.2.1 Answer Set Programming for Normal Form Games

This technique is a standard approach to compute PNEs of normal form games
in ASP [14]. To use this method for Boolean games, we need to translate the
Boolean game to a normal form game, generate the ASP encoding to compute
the PNEs of the normal form game and translate these PNEs back to Boolean
game format. The strategies of every agent in the Boolean game are numbered

Methods for Solving BGs 23

from 0 to 2|⇡i|�1, corresponding to actions of the agent in the normal form game.
Intuitively, the method describes which strategies are best responses (the head of
the ASP rule) given the strategies of the other agents (the body of the ASP rule).
Thus for every joint strategy of the relevant agents of agent i (without i itself),
we need to compute the best responses of i and write an ASP rule to capture
this information. For example, suppose the set {aik1

, . . . , a

i
km

} contains the actions
of agent i in the normal form game corresponding to best response strategies of
agent i to a joint strategy si1 , . . . , sin of the relevant agents of i, i.e. i1, . . . , in, in
the Boolean game. Suppose that the actions a

i1
l1
, a

i2
l2
, . . . , a

in
ln

of the normal form
game are the ones corresponding with this joint strategy. Then the ASP encoding
will contain the rule

1{aik1
, . . . , a

i
km

}1 a

i1
l1
, a

i2
l2
, . . . , a

in
ln

The head of the body 1{aik1
, . . . , a

i
km

}1 denotes a choice: exactly one of the literals
in the set should be true. Obviously, the number of rules in the ASP program will
be exponential in the number of action variables in the game. In the worst case,
every agent is relevant for every agent (i.e. the dependency graph is complete) and
there are

P
i2N 2

P
j 6=i |⇡j | rules in the ASP encoding. We have implemented this

method to compute PNEs of Boolean games (available online [13]).

4.2.2 Tabu Best-Response Search

Tabu best-response search (TBRS) has been introduced for normal form games [28].
This heuristic algorithm combines best-response dynamics and tabu search, i.e. its
moves through the search space by letting agents choose best response strategies
and it keeps track of the last l examined solutions in a tabu list to avoid infinite
looping on a small part of the search space. TBRS can easily be applied to Boolean
games, without requiring the computation of the entire payo↵ matrix. However,
the algorithm is still exponential, since it uses the correspondence between Boolean
and normal form games to enumerate the exponential number of strategies and
strategy profiles.

Algorithm 4 One iteration of TBRS

Input: S, tabu list L, number of best responses b
Output: S, tabu list L, number of best responses b
1: for agent i 2 N do
2: if i plays no best response in S then
3: b 1
4: L.addStrategyProfile(S)
5: si i.bestResponse(S,L)
6: else
7: b b+ 1
8: end if
9: end for

The function L.addStrategyProfile(S) adds S to the tabu list L and deletes the
oldest item in the list in case the length is l+1. The function i.bestResponse(S,L)
searches a best response strategy of i such that the newly obtained strategy profile

24 Sofie De Clercq et al.

is not on the tabu list L. The algorithm is initialized with a random strategy profile.
In a fixed order, every agent changes its strategy to a best response (best-response
dynamics), if it did not yet play a best response. In case no costs are involved,
checking whether a best response is played requires that an agent evaluates its
utility for each of its 2|⇡i| strategies, in the worst-case scenario, i.e. when it plays
a best response but its goal is not satisfied. In the best-case scenario, the goal is
satisfied and no other evaluations are required to assure that a best response is
played. For Boolean games with costs, an agent who plays a best response must
always evaluate its utility for each of its 2|⇡i| strategies to be certain of playing a
best response. In order to avoid getting stuck in a cycle of non-optimal solutions,
a tabu list stores the last l strategy profiles (tabu search) and agents are not
allowed to change their strategy such that the resulting strategy profile is among
the l strategy profiles in the tabu list. It is straightforward to see that, if a PNE
exist, choosing l su�ciently large guarantees the convergence of TBRS. In the
worst-case scenario, one must choose l = 2|V | � 1, but in practice a smaller l will
usually su�ce. Note that a PNE is found as soon as b = n.

Additionally checking the necessary condition of a core element allows TBRS to
search for core elements instead of PNEs. This condition is only checked when all
agents play a best response, since every core element is a PNE. If the investigated
PNE is not a core element, it is added to the tabu list and the algorithm continues
its search.

We have implemented TBRS to compute either PNEs or core elements of
Boolean games, allowing costs and constraints (available onine [13]).

5 Experiments

In this section, we set up experiments to evaluate and compare the performance
of several solution methods for Boolean games. Specifically, the methods that we
compare are the following:

– the disjunctive ASP based solver of Section 3, abbreviated to dASP;
– WSLpS (see Section 4.1.1);
– CompPNEAcycl (see Section 4.1.2), referred to as BONZON;
– naive random search, referred to as NAIVE;
– the ASP based technique for normal form games (see Section 4.2.1), abbrevi-

ated to NFG; and
– TBRS (described in Section 4.2.2).

The naive random search is a baseline iterative technique that randomly assigns
truth-values to the action variables and checks whether the obtained strategy
profile is a solution (PNE or core element). We have made an implementation of
this heuristic method for Boolean games with costs and constraints. The stochastic
algorithms (WSLpS, NAIVE and TBRS) are run 25 times per game. For TBRS, we
have empirically determined appropriate values for the length of the tabu list; l =
20 turned out to be a suitable tabu list length. For WSLpS, we use k = 5 neighbors,
combined with shift probabilities ↵ = 1

100b100 ·
k�1
k c+ 0.01, as suggested in [12].

Methods for Solving BGs 25

We test the dASP approach using two state-of-the-art ASP solvers, WASP3 and
clingo.

Next we describe the Boolean game generators of the experiments in Sec-
tion 5.1. Finally, we present our results concerning the performance of the di↵erent
techniques in Section 5.2.

All problem instances, problem generators and solvers have been made avail-
able online [13]. The measurements have been made using a dual CPU system
with two 2.4GHz Intel Xeon six core E5-4610 processors and 8GB RDIMM.

5.1 Boolean Game Generators

We evaluate the performance of the di↵erent methods on three classes of problems:
a class of random Boolean games, a class of project Boolean games and a class of
Boolean games for which the irreflexive part of the dependency graph is acyclic.

First, the class of random Boolean games has 5 parameters:

1. the number of agents;
2. the number of action variables per agent;
3. the maximum number m of binary operators (^ or _) in a goal;
4. the probability of a binary operator in a goal being a conjunction (as opposed

to a disjunction); and
5. the probability of an atom occurring in a goal being negated.

Note that the only binary operators that we consider are conjunction and disjunc-
tion. To introduce some diversity in the class of random games, we let the length
of the goals of di↵erent agents vary. To this end, we use the parameter m and, for
each agent, choose the number of binary operators in its goal uniformly between
1 and m. The generated goals are in negation normal form.

Second, the class of project Boolean games models the following problem.
A group of people can work on several projects. Depending on the project, each
person has his preferences concerning the people he might collaborate with –
called partners – and the people he does not want to collaborate with – called
anti-partners. Someone who is not a partner is called a non-partner. Note that all
anti-partners are non-partners. Partnership and anti-partnership relations are anti-
reflexive, not necessarily symmetric and project dependent. The project Boolean
games are inspired by a Boolean game about people being invited to a party [5,15].
We consider this second class of problems, in addition to the first, because they
represent an example of a structured problem, which are usually harder to solve
than random problems, and may thus give a better indication of how the solvers
would perform in applications. We include 3 parameters for project Boolean games:
(i) the number of agents, (ii) the number of projects and (iii) the probability of an
agent being another agent’s partner and the probability of a non-partner being an
anti-partner. In a project Boolean game, every agent i controls an action variable
p

m
i per project m. Setting it to true means joining the project. For every project,

every agent is randomly assigned one of 13 types, which are determined by three
parameters:

3 We also ran the experiments with WASP’s ‘predecessor’ DLV, but those results are omitted
since WASP was always faster than DLV.

26 Sofie De Clercq et al.

1. personal preference: (a) join the project, (b) do not join, and (c) no preference;
2. positive partnership (only relevant if level 1 is not (b)): (a) no condition, (b)

only join a project if at least one partner joins the project, and (c) only join
a project if all partners join the project;

3. negative partnership (only relevant if level 1 is not (b)): (a) no condition, and
(b) only join the project if no anti-partners join the project.

For each agent, we start by (uniformly) choosing the personal preference, and based
on this choice we (uniformly) choose among the allowed positive and negative
partnerships, i.e. the conditions w.r.t. the partners and anti-partners. The type of
an agent determines its goal. Suppose for example that agent i is of type (c,b,b)
and has two partners j and k and one anti-partner l for a project m. Then the sub-
goal of agent i corresponding to project m becomes (pmi ^(pmj _p

m
k)^¬pml)_¬pmi .

So either agent i joins the project with j or k and without l, or agent i does not
join. The overall goal of an agent is formed as the conjunction of the sub-goals
corresponding to all the projects. Additionally, costs and constraints can be added
to the project Boolean games. The constraints enforce that an agent can join
at most 1 project. For every project and every agent, a cost in {0, 1, . . . ,m} is
randomly assigned to joining the project. Not joining involves no costs.

Third, we have developed a generator for Boolean games with an acyclic ir-
reflexive part of the dependency graph. This class of Boolean games can be used
to evaluate the performance of the algorithm in [5,6], since the usage of this algo-
rithm is limited to Boolean games with an acyclic irreflexive part of the dependency
graph. To the best of our knowledge, the algorithm of Bonzon et al. has not been
experimentally evaluated yet. This third Boolean game generator starts by gen-
erating a directed acyclic graph (DAG), whose nodes represent the agents. Next,
we use this DAG to construct a Boolean game such that the irreflexive part of
the dependency graph is exactly the generated DAG. To this end, we make sure
the action variables in the goal of an agent i are controlled by agents who agent i
depends on. We refer to this class of games as DAG Boolean games. The generator
has 6 parameters:

1. the number of agents;
2. the number of action variables per agent;
3. the maximum number m of operators (^, _ or ¬) in a goal;
4. the probability of an operator in a goal being a conjunction (as opposed to

a disjunction or a negation);
5. the probability of an operator in a goal being a disjunction (as opposed to

a conjunction or a negation); and
6. the probability that agent i depends on agent j (j � i).

5.2 Results

Experiment 1 (PNE Computation in Boolean Games)
In this experiment, we investigate the performance of the di↵erent algorithms
to compute a PNE in general Boolean games. First we use the random Boolean
game generator with 50% of atom occurrences negated and an equal chance on ^
and _. We generate 100 Boolean games and compute 1 PNE, with a 5 minutes
timeout. We let the number of agents vary from 5 to 100. The number of action

Methods for Solving BGs 27

variables per agent and the maximum number of binary operators in the goal are
respectively (2, 3), (2, 6), (4, 6), (6, 10) and (8, 10), gradually making the problem
instances more di�cult. Due to the use of a timeout, the distribution of our timing
data is likely to be skewed. Therefore the median is a suitable measure to aggre-
gate the computation times corresponding to each set of 100 games. The median
computation times and the 95% confidence intervals are shown in Figure 1.
In our experiments, we see that clingo and WASP are comparable in terms of
computation time. We observe that the NFG method is only suitable for the
problem instances with a small number of action variables per agent and few binary
operators. As soon as the problem instances involve larger goals or more action
variables per agent, NFG consistently times out. We can expect similar results for
other PNE computing techniques developed for normal form games that require
to compute the entire payo↵ matrix of all agents. This is a consequence of the
exponential translation of Boolean games to normal form games. If the maximum
number of binary operators in a goal increases, the number of rules in the NFG
encoding increases exponentially. Indeed, the goals become lengthier and for every
possible strategy combination w.r.t. the action variables occurring in the agent’s
goal we need an ASP rule to determine its best responses. Our experimental results
confirm that TBRS can indeed take advantage of the fact that it does not need
to compute all payo↵s. As the problem instances become more di�cult, TBRS
has a similar performance as dASP. The fastest method for all the investigated
problem instances is NAIVE. This can be explained by the fact that, in general,
these random Boolean games have a lot of PNEs. Indeed, if we look at the setting
with 100 agents, 8 action variables and a maximum of 10 binary operators in a
goal, the median number of iterations to convergence of NAIVE is 1[1, 1]. If we
think about how the random games are set up, we see that the probability of an
agent controlling its own goal is very small. If an agent does not influence its own
goal, then all its strategies are best responses to all possible strategies of the other
agents. Due to the high number of PNEs relative to the number of strategy profiles
in these random Boolean games, every strategy profile, guessed by NAIVE, has a
high chance of being a PNE.

In the second part of this experiment, we overcome this issue of having too
many PNEs. We now compute PNEs for problem instances with more structure
than the random Boolean games, whose solutions might therefore be harder to
compute. Specifically, we compute 1 PNE for project Boolean games with a timeout
of 5 minutes. We generate 100 Boolean games with 1, 3 and 5 projects and a 50%
probability that an agent is another agent’s partner and that a non-partner agent
is an anti-partner. This time, the number of agents varies from 5 to 50, since we
expect these structured problems to be more di�cult than the random Boolean
games. The results are shown in Figure 2.
The performance of WASP and clingo is again comparable. For project Boolean
games the number of PNEs is smaller than for random Boolean games. Therefore,
the higher the number of projects, the smaller the number of agents at which
dASP starts outperforming WSLpS and NAIVE. Note that for the entire range of
parameters, dASP (with clingo) still succeeds in finding a solution for all problem
instances, whereas both NFG, WSLpS and NAIVE consistently time out for the
larger settings. If we look at the setting with 5 projects and 20 agents, then the
median number of iterations to convergence of NAIVE – in the 50% cases for
which convergence is reached before timing out – is 430000[360000, 590000]. This

28 Sofie De Clercq et al.

5 10 20 30 40 50 60 70 80 90 100

100

101

102

Number of Agents

M
C

T
1

PN
E

(m
s)

2 Action variables, max. 3 binary operators

dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
NAIVE

5 10 20 30 40 50 60 70 80 90 100

100

101

102

103

Number of Agents

M
C

T
1

PN
E

(m
s)

2 Action variables, max. 6 binary operators

dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
NAIVE

5 10 20 30 40 50 60 70 80 90 100
100
101
102
103
104
105

Number of Agents

M
C

T
1

PN
E

(m
s)

4 Action variables, max. 6 binary operators

dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
NAIVE

5 10 20 30 40 50 60 70 80 90 100
100
101
102
103
104
105

Number of Agents

M
C

T
1

PN
E

(m
s)

6 Action variables, max. 10 binary operators

dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
NAIVE

5 10 20 30 40 50 60 70 80 90 100
100
101
102
103
104
105

Number of Agents

M
C

T
1

PN
E

(m
s)

8 Action variables, max. 10 binary operators

dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
NAIVE

Fig. 1: Median computation time (ms) of 1 PNE in random Boolean games.

Methods for Solving BGs 29

5 10 15 20 25 30 35 40 45 50
100
101
102
103
104
105

Number of Agents

M
C

T
1

PN
E

(m
s)

1 Project

dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
NAIVE

5 10 15 20 25 30 35 40 45 50
100
101
102
103
104
105

Number of Agents

M
C

T
1

PN
E

(m
s)

3 Projects

dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
NAIVE

5 10 15 20 25 30 35 40 45 50
100
101
102
103
104
105

Number of Agents

M
C

T
1

PN
E

(m
s)

5 Projects

dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
NAIVE

Fig. 2: Median computation time (ms) of 1 PNE in project Boolean games.

illustrates that the number of PNEs is indeed much smaller for these structured
games. The best performing method is now TBRS, taking advantage of the fact
that its heuristic, as opposed to the one of WSLpS, is not random, but searches
for best responses. To see whether this trend continues, we now fix the number of
agents at 15, 20, 25, 30 and 35. The number of projects varies from 4 to 20 by
steps of size 4. The results are shown in Figure 3.
Note that NFG and WSLpS consistently timeout for all parameter settings. We
now clearly see the exponential trend in the median computation time of TBRS,
which is to be expected due to the exponential translation from Boolean games
to normal form games. So for games with a high number of action variables, the
dASP method outperforms all other methods. In particular, the NFG method and
WSLpS consistently time out for all problem instances. Note that NAIVE behaves
peculiarly, as it needs less computation time for problem instances with 4 projects
than for those with 8 or more projects. This might be due to the fact that the
goal of an agent i in case of a large number of projects is more likely to e.g. be
unsatisfied no matter what agent i does. This means that agent i is likely to play
a best response for many strategies s�i. Overall, a project Boolean game with

30 Sofie De Clercq et al.

4 8 12 16 20
100

105

Number of Projects

M
C

T
1

PN
E

(m
s)

15 Agents

dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
NAIVE

4 8 12 16 20
100

105

Number of Projects

M
C

T
1

PN
E

(m
s)

20 Agents

dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
NAIVE

4 8 12 16 20

102

104

106

Number of Projects

M
C

T
1

PN
E

(m
s)

25 Agents

dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
NAIVE

4 8 12 16 20

102

104

106

Number of Projects

M
C

T
1

PN
E

(m
s)

30 Agents

dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
NAIVE

4 8 12 16 20

102

104

106

Number of Projects

M
C

T
1

PN
E

(m
s)

35 Agents

 dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
NAIVE

Fig. 3: Median computation time (ms) of 1 PNE in project Boolean games.

such a high number of projects will have relatively more ‘bad’ PNEs (i.e. PNEs in
which many agents do not reach their goal). If we for instance take a closer look
at the method NAIVE for 35 agents and 20 projects, we see that only 1% of the
runs results in a PNE in which exactly one agent reaches its goal. In 89%, a PNE
is reached in which no agent reaches its goal and in the remaining 10%, a timeout
occurs.

Experiment 2 (Centralized Computation of PNEs in DAG Boolean games)
In this experiment, we include the algorithm CompPNEAcycl of Bonzon et al.
to compute PNEs. Therefore, we must limit this experiment to Boolean games
with an acyclic irreflexive part of the dependency graph. We generate 100 Boolean
games and compute 1 PNE, with a 5 minutes timeout. We let the number of agents
vary from 5 to 50. Each operator (¬, ^ and _) has an equal chance of appearing
in the goal. The probability that agent i is depedent of agent j (j � i) is 75%. The
number of action variables per agent and the maximum number of operators in the
goal are respectively (2, 4), (2, 7), (4, 7), (6, 10) and (8, 10), gradually making the
problem instances more di�cult. The median computation times, within a 95%
confidence interval, are shown in Figure 4.

Methods for Solving BGs 31

5 10 15 20 25 30 35 40 45 50

100

101

102

Number of Agents

M
CT

 1
 P

NE
 (m

s)

2 Action variables, max. 4 binary operators

dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
BONZON
NAIVE

5 10 15 20 25 30 35 40 45 50

100

101

102

Number of Agents

M
CT

 1
 P

NE
 (m

s)

2 Action variables, max. 7 binary operators

dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
BONZON
NAIVE

5 10 15 20 25 30 35 40 45 50
100

101

102

103

104

105

Number of Agents

M
CT

 1
 P

NE
 (m

s)

4 Action variables, max. 7 binary operators

dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
BONZON
NAIVE

5 10 15 20 25 30 35 40 45 50
100

101

102

103

104

105

Number of Agents

M
CT

 1
 P

NE
 (m

s)

6 Action variables, max. 10 binary operators

dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
BONZON
NAIVE

5 10 15 20 25 30 35 40 45 50
100

101

102

103

104

105

Number of Agents

M
CT

 1
 P

NE
 (m

s)

8 Action variables, max. 10 binary operators

dASP
(WASP)
dASP
(clingo)
NFG
WSLpS
TBRS
BONZON
NAIVE

Fig. 4: Median computation time (ms) of 1 PNE in DAG Boolean games.

32 Sofie De Clercq et al.

As expected, the NFG method again turns out to be unsuitable due to its exponen-
tial translation and the fact that it computes all payo↵s. As before, the heuristic
techniques (WSLpS and TBRS) perform well for the smaller problems. As the
problem instances gradually become more di�cult, CompPNEAcycl (BONZON)
tends to outperform the other approaches, with the exception of the NAIVE ap-
proach. Presumably, this is caused by a high number of PNEs, as the median
number of iterations to convergence of NAIVE is 12 [12, 13] in the setting with
8 action variables, 50 agents and a maximum of 10 operators in the goals. How-
ever, this random method is less powerful than CompPNEAcycl, since the latter is
able to compute all PNEs and the former can only compute a sample PNE. There-
fore, if there is a priori knowledge that the irreflexive part of the dependency graph
is actually acyclic, we would advise to use CompPNEAcycl.

To conclude our experiments on the centralized computation of PNEs in Boolean
games, we note that for smaller problems, the heuristic methods TBRS, NAIVE
and WSLpS are generally the fastest approaches to compute a sample PNE. For
Boolean games with an acyclic irreflexive part of the dependency graph, CompP-
NEAcycl is to be recommended. For larger Boolean games with no specific struc-
ture, the dASP approach is to be recommended. Moreover, as opposed to heuristic
approaches as WSLpS and TBRS, dASP is able to figure out whether, e.g., some
agent undertakes a certain action in every PNE or whether there does not exist
a solution. Additionally, the disjunctive ASP based solver is more general since it
can enforce desirable properties on solutions such as Pareto optimality. In addition
and opposed to TBRS, the disjunctive ASP technique was developed especially for
Boolean games, which yields the advantage that it can still handle problems with
a larger number of action variables.

In the following part of the experiments, we use centralized techniques to com-
pute core elements instead of PNEs. Since the NFG method cannot be used to
compute core elements, we limit the experiments to dASP, WSLpS, TBRS and
NAIVE.

Experiment 3 (Centralized Computation of Core Elements in Boolean Games)
In this experiment, we investigate the performance of the di↵erent centralized
algorithms to compute a core element in general Boolean games. For the same
range of parameters as in Experiment 1, we compute a core element in 100 random
Boolean games. As the results are very similar for all parameters settings, we
restricted Figure 5 to the parameter settings (2, 4), (4, 6) and (8, 10).
As expected, the heuristic methods WSLpS, TBRS and NAIVE are only suitable
for small problem instances, i.e. games with a small number of action variables
or agents. Indeed, core elements are more rare than PNEs, as they have stronger
conditions. Therefore, there are likely much more PNEs than core elements, so a
heuristic method will have a harder time finding one. Note that WSLpS performs
slightly better than TBRS and NAIVE, since TBRS times out for all games with
more than 50 agents, and WSLpS is the only heuristic method that still finds a
solution for the parameter setting (4, 6) with 50 agents. Moreover, the computation
times of NAIVE are slightly higher than those of WSLpS in case of the smaller
problem instances.

We also investigate the computation of a core element for project Boolean
games, with the same parameter range as in Experiment 1, adding also the case
of 2 and 4 projects. The results are shown in Figure 6. Again, we observe that

Methods for Solving BGs 33

5 10 20 30 40 50 60 70 80 90 100
100
101
102
103
104
105

Number of Agents

M
C

T
1

C
or

e
el

em
en

t (
m

s)
2 Action variables, max. 3 binary operators

dASP
(WASP)
dASP
(clingo)
WSLpS
TBRS
NAIVE

5 10 20 30 40 50 60 70 80 90 100
100
101
102
103
104
105

Number of Agents

M
C

T
1

C
or

e
el

em
en

t (
m

s)

4 Action variables, max. 6 binary operators

dASP
(WASP)
dASP
(clingo)
WSLpS
TBRS
NAIVE

5 10 20 30 40 50 60 70 80 90 100
100

101
102

103
104

105

Number of Agents

M
C

T
1

C
or

e
el

em
en

t (
m

s)

8 Action variables, max. 10 binary operators

dASP
(WASP)
dASP
(clingo)
WSLpS
TBRS
NAIVE

Fig. 5: Median computation time (ms) of 1 core element in random Boolean games.

dASP consistently outperforms WSLpS, TBRS and NAIVE for the more di�cult
problem instances. We also see that TBRS is now the best performing heuristic
approach. For smaller problem instances, WSLpS performs better than NAIVE,
and vice versa for larger problem instances.

Experiment 4 (Centralized Computation of Di↵erent Solution Concepts)
We now investigate the scalability of the disjunctive ASP approach on project
Boolean games with 2, 4 and 6 projects with costs and constraints. The number of
agents ranges between 5 and 50 and we consider 100 Boolean games for each pa-
rameter setting. We use a timeout of 10 minutes and respectively compute 1 PNE,
1 Pareto optimal PNE (POPNE), 1 core element and 1 Pareto optimal core el-

34 Sofie De Clercq et al.

5 10 15 20 25 30 35 40 45 50
100
101
102
103
104
105

Number of Agents

M
C

T
1

C
or

e
el

em
en

t (
m

s)

1 Project

dASP
(WASP)
dASP
(clingo)
WSLpS
TBRS
NAIVE

5 10 15 20 25 30 35 40 45 50
100
101
102
103
104
105

Number of Agents

M
C

T
1

C
or

e
el

em
en

t (
m

s)

2 Projects

dASP
(WASP)
dASP
(clingo)
WSLpS
TBRS
NAIVE

5 10 15 20 25 30 35 40 45 50
100
101
102
103
104
105

Number of Agents

M
C

T
1

C
or

e
el

em
en

t (
m

s)

3 Projects

dASP
(WASP)
dASP
(clingo)
WSLpS
TBRS
NAIVE

5 10 15 20 25 30 35 40 45 50
100
101
102
103
104
105

Number of Agents

M
C

T
1

C
or

e
el

em
en

t (
m

s)

4 Projects

dASP
(DLV)
dASP
(clingo)
WSLpS
TBRS
NAIVE

5 10 15 20 25 30 35 40 45 50
100
101
102
103
104
105

Number of Agents

M
C

T
1

C
or

e
el

em
en

t (
m

s)

5 Projects

dASP
(WASP)
dASP
(clingo)
WSLpS
TBRS
NAIVE

Fig. 6: Median computation time (ms) of 1 core element in project Boolean games.

Methods for Solving BGs 35

5 10 15 20 25 30 35 40 45 50
101
102
103
104
105
106

Number of Agents

M
CT

 1
 s

ol
ut

io
n

(m
s)

2 Projects, with costs and constraints, clingo

PNE
POPNE
CORE
POCORE

5 10 15 20 25 30 35 40 45 50
101
102
103
104
105
106

Number of Agents

M
CT

 1
 s

ol
ut

io
n

(m
s)

4 Projects, with costs and constraints, clingo

PNE
POPNE
CORE
POCORE

5 10 15 20 25 30 35 40 45 50
101
102
103
104
105
106

Number of Agents

M
CT

 1
 s

ol
ut

io
n

(m
s)

6 Projects, with costs and constraints, clingo

PNE
POPNE
CORE
POCORE

Fig. 7: Median computation time (ms) of 1 solution in project Boolean games using
dASP with clingo. Note that out of the techniques discussed in this paper, dASP
is the only one that can compute a Pareto optimal PNE and a Pareto optimal core
element.

ement (POCORE). Note that in this experiment, we do not compare the dASP
method with the other techniques, because those are not designed for computing
Pareto optimal solutions. The median computation time per solution concept is
shown in Figures 7 and 8, using a logarithmic scale. For the clarity of the figures,
we show the time results for clingo and WASP on separate graphs.

Computing a PNE takes less time than computing a core element, and enforcing
Pareto optimality further increases the computation time of a PNE. This is to
be expected, as Pareto optimal PNEs are rarer than regular PNEs. Note that we
do not see something similar when we compare the computation times of clingo
for regular and Pareto optimal core elements. This is a consequence of the com-
mon easy-hard-easy pattern: problems with very few or very much constraints are
easier to solve than those problems lying in between. We can conclude from the
experiment that WASP tends to be faster for computing core elements and clingo
tends to perform better for computing Pareto optimal core elements.

Although the computational cost is generally higher for stronger solution con-
cepts or for Boolean games involving costs and constraints, we conclude that the
dASP method remains suitable for medium-sized problems.

36 Sofie De Clercq et al.

5 10 15 20 25 30 35 40 45 50
101
102
103
104
105
106

Number of Agents

M
CT

 1
 s

ol
ut

io
n

(m
s)

2 Projects, with costs and constraints, WASP

PNE
POPNE
CORE
POCORE

5 10 15 20 25 30 35 40 45 50
101
102
103
104
105
106

Number of Agents

M
CT

 1
 s

ol
ut

io
n

(m
s)

4 Projects, with costs and constraints, WASP

PNE
POPNE
CORE
POCORE

5 10 15 20 25 30 35 40 45 50
101
102
103
104
105
106

Number of Agents

M
CT

 1
 s

ol
ut

io
n

(m
s)

6 Projects, with costs and constraints, WASP

PNE
POPNE
CORE
POCORE

Fig. 8: Median computation time (ms) of 1 solution in project Boolean games
using dASP with WASP.

6 Discussion

In this paper we mainly focused on the time e�ciency of methods to solve Boolean
games. It is important to note that there exist other significant aspects that might
be taken into account when deciding which method is appropriate. One could for
instance be looking for the most flexible or general method, in which case the
technique based on disjunctive answer set programming would be the best option.
One can also distinguish between methods based on their ability to compute all
solutions (instead of just one sample solution) or prove that no solution exists. In
that case, the heuristic methods (TBRS, WSLpS, NAIVE) are not suitable. Also
note that, as shown in our experiments, the size of the game – the number of agents
and the number of action variables – is important when deciding which method
to use, as the heuristic methods tend to perform better than the disjunctive ASP
approach for small Boolean games.

Another distinction between the di↵erent methods can be made based on
whether the problem allows for a central entity and whether such an entity is
desirable. This is important because some applications are inherently decentral-
ized, i.e. central control is simply unavailable or too costly to set up. One might
also argue that a centralized algorithm presents a single point of failure and is more

Methods for Solving BGs 37

vulnerable to manipulation, as one person has all the information of the game at
his disposal. This could also raise privacy concerns, because self-interested agents
might not be willing to share information, e.g. about their individual goal, with
a central entity. In contrast, in decentralized approaches (such as the WSLpS
variant in [12]) point-to-point communication can be encrypted and shared with
only few peers. Note that one can also create a decentralized variant of TBRS by
using individual tabu lists, i.e. one per agent instead of one global tabu list. Sim-
ilarly, one can adapt the naive random search algorithm to obtain a decentralized
variant, in which the agents individually keep changing their strategies randomly
unless they play a best response. Another example of a decentralized approach is
the bargaining protocol for Boolean games developed by Dunne et al. [15]. Using
this bargaining protocol, Pareto optimal outcomes can be obtained for a specific
class of Boolean games. In the protocol, agents negotiate in rounds by successively
proposing a strategy profile, which the others can accept or reject. Under the quite
severe restriction that the goals of the agents are positive (i.e. only ^ and _ may be
used), the negotiations end during the first round and any strategy profile result-
ing from the negotiations is Pareto optimal if the agents follow specific negotiation
strategies. If the restriction is not met, the negotiations can last n rounds – with
n the number of agents – and obtaining a solution is not guaranteed. Note that
the condition of positive goals trivially implies the existence of a Pareto optimal
PNE and that one can be obtained by computing a model of the conjunction of
the goals.

Another aspect that might be important is the amount of communication re-
quired to compute a solution, in contexts where communication is expensive or
communication channels are limited. For centralized approaches, the communi-
cation is limited to the information transmission between the central entity and
the agents, i.e. the input and the output of the algorithm. For decentralized ap-
proaches, the communication is every intra-agent transmission of information. In-
vestigating which method would be the most suitable w.r.t. the amount of required
communication lies beyond the scope of this paper.

Alternative aspects that could be taken into account are, for instance, the spa-
tial complexity of the di↵erent methods, or the ‘quality’ of the obtained solution.
In the case of Boolean games, one could for instance measure the quality of a solu-
tion through the number of agents that reach their goal. Setting up an analogous
experimental evaluation to investigate such criteria is an interesting direction for
future work.

Instead of computing the solutions of a Boolean game, one might also be in-
terested in altering the Boolean game such that its solutions satisfy some propo-
sitional formula '. This can be obtained through taxation schemes, which have
been investigated for Boolean games with cost functions [29]. These Boolean games
impose costs on the agents, depending on which actions they undertake [15]. The
taxation scheme in [29] consists of an external agent, called the principal, which
imposes additional costs to incentivize the agents to rationally choose a strategy
profile that satisfies some propositional formula '. For example, one can define
a taxation scheme such that the resulting Boolean game has at least one PNE
and all PNEs satisfy '. In contrast to WSLpS, this approach is centralized: a
central entity uses global information to find a taxation scheme. Moreover, these
taxation schemes are not developed with the aim of computing solutions of the
original Boolean game, but they are used to incentivize the agents to choose cer-

38 Sofie De Clercq et al.

tain strategies. The scheme alters the original solutions such that the agents are
coordinated to new, more desirable solutions.

7 Conclusion

We proposed a method based on disjunctive answer set programming for finding
the solutions of a Boolean game. To the best of our knowledge, this is to date
the only solver for general Boolean games which does not rely on an exponential
representation of normal form games. Depending on the chosen solution concept,
the problem of finding a solution of the Boolean game is encoded as a disjunctive
answer set program, using the saturation technique. Next, the answer sets of these
programs are computed using a state-of-the-art ASP solver. Finally, these answer
sets are translated to strategy profiles of the Boolean game. The ASP based solver
can compute (Pareto optimal or arbitrary) PNEs and core elements, even in the
presence of costs and constraints.

Experimental results using several classes of Boolean games have shown the
strengths of the di↵erent investigated methods. As expected, methods for normal
form games that require all payo↵ matrix entries turned out to be suitable only for
small problem instances. However, even for small problem instances, such meth-
ods generally perform worse than other techniques. We have also investigated the
heuristic TBRS algorithm, which has also originally been introduced for normal
form games but does not require computing all payo↵ matrix entries. This method
proved to be fast to compute PNEs of small Boolean games. Similarly, an adapted
version of TBRS can quickly compute a core element for small Boolean games.
As soon as the problem instances have a higher number of agents or action vari-
ables, the ASP based solver outperforms all other tested techniques. In addition,
we showed that, in general, the performance of the disjunctive ASP based tech-
nique is comparable for clingo and WASP. Furthermore, the heuristic methods
WSLpS, TBRS and NAIVE, that are less flexible, are unable to enforce Pareto
optimality. It has also been shown that CompPNEAcycl is indeed very e↵ective
to compute PNEs for the specific class of Boolean games it is equipped for.

Finally, we would like to point out that our work not only provides several
command-line tools for solving Boolean games, but also provides numerous bench-
mark data for future work. From this point of view, we believe our work forms an
important basis for further improvements and extensions of methods for solving
Boolean games.

A Proofs

Proposition 1. To improve readability, we will first briefly sketch the intuition behind the
proof. Every strategy profile of the game G corresponds to an answer set of the ASP program
P1. Program part P2 encodes the possible alternative strategies of the agents. On the one
hand, if I is an answer set of P, the minimal model of the reduct must contain sat. On the
other hand, if there exists an agent whose alternative strategy (encoded by P2) yields a better
response to the actions of the other agents (encoded by P1) than the strategy profile encoded
by P1, the literal sat in P3 cannot be derived. Hence every strategy profile SI that corresponds
to an answer set I of P must be a PNE. Conversely, given a PNE S, it is straightforward to
write down the corresponding answer set of P and prove that no smaller model of the reduct

Methods for Solving BGs 39

exists, since sat must be in every minimal model as a consequence of the assumption that S is
a PNE.

Answer set) PNE Let I be an arbitrary answer set of P. Since for all p 2 V , either the
corresponding literal act(p) or its negation ¬act(p) is contained in I due to rule (1), it holds
that SI is a well-defined strategy profile for G. We denote Si = ⇡i \SI and S�i = SI \ ⇡i, for
every agent i 2 N . It remains to prove that for every agent i: ui(SI) � ui(S�i, s0i), 8s0i ✓ ⇡i.
Let i be an arbitrary agent in N . If ui(SI) = 1, then this condition is fulfilled since ui only
takes values from {0, 1}. If ui(SI) = 0, then the condition is fulfilled i↵ ui(S�i, s0i) = 0,
8s0i ✓ ⇡i. Suppose by contradiction that there exists an alternative set of actions s0i ✓ ⇡i

such that ui(SI) < ui(S�i, s0i), i.e. ui(SI) = 0 and ui(S�i, s0i) = 1. We can now construct a
model J of the reduct PI , which is strictly contained in I. To this end, we make the following
observations:

1. For every agent j 2 N : goal(j) 2 I i↵ uj(SI) = 1: this follows from rule (2) and the fact
that 'j is true i↵ uj(SI) = 1.

2. Since I is an answer set of P, rule (7) implies that sat 2 I. This rule is not contained
in the reduct PI and (8) implies that I contains all variables of the form act

0(p) and
nact

0(p) for all p 2 V and ngoal

0(j) for every agent j 2 N . In turn rule (8) implies that
I also contains all atoms of X0 defined in P2 as components of formulas. The previous
observation together with rules (5) imply that pleased(j) is in I for every j 2 N , since
ngoal

0(j) is also in I. Obviously all the facts action(p) and agent(j) of P also belong to I
for every p 2 V and j 2 N .

3. If we denote all literals occurring in program P1 as B1 and we define J1 = I \ B1, then
clearly J1 satisfies all the rules of P1 since I is an answer set of P. Moreover, J1 is a model
of the reduct PI

1 , since PI
1 = PJ1

1 . Note that J1 also contains all the facts action(p) and
agent(j) for every p 2 V and j 2 N .

4. Define the interpretation J2 = A [NA [X0
2 [NG with

A = {act 0(p) | p 2 (S�i, s
0
i)},

NA = {nact 0(p) | p /2 (S�i, s
0
i)},

X0
2 = {a 2 X0 | 9r : a B 2 P : 8b 2 B : b 2 A [NA [X0

2},
NG = {ngoal 0(j) | j 2 N \ {i}, goal(j) /2 I}.

The interpretation J2 represents a valid strategy profile SJ2 = {p | act(p) 2 J2} and the
actions of all agents but i coincide with their actions in SI . Hence rule (4) will also be
satisfied by J2 for every agent j 6= i. Agent i’s strategy in J2 corresponds to s0i, hence the
assumption ui(S�i, s0i) = 1 implies that ⇠'i(act(⇡�i),nact 0(¬⇡i), act 0(⇡i)) is false and
ngoal

0(i) cannot be derived, hence J2 satisfies rule (4) for i as well. Since PI
2 = P2, J2 is

a model of PI
2 .

5. Define J3 = {pleased(j) | j 2 N \ {i}} and J = J1 [J2 [J3. Our assumption ui(SI) = 0
and the first observation imply that goal(i) /2 I. By definition, we also have goal(i) /2 J1 for
J1 ⇢ J . By definition ngoal

0(i) /2 J2 for J2 ⇢ J . Hence the bodies of the rules (5) are false,
which means that pleased(i) cannot be derived for any i. Hence, J satisfies these rules for
agent i. For every other agent j 6= i such that goal(j) 2 I, it follows that goal(j) 2 J1 for
J1 ⇢ J , and by definition ngoal

0(j) 2 J2 for J2 ⇢ J for every j 6= i such that goal(j) /2 I.
In any case the rules (5) are fulfilled by J . Since pleased(i) and sat are not in J , rule (6)
is also fulfilled by J . Since the bodies of the rules in (8) are not satisfied, these rules are
all satisfied by J .

Combining these subresults, we see that J is a model of PI . Moreover, we have J ⇢ I and
sat 2 I \ J , which implies that I is not a minimal model of PI , contradicting the assumption
that I is an answer set of P.

PNE) Answer set Suppose S = (s1, . . . , sn) is a PNE. Let the sets of atoms X and X0 be
defined as in the construction of the induced PNE program. We define the sets A, NA and Z
as follows:

A = {act(p) | p 2 S},
NA = {¬act(p) | p /2 S},
Z = {a 2 X | 9r : a B 2 P : 8b 2 B : b 2 A [NA [Z}.

40 Sofie De Clercq et al.

We define an interpretation IS and prove that it is a minimal model of PIS :

IS = A [NA [Z [{goal(i) | i 2 N,ui(S) = 1} [{sat}
[{act 0(p) | p 2 V } [{nact 0(p) | p 2 V } [X0 [{ngoal 0(i) | i 2 N} [{pleased(i) | i 2 N}
[{agent(i) | i 2 N} [{action(p) | p 2 V }

Any literal act(p) in A cannot be omitted without requiring that ¬act(p) is in NA, due to
rule (1). Hence it su�ces to prove that IS is minimal among the models of PIS containing
A [NA. Clearly the rules of the form (2) uniquely determine which variables of X should
be in a minimal model of PIS that already contains A and NA. The same reasoning holds
for the variables of the form goal(i) for every agent i, i.e. the variables of the form goal(i)
with ui(S) = 1 should be in every model of PIS already containing A and NA. Since S is
a PNE, the actions in S are best responses for every agent i to s�i. We check whether it is
possible that there exists a model J of PIS that contains A [NA but does not contain sat.
If we define S0 = (s01, . . . , s

0
n) with s0i = {p | act 0(p) 2 J}, rules (3) imply that S0 is a valid

strategy profile of the game: sat is not derived hence {p | act 0(p) 2 J} and {p |nact 0(p) 2 J}
form a partition of V . Moreover, for every agent i, it holds that ngoal

0(i) belongs to J i↵
ui(S�i, s0i) = 0 due to rule (4). But then the fact that S is a PNE implies that pleased(i) is
derived by the rules (5) for every agent i, and in turn rule (6) derives sat. Hence sat should
be in any model of PIS which contains A and NA. But rules (8) imply that such a model
of PIS should contain {act 0(p) | p 2 V } [{nact 0(p) | p 2 V }. Moreover, the rules of the
form (4) imply that X0 [{ngoal 0(i) | i 2 N} should be contained as well in the presence of
{act 0(p) | p 2 V } [{nact 0(p) | p 2 V }. The rules (5) imply that pleased(i) should be in such
a minimal model as well for every agent i, since for every agent i we proved that it contains
ngoal

0(i). Finally note that the facts agent(1..n) and action(p) (p 2 V) should be in every
model of PIS . We have proved that every variable of IS is part of every minimal model of
PIS containing A[NA. Moreover, IS satisfies all rules of PIS , hence IS is an answer set of P.

Proposition 2. This proof is analogous to the previous proof, except that the induced core
program has some additional literals: control(., .), coalition(.) and ncoalition(.). The intuition,
however, is very similar, except that program part P2 encodes a coalition and an alternative
strategy profile such that non-coalition members play the same strategy as in P1.

Answer set) Core element Let I be an arbitrary answer set of P. Since for all p 2 V , either
the corresponding literal act(p) or its negation ¬act(p) is contained in I due to rule (1), it
holds that SI is a well-defined strategy profile for G. We write ⇡C =

S
i2C ⇡i, SC = ⇡C \ SI

and S�C = SI \ ⇡C , for every coalition C ✓ N . It remains to prove that for every coalition
C ✓ N and for all s0C ✓ ⇡C : 9i 2 C: ui(SI) � ui(S�C , s0C). Let C be an arbitrary coalition
in N . If there exists a coalition player i 2 C such that ui(SI) = 1 then the condition is
fulfilled since ui takes values in {0, 1}. If ui(SI) = 0 for all i 2 C then the condition is fulfilled
i↵ 8s0C ✓ ⇡C : 9i 2 C: ui(S�C , s0C) = 0. Suppose by contradiction that there exists an
alternative set of actions s0C ✓ ⇡C such that 8i 2 C: ui(SI) < ui(S�C , s0C) i.e. ui(SI) = 0 and

ui(S�C , s0C) = 1 for every i 2 C. We can then construct a model J of the reduct PI , which is
strictly contained in I. To this end, we make the following observations:

1. For every agent j 2 N : goal(j) 2 I i↵ uj(SI) = 1: this follows from rule (2) and the fact
that 'j is true i↵ uj(SI) = 1.

2. Since I is an answer set of P, rule (7) implies that sat 2 I. This rule is not contained in
the reduct PI and (8) implies that I contains all variables of the form act

0(p), nact 0(p)
(for all p 2 V), coalition(i), ncoalition(i) and ngoal

0(i) (for all i 2 N). In turn rule (8)
implies that I also contains all atoms of X0 defined in P2 as components of formulas. The
previous observation together with rules (5) imply that pleased(j) is in I for every j 2 N ,
since ngoal

0(j) is also in I. Obviously all the facts action(p), agent(i) and control(i, pi) of
P also belong to I for every p 2 V , i 2 N and pi 2 ⇡i.

3. If we denote all literals occurring in program P1 as B1 and we define J1 = I \ B1, then
clearly J1 satisfies all the rules of P1 since I is an answer set of P. Moreover, J1 is a model
of the reduct PI

1 , since PI
1 = PJ1

1 . Note that J1 also contains all the facts action(p),
agent(i) and control(i, pi) of P for every p 2 V , i 2 N and pi 2 ⇡i.

Methods for Solving BGs 41

4. Define the interpretation J2 = A [NA [X0
2 [CL [NCL [NG with

A = {act 0(p) | p 2 (S�C , s0C)},
NA = {nact 0(p) | p /2 (S�C , s0C)},
X0

2 = {a 2 X0 | 9r : a B 2 P : 8b 2 B : b 2 A [NA [X0
2},

CL = {coalition(i) | i 2 C},
NCL = {ncoalition(i) | i /2 C},
NG = {ngoal(i) | i /2 C, ui(S�C , s0C) = 0}.

Since J2 represents a valid strategy profile SJ2 = {p | act(p) 2 J2}, sat cannot be derived
through rule (3). Similarly, rule (10) cannot derive sat since J2 corresponds to a valid
coalition of N (every agent is either a member or not and the coalition is non-empty).
Moreover, the actions in J2 of all non-coalition players coincide with their actions in SI ,
hence rules (11) will be satisfied. The actions of coalition members in J2 corresponds to
s0C , hence ⇠'i(nact 0(¬V), act 0(V)) is true for i /2 C i↵ ui(S�C , s0C) = 0, implying that J2
satisfies rule (12) for non-coalition members. Furthermore, the assumption ui(S�C , s0C) =
1 for every i 2 C implies that ⇠'i(nact 0(¬V), act 0(V)) is false and ngoal

0(i) cannot be
derived, hence J2 satisfies rule (12) for coalition members as well. Since PI

2 = P2, J2 is a
model of PI

2 .
5. Define J3 = {pleased(i) | i /2 C, ui(SI) � ui(S�C , s0C)} and J = J1 [J2 [J3. In case

of a non-coalition member i, the rules (5) will be satisfied by J3 since one of the bodies
is true i↵ ui(SI) � ui(S�C , s0C). Our assumption ui(SI) = 0, 8i 2 C and the first step
imply that goal(i) /2 I for every i 2 C. By definition the same holds for J1 ⇢ J . By
definition it holds that ngoal

0(i) /2 J2 with J2 ⇢ J for every i 2 C. Therefore, the bodies
of (5) are not satisfied for coalition members i and pleased(i) cannot be derived, hence
J satisfies these rules for every agent i 2 C. If i /2 C, then either ui(SI) � ui(S�C , s0C)
or ui(SI) < ui(S�C , s0C). In the first case, pleased(i) 2 J holds, hence rules (5) are
satisfied. In the second case, ui(S�C , s0C) 6= 0 and ui(SI) = 0, hence the first step and the
definition of J imply that goal(j) /2 J and ngoal(i) /2 J . Therefore, rules (5) are satisfied.
Since pleased(i) is not in J for every i 2 C, rule (13) is also satisfied by J . The bodies of
rules (8) and (15) are falsified by J , hence the rules are satisfied by J .

Combining these subresults, we see the J is a model of PI . Moreover, J ⇢ I and sat 2 I \ J .
This implies that I is not a minimal model of PI , contradicting the assumption that I is an
answer set of P.

Core element) Answer set Suppose S = (s1, . . . , sn) is an element of Core(G). Let the sets
of atoms X and X0 be defined as in the construction of the induced PNE program. Define the
following sets of literals:

A = {act(p) | p 2 S},
NA = {¬act(p) | p /2 S},
Z = {a 2 X | 9r : a B 2 P : 8b 2 B : b 2 A [NA [Z}.

and an interpretation IS :

IS = A [NA [Z [{goal(i) | i 2 N,ui(S) = 1} [{sat}
[{act 0(p) | p 2 V } [{nact 0(p) | p 2 V } [{coalition(i) | i 2 N} [{ncoalition(i) | i 2 N}
[X0 [{ngoal 0(i) | i 2 N} [{pleased(i) | i 2 N}
[{agent(i) | i 2 N} [{action(p) | p 2 V } [{control(i, p) | i 2 N, p 2 ⇡i}

Any atom act(p) in A cannot be omitted without requiring that ¬act(p) is then in NA, due
to rule (1). Hence we have to prove that IS is minimal among the models of PIS containing
A [NA. Clearly the rules of the form (2) uniquely determine which atoms of X should be in
a minimal model of PIS which already contains A and NA. The same reasoning holds for the
literals of the form goal(i) for every agent i, i.e. the literals of the form goal(i) with ui(S) = 1
should be in every model of PIS . This is fulfilled by definition of IS . Since S is a core element,
S is not blocked by any coalition. We show that there does not exist a minimal model J of

42 Sofie De Clercq et al.

PIS which contains A[NA but does not contain sat. If we define S0 = (s01, . . . , s
0
n) with s0i =

{p | act 0(p) 2 J}, rules (3) imply that S0 is a valid strategy profile of the game: sat is not derived
hence {p | act 0(p) 2 J} and {p |nact 0(p) 2 J} form a partition of V . Moreover for every agent
i it holds that ngoal 0(i) belongs to J i↵ ui(S�C , s0C) = 0 due to rule (12). But then S being a
core element implies that pleased(i) will be derived for a coalition player i by the rules (5) for
at least one agent i, and in turn rule (6) derives sat. So sat should be in any minimal model of
PIS which contains A and NA. But rules (8) and (15) imply that such a model of PIS should
contain {act 0(p) | p 2 V } [{nact 0(p) | p 2 V } [{coalition(i) | i 2 N} [{ncoalition(i) | i 2 N}.
Moreover, the rules of the form (4) imply that X0 [{ngoal 0(i) | i 2 N} should be contained
as well in the presence of {act 0(p) | p 2 V } [{nact 0(p) | p 2 V }. The rules (5) imply that
pleased(i) should be in such a minimal model as well for every agent i, since for every agent
i we proved that ngoal

0(i) is in any minimal model. Finally note that the facts agent(1..n),
action(p) (p 2 V) and control(i, p) (i 2 N, p 2 ⇡i) should be in every minimal model of PIS .
We have proved that every variable of IS is part of every minimal model of PIS containing
A [NA. Moreover, IS satisfies all rules of PIS , hence IS is an answer set of P.

Proposition 3. First note that S is an absorbing state i↵ S is a PNE.

WSLpS converges) 9S : S is a PNE

Convergence of WSLpS applied to G boils down to the fact that the induced Markov chain
ends up in an absorbing state. In particular, there must exist an absorbing state S. Due to the
observation above, it holds that 9S : S is a PNE.

WSLpS converges (9S : S is a PNE

Assume that there exists a PNE Sg = (sg1, . . . , s
g
n) of G. Then Sg is an absorbing state of

the induced Markov chain. For the chain to be absorbing, it is su�cient to prove that for
each non-absorbing state there exists an accessible absorbing state. We now prove that Sg is
accessible from every non-absorbing state.

Let S1 = (s11, . . . , s
1
n) be an arbitrary non-absorbing state, then S1 is no PNE. In particular

there must exist at least one agent i1 which does not reach its goal, since reaching your goal
is a best response by definition. We now show that a strategy profile S2 exists such that

1. s2j = sgj , 8j 2 RA(i1) and s2j = s1j , 8j 2 N \RA(i1),

2. the probability of a transition from S1 to S2 is non-zero,

For every j 2 RA(i1) there exists a subset of neighbors rj with i1 2 rj and success(S1, rj) = 0.
We define s2j = sgj . For every j 2 N \ RA(i1) we define s2j = s1j . Obviously, this S2 fulfills

the first condition. Note that this implies that ui1 (S
2) = 1, since ui1 (S

g) = 1 and s2j =

sgj , 8j 2 RA(i1). The fact that the transition probability from S1 to S2 is non-zero is due to

the following reasons. First, all agents with positive feedback from S1 stick to their current
strategy. Second, all agents with negative feedback can change to any strategy with a non-zero
probability; in particular, the probability that all agents j with negative feedback from S1

‘switch’ to s1j is non-zero. To see this, note that the probability of agent j flipping a variable

is �j(S1, rj) = max(↵ � |{j02rj |uj
0(S1)=1}|

kj
, 0). If agent j got negative feedback from S1,

then success(S1, rj) = 0 and there must be at least one neighbor j0 of j with uj
0(S1) 6= 1.

Considering the fact that ↵ > k�1
k and kj = min(k, |Neigh(j)|), it follows that ↵ >

kj�1
kj

.

Therefore it holds that �j(S1, rj) is in]0, 1[if agent j got negative feedback from S1. Hence,
irrespective of whether the transition from s1j to s2j requires flipping variables or not, the
transition probability is non-zero.

Either 8i 2 N : ui(S2) = 1, hence S2 is an accessible absorbing state, or 9i2 2 N : ui2 (S
2) =

0. As long as there exists an il 2 N such that uil (S
l) = 0 we can find a state Sl+1 =

(sl+1
1 , . . . , sl+1

n) such that the transition probability from Sl to Sl+1 is non-zero, sl+1
j =

sgj , 8j 2 RA(il), and sl+1
j = slj , 8j 2 N \ RA(il). Moreover, for every im with 1  m  l it

holds that uim (Sl+1) = 1 because 8j 2 RA(im) : sl+1
j = sgj . To see this, note that we assumed

that every j 2 RA(im) switched to sgj in the transition from Sm to Sm+1. In all the next

transitions, j kept the previous strategy, hence sl+1
j = sgj . Clearly l = n is the maximum value

Methods for Solving BGs 43

for which Sl+1 will be an absorbing state accessible from S1, as a strategy profile for which
every agent reaches its goal is a PNE by definition.

References

1. Ågotnes, T., Harrenstein, P., van der Hoek, W., Wooldridge, M.: Verifiable equilibria in
Boolean games. In: Proc. IJCAI, pp. 689–695 (2013)

2. Aumann, R.: Acceptable points in games of perfect information. Pacific Journal of Math-
ematics 10(2), 381–417 (1960)

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, New York (2003)

4. Ben-Naim, J., Lorini, E.: Evaluating power of agents from dependence relations in boolean
games. In: Proc. AAMAS, pp. 853–860 (2014)

5. Bonzon, E., Lagasquie-Schiex, M.C., Lang, J.: Dependencies between players in Boolean
games. In: Proc. ECSQARU, pp. 743–754. Springer (2007)

6. Bonzon, E., Lagasquie-Schiex, M.C., Lang, J.: Dependencies between players in Boolean
games. Int. J. Approx. Reasoning 50(6), 899–914 (2009)

7. Bonzon, E., Lagasquie-Schiex, M.C., Lang, J.: E↵ectivity functions and e�cient coalitions
in Boolean games. Synthese 187, 73–103 (2012)

8. Bonzon, E., Lagasquie-Schiex, M.C., Lang, J., Zanuttini, B.: Boolean games revisited. In:
Proc. ECAI, pp. 265–269. ACM (2006)

9. Bonzon, E., Lagasquie-Schiex, M.C., Lang, J., Zanuttini, B.: Compact preference repre-
sentation and Boolean games. Autonomous Agents and Multi-Agent Systems 18(1), 1–35
(2009)

10. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Communi-
cations of the ACM 54(12), 92–103 (2011)

11. De Clercq, S., Bauters, K., Schockaert, S., De Cock, M., Nowé, A.: Using answer set
programming for solving Boolean games. In: Proc. KR, pp. 602–605 (2014)

12. De Clercq, S., Bauters, K., Schockaert, S., Mihaylov, M., De Cock, M., Nowé, A.: De-
centralized computation of Pareto optimal pure Nash equilibria of Boolean games with
privacy concerns. In: Proc. ICAART, pp. 50–59 (2014)

13. De Clercq, S., (contact person): http://www.cwi.ugent.be/BooleanGamesSolver.html
14. De Vos, M., Vermeir, D.: Choice logic programs and Nash equilibria in strategic games.

In: Proc. CSL, pp. 266–276. Springer (1999)
15. Dunne, P., van der Hoek, W., Kraus, S., Wooldridge, M.: Cooperative Boolean games. In:

Proc. AAMAS, vol. 2, pp. 1015–1022. IFAAMAS (2008)
16. Dunne, P.E., Wooldridge, M.: Towards tractable Boolean games. In: Proc. AAMAS, pp.

939–946. IFAAMAS (2012)
17. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Propo-

sitional case. Annals of Mathematics and Artificial Intelligence 15(3-4), 289–323 (1995)
18. Faber, W., Leone, N., Ricca, F.: Solving hard problems for the 2nd level of the Polynomial

Hierarchy: Heuristics and benchmarks. Intelligenza Artificiale 2(3), 21–28 (2005)
19. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc.

ICLP/SLP, pp. 1070–1080 (1988)
20. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.

New generation computing 9(3-4), 365–385 (1991)
21. Gottlob, G., Greco, G., Scarcello, F.: Pure Nash equilibria: hard and easy games. In: Proc.

TARK, pp. 215–230. ACM (2003)
22. Gottlob, G., Greco, G., Scarcello, F.: Pure nash equilibria: Hard and easy games. Journal

of Artificial Intelligence Research 24, 357–406 (2005)
23. Grinstead, C., Snell, J.: Introduction to Probability. American Mathematical Society

(1997)
24. Harrenstein, P., van der Hoek, W., Meyer, J.J., Witteveen, C.: Boolean games. In: Proc.

TARK, pp. 287–298. Morgan Kaufmann Publishers Inc. (2001)
25. Mihaylov, M.: Decentralized coordination in multi-agent systems. Ph.D. thesis, Vrije Uni-

versiteit Brussel, Brussels (2012)
26. Mihaylov, M., Tuyls, K., Nowé, A.: A decentralized approach for convention emergence

in multi-agent systems. Autonomous Agents and Multi-Agent Systems 28(5), 749–778
(2014)

44 Sofie De Clercq et al.

27. Papadimitriou, C.: Computational complexity. Addison-Wesley, Reading, Massachusetts
(1994)

28. Sureka, A., Wurman, P.R.: Using tabu best-response search to find pure strategy Nash
equilibria in normal form games. In: Proc. AAMAS, pp. 1023–1029 (2005)

29. Wooldridge, M., Endriss, U., Kraus, S., Lang, J.: Incentive engineering for Boolean games.
Artificial Intelligence 195, 418–439 (2013)

