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Abstract

Boolean games are a game-theoretic framework
in which propositional logic is used to describe
agents’ goals. In this paper we investigate how
agents in Boolean games can reach an efficient and
fair outcome through a simple negotiation proto-
col. We are particularly interested in settings where
agents only have incomplete knowledge about the
preferences of others. After explaining how gener-
alized possibilistic logic can be used to compactly
encode such knowledge, we analyze how a lack of
knowledge affects the agreement outcome. In par-
ticular, we show how knowledgeable agents can ob-
tain a more desirable outcome than others.

1 Introduction and Related Work
Boolean games (BGs) are a strategic framework which uses
propositional logic to formalize the goals of agents [Harren-
stein et al., 2001]. Each agent controls the truth value of a
subset of the atoms which build up these goals. In this paper,
we investigate BGs in which the agents are uncertain about
the preferences of the other agents. For example, suppose
Bob and Alice are planning their Sunday afternoon: they can
go to the beach or the forest or stay at home, and Alice can
bring the dog or leave it at home. Since being a couple does
not imply having identical preferences nor knowing exactly
each other’s preferences, Bob and Alice will have to compro-
mise under incomplete information. However, they are not
completely ignorant about each other’s goals; for instance,
Bob knows that Alice loves the dog and Alice knows that
Bob loves the beach. In this paper, we investigate how they
can use such knowledge to reach an agreement through nego-
tiation. Moreover, we explore the link between having infor-
mation about other agents’ goals and obtaining a satisfactory
agreement. To the best of our knowledge, our process is the
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first multilateral negotiation protocol for BGs that takes un-
certainty w.r.t. the other agents’ goals into account.

Although uncertainty in games has been studied exten-
sively (see e.g. [Osborne and Rubinstein, 1994]), the liter-
ature on BGs with incomplete information is currently lim-
ited. In one framework, agents have beliefs about the values
of environment variables, which are not controlled by any of
the agents [Grant et al., 2011]. Another approach limits the
set of action variables of which an agent can observe the as-
signed values [Ågotnes et al., 2013b]. The latter framework
has been extended to epistemic BGs [Ågotnes et al., 2013a],
describing goals by means of a multi-agent epistemic modal
logic. However, in the latter approach agents are still fully
aware of each others’ goals, i.e. Ågotnes et al. [2013a] con-
sider agents whose goal is to obtain a particular epistemic
state. To the best of our knowledge, the only work on BGs
with uncertainty w.r.t. the agents’ goals is [De Clercq et al.,
2014], which uses possibilistic knowledge bases to formalize
the beliefs of the agents about the goals of others.

In this paper, we propose the use of generalized possibilis-
tic logic (GPL) [Dubois et al., 2014] to define BGs with in-
complete information. Note that this is different from the
use of uncertainty models, such as the Bayesian approaches
commonly applied to study games with uncertainty (see e.g.
[Harsanyi, 1967]), which can be used e.g. to model beliefs
about the characteristics of other agents. Although De Clercq
et al. [2014] also use possibilistic logic to model uncertainty
in BGs, our motivation differs: whereas the former work uses
possibilistic logic to encode graded beliefs about other agents
goals, we use possibilistic logic to compactly describe agents’
preferences, and generalized possibilistic logic to describe in-
complete knowledge about another agent’s preferences. Our
use of GPL also differs from approaches such as CP-nets,
which also aim to compactly model preferences, but only cap-
ture a single preference structure and are thus less suitable for
modeling incomplete information. To the best of our knowl-
edge, this is the first research on using GPL to model uncer-
tainty about other agents’ preferences.

We then investigate how knowledge about other agents’
goals can be used for multilateral negotiation. Negotiating



allows agents in a strategic setting to settle on an agreement
outcome, where agents can be human as well as artificial,
such as computers, robots or self-driving cars. A multilateral
bargaining protocol in BGs with complete information has
been investigated in [Dunne et al., 2008], showing that, when
the logical structure of the goals is restricted, the protocol is
guaranteed to end in a Pareto optimal outcome, i.e. no agent
can improve its position without another agent being worse
off. In this paper, we propose a protocol which converges
to an acceptable agreement without restrictions on the game
structure. Moreover, under complete information our proto-
col always results in a discrimin optimal outcome. Discrimin
optimality refines Pareto optimality [Dubois et al., 1997], and
while the latter indeed ensures efficiency, it is often not suffi-
cient to characterize desirable outcomes [Bouveret and Lang,
2008]. Suppose, for instance, that two agents are negotiating
in a situation with two Pareto optimal outcomes, with utility
vectors (1, 0.2) respectively (0.5, 0.6), where utility reflects
the degree of satisfaction of the agents. A natural concept
arising in negotiation is fairness: intuitively, the latter utility
vector is more fair than the former. In the literature, several
notions of fairness apart from discrimin optimality have been
introduced and studied; we refer the interested reader to [Tun-
godden, 2000] for an overview and discussion.

We investigate negotiation in BGs with incomplete infor-
mation since, in strategic settings, it is often irrealistic to as-
sume that an agent has access to another agent’s goals. In-
deed, agents might deliberately conceal such information, or
might not have exchanged it. The literature on bargaining
is extensive, and covers a wide range of possible settings,
such as discrete versus continuous bargaining (e.g. prices [Fa-
tima et al., 2002]), bilateral [Amgoud and Prade, 2003;
Luo et al., 2003] versus multilateral bargaining, transferable
and non-transferable utility, limited versus unlimited number
of responses, modeling incomplete knowledge through prob-
ability theory [Fatima et al., 2002], through Cartesian prod-
ucts of complete knowledge problems [Bossert and Peters,
2001], or by means of possibilistic logic [Amgoud and Prade,
2003]. To the best of our knowledge, our work is the first
research on negotiation that considers incomplete knowledge
about other agents’ goals in a BG setting.

The paper is structured as follows. First, we give some
background on BGs. In Section 3, we propose a negotiation
protocol for BGs with complete information and characterize
the agreement outcomes. Next, we explain how GPL can be
used to represent knowledge about other agents’ preferences
in Section 4. Then we generalize the negotiation protocol of
Section 3 to BGs with incomplete information. We charac-
terize the agreement outcomes, linking back to those under
complete information. Additionally, we show how knowl-
edge is crucial for an agent to reach a satisfying agreement.
To conclude, we discuss several future work directions.

2 Background on Boolean Games
The logical language LΦ associated with a finite set of
atoms Φ contains the following formulas: (i) every atom of Φ,
(ii) the logical constants ⊥ and >, and (iii) the formulas ¬ϕ
and ϕ ∧ ψ for every ϕ, ψ ∈ LΦ. As usual, we use the abbre-

viations ϕ→ ψ ≡ ¬(ϕ∧¬ψ) and ϕ∨ψ ≡ ¬(¬ϕ∧¬ψ). An
interpretation of Φ is defined as a subset ν of Φ, with the con-
vention that all atoms in ν are interpreted as true (>) and all
atoms in Φ \ ν are interpreted as false (⊥). An interpretation
can be extended to LΦ in the usual way. If a formula ϕ ∈ LΦ

is true in an interpretation ν, we denote this as ν |= ϕ. We
denote the set of interpretations in which ϕ is true as JϕK.

Originally, the utilities in BGs were binary, but several ex-
tensions have been introduced to allow more general pref-
erences. Examples are the addition of costs [Dunne et al.,
2008], the use of a prioritized goal base instead of a single
goal [Bonzon et al., 2006; De Clercq et al., 2014] or the
use of many-valued Łukasiewicz logic to formalize the idea
of weighted goal satisfaction [Marchioni and Wooldridge,
2014]. In our paper, we use the definition of a BG as stated
in [De Clercq et al., 2014]. The latter is a particular case of
generalized BGs [Bonzon et al., 2006] in which the prefer-
ence relations are total. Additionally, we incorporate a con-
straint δ, restricting the possible joint actions of the agents.
This is a generalization of the constraints in [Bonzon et al.,
2012], which only restrict the individual actions of the agents.

Definition 1 (Boolean Game)
A Boolean game (BG) is a tuple G = (δ,Φ1, . . . ,Φn,
Γ1, . . . ,Γn). For every agent i in N = {1, . . . , n}, Φi is
a finite set of atoms such that Φi ∩ Φj = ∅,∀j 6= i. We write
Φ =

⋃
i∈N Φi. For every i ∈ N , Γi = {γ1

i ; . . . ; γpi } is i’s
prioritized goal base. The formula γmi ∈ LΦ is agent i’s goal
of priority m. We assume that every agent has p priority lev-
els and that δ∧γmi 6= ⊥ for every i ∈ N andm ∈ {1, . . . , p}.
Finally, δ is a consistent formula in LΦ, which encodes the in-
tegrity constraints of the game G.

The set Φ contains all action variables. Agent i controls Φi
and can set these atoms to true or false. By convention, goals
are ordered from high (level 1) to low priority (level p).

Example 1
Alice and Bob, who share a car, are planning their afternoon.
Alice controls Φ1 = {bA, fA, dA} and Bob controls Φ2 =
{bB , fB}. Agent i can drive to the beach (set bi to true) or to
the forest (set fi to true). If Alice sets dA to true, she takes the
dog. The game is constrained by δ = ¬(bB ∧ fB) ∧ ¬(bA ∧
fA) ∧ (bB → ¬fA) ∧ (bA → ¬fB). Alice and Bob’s goal
bases are

Γ1 = {fA ∧ fB ∧ dA; bA ∧ bB ∧ dA; dA}
Γ2 = {bB ∧ bA ∧ ¬dA; bB ∧ bA; fB ∧ fA}

Thus Alice prefers staying at home with her dog over leaving
without it. Bob prefers to take Alice to the beach without the
dog. However, he still prefers to go to the beach with Alice
and the dog over going to the forest with Alice, and he prefers
going to the forest with Alice over all remaining possibilities.

Definition 2 (Outcome)
An interpretation of Φ is called an outcome of G. We denote
the set of all outcomes as V .

For the ease of presentation, we define a utility function that
is scaled to the unit interval.



Definition 3 (Utility Function)
For each i ∈ N and ν ∈ V , the utility of i in ν is defined as

ui(ν) =
p+ 1−min{k | 1 ≤ k ≤ p, ν |= γki ∧ δ}

p

with min ∅ = p+ 1.

The utility takes values in Λp = {0, 1
p ,

2
p , . . . , 1}. We

will denote the vector of utility functions (u1(ν), . . . , un(ν))
as U(ν). In Example 1, we have for instance
U({fA, fB , dA}) = (1, 0.33), U({bB , bA}) = (0, 1),
U({bA, bB , dA}) = (0.67, 0.67) and U({fA, bB}) = (0, 0).
In the context of bargaining, it is natural that agents try to
achieve an outcome that is, among others, efficient. A well-
known efficiency concept is Pareto optimality.

Definition 4 (Pareto Efficiency)
For every ν, ν′ ∈ V it holds that ν >p ν′ iff

(∀i ∈ N : ui(ν) ≥ ui(ν′)) ∧ (∃i ∈ N : ui(ν) > ui(ν
′))

We denote the set of Pareto optimal outcomes in V as

Optpar = {ν ∈ JδK | ¬(∃ν′ ∈ V : ν′ >p ν)}

Intuitively, an outcome is Pareto optimal if no agent can be
better off without another agent being worse off. It is easy to
see that every BG has at least one Pareto optimal outcome.

A well-known refinement of the Pareto ordering incorpo-
rating a notion of fairness is the discrimin ordering [Dubois
et al., 1997]. To define it, we denote the set of agents
whose utility is the same in ν and ν′ as eq(U(ν),U(ν′)), i.e.
eq(U(ν),U(ν′)) = {i ∈ N |ui(ν) = ui(ν

′)}.

Definition 5 (Discrimin Ordering)
For every ν, ν′ ∈ V it holds that ν >d ν′ iff

min
j /∈eq(U(ν),U(ν′))

uj(ν) > min
j /∈eq(U(ν),U(ν′))

uj(ν
′)

We define the set of discrimin optimal outcomes as

Optdiscri = {ν ∈ JδK | ¬(∃ν′ ∈ V : ν′ >d ν)}

It is easy to see that>d is a strict order relation on V . Straight-
forwardly, it holds that Optdiscri ⊆ Optpar and Optdiscri 6=
∅. In Example 1, (bA, bB , dA) is the unique discrimin optimal
outcome, although it is not the only Pareto optimal outcome.

3 Negotiating under Complete Information
We are interested in a negotiation protocol that is guaranteed
to converge within a finite number of steps. Therefore, we
want agents to make offers according to a negotiation rule,
which assures that every offered outcome is an improvement
compared to the previous one. For instance, an agent might
only be allowed to make a counteroffer if no agent is worse
off than in the previous offer. Obviously, this rule will lead to
Pareto optimal outcomes. However, the rule is so strict that
the result can hardly be called fair: the first agent simply of-
fers the outcome which yields its personal highest utility and
no other agent is allowed to make a counteroffer which low-
ers the first agent’s utility. Suppose, for instance, that there
are two possible utility vectors: (1, 0) and (0.5, 0.5). If the

first agent opens the negotiation with (1, 0), the other agent
would not be allowed to counter this offer with (0.5, 0.5). To
develop a fairer rule, we consider two properties that char-
acterize a valid counteroffer. First of all, an agent is only
interested in making a counteroffer if its own utility improves
compared to the original offer. Second, the agents apply the
silver rule or ethic of reciprocity, proposed by the Confucian
Way of Humanity [Hertzler, 1934]:

One should not treat others in ways that one would
not like to be treated.

In our negotiation protocol, an agent reasons as follows: if
I do not accept an offer of utility k, I should not lower an-
other agent’s utility to k or less in order to improve my own.
Therefore, if an agent decides to lower other agents’ utili-
ties, it should offer more than k. We formally define the
set co(i, ν) of agent i’s legal counteroffers to ν as follows
(i ∈ N , ν ∈ V):

co(i, ν) = {ν′ ∈ V |ui(ν′) > ui(ν)∧ (1)

∀j ∈ N : uj(ν
′) < uj(ν)⇒ uj(ν

′) > ui(ν)}

We suggest the following negotiation protocol. In a given
order, agents make proposals one by one. Without loss of
generality, we assume that this order is {1, 2, . . . , n}.

Algorithm 1 Negotiation Protocol for BG
ν ← ν′ with ν′ ∈ JδK % Agent 1 proposes ν′
accepted← 1; i← 2
while accepted < n do

if co(i, ν) == ∅ then
% Agent i accepts the offer
accepted← accepted +1

else
% Agent i rejects the offer and makes a counteroffer
ν ← ν′ with ν′ ∈ co(i, ν)
accepted← 1

end if
i← (i == n ? 1 : i+ 1)

end while

Algorithm 1 depends on a selection function to choose which
ν′ ∈ JδK and ν′ ∈ co(i, ν) are made as an offer. However, the
results discussed in the paper hold regardless of this selection.
The negotiation protocol ends if an offer ν is made such that
no counteroffers can be made, i.e. ∀i ∈ N : co(i, ν) = ∅. We
can prove that, whenever an offer is rejected, the new offer is
fairer according to the discrimin ordering.

Proposition 1
For ν ∈ V , i ∈ N and ν′ ∈ co(i, ν), it holds that ν′ >d ν.

Sketch. This follows immediately from the definitions of
co(i, ν) and >d, and the fact that either uj(ν′) > uj(ν) or
uj(ν

′) < uj(ν) for every j /∈ eq(U(ν),U(ν′)).

It follows that every discrimin optimal outcome is accepted.

Corollary 2
For ν ∈ Optdiscri and i ∈ N it holds that co(i, ν) = ∅.



Conversely, we can also show that only discrimin optimal out-
comes will be overall accepted.

Proposition 3
For ν ∈ V \ Optdiscri there is an i ∈ N with co(i, ν) 6= ∅.

Sketch. By definition of Optdiscri, there exists a ν′ ∈ V such
that ν′ >d ν. It is straighforward to prove that ν′ ∈ co(i, ν)
for every agent i /∈ eq(U(ν),U(ν′)) such that ui(ν) =
minj /∈eq(U(ν),U(ν′)) uj(ν).

Note that since there are only a finite number of offers that
can be made, and because each offer must strictly improve
the previous offer in terms of the discrimin ordering, we know
that the negotiation protocol always ends. From Corollary 2
and Proposition 3 we moreover know that the possible out-
comes at the end of the negotiation protocol are exactly the
discrimin optimal outcomes. This result implies that the first
offering agent still has a strong advantage, as this agent can
select the discrimin optimal outcome that yields the highest
personal utility, which no agent is allowed to reject. For in-
stance, if the only discrimin optimal outcomes have utility
vectors (1,0.5) and (0.5,1), agent 1 should propose the for-
mer and agent 2 has no choice but to accept. If the first agent
follows this strategy, the negotiation ends within one step.

Remark 1
In our protocol, it is irrelevant which agent controls which
atoms. The dependence of actions implied by the constraint δ
forces agents to negotiate about what actions they will un-
dertake. In Example 1, Alice and Bob cannot decide indi-
vidually to go out. However, Alice can decide to stay with
the dog without violating δ. Moreover, both Alice and Bob
can decide to stay home without restricting the other agent’s
options w.r.t. the constraint. Thus Alice is able to reach a util-
ity of 0.33 without negotiating, and Bob will be stuck with a
utility of 0. The utility vector (0.33, 0) can be viewed as the
disagreement point [Binmore et al., 1986], i.e. the utility the
agents would receive if they fail to reach an agreement. This
information could be added to the framework: Alice rejects
everything with a lower utility than 0.33, ergo Bob should not
make such offers during the negotiation. Note that we can
incorporate this info in the constraint δ, demanding that the
utility of every agent is greater than its disagreement utility.

4 Modeling Knowledge about Preferences
using Generalized Possibilistic Logic

Possibilistic logic extends classical logic by associating
weights with formulas. These weights were originally inter-
preted as degrees of certainty [Dubois et al., 1994], but can
also be viewed as degrees of satisfaction [Dubois et al., 1996;
Benferhat et al., 2001], allowing the use of possibilistic logic
for modeling preferences. Generalized possibilistic logic
(GPL) is a recent extension of possibilistic logic, which was
introduced to model incomplete knowledge about the beliefs
of another agent [Dubois et al., 2014]. In this paper, we use
GPL to compactly encode what each agent knows about the
preferences of another agent.

We define Λ+
p = { 1

p ,
2
p , . . . , 1}. The GPL language LpN

with p+ 1 satisfaction levels is defined as follows:

• If α ∈ LΦ and λ ∈ Λ+
p , then Nλ(α) ∈ LpN.

• If γ1 ∈ LpN and γ2 ∈ LpN, then ¬γ1 and γ1 ∧ γ2 in LpN.

We define the involutive function inv : Λ+
p → Λ+

p with
inv(λ) = p+1

p − λ. GPL uses the following abbreviations:

Πλ(α) ≡ ¬Ninv(λ)(¬α), ∆λ(α) ≡
∧

ν∈JαK

Πλ(ϕν)

where ϕν for ν ∈ V is defined as the conjunction of liter-
als that are true in ν, i.e. ϕν =

∧
ν|=p p ∧

∧
ν 6|=p ¬p. The

semantics of GPL formulas are defined through normalized
possibility distributions. In this context, a possibility distri-
bution π is a V → Λp mapping, encoding the degree to which
each outcome is desirable to a given agent. A GPL knowl-
edge base K is a finite set of formulas in LpN. It holds that
π is a model of a GPL knowledge base K iff π is a model of
each formula in K. Moreover:

• π is a model of Nλ(α) iff N(α) ≥ λ;

• π is a model of γ1 ∧ γ2 iff π is a model of γ1 and π is a
model of γ2;

• π is a model of ¬γ1 iff π is not a model of γ1;

where N is the necessity measure induced by π, i.e. N(α) =
minν 6|=α (1− π(ν)). The set of all models of K is denoted as
Mod(K). In this paper, we use the following established links
between syntax and semantics [Dubois et al., 2014]:

K |= Nλ(α) ≡
(
∀π ∈ Mod(K),∀ν ∈ V : (ν 6|= α)

⇒ π(ν) ≤ 1− λ
)

K |= Πλ(α) ≡
(
∃π ∈ Mod(K),∃ν ∈ V : (ν |= α)

∧ π(ν) ≥ λ
)

K |= ∆λ(α) ≡
(
∀π ∈ Mod(K),∀ν ∈ V : (ν |= α)

⇒ π(ν) ≥ λ
)

In particular, it holds for every ν ∈ V that:

K |= Nλ(¬ϕν) ≡∀π ∈ Mod(K) : π(ν) ≤ 1− λ
K |= Πλ(ϕν) ≡∃π ∈ Mod(K) : π(ν) ≥ λ
K |= ∆λ(ϕν) ≡∀π ∈ Mod(K) : π(ν) ≥ λ

We explain the intuition of GPL formulas below, after in-
troducing the BG framework with incomplete preference-
information by means of GPL knowledge bases.

Definition 6 (BG with Incomplete Preference-Information)
A Boolean game with incomplete preference-information is
a tuple G = (δ,Φ1, . . . ,Φn,Γ1, . . . ,Γn, K1, . . . ,Kn) with
Φ1, . . . , Φn, Γ1, . . . ,Γn as before and Ki = {K1

i , . . . ,Kni },
where Kji is a GPL knowledge base such that N1(δ) ∈ Kji ,
Mod(Kii) = {ui} and uj ∈ Mod(Kji ) for every i, j ∈ N .

The GPL baseKji encodes what agent i knows about the pref-
erences of j. The assumption N1(δ) ∈ Kji means that each
agent knows that all agents are aware of the integrity con-
straint, i.e. agent i knows that the utility of agent j is 0 if
the outcome violates δ. The assumption Mod(Kii) = {ui}



means that agent i knows its own utility. This can be ac-
complished if Kii contains the formulas Nm

p
(
∨m
l=1 γ

l
i) and

∆inv( m
p )(γ

m
i ∧ δ) for every m ∈ {1, . . . , p}. Finally, the

assumption uj ∈ Mod(Kji ) means that the pieces of infor-
mation that agent i has about agent j’s preferences do not
conflict with agent j’s real preferences.

Note that GPL, in contrast to e.g. CP-nets [Boutilier et al.,
2004], has the ability to model ignorance. Indeed, CP-nets
can encode that an agent has no preference between two al-
ternatives, but it cannot encode that we do not know whether
the agent has a preference. On the other hand, GPL does as-
sume that the preferences can be modeled by means of a total
order. Importantly, GPL allows us to compactly describe in-
formation about another agent’s preferences. For instance,
through use of the operators N and ∆, we can naturally en-
code necessary and sufficient conditions, respectively, for an
agent to reach a certain utility. Moreover, we can easily en-
code comparative preferences, stating that the utility of an
agent will always be higher for outcomes satisfying a formula
α than for outcomes satisfying a formula β. To this end, we
introduce some abbreviations for α, β ∈ LΦ:

β � α ≡
p−1∨
m=1

(¬Πm+1
p

(α) ∧∆m
p

(β)) ∨ ¬Π 1
p
(α) ∨∆1(β)

β � α ≡
p∨

m=1

(¬Πm
p

(α) ∧∆m
p

(β)) (2)

Intuitively, whenever Kji |= α′ � α, agent i knows that the
utility of agent j in any outcome that satisfies α′ is at least
the utility of j in any outcome that satisfies α. Similarly,
whenever Kji |= α′ � α, agent i knows that agent j strictly
prefers any outcome in which α′ is true to any outcome in
which α is true. Another useful abbreviation is:

α′ �c α ≡
p∨

m=1

(¬Πm
p

(α) ∧Πm
p

(α′))

Intuitively, whenever Kji |= α′ �c α, agent i knows that the
outcome with the highest utility satisfying α′ is strictly pre-
ferred to the outcome with the highest utility satisfying α.
This allows us to model conditional preferences. For in-
stance, α ∧ β1 �c α ∧ β2 means that, in an ideal world, if
α is true, the agent strictly prefers β1 over β2. An exception
x to the latter can be modeled by α ∧ x ∧ β2 �c α ∧ x ∧ β1.
This is similar in spirit to the possibilistic semantics of con-
ditionals [Benferhat et al., 1997]. Conditional preferences in
possibilistic logic have been studied among others in [Dubois
et al., 2006].
We illustrate the expressiveness of GPL for modeling prefer-
ences in the following example.

Example 2
Recall the context of Example 1 and suppose Alice knows
that Bob’s first priority goal can only be fulfilled without
bringing the dog. This is encoded as N 1

3
(¬dA) ∈ K2

1. If
Alice knows that Bob prefers going to the beach exclusively
with her over going to the beach with her and the dog, this

is encoded as (bA ∧ bB ∧ ¬dA) � (bA ∧ bB ∧ dA) ∈ K2
1.

If Bob knows that Alice is unhappy without her dog, this is
encoded as N1(dA) ∈ K1

2. For Bob to encode that Alice is at
least partially happy when she is with the dog, regardless of
whatever else happens, he adds ∆ 1

3
(dA) to K1

2.

We now define a set of possibilistic discrimin optimal out-
comes in V . Intuitively, an outcome ν is optimal if for any
outcome ν′ which dominates ν according to the discrimin or-
dering, the agents who are better off in ν′ than in ν are not
aware that ν′ is a valid counteroffer in the sense of (1).

Definition 7 (Possibilistic Discrimin)
We define the set of possibilistic discrimin optimal outcomes:

Optpdiscri = {ν ∈ JδK | ∀ν′ ∈ V : ν′ >d ν ⇒
(
∀i ∈ N :

ui(ν
′) > ui(ν)⇒ (∃j ∈ N, ∃uji ∈ Mod(Kji ) :

uji (ν
′) < uji (ν) ∧ uji (ν

′) ≤ ui(ν))
)
}

It is easy to see that Optdiscri ⊆ Optpdiscri. In particular,
when each agent has full knowledge, i.e. Mod(Kji ) = {uj}
for every i, j ∈ N , Optdiscri and Optpdiscri coincide.

5 Negotiating under Incomplete Information
We now analyze negotiation in BGs under incomplete infor-
mation. The protocol remains as specified in Algorithm 1:
agents take turns in responding to an offer, by accepting it or
making a counteroffer. However, the set of legal counterof-
fers co(i, ν) might be unknown to agent i. Indeed, determin-
ing the allowed counteroffers requires – possibly unknown –
information about the other agents’ utility. Therefore, we re-
place co(i, ν) by cop(i, ν), which intuitively contains every
outcome ν′ ∈ JδK for which agent i has enough information
to derive that ν′ is indeed a legal counteroffer to ν:

cop(i, ν) = {ν′ ∈ JδK | (Kii |= ν′ � ν) ∧ ∀j ∈ N :

Kji |= (∆ui(ν)+ 1
p
(ϕν′) ∨ ν′ � ν)}

with � and � as defined in (2). As before, an outcome ν is
agreed upon iff cop(i, ν) = ∅ for every i ∈ N .

We can prove that every possibilistic discrimin optimal out-
come is generally accepted. To this end, we first prove the
following link between the sets of valid counteroffers under
complete and incomplete information.

Proposition 4
For every i ∈ N and ν ∈ V: cop(i, ν) ⊆ co(i, ν).

Proof. Let ν′ be an arbitrary element of cop(i, ν). By def-
inition, it holds that ui(ν′) > ui(ν) ∧ ∀j ∈ N : Kji |=
(∆ui(ν)+ 1

p
(ϕν′) ∨ ν′ � ν). Let j ∈ N . It remains to

prove that uj(ν′) < uj(ν) ⇒ uj(ν
′) > ui(ν) or equiva-

lently uj(ν′) ≥ uj(ν) ∨ uj(ν′) > ui(ν). By definition 6, it
holds that uj is a model of Kji . Consequently, it holds that uj
satisfies either ∆ui(ν)+ 1

p
(ϕν′) or ν′ � ν. In the first case, it

holds that uj(ν′) ≥ ui(ν) + 1
p or thus uj(ν′) > ui(ν). In

the second case, it holds that uj(ν′) ≥ uj(ν). In any case it
holds that uj(ν′) ≥ uj(ν) ∨ uj(ν′) > ui(ν).



Proposition 5
For ν ∈ Optpdiscri and i ∈ N it holds that cop(i, ν) = ∅.

Proof. Let ν ∈ Optpdiscri and i ∈ N . Suppose there exists
some ν′ ∈ cop(i, ν). If ¬(ν′ >d ν), then Propositions 1
and 4 imply that ν′ /∈ cop(i, ν), a contradiction. Now assume
that ν′ >d ν. Since ν′ ∈ cop(i, ν) and Mod(Kii) = {ui}
it follows that ui(ν′) > ui(ν). Because ν ∈ Optpdiscri, we
know that there exists some j ∈ N and uji ∈ Mod(Kji ) such
that uji (ν

′) < uji (ν) and uji (ν
′) ≤ ui(ν). Consequently, uji

does not satisfy ∆ui(ν)+ 1
p
(ϕν′), nor ν′ � ν. This contradicts

the fact that Kji |= (∆ui(ν)+ 1
p
(ϕν′) ∨ ν′ � ν).

Conversely, we can also show that only possibilistic discrimin
optimal outcomes will be generally accepted.

Proposition 6
For ν ∈ V \ Optpdiscri there is an i ∈ N with cop(i, ν) 6= ∅.

Proof. For ν ∈ V \ Optpdiscri there exists a ν′ ∈ V such that
ν′ >d ν and there exists an agent i ∈ N such that ui(ν′) >
ui(ν), and for every j ∈ N and uji ∈ Mod(Kji ) it holds that
uji (ν

′) ≥ uji (ν) or uji (ν
′) > ui(ν). Since Mod(Kii) = {ui},

it follows that Kii |= ν′ � ν. Now let j be an arbitrary agent
in N . For every model uji of Kji such that uji (ν

′) ≥ uji (ν) it
holds that uji models ν′ � ν. For every model uji of Kji such
that uji (ν

′) > ui(ν) it holds that uji models ∆ui(ν)+ 1
p
(ϕν′).

Consequently, we have Kji |= (∆ui(ν)+ 1
p
(ϕν′) ∨ ν′ � ν),

and thus ν′ ∈ cop(i, ν).

Note that since the number of possible offers is finite and be-
cause each offer must strictly improve the previous offer in
terms of the discrimin ordering, the negotiation protocol al-
ways ends. From Corollary 5 and Proposition 6 we know that
the possible outcomes at the end of the negotiation protocol
are exactly the possibilistic discrimin optimal outcomes.

From Optdiscri ⊆ Optpdiscri and Proposition 5, it follows
that any discrimin optimal offer is overall accepted under in-
complete information. However, Example 3 shows that the
opposite does not hold, i.e. a non-discrimin optimal outcome
might be accepted under incomplete information.

Example 3
Suppose, in the context of Example 1, that Alice has abso-
lutely no information concerning Bob’s goals. If Bob may
make the first offer and suggests to go to the beach together
without the dog, Alice’s utility is 0. Although this outcome
is discrimin dominated by going to the beach with the dog,
Alice is unable to make this counteroffer, because she does
not know whether Bob’s utility is at least 0.33 in that case or
whether Bob’s utility is at least the same as in his first offer.
Note that, in contrast to a fully informed agent, an agent with
limited knowledge might not be able to open with a discrimin-
optimal solution. It is clear that having no information leaves
an agent in a very weak position. Indeed, if agent i knows
nothing about the preferences of another agent, it holds that
cop(i, ν) = ∅ for every ν ∈ V , thus agent i is obliged to

accept every offer. In contrast, an agent who has full knowl-
edge knows all valid counteroffers and may be able to achieve
a better outcome than in any discrimin optimal outcome, cfr.
Bob in Example 3. Note that an agent with full knowledge
can either use a safe or a risky selection function. Suppose
for instance that there are only three possible utility vec-
tors: (0.6, 0.4), (0.4, 0.6) and (1, 0.2). If agent 1 proposes
(0.6, 0.4), it is certain that agent 2 accepts. Alternatively, if
agent 1 proposes (1, 0.2) and agent 2 does not know that there
exists a valid counteroffer, agent 1 can get away with an unfair
agreement, yielding a higher utility than in any fair outcome.
However, if agent 2 knows that (0.4, 0.6) is a valid counterof-
fer, the negotiations end in (0.4, 0.6), leaving agent 1 worse
off than if it had proposed (0.6, 0.4) right away. This dis-
cussion shows that an interesting extension of the framework
would be to allow agents to reason about the knowledge of
others. Such knowledge can be encoded using multi-agent
extensions of modal logics for epistemic reasoning, although
we are then forced to express knowledge about preferences
at the propositional level (e.g. by introducing variables gmi to
denote themth most preferred goal of agent i as in [De Clercq
et al., 2014]). This extension would allow agents to act based
on their knowledge of how other agents would react to various
counteroffers, as is common in the field of epistemic game
theory [Perea, 2012].

6 Conclusion and Future Work
We have developed a framework for BGs with incomplete in-
formation, using GPL to compactly represent agents’ knowl-
edge about the preferences of others. We also proposed a
multilateral negotiation protocol, which uses an intuitive ne-
gotiation rule based on the ethic of reciprocity principle and
is guaranteed to converge within a finite number of steps.
Moreover, we characterized the set of possible outcomes of
the negotiation process, confirming the intuition that incom-
plete knowledge may lead to negotiation inefficiency, i.e. the
agreement outcome may not be fair or efficient. In our proto-
col, the order of the agents plays an important role, which is
natural in hierarchical contexts (e.g. leader-follower type set-
ting, where followers can only question proposals by leaders
if they can prove their unfairness). Alternatively, the power
of agents [Ben-Naim and Lorini, 2014] can be used to de-
duce a sensible ordering in which agents are allowed to make
offers: the most powerful agent can make the initial offer.
Note, however, that the use of GPL for encoding knowledge
about the preferences of others is independent of the negotia-
tion protocol. Consequently, future research w.r.t. alternative
negotiation protocols e.g. for settings in which agents have
equal status can also rely on our GPL framework.

Even though the negotiation model we have discussed in
this paper is rather simple, it offers a rich basis from which
we can study a wide variety of settings. Interesting exten-
sions could include the use of agents who expand their knowl-
edge base during the protocol, by drawing conclusions from
the offering behavior of other agents [Cramton, 1984]. An-
other option is to use different negotiation rules, e.g. an agent
could be allowed to make a counteroffer ν if it does not know
that ν is an illegal counteroffer. Additionally, we can allow



‘third party’ agents to protest against offers, in case they know
that the offer is illegal. However, protesting against an unfair
proposal requires the revelation of knowledge, which might
weaken the bargaining power of the agent. Hence, it is not
straightforward that protesting is always in the protester’s ad-
vantage, even if it initially leads to a higher utility. Other
options for alternative protocols include the addition of time
constraints [Kraus et al., 1995] or the use of arguments to
support an offer [Amgoud and Prade, 2003].
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