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Abstract—Semi-supervised learning incorporates aspects of
both supervised and unsupervised learning. In semi-supervised
classification, only some data instances have associated class
labels, while others are unlabelled. One particular group of
semi-supervised classification approaches are those known as
self-labelling techniques, which attempt to assign class labels
to the unlabelled data instances. This is achieved by using the
class predictions based upon the information of the labelled
part of the data. In this paper, the applicability and suitability
of fuzzy rough set theory for the task of self-labelling is
investigated. An important preparatory experimental study is
presented that evaluates how accurately different fuzzy rough set
models can predict the classes of unlabelled data instances for
semi-supervised classification. The predictions are made either
by considering only the labelled data instances or by involving
the unlabelled data instances as well. A stability analysis of
the predictions also helps to provide further insight into the
characteristics of the different fuzzy rough models. Our study
shows that the ordered weighted average based fuzzy rough
model performs best in terms of both accuracy and stability.
Our conclusions offer a solid foundation and rationale that will
allow the construction of a fuzzy rough self-labelling technique.
They also provide an understanding of the applicability of fuzzy
rough sets for the task of semi-supervised classification in general.

I. INTRODUCTION

The area of semi-supervised learning [1] lies between the
two major machine learning paradigms: supervised learning
and unsupervised learning. Data instances can be represented
by a number of descriptive conditional features and an associ-
ated decision feature. In a classification setting, this decision is
a class label, drawn from a finite set of possibilities. In contrast
to supervised learning, where the class labels are available for
all of the instances, and unsupervised learning, where none
of the data instances have associated labels, semi-supervised
classification considers datasets for which only part of the
instances are labelled, whilst the remainder are not. There
is wide applicability for such techniques, including natural
language processing and bioinformatics, with the shared char-
acteristic that the labelling of instances is costly or difficult
[2]. As a result of this, large amounts of data consist of both

labelled and unlabelled instances. A popular approach in semi-
supervised classification is self-training or self-labelling [3].
These methods initially attempt to predict the missing class
labels for the training set. They usually implement an iterative
approach, where each iteration consists of an extension of
the labelled set using the most confident class predictions for
unlabelled instances. The predictions are made based on the
currently labelled instances. Afterwards, the enlarged labelled
set is used to make predictions for unseen instances.

In this paper, focus is placed on the use of fuzzy rough set
theory [4] for self-labelling in semi-supervised classification.
The fuzzy rough set model is a hybridization of fuzzy sets
[5] and rough sets [6]. By combining both approaches, vague
(fuzzy) and incomplete (rough) information can be modelled.
As a consequence, it has been, and continues to be, used
in many machine learning techniques [7]. A central tenet of
fuzzy rough set theory is the approximation of a concept by
two fuzzy sets. In the crisp setting (rough set theory), the
lower approximation contains instances which belong to the
concept with certainty, while the upper approximation consists
of instances which possibly belong to it. In fuzzy rough set
theory, both the upper and lower approximation are fuzzified.

Fuzzy rough sets have been used in a simple semi-
supervised self-labelling method in [8], where the initial
labelling step is based upon the lower approximation calcu-
lations. In each iteration, when a hitherto unlabelled instance
fully belongs to the lower approximation of a particular class,
it receives the label of that class. This approach may be
too naive, as the membership to the lower approximation is
governed largely by the choice of fuzzy similarity relation,
fuzzy connectives and the underlying data distribution. This
will limit the successful execution of the self-labelling stage.

Before an extension of this method could be considered,
some important questions need to be posed, namely: how
robust is the fuzzy rough lower approximation as a class
prediction mechanism when considering missing class labels?
and what if the upper approximation were to be used? If the
self-labelling step consists of assigning an unlabelled instance



to the class for which its membership degree to the lower or
upper approximation is largest, then a verification is required
in order to assess the accuracy and robustness of this procedure
and also how it changes when fewer labelled instances are
available. It is important to note that only the initial self-
labelling iteration is considered here, that is, the first prediction
step for all unlabelled instances. That is why a comparison
with existing self-labelling methods is not made yet, as we
do not propose a complete method but rather investigate the
robustness and provide an in-depth analysis of fuzzy rough sets
for this task. As noted in e.g. [9], if the initial predictions in
the self-labelling step are incorrect, this will have a detrimental
effect on its performance, as each subsequent labelling step
has the effect of reinforcing the initially incorrect labels. This
initial step is therefore imperative in order to examine the
robustness of the predictor used in the first labelling phase.

The lower and upper approximation operators of several
fuzzy rough set models are considered in this paper as potential
candidates for implementing this phase. In future work, the
conclusions drawn from this investigation will provide a foun-
dation for constructing a fuzzy rough self-labelling technique
that is competitive with or superior to the current state-of-
the-art semi-supervised classifiers. The findings presented here
also provide an important insight into the use of fuzzy rough
set models for the task of semi-supervised learning in general.

The remainder of this paper is structured as follows. In
Section II the definitions of the fuzzy rough approximation
operators for different models are recalled. Their predictive
ability and prediction stability are evaluated and discussed in
the experimental evaluation in Section III. Finally, Section IV
concludes with a discussion of future research directions.

II. FUZZY ROUGH SET MODELS

Several hybrid models of fuzzy and rough set theory have
been proposed in the literature. In this section, we describe
four of the most popular fuzzy rough set models, which are
evaluated in our study. In general, for all included models,
the lower approximation is dependent on the choice of an
implicator I. This fuzzy operator is a mapping I : [0, 1]2 →
[0, 1] that is decreasing in its first argument, increasing in
its second and satisfies the boundary conditions I(0, 0) =
I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0. Likewise, the
upper approximations depend on a triangular norm (t-norm)
T : [0, 1]2 → [0, 1], a type of commutative and associative
operator that is increasing in both arguments and satisfies
(∀a ∈ [0, 1])(T (a, 1) = a). We compare several implicators
and t-norms in our experiments, using three popular options
for each operator. The different alternatives for I are the
Łukasiewicz implicator (IL(a, b) = min(1 − a + b, 1)), the
Kleene-Dienes implicator (IKD(a, b) = max(1−a, b)) and the
Reichenbach implicator (IR(a, b) = 1−a+a·b). The included
t-norms are the Łukasiewicz t-norm (TL(a, b) = max(a+ b−
1, 0)), the minimum t-norm (Tm(a, b) = min(a, b)) and the
product t-norm (Tp(a, b) = a · b).

A component shared among all fuzzy rough set models
is their use of a fuzzy indiscernibility relation R(·, ·), which

measures the extent to which two instances are similar based
on their feature values. In this paper, we define this attribute
similarity relation as R(x, y) = 1

|A|
∑
a∈ARa(x, y), where A

is the set of all features. When a is numeric, we set

Ra(x, y) = 1− |a(x)− a(y)|
range(a)

.

Otherwise, we define this value as

Ra(x, y) =

{
1 if a(x) = a(y)

0 if a(x) 6= a(y).

For the other parameters of the four models, we mostly
follow the experimental study of [10], in which the authors
evaluated the robustness of fuzzy rough set models against
class and attribute noise. We specify all settings in the model
descriptions below. With respect to notation, we use A and A
to denote the lower and upper approximations of a set A with
the chosen parameter settings. Both are fuzzy sets.

The aim of this contribution is to evaluate the predictive
capacity and the stability of a selection of fuzzy rough
approximation operators in a semi-supervised setting. Recall
that the latter means that some (or a substantial part) of the
training instances are not labelled, that is, their feature values
are known, but their class label is not. We denote the labelled
part of the training set by L and the unlabelled part by U
and present two possible general ways to determine the fuzzy
rough approximations. The first setting coincides with the
traditional way of self-labelling, in that the unlabelled training
instances are completely disregarded in the calculations and
only the instances in L are used. It should be clear that
this setting will merely allow us to verify the influence of
the size of a fully labelled training set on the predictions
and stability of the fuzzy rough approximation operators. The
second setting represents a first naive way to introduce the
unlabelled instances in the calculations. It assumes that every
instance in U belongs to its own separate class, following [11].
A. Traditional fuzzy rough sets

We consider the traditional fuzzy rough set model of [4],
albeit in its more general implicator/t-norm form proposed in
[12]. In the first setting, only instances y from the labelled part
of the training set are involved in the calculations. Since our
experiments solely involve approximations of decision classes,
we are guaranteed that the set A is crisp, meaning that the
membership values A(·) are either 0 (instance not in A) or 1
(instance in A). The membership degree of an instance x to
the lower approximation of a set A in this setting is given by

A(x) = min
y∈L

[I(R(x, y), A(y))]

= min

[
min
y∈L∩A

[I(R(x, y), 1)],

min
y∈L∩co(A)

[I(R(x, y), 0)]
]

= min
y∈L∩co(A)

[I(R(x, y), 0)]

= min
y∈L∩co(A)

[NI(R(x, y))]. (1)



This derivation uses the fact that for any implicator
(∀a)(I(a, 1) = 1) holds, which directly follows from the
condition I(1, 1) = 1 and that an implicator is decreasing
in its first argument. The operator NI is the induced negator
of the implicator I and is defined as (∀a)(NI(a) = I(a, 0)).
It can easily be derived that the three implicators in our study
(IL, IKD and IR) all have the same induced negator, namely
the standard negator N ((∀a)(N (a) = 1−a)). As a result, the
traditional lower approximation is independent of our choice
between these three alternatives. The membership degree of x
to the upper approximation of A in the first setting is given as

A(x) = max
y∈L

[T (R(x, y), A(y))]

= max

[
max
y∈L∩A

[T (R(x, y), 1)],

= max
y∈L∩co(A)

[T (R(x, y), 0)]
]

= max
y∈L∩A

[T (R(x, y), 1)]

= max
y∈L∩A

[R(x, y)], (2)

where we have used that for any t-norm (∀a)(T (a, 0) = 0)
holds, a consequence of the property that a t-norm is increasing
in both its arguments, it is commutative and (∀a)(T (a, 1) =
a). We observe that the traditional upper approximation is
independent of the choice of t-norm.

Moving to the second setting, we involve the instances of
U as well. As we assume all instances in U to belong to their
own separate decision class, we have (∀y ∈ U)(A(y) = 0). A
similar derivation as above allows us to conclude that in this
setting

A(x) = min
y∈(L∩co(A))∪U

[NI(R(x, y))] (3)

holds. As above, this membership degree is independent of the
choice of implicator in our study. Based on the derivation for
the upper approximation given above, it should be clear that
it coincides in both settings, since (∀y ∈ U)(A(y) = 0).

B. OWA-based fuzzy rough sets
This model was proposed in [13]. It is a generalization of

the traditional model, replacing the strict minimum and max-
imum operators by an ordered weighted average (OWA, [14])
aggregation. Given a weight vector W , the OWA aggregation
of a set of values V is given as

OWA(V ) =

|V |∑
i=1

(wi · vi),

where wi is the ith element of the vector W and vi is the ith
largest value in V .

In the first setting of the OWA-based model, we replace the
minimum and maximum in (1) and (2) by OWA aggregations
and find

A(x) = OWA
y∈L∩co(A)

[NI(R(x, y))] (4)

and
A(x) = OWA

y∈L∩A
[R(x, y)]. (5)

As for the traditional model, these membership degrees are
independent of our choice of implicator and t-norm. For the
second setting, we modify (3) to

A(x) = OWA
y∈(L∩co(A))∪U

[NI(R(x, y))], (6)

which is also independent of the choice of implicator in this
paper. The upper approximation coincides in the two settings.

In the OWA aggregation, we use linearly increasing or
decreasing weights, which are respectively defined as

W =

〈
2

p(p+ 1)
,

4

p(p+ 1)
, . . . ,

2(p− 1)

p(p+ 1)
,

2

p+ 1

〉
(7)

and

W =

〈
2

p+ 1
,
2(p− 1)

p(p+ 1)
, . . . ,

4

p(p+ 1)
,

2

p(p+ 1)

〉
, (8)

where p is the size of the set of values to be aggregated.
These vectors are normalized versions of 〈1, 2, . . . , p− 1, p〉
and 〈p, p− 1, . . . , 2, 1〉 and correspond to the Borda count
in decision making applications [15]. We use vector (7)
for the lower approximations and vector (8) for the upper
approximation. It should be clear that, comparing expressions
(1) and (4) for instance, this OWA-based alternative uses
all values NI(R(x, ·)) instead of solely the lowest one to
calculate A(x). In this process, our choice of weights results
in the assignment of the highest weight to the lowest value and
linearly decreasing weights to the consecutively higher ones.

C. Fuzzy variable precision rough sets (FV)

This fuzzy rough set model was proposed in [16]. Since we
are using crisp sets A, we can use the simplified formula for
the approximations, as derived by the authors. In this case, in
the first setting, the membership degrees of an instance x to
the lower and upper approximations of A are given as

A(x) = min
y∈L,A(y)=0

[I(R(x, y), α)]

= min
y∈L∩ co(A)

[I(R(x, y), α)] (9)

and

A(x) = max
y∈L,A(y)=1

[T (R(x, y),N (α))]

= max
y∈L∩A

[T (R(x, y),N (α))], (10)

where N is a negator, for which we use the standard negator.
We set α to 0.15, following [10]. For the second setting, the
lower approximation of a crisp set A is determined as

A(x) = min
y∈L∪U,A(y)=0

[I(R(x, y), α)]

= min
y∈(L∩co(A))∪U

[I(R(x, y), α)]. (11)

Because of the assumption (∀y ∈ U)(A(y) = 0), the upper
approximation is the same as in the first setting.



D. β-precision fuzzy rough sets (BPFR)

The fourth model included in our study was introduced in
[17] and is based on a β-precision quasi t-norm and quasi
t-conorm [18]. In this study, as in [10], we derive these
from the minimum operator. For the first setting, the lower
approximation of a set A is determined as

A(x) = minβ
y∈L

[I(R(x, y), A(y))] (12)

and for the second as

A(x) = minβ
y∈L∪U

[I(R(x, y), A(y))], (13)

where minβ is the quasi t-norm associated with the minimum,

minβ(a1, . . . , an) = min(b1, . . . , bn−m),

with bi the ith largest element among a1, . . . , an and

m = max

i ∈ {0, . . . , n} | i ≤ (1− β)
n∑
j=1

aj

 . (14)

In the experiments, we set β to 0.97, based on [10]. As a result
of our choice of the minimum, the upper approximations of
this model coincide with those in Section II-A.

III. EXPERIMENTAL STUDY

Our main contribution lies with the experimental analysis
of the prediction capacity and stability of the fuzzy rough
approximation operators of the models presented in Section II.
The stability analysis has been included to assess the robust-
ness of these operators against small changes in the training
sets. These experiments allow us to answer some important
questions:

1) How are the predictions, both w.r.t. accuracy and stabil-
ity, of the fuzzy rough operators influenced by increasing
levels of missing class labels?

2) Are there notable differences between the two settings,
that is, between using only L or both L and U? If so,
are there any benefits to including the unlabelled training
instances in the predictions?

3) Can we nominate (based on the results) one particular
operator as the most promising to be used for a self-
labelling method?

A. Set-up

Table I lists the 15 benchmark datasets selected from the
KEEL repository (www.KEEL.es) for our experimental evalu-
ation. The similarity relation used for all of the models is that
specified above. As noted in Section II, some approximation
definitions depend on the choice of an implicator and a t-norm,
and the given range of operators is included here.

The goal of this evaluation is two-fold. Firstly, it is to
evaluate and compare the predictive characteristics of the
different approximation operators. We use 10 fold cross-
validation here, where the class labels of the instances in the
test folds are predicted. This is done for different levels of

Table I
DATASETS USED IN THE EXPERIMENTAL EVALUATION

Dataset # inst # feat Dataset # inst # feat
abalone 4174 8 sonar 208 60
balance 625 4 spambase 4898 11
contraceptive 1473 9 titanic 2201 3
ecoli 336 7 vehicle 846 18
german 1000 20 vowel 990 13
mov libras 360 90 wdbc 569 30
pima 768 8 yeast 1484 8
segment 2310 19

Figure 1. Procedure for the stability calculation.

labelled and unlabelled instances in the training folds. The
percentage of unlabelled training instances is set from 0%
up to 90% in intervals of 10%, by removing the class labels
from a randomly selected set of instances of the corresponding
size. To classify a test instance, its membership degree to
the lower or upper approximation of all classes is computed.
When this value is largest for the true class of the test
instance, the classification is considered to be correct. In
every other case, the classification is incorrect. All models and
approximations discussed in Section II are evaluated. These
results are presented in Section III-B.

The second objective of this experimental analysis is to
investigate the predictive stability of the different models for
varying levels of missing class labels. The procedure described
in [19] and depicted in Figure 1 is implemented for this task.
For each dataset D, where D is taken from Table I, a training
(90%) and test (10%) set is constructed. These are denoted as
Tr and Ts respectively. For a given percentage p, the class
labels of p% of the instances in Tr are removed, thereby
resulting in the sets L and U . From this variant of Tr, a
number of related, but slightly different, datasets are extracted
by randomly selecting 90% of L and U . A total number of
T such datasets are constructed (P1, P2, . . . , PT ). Next, each
dataset is used to predict the labels of Ts, using the lower or
upper approximation of one of the fuzzy rough set models.
This step yields T vectors l(1), l(2), . . . , l(T ) containing the
class predictions for the test instances. The stability Stot of
the model is measured by aggregating the pairwise similarity



Table II
PREDICTION ACCURACY OF A RANDOM CLASSIFIER

% unlabelled Acc. Acc. Acc.
0% 0.293 40% 0.312 70% 0.308

10% 0.296 50% 0.297 80% 0.282
20% 0.308 60% 0.287 90% 0.299
30% 0.298

of these vectors, by means of the following formula

Stot =
2

T (T − 1)

T∑
i=1

T∑
j=i+1

S(l(i), l(j)),

where S(·, ·) is the similarity of vectors, defined as

S(l(i), l(j)) =
1

|Ts|

|Ts|∑
k=1

Ind(l
(i)
k = l

(j)
k ),

with Ind(·) the standard indicator function. The results of the
stability analysis are discussed in Section III-C.

B. Prediction results

In this section, the prediction accuracy of the approximation
operators of the four fuzzy rough set models are examined
in the context of the two settings detailed previously. The
results are presented in Tables III-VI. The values shown
are the average accuracies of a particular operator for the
15 datasets in Table I, in a 10-fold cross-validation set-up.
When the column header is an implicator, it refers to a lower
approximation operator. In the case of a t-norm, it represents
an upper approximation. Before considering the fuzzy rough
set models, a baseline is established in the form of a random
classifier, which labels unseen instances in a random fashion
and yields the results presented in Table II. Most of the models
evaluated below give considerably better results.

1) Traditional fuzzy rough set model: Table III presents the
results for the traditional fuzzy rough set model. Recall that, in
this study, the choice of implicator or t-norm is irrelevant and
that the upper approximation coincides in the two settings.
We observe that the accuracy of the fuzzy rough operators
decreases when the number of unlabelled training instances in-
creases. This is to be expected, as less information is available
to make classification predictions. We also note that the results
for the lower and upper approximation in the first setting
are the same, showing that the two operators have the same
predictive power in this case. For the lower approximation,
the performance in the second setting is considerably reduced
when compared to the first, as it can be seen that the average
accuracy decreases rapidly when a larger number of class
labels are missing. This model does not benefit from the naive
inclusion of unlabelled instances. In going from (1) to (3), the
instances from U are all included in the minimum calculation
without question. Nevertheless, an instance x ∈ U still belongs
to some unknown class A and x should therefore ideally, in
the spirit of (1), not be included in the calculation of the
lower approximation of that class. In order to more thoroughly
evaluate whether instances in U can be used to improve the

Table III
PREDICTION ACCURACY OF TRADITIONAL FUZZY ROUGH SETS

Setting 1 Setting 2
% unlabelled I T I

0% 0.674 0.674 0.674
10% 0.670 0.670 0.587
20% 0.670 0.670 0.513
30% 0.668 0.668 0.442
40% 0.663 0.663 0.372
50% 0.664 0.664 0.311
60% 0.657 0.657 0.253
70% 0.643 0.643 0.185
80% 0.617 0.617 0.123
90% 0.584 0.584 0.065

Table IV
PREDICTION ACCURACY OF OWA-BASED FUZZY ROUGH SETS

Setting 1 Setting 2
% unlabelled I T I

0% 0.688 0.684 0.688
10% 0.684 0.677 0.684
20% 0.681 0.674 0.681
30% 0.674 0.671 0.676
40% 0.674 0.669 0.675
50% 0.668 0.656 0.669
60% 0.659 0.650 0.660
70% 0.651 0.645 0.650
80% 0.640 0.634 0.643
90% 0.621 0.609 0.622

predictions of the fuzzy rough operators, the second setting
for this model should be modified to not simply assume that
all instances belong to their own decision class. This is part
of our proposed future work.

2) OWA-based fuzzy rough set model: Table IV presents
the results for the OWA-based fuzzy rough set model. As
for the traditional model, the operators are independent of the
choice of implicator and t-norm respectively. As opposed to
the above, the lower approximation is not negatively influenced
by including the instances from U in the calculations, which
may be due to the averaging effect of the OWA aggregation.
However, it does not clearly benefit from it either, so further
effort involving more sophisticated versions of the second
setting are warranted for this model as well. We also note that
the accuracy attained by the OWA-based operators is higher
than the traditional ones, in particular in the presence of more
unlabelled instances. This supports the observations noted in
[13] with respect to robustness in the presence of noise.

3) Fuzzy variable precision rough sets: Table V presents
the results for the fuzzy variable precision rough set model. As
opposed to the traditional and OWA-based models, the lower
approximation is not independent of the choice of implicator,
nor the upper approximation of the choice of t-norm.

The three implicators do not yield the same performance:
the accuracy of implicators IL and IR coincides, but that of
IKD is quite a bit lower. It can not be proven that the lower
approximations using IL or IR are the same, but it can be
expected that the same instances y ∈ L∩ co(A) determine the
results in (9). Indeed, it can be derived that when using IL,



Table V
PREDICTION ACCURACY OF FUZZY VARIABLE PRECISION ROUGH SETS

Setting 1
IL TL

% unlabelled IKD IR Tp Tm
0% 0.100 0.674 0.673 0.100

10% 0.102 0.670 0.671 0.102
20% 0.102 0.670 0.672 0.103
30% 0.105 0.668 0.666 0.106
40% 0.107 0.663 0.665 0.107
50% 0.108 0.664 0.665 0.107
60% 0.115 0.657 0.649 0.112
70% 0.121 0.643 0.642 0.121
80% 0.127 0.618 0.617 0.130
90% 0.157 0.584 0.582 0.154

Setting 2
0% 0.100 0.674 0.673 0.100

10% 0.063 0.587 0.671 0.102
20% 0.050 0.513 0.672 0.103
30% 0.041 0.442 0.666 0.106
40% 0.033 0.372 0.665 0.107
50% 0.030 0.311 0.655 0.107
60% 0.026 0.253 0.649 0.112
70% 0.016 0.185 0.642 0.121
80% 0.010 0.123 0.617 0.130
90% 0.007 0.065 0.582 0.154

expression (9) reduces to

A(x) =

1 + α− max
y∈L∩co(A)

R(x, y) if (∃y)(R(x, y) > α)

1 if (∀y)(R(x, y) ≤ α)

and for IR to

A(x) = 1− (1− α) · max
y∈L∩co(A)

R(x, y).

In both cases, the result is based on the most similar instance
y ∈ L ∩ co(A). For the third implicator IKD we find

A(x) =

{
1−max

y∈S
R(x, y) if S 6= ∅

α otherwise.

where S = {y ∈ L ∩ co(A) ‖R(x, y) < 1− α}. In this case,
due to the definition of S, it is not the most similar instance
to x that determines the result and we can expect the final
performance to be different from that of the versions with
IL and IR. We have set α to 0.15. For lower values, the
differences between IL or IR on the one hand and IKD on
the other may be smaller. Analogous conclusions hold for (11).

We observe that the lower approximation has the best
performance in the first setting. Going from (9) to (11), the
minimum is determined over a far larger set of values. The
values themselves solely depend on the feature similarity rela-
tion R(·, ·), so the inclusion of instances in U can substantially
alter this set and thereby the minimum.

For the upper approximation (as noted in Section II-C), there
is no difference between the two settings. The two t-norms
TL and Tp yield equal performance, which is close to that
of the lower approximation with implicators IL and IR in
the first setting. That of the third alternative Tm is somewhat
lower and comparable to the first setting lower approximation

Table VI
PREDICTION ACCURACY OF β-PRECISION FUZZY ROUGH SETS

Setting 1 Setting 2
IKD IKD

IL IL
% unlabelled IR IR

0% 0.660 0.660
10% 0.657 0.651
20% 0.658 0.639
30% 0.652 0.614
40% 0.643 0.583
50% 0.644 0.558
60% 0.629 0.519
70% 0.623 0.485
80% 0.607 0.417
90% 0.579 0.305

with IKD. As for the lower approximation, it can be derived
that the membership degree of an instance x to the upper
approximation using TL and Tp largely depends on its most
similar value y ∈ L ∩ A, while for Tm it is based on the set
{y ∈ L ∩A ‖R(x, y) < 1− α}.

4) β-precision fuzzy rough sets: Table VI presents the
results for the β-precision fuzzy rough set model. This table
only includes the lower approximation, as the upper approxi-
mation coincides with that of the traditional model. The three
implicators all yield the same results, in both settings. It
can again not be proven in general that the values of the
lower approximation are the same using any of these three
implicators. Instead, these results are due to our choice of
β. We have set this value to 0.97. Based on the definition
of the β-precision quasi t-norm recalled in Section II-D, we
know that the calculation of the minimum in expressions (12)
and (13) only excludes the m smallest instances, where m is
determined by (14) and for β = 0.97 simplifies to

m = max

i ∈ {0, . . . , n} | i ≤ 0.03

n∑
j=1

aj

 .
We can expect the right-hand side of the inequality to be low.
In fact, since the aj’s are implication values, we know that it
is bounded by 0.03 ·n, with n = |L| for (12) and n = |L∪U |
for (13). As a result, m can be expected to be small as well
and only a few implication values will be excluded in (12) and
(13). As recalled in the derivations of (1) and (3), the lowest
implication values are those for which y ∈ L ∩ co(A) in (12)
and y ∈ (L ∩ co(A)) ∪ U in (13). For such instances y, as
noted above, we know that the implication values coincide.
The low value of m makes it highly likely for such a value to
be selected by the minimum, which is why the results of the
three implicators coincide for our choice of β.

The performance of the lower approximation is better in
the first setting than in the second, which is explained in the
same way as the analogous conclusion for the traditional fuzzy
rough set model. We do note that although the results for the
first setting are close together, the decrease in performance in
the second is not as great for the β-precision fuzzy rough set
model as it was for the traditional version. This may be due to



the intrinsic exclusion of instances in U that actually belong
to the class from which the lower approximation is calculated
in (13). As we discussed in Section III-B1, the inclusion of
all instances of U is a shortcoming of the second setting for
the traditional lower approximation.

C. Stability analysis

The second part of our experimental study evaluates the
stability of the predictions by the different operators. The
procedure for these calculations is described above. The results
are presented in Table VII. Each value in this table is taken
as an average over the 15 datasets in Table I and 50 runs for
each dataset, where each run consists of randomly selecting
90% of the training set for use in the prediction step.

For the first setting, in general, the stability degrades only
slightly for increasing percentages of unlabelled instances,
which implies that the confidence with which predictions are
made remains steady even when less information is available.
The use of the second setting often leads to a larger drop in
stability when the portion of unlabelled instances increases.
This is noticeable for operators that also demonstrated a
decrease in accuracy, as discussed in Section III-B. Amongst
those models affected, the approximations of the β-precision
fuzzy rough sets report the smallest decrease. For the OWA-
based model, the stability of the first and second settings are
comparable, as were their accuracy values. For all models, the
best performing versions of the lower and upper approxima-
tions yield comparable stability values.

The overall highest stability is found for the OWA-based
fuzzy rough set model, which improves on the stability of
the traditional model. The lower approximation of the fuzzy
variable precision rough set model attains its lowest stability
using IKD. The stability of the remaining two implicators
IL and IR is considerably better and there are only small
differences between these two. The same conclusion was
drawn for the prediction performance analysis. Similarly, for
the upper approximation, the stability of the version using
Tm is noticeably lower than that of those which use TL and
Tp and it has already been observed that the accuracy of the
approximation with this t-norm is lower as well. Finally, the
lower approximation of the β-precision fuzzy rough set model
has a comparable stability for the three implicators.

D. Summary

Given the above investigation, a clearer perspective is now
available in terms of those questions posed in the introduction
of the paper and the beginning of this section.

1) How are the predictions, both w.r.t. accuracy and stabil-
ity, of the fuzzy rough operators influenced by increasing
levels of missing class labels?
Answer: when considering the best setting for each
model, it is observed that the influence of the number of
missing class labels is small, particularly when consid-
ering the stability of the predictions. Small decreases in
accuracy are reported when the percentage of unlabelled

instances increases, but this is to be expected and
acceptable, as less information is available.

2) Are there notable differences between the two settings,
that is, between using only L or both L and U? If so,
are there any benefits to including the unlabelled training
instances in the predictions?
Answer: the second setting mostly provided poorer
accuracy of results than the first. The exception to this
was the OWA-based model where the results of the two
settings were comparable. In general, the conclusion is
that there is currently no clear benefit to allowing the
unlabelled instances to participate in the initial predic-
tion of a self-labelling method. However, some caution
should be taken when making this statement: only a
naive approach in [11] has been tested which allows the
involvement of unlabelled instances. Alternatives, that
do not assume that every unlabelled instance belongs
to its own individual class, may yield better prediction
results (see discussion in conclusion section).

3) Can we nominate (based on the results) one particular
operator as the most promising to be used for a self-
labelling method?
Answer: overall, the OWA-based fuzzy rough set model
yields the best performance using the lower approxima-
tion. This operator also demonstrated the highest levels
of stability among the evaluated set.

IV. CONCLUSION

Self-labelling is a popular approach in semi-supervised classi-
fication, where only part of the training dataset is labelled. It
is an iterative procedure which assigns labels to the unlabelled
instances in the training set using a model built upon the la-
belled part of the data. Fuzzy rough set theory, a mathematical
tool used in machine learning, was applied for a simple self-
labelling method in [8]. In order to extend this method and
to make it competitive with state-of-the-art semi-supervised
classifiers, some important questions were firstly considered.
These questions have been given careful treatment here.

A substantial experimental analysis of both the predictive
ability and prediction stability of the lower and upper ap-
proximation operators of four fuzzy rough set models has
been carried out. This helps to verify how the predictions
of these operators are influenced by increasing percentages
of missing labels. We evaluated two different settings; one
where only labelled instances are used in the predictions and
a second where the unlabelled instances are also employed.
The experimental evaluation shows that the first setting is
generally preferred, although this may be due to implementing
an approach for the second setting which is perhaps too naive.
As future work, it would be interesting to verify whether more
advanced heuristics may improve the performance of the sec-
ond setting. One possible area of exploration revolves around
the idea of allowing unlabelled instances to partially contribute
to the construction of the fuzzy rough approximations.

Amongst the fuzzy rough set models examined here, the
OWA-based model seemed to offer the best performance,



Table VII
RESULTS OF THE STABILITY ANALYSIS

% unlabelled
Setting/Model 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
1/Trad-I 0.900 0.900 0.901 0.902 0.897 0.900 0.900 0.898 0.890 0.889
1/Trad-T 0.904 0.904 0.905 0.906 0.899 0.902 0.899 0.899 0.897 0.890
2/Trad-I 0.901 0.823 0.778 0.711 0.669 0.622 0.572 0.521 0.477 0.442
1/OWA-I 0.937 0.936 0.934 0.929 0.927 0.924 0.916 0.916 0.907 0.897
1/OWA-T 0.937 0.939 0.937 0.922 0.923 0.928 0.914 0.917 0.902 0.879
2/OWA-I 0.937 0.937 0.935 0.928 0.932 0.928 0.918 0.914 0.909 0.898
1/FV-IKD 0.470 0.475 0.475 0.476 0.477 0.476 0.483 0.486 0.490 0.514
1/FV-IL 0.898 0.900 0.901 0.903 0.896 0.901 0.899 0.897 0.891 0.890
1/FV-IR 0.900 0.898 0.899 0.903 0.894 0.898 0.899 0.897 0.893 0.888
1/FV-TL 0.901 0.903 0.902 0.904 0.901 0.897 0.902 0.899 0.893 0.882
1/FV-Tm 0.476 0.477 0.478 0.481 0.484 0.481 0.485 0.491 0.500 0.529
1/FV-Tp 0.904 0.904 0.902 0.904 0.903 0.898 0.904 0.903 0.890 0.885
2/FV-IKD 0.472 0.447 0.444 0.436 0.430 0.432 0.423 0.416 0.411 0.410
2/FV-IL 0.901 0.821 0.779 0.711 0.668 0.623 0.574 0.524 0.477 0.440
2/FV-IR 0.900 0.822 0.780 0.711 0.670 0.620 0.573 0.521 0.479 0.442
1/BPFR-IKD 0.895 0.891 0.898 0.890 0.892 0.880 0.875 0.884 0.869 0.872
1/BPFR-IL 0.895 0.891 0.898 0.890 0.891 0.878 0.877 0.885 0.866 0.873
1/BPFR-IR 0.895 0.892 0.897 0.890 0.889 0.878 0.875 0.885 0.871 0.870
2/BPFR-IKD 0.896 0.885 0.887 0.864 0.843 0.823 0.802 0.753 0.715 0.615
2/BPFR-IL 0.894 0.885 0.887 0.865 0.842 0.824 0.801 0.755 0.713 0.616
2/BPFR-IR 0.897 0.883 0.886 0.865 0.842 0.823 0.800 0.755 0.713 0.616

specifically when using its associated lower approximation
operator. It exhibited both the highest prediction accuracy
and most stable results. Further tuning of this operator, for
instance by using different aggregation weights or by using an
intelligent combination of the lower and upper approximations,
may further enhance its performance.

The integration of this model into a potential self-labelling
method would form the next step in developing fuzzy rough
set models as a basis for semi-supervised learning. A related
aspect is the decision regarding when a prediction for an
unlabelled instance can be considered sufficiently confident.
This is an important factor as it affects the overall labelling of
the data and can help to determine if an unlabelled instance
should be assigned a particular label immediately or whether
it should be postponed until a later iteration.
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