Pattern Recognition 53 (2016) 36-45

journal homepage: www.elsevier.com/locate/pr

Contents lists available at ScienceDirect PATTERN
RECOGNITION

Pattern Recognition

Fuzzy rough classifiers for class imbalanced multi-instance data

—

\!} CrossMark

Sarah Vluymans *”* Danel Sanchez Tarragé ¢, Yvan Saeys ™¢, Chris Cornelis *¢,

Francisco Herrera %'

2 Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium

> VIB Inflammation Research Center, Ghent, Belgium

¢ Department of Computer Science, Central University of Las Villas, Cuba

d Department of Computer Science and Artificial Intelligence, University of Granada, Spain

€ Department of Respiratory Medicine, Ghent University, Belgium

f Faculty of Computing and Information Technology — North Jeddah, King Abdulaziz University, Saudi Arabia

ARTICLE INFO

Article history:

Received 29 April 2015

Received in revised form

22 October 2015

Accepted 3 December 2015
Available online 12 December 2015

Keywords:
Multi-instance learning
Fuzzy rough set theory
Imbalanced data

ABSTRACT

In multi-instance learning, each learning object consists of many descriptive instances. In the corre-
sponding classification problems, each training object is labeled, but its constituent instances are not. The
classification objective is to predict the class label of unseen objects. As in traditional single-instance
classification, when the class sizes of multi-instance data are imbalanced, classification is degraded.
Many multi-instance classifiers have been proposed, but few take into account the possibility of class
imbalance, which causes them to fail in this situation. In this paper, we propose a new type of classifier
that embodies a solution to the multi-instance class imbalance problem. Our proposal relies on the use of
fuzzy rough set theory. We present two families of classifiers respectively based on information extracted
at bag-level and at instance-level. We experimentally show that our algorithms outperform state-of-the-
art solutions to multi-instance imbalanced data classification, evaluated by the popular metrics AUC and

geometric mean.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In machine learning, multi-instance learning (MIL, [1]) is a
generalization of the traditional single-instance attribute-value
approach. While in the single-instance setting each learning object
has a single descriptive vector, in MIL each learning object is
composed of many vectors, although all vectors relate to the same
set of descriptive attributes. In MIL jargon, a learning object is
called a bag and every descriptive vector is an instance. As in tra-
ditional learning, classification is one of the most important tasks
of MIL. Only the bags, and not their instances, have class labels.
The objective of multi-instance classification is to predict the class
label of unseen bags using a model built from a training set.

Many multi-instance classification algorithms have been pro-
posed. However, most have been designed and evaluated con-
sidering data with balanced classes. The class imbalance problem
affects both single and multi-instance learning. The problem
occurs when at least one of the classes has a disproportionately
small size compared to the other classes. In these cases, classifiers
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tend to make more errors on small classes and may even ignore
them completely, although small classes are usually more of
interest. This problem has received much attention in single-
instance learning (e.g. [2-4]), but has barely been studied in MIL.
To our knowledge, existing solutions in the MIL scenario are lim-
ited to the contributions of [5-7], that consider both preprocessing
techniques to modify the class imbalance as well as a set of cost-
sensitive boosting algorithms.

The K-nearest neighbor classifier (KNN, [8]) is one of the most
popular learning algorithms [9]. It assigns an unseen object to the
decision class most frequent among the K closest training objects
to the unseen object. Over the years, several improvements and
adaptations of KNN have been proposed. One successful mod-
ification is the fuzzy rough nearest neighbor classifier (FRNN, [10]),
which introduces fuzzy rough set theory into KNN. Fuzzy rough
set theory [11] is a framework to model vague (fuzzy) and
incomplete (rough) information, by introducing fuzzy set theory
[12] into rough set theory [13]. Rough sets approximate a concept
by means of a lower and upper approximation. The former con-
tains elements which certainly belong to the concept, while the
latter consists of elements possibly belonging to it. The integration
of fuzzy set theory in rough sets allows for a more flexible instance
similarity measure and graded membership degrees of elements
to the approximations. Concretely, similarity between instances is
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measured by a fuzzy relation and the constructed concept
approximations are fuzzy sets. Fuzzy rough set theory has been
used successfully in many single-instance machine learning
applications, including classification (e.g. [14-16]). In the classifi-
cation framework, it allows to model a degree of membership of
elements to approximations of the decision classes. The FRNN
method uses the unseen object's K nearest neighbors to construct
the lower and upper approximation of each decision class and
then computes the membership of the unseen object to this
approximations. The hybridization between fuzzy rough sets and
KNN results in a classifier more robust to vague and incomplete
information [10]. Recently, a further improvement on FRNN was
introduced in [17] by using ordered weighted average operators
(OWA, [18]) and class dependent weight vectors. This method,
called IFROWANN, was specifically designed to handle class
imbalance and proved to be very effective in single-instance class
imbalanced classification.

In this paper, we introduce a new type of multi-instance clas-
sifiers, based on the IFROWANN method, which inherently contain
a solution to the class imbalance problem in multi-instance clas-
sification. The more complex nature of multi-instance data
prompts us to propose two families of classifiers: (1) bag-based
fuzzy rough classifiers which rely on relationships between bags,
considering the bag as a whole and (2) instance-based fuzzy rough
classifiers based on affinities that instances themselves have with
classes. In our experimental study, we show that the proposed
fuzzy rough nearest neighbors classifiers outperform state-of-the-
art solutions to class imbalanced multi-instance classification.

The remainder of this paper is structured as follows. We set out
in Section 2 with a specification of multi-instance classification
and the class imbalance problem and review previous proposals.
In Section 3, we recall the IFROWANN method from [17], which
forms the inspiration for our proposal. Section 4 considers multi-
instance classification and introduces our proposed method deal-
ing with class imbalance in this situation. The experimental eva-
luation of our proposal is conducted in Section 5. We conclude the
paper and lay out future research paths in Section 6.

2. The class imbalance problem in multi-instance classification

In this preliminary section, we specify the formal definition of
multi-instance classifiers. We recall the class imbalance problem
and how it has been dealt with in single-instance classification.
Finally, we review the efforts made to handle class imbalance in
multi-instance classification problems.

2.1. Multi-instance classification

MIL was introduced in [1] in a study of drug activity prediction
based on multiple molecular conformations. Since then, it has
attracted a considerable amount of attention due to its ability to
model data ambiguity and the link it forms between classical
attribute-value learning and relational learning [19]. MIL has
mainly been used in applications related to image recognition (e.g.
[20-22]). Other important application domains include bioinfor-
matics (e.g. [23-25]), text classification and web mining (e.g. [26-
29]) and computer-aided medical diagnosis and medical imaging
(e.g. [30-32]).

Given the instance space X and the label set ), a bag X; is a
multiset of instances {X;1,X;, ..., X} With x; € X. The number n;
denotes the cardinality of X;. Note that we use lowercase letters to
denote instances and uppercase letters for bags. Each bag is paired
with a label y;e ). Considering training data T={(X1,y1),.--,
(Xm,Ym)}, we formally define a multi-instance classifier h(X) as an
approximate model to the real function f : N¥ -, where NV is

the set of all multisets consisting of elements from X, that is, the
set of all possible bags.

Multi-instance datasets traditionally consist of two classes, one
positive and one negative. Several hypotheses exist to decide
when a bag of instances can be considered as positive [33]. The
standard multi-instance hypothesis assumes that a bag is positive
when at least one of its instances is positive. If not, the bag is
negative. An alternative is the threshold based assumption, which
states that the number of positive instances in a bag should exceed
a given threshold before the bag can be considered positive.
Overall, it implies that it is a too naive approach to assume that all
instances in a positive bag can be labeled as positive and all
instances in a negative bag as negative. This was for instance
shown in the review of [34]. We will take this into account in the
development of our classifiers.

2.2. The class imbalance problem

In single-instance classification, class imbalance occurs when
the elements in the dataset are unequally distributed among the
classes. The main focus has been on binary imbalanced problems,
where elements of the majority class outnumber those of the
minority class. The elements of the majority class are traditionally
denoted as negative and those of the minority class as positive. This
coincides with the fact that the minority or positive class is usually
the class of interest (e.g. [35]).

There are three main types of solutions used in traditional
classification to deal with class imbalance. Firstly, solutions at the
data level (resampling methods) perform undersampling of the
majority class, oversampling of the minority class or a combination
of both in order to balance the number of examples in the two
classes. Secondly, there exist solutions at the algorithmic level, in
which heuristics are incorporated into classic algorithms to handle
class imbalance, for example, by adjusting probabilities and
weights to favor the positive class. Of particular interest in this
type of solutions are cost-sensitive methods [36], which assign
higher costs to the misclassification of positive examples, while
aiming to minimize the overall classification cost. The third group
consists of ensemble solutions, that introduce one of the above
solutions (e.g. resampling or cost-sensitivity) in an ensemble
algorithm to create a layer of abstraction effectively separating the
method used to counteract the class imbalance from the base
classifier used in the ensemble.

Although many solutions to class imbalance have been pro-
posed in traditional classification, they are not directly applicable
to multi-instance scenarios due to the structural differences in the
datasets. In particular, multi-instance data consists of two levels:
instances and bags. The grouping of instances in bags is essential
additional information that should be taken into account. Fur-
thermore, the actual labeled data samples (bags) in multi-instance
data are far more complex than those in single-instance data
(instances) and the single-instance solutions simply cannot pro-
cess them. Class imbalance appears in multi-instance problems
like text, web, and image applications [5-7], but it has been little
addressed in the literature so far. In multi-instance classification,
class imbalance presents itself as an unequal distribution of the
bags among the classes, that is, we encounter a larger number of
negative bags compared to positive ones. The imbalance ratio (IR)
expresses the degree of class imbalance and is defined, for a two-
class dataset, as the ratio of the number of negative over the
number of positive bags, i.e, IR=|N|/|P|, where P and N are the
positive and negative classes respectively. While multi-instance
classification is not limited to two-class problems, this setting has
been the main focus of researchers in the field [34]. Moreover,
class imbalance has also been mainly studied for binary problems
in single-instance classification. All previous proposals dealing
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with class imbalance in multi-instance classification are developed
for two-class datasets as well, as discussed in Section 2.3. For these
reasons, we also focus on two-class problems.

2.3. Related work

In [5,6], two techniques to handle class imbalance in multi-
instance data are proposed. Firstly, they develop oversampling
methods based on the single-instance SMOTE method [37]. In
their BagSMOTE method, they increase the size of the positive
class by artificially generating new positive bags. In their second
algorithm InstanceSMOTE, they create new descriptive instances
and add them to existing positive bags in order to obtain a better
representation of this class. The IR of the dataset remains the same
in this case. Both methods are preprocessing algorithms and need
to be combined with a multi-instance classifier to complete the
classification process. In their experimental study, the authors
showed that BagSMOTE yields better results compared to
InstanceSMOTE.

The second part of the contribution of [5,6] is their develop-
ment of cost-sensitive classification procedures, based on the
AdaBoost.M1 boosting scheme [38]. The AdaBoost.M1 method
trains a base classifier in each iteration and reweighs instances
based on their classification outcome, to ensure that misclassified
instances are more focused on in the next iteration. The traditional
weight update formula is

De()K: (X, y;)

D¢ 1(d) = — M
with
K:(Xi.y:) = exp(—azy;ihi(Xy). (2)

Here, t is the iteration number, Z; is a normalization factor chosen
such that D, ; is a probability distribution and a:eR is the
coefficient associated with the classifier h;, representing its weight
in the final classification aggregation of the ensemble. The meth-
ods of [5,6] introduce class-dependent costs in the weight updates.
The cost ratios are set in favor of the positive class, implying that
relatively more effort is taken to correctly classify positive bags.
The authors note that the real cost ratios are generally unavailable
and advise the heuristic use of the imbalance ratio as cost ratio.
Four cost sensitive boosting are proposed, similar to the single-
instance cost-sensitive boosting algorithms from [39]:

Ab1: K; (X;,y;) = exp(— Ciawy;he(Xy)
Ab2: K¢ (X;,y;) = Ciexp(— awy;he(X))
ADb3:K¢ (Xi,y;) = Ciexp(—Ciaeyihe(Xy))
Ab4:K¢(X;,y;) = Ciexp(— Ciary;he(Xy)

The values C; are the cost items associated with the bags, where
bags of the same class are associated with the same costs. The
experimental work of [5,6] showed that the Ab3 version per-
formed best among the four alternatives. We briefly note two
shortcomings of the cost-sensitive approaches. Firstly, as stated
above, the cost ratio usually has to be heuristically set to the
imbalance ratio, since the actual differences in misclassification
costs of the classes are rarely available. Secondly, within a class, all
bags are assigned the same cost, while the misclassification of a
noisy sample should probably be attributed less importance
compared to a typical sample of that class.

The authors of [7] proposed a preprocessing method to
improve the classification of imbalanced multi-instance data as
well. They construct a function which estimates the degree to
which a descriptive instance, not a bag, can be considered as
negative. This measure is used to locate likely and unlikely positive
elements within positive bags and use them in resampling

procedures. The method consists of three main steps: (1) over-
sampling instances within positive bags, (2) undersampling within
positive bags and (3) undersampling within negative bags. All
steps occur at the instance-level. The oversampling step is based
on SMOTE. In the undersampling procedure, the decision criterion
to remove or retain instances is based on the amount of opposite-
class instances among their nearest neighbors.

3. Fuzzy rough ordered weighted average approach to imbal-
anced classification

In this section, we recall the proposal of [17] of a fuzzy rough
classifier dealing with class imbalance in single-instance problems.
The strength of this method relies on its use of class-dependent
weighting schemes, which are described in detail in Section 3.2.

3.1. The IFROWANN algorithm

IFROWANN [17], Imbalanced Fuzzy Rough Ordered Weighted
Average Nearest Neighbor Classification, is an extension of the
FRNN classifier of [10] addressing the class imbalance problem in
single-instance classification. FRNN is a nearest neighbor classifier
based on fuzzy rough set theory.

To classify an unseen instance x, FRNN makes use of the fuzzy
rough lower and upper approximations of the decision classes. In
general, the membership degrees of x to the lower and upper
approximations of class C are respectively defined as

Cx)= ryneigl[I (Rx,y),Cyl 3
and
Cx)= max(7’ (R, ¥), C). 4)

Here, T is the training set and R(,-) is a given fuzzy relation
expressing similarity between the instances, taking on values in
the range [0, 1]. The function C(-) corresponds to the characteristic
function of class C, that is, it takes on value O when an instance
does not belong to C and 1 when it does. The operator Z is an
implicator, a generalization of traditional Boolean implication. An
implicator 7 :[0,1]>—>[0,1] is decreasing in its first argument,
increasing in the second and satisfies the boundary conditions
7(1,00=0, z(1,1)=1, 7(0,0)=1 and Z(0,1)=1. Similarly, the
operator 7 is a triangular norm (t-norm). Fuzzy set theory defines
a t-norm as an associative and commutative operator from the
unit square to the unit interval, that satisfies 7(x,1) =x, Vxe[0,1].

In the spirit of a nearest neighbor algorithm, FRNN first locates
the K nearest neighbors of x in the stored training set T. Based on
this set NN of nearest neighbors, the membership degrees of x to
the lower and upper approximations of all decision classes are
calculated, that is,

C(x)= min[Z(R(x,y), Cy))] ©)]
yeNN

and

C(x) = max[7 (R(x,y), Cy)). (6)
yeNN

To finally classify x, FRNN predicts its membership degree C(x)
by taking its average membership to the lower and upper
approximations of C:

C+Cx)
3 .
It assigns x to the class for which this value is largest.

IFROWANN extends FRNN in two ways. First, it reduces its
sensitivity to noise. It was shown in [40] that the classification of

Cx) = (7)
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FRNN depends on only one element, namely the closest sample to
the test instance, such that small changes in the data can result in
considerably different results. To deal with this issue, [IFROWANN
steers away from the neighborhood sets N and uses ordered
weighted average operators (OWA, [18]) in the definition of the
approximation operators (3) and (4), as proposed in [41]. The OWA
aggregation of a sequence V of m scalar values is computed by first
ordering V in decreasing order, then weighting their values
according to their ordered position by a weight vector
W =(wy,...,wn), such that 3" ;w;=1 and w;e[0,1] for all
ie{l,...,m}, and finally taking their weighted average. In parti-
cular, if ¢; represents the ith largest value in V, we find

m
OWAw(V) = Z W;C;j.
i=1

The flexibility of OWA allows for a wide range of aggregation
strategies. For example, the standard minimum and maximum
operators can be modeled by the weight vectors (0,0, ...,0,1) and
(1,0, ...,0,0) respectively. Softened versions of the maximum and
minimum operators can be obtained by assigning non-zero
weights to other values in the ordered sequence as well. In this
way, not only one value, the extreme, is taken into account, but
several values are considered, resulting in more robust operators.
In definitions (3) and (4), IFROWANN replaces the minimum and
maximum by OWA aggregations with weight vectors that soften
these operators.

The second IFROWANN improvement over FRNN is directed to
counteract the class imbalance problem. It consists of using dif-
ferent weight aggregations in the fuzzy rough approximation for
the two classes. It was shown in [17] that an increased classifica-
tion performance is obtained by making the choice of the weight
vectors class-dependent in the OWA-weighted approximations. In
binary classification problems with classes P and N, the lower
approximations are given respectively by

Py, x)= OWATWP [Z(R(x,y), P))] (8)
ye

and

N, &)= OWATwN [Z(Rx,y), N1 ©)]
ye

where Wp and Wy are the class-dependent weight vectors for the
lower approximations. IFIROWANN's classification rule only takes
into account the lower approximations, because in a two-class
problem the upper approximation of a class equals the lower
approximation of the other class. Accordingly, IFROWANN assigns
a test object x to the positive class when P P(x) >N Wiy (x) and to
the negative class otherwise. We describe the weight vectors used
by IFROWANN in a separate section below for clarity, as we later
refer to them on multiple occasions. We will demonstrate that the
vectors introduced in [17] in the context of single-instance clas-
sification are also very effective in multi-instance classification.

3.2. Class dependent OWA weight vectors

The authors of [17] consider two types of weight vectors for the
negative class:

whi=(0,..0, 2 4 2D 2
\-nfap(pﬂ)p(pﬂ) p(p+1)p+1

1 2 2p-2 gp-1
w?={(0,....0
N <A,’—/2P—1’2P_1’ PP 1)
n

where p and n are the number of positive and negative training
examples in the dataset respectively. On the other hand, they

construct three types of weight vectors for the positive class:

- 2 4 2m—1) 2
Wp = <u’n(n+1)’n(n+1)’ “Unm+1)yn+1/
p

1 2 27172 2"71
wz={(0,...,0
P <~’-\;/’2"—1’2”—1’ 2T_12" 1)
p

2 4 20—-1) 2
ly _
Wy = <\q0’ ,—JO rr+1)r(r+1y "~ r(r+1)’r+l>'
p+n—r

The value r is determined as r = [p+y(n—p)] and is used to limit
the number of non-zero weights in the aggregation. In [17], the
default value y = 0.1 was proposed.

Six combinations of weight vectors were put forward and
evaluated in [17]:

Wi =W Wy
Wy =(Wp, W)
W3 = (W5, Wy
Wy = (W3, W3R)
. Ws = (W5, W}y, with y =0.1.

. We = <w,[';y , W2, with y =0.1.

AU A WN =

In the experimental study of [17], weighting schemes W, and Ws
obtained the best classification results. As part of our experimental
comparison conducted in Section 5, we verify whether this
conclusion also holds in our proposal.

4. Fuzzy rough multi-instance classifiers for imbalanced
classification

Based on the IFROWANN algorithm for single-instance classi-
fication, we present a framework for fuzzy rough multi-instance
classification algorithms resistant to class imbalance. In general,
we define a fuzzy rough multi-instance classifier as Frgp : NY >V
such that

Frrm(X) = arg max O(C(X), C(X)), (10)
Ce)y

where C(X) (resp. C(X)) is the membership degree of bag X to the
lower (resp. upper) approximation of class C and @ is an aggre-
gating function of both C(X) and C(X). In this paper, we make the
choice to set @(C(X),C(X)) = C(X). Although the information con-
tained in the upper approximation is discarded, this was an
effective choice for the original IFROWANN method, such that we
provide a faithful extension of the latter here. As done by the
original method, we assign a bag X to the positive class in case of a
draw in the computed values C(X).

There are different ways to obtain the membership degree C(X)
of a bag X to the lower approximation C of a class C. We propose
two families of multi-instance fuzzy rough classifiers, which differ
in that one is based on relationships between the bags, consider-
ing the bag as a whole, while the other is based on information
derived from the instances. Classifiers in the first family are bag-
based (Section 4.1), while those in the second family are instance-
based (Section 4.2). A visual overview of the flow of the two
families, that is, how the corresponding methods derive the values
C(X), is presented in Fig. 1.

4.1. Fuzzy rough bag-based multi-instance classifiers

The calculation of C(X) by bag-based classifiers is executed
entirely at the bag-level and is an extension of (8) and (9). A visual
overview is presented in Fig. 2. The general formulation of our
fuzzy rough bag-based classifiers to calculate C(X) is therefore
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Bag-based

Instance-based

[ B(x) H C(x)

Fig. 1. Overview of the proposed framework. The figure presents the flow of both
the bag-based and instance-based methods.

Bags of class P

s e i a7t g e im0 e i i
@ © :
/T /T /T,
'\ Rs(x,B)),P(BY),N(BY)  Ry(x.BE).P(8S).N(BE) Rg(X.Bf)).P(Bf). N(BYy) |

For every training bag B:

Determine P(X) and N(X) via(11):

. I1(R5(%,B]), P(B]))
P(B)via (14) > | PO = oway, ((Re G, BD), P, .. 1(Rs (X, B ) P(BY )
- 1(R5(x,B,).P(8},))
Rp(X,B) via(12)
L > 1(R5(X,B),N(B)) .
. N(X) = OWAy, {I(R5(X, B),N(B])), .., I(Rs(X, B{Y,), N(Bf{; ))}
N(B)via (14) — 1(Rs(%,8%,),N(BY,))
P SR s s S s
Rs(X,BY),P(BY),N(BY)  Rg(x,8Y),P(8Y),N(BY) Rs(x, B, P(BJ) NGB +

[N
(D)

PRI R
@9?' X @z @ "E

Bags of class N

Fig. 2. Overview of the calculations of our bag-based methods when classifying a
bag X. In this example, the positive class P consists of bags B‘f,m,B‘Pm and the
negative class N contains bags BY,.... B}, .

given by
CX)=0WAw, [Z(Rp(X,Y), C(Y))] an
YeT

where W¢ is the class-dependent weight vector for the lower
approximation of the class C, which can be set to the weights from
each combination listed in Section 3.2. Note that the aggregation is
taken over all the bags from the training set T. The implicator Z
used in this paper is the Lukasiewicz implicator, defined as

(Va,b e[0,1])(Z(a,b) = min(1 —a+b, 1)).

Other fuzzy implicators can be used as well. The relation Rg(:,-)
represents the bag-wise similarity. We define this measure as the
complement to 1 of the average Hausdorff distance [42], a popular
distance measure in MIL, that is,

1- > aeaMing ¢ g[8(a, )]+ 3, pming  a[6(a, b)]
|A| +|B| ’

where 0(-,-)€[0,1] is a normalized distance function between
instances. In this paper, we use the cosine distance, which is
defined as

Rp(A,B) = 12)

Xy
oY =1y (3)
where Ilx|l represents the vectorial norm of x. The cosine distance
is the complement of the cosine similarity, which has a low
computational cost and is widely used in machine learning,
especially in textual applications.

The final missing piece in the calculation of (11) is the defini-
tion of the class membership degrees C(Y) of bags to classes. This
term is an estimate of the membership degree of the training bag Y
to class C. Here, we take a step away from the single-instance
IFROWANN method, which uses crisp membership degrees of
instances to classes. The simplest approach is indeed to assign
C(Y)=1 if Y is labeled with class C and C(Y) =0 otherwise. How-
ever, it was already shown in [43] that more elaborate estimates
can provide better results. Several methods can be applied to

compute the membership degree of bags to classes. In this paper,
we limit ourselves to two ways to compute the membership
degree C(Y) of a bag Y to a class C, but we stress that alternatives to
do so can be easily plugged in. We consider the use of an OWA
aggregation of the similarities between the given bag Y to training
bags belonging to class C, that is,

C(Y)=OWAwI[Rg(Y,B)], (14
BeTc

where T¢ is the set of training bags labeled with class C. We note
that these values are calculated for training bags Y only, for which
the class label is actually known. Assume that we have two classes
C; and G; in the datasets and that Y is labeled with C;. As stated
above, we do not simply set C;(Y)=1 and C,(Y)=0. Instead, to
determine C;(Y) we select all training bags of class C;, meaning
that Y itself is among them, and compute their similarity to Y. The
value Rp(Y,Y) that is included in this calculation will always be 1,
which is the maximum value that the similarity measure can
attain. Nevertheless, by also assigning some weight to the simi-
larity of Y with other bags of this class, the final value C;(Y) can be
lower than 1. To determine C,(Y), the analogous steps as for C; are
performed, although Rp(Y,Y) will clearly not partake in the
aggregation here. This procedure counteracts the effects of noise,
as an atypical bag Y labeled with class C; will receive a low
membership degree C;(Y). This motivates our use of the softened
rather than strict maximum operator by means of the OWA
aggregations. Furthermore, since bags within the same class can
still be very different, the softened maximum can also be preferred
over the average, which assigns equal weights to all values Rg(Y, B).
Indeed, let us consider the discussion in Section 2.1 on the stan-
dard multi-instance hypothesis. If we have two positive bags, each
consisting of ten instances, the first one can consist of one positive
and nine negative instances, while the second bag contains ten
positive instances. Even though they belong to the same class, we
can expect their similarity Rp(-,-) to be low. If a bag Y is very dif-
ferent from all other bags in its own class, we can expect it to be
noisy, but if Y still has a large similarity with some of them, it
probably remains a proper example of the class. This situation is
modeled by the OWA aggregation, by letting the aggregation
weights depend on the similarity with Y, but it cannot be handled
by using the average operator.

As OWA weight vectors W in (14), we evaluate two versions of a
softened maximum operator. Firstly, we consider a vector with
linearly decreasing weights

/2 2m-1) 4 2
L= <m+1’m(m+l)’”"m(m+1)’m(m+l)>’

15)

where m is the number of values to be aggregated, which is the
number of training bags of class C in this case. The vector W\ is a
normalized version of (m,m—1,...,2,1) and corresponds to the
Borda count or law of Borda-Kendall in decision making [44].

The second version contains inverse additive weights and is
given as

W1A=< Lt .t 1>. (16)
szzlj 22:'”:17 (m—l)Z?Lq mZ?Lq

The name of this vector refers to the occurrence of >/ ; 1/i in the
denominator. It was shown to be robust against noise in [45],
which is why we include it here. Other alternatives would include
the use of a weight vector with exponential weights similar to Wy?
and W2 defined in Section 3.2 or using another aggregation
operator, like the maximum or average. In this study, when using
(15), we refer to (14) as OWAL aggregation. In the other case, we
denote it as OWAIA aggregation.
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Fig. 3. Overview of the calculations of our instance-based methods when classi-
fying a bag X. In this example, the positive class P consists of bags B, ..4,B"’P‘ and
the negative class N contains bags B’{', B"VNI . The instances in the unlabeled bag X
are denoted as X, ..., X|x|.

4.2. Fuzzy rough instance-based multi-instance classifiers

Our instance-based classifiers determine the value C(X) by
aggregating the corresponding values C(x) for all instances x € X.
Accordingly, the general formulation of fuzzy rough instance-
based multi-instance classifiers to calculate C(X) is given as

CX) :Ag§[£ )] 7)

with

C(x)=O0WAw [Z(Ri(x,y), C¥))]. (18)
yeBBeT

where W¢ is the class-dependent weight vector for the lower
approximation of class C. Again, W can take on weights from each
combination listed in Section 3.2. An overview of the classification
procedure of our instance-based methods is presented in Fig. 3.
The aggregation in (18) is taken over all instances from all training
bags. The term Ry(-,-) represents the similarity relation between
instances, where we again use the cosine similarity. Agg represents
an aggregation method over all the instances x e X. We consider
OWA aggregation for Agg, using the softened maximum weight
vectors (15) and (16). We denote the former as OWAL aggregation
and the latter as OWAIA aggregation. As before, our use of this
type of aggregation is motivated by the nature of multi-instance
data and the multi-instance hypotheses referenced in Section 2.1.
Not all instances x in a bag X should contribute equally to the
prediction C(X), as we cannot expect all of them to be affiliated
with this class. Using a strict maximum operator can result in
discarding some crucial information, while the application of an
average operator may cause opposite-class instances to cancel out
the membership degrees of the instances in the bag actually
belonging to a class C.

The term C(y) in (18) is an estimate of the membership degree
to class C of the instance y, belonging to some training bag.
Referring back to Section 2, simply imposing the class label of the
bag on all its instances is not suitable for multi-instance data.
Using that procedure would make the estimation of C(x) coincide
with the single-instance IIROWANN method, but the structural
differences in single-instance and multi-instance data warrant us
to take a clear step away from the original proposal. Several
heuristics can be used to determine C(y). In our experiments, we
use the inverse additive OWA maximum membership B(y) of y to

training bags B from class C,
C) = QWA w,, B)L (19)

Here, we compute B(y), given a similarity relation R(-,-), as the
maximum similarity of y with any instance in the bag B,

By) = max(Ri(y. 2). (20

As should be clear from (19), we do not simply assign the label of
its parent bag to y, but opt to use all the information in the training
set. We evaluate the affinity B(y) of the instance to all training bags
of a class, regardless of whether these bags contain the instance or
not. By aggregating them, we find the final class membership
degree. Our motivation to use an OWA aggregation in this step is
similar as the one given with expression (14).

We stress that different heuristics can be used to compute the
membership degree C(X) of a bag X to the lower approximation of
class C, the membership degree C(x) of an instance x to a class C
and the membership degree B(x) of an instance x to a training bag
B and be plugged in to evaluate (17). Likewise, several alternatives
may be used to calculate the membership degree C(X) of a bag X to
a class C in Eq. (11). The selection made here is motivated by a
preliminary empirical study.

4.3. Discussion: weight assignment and differences with cost-
sensitive methods

We want to stress that our methods are inherently different
from the cost-sensitive approaches discussed in Section 2.3. In the
Ab1, Ab2, Ab3 and Ab4 algorithms, training bags are assigned a
cost, representing how severe we consider their misclassification.
For each bag, this value can be interpreted as its weight in the
construction of the classification model. As noted in Section 2.3, all
bags from the same class are assigned the same cost. These costs
are fixed at the start of the algorithm.

The methods from our proposed framework model class
membership of unseen bags by means of expressions (11) (bag-
based) or (17) and (18) (instance-based). These values are used in
the final prediction process (10). The OWA aggregations assign
weights to the training bags in (11) and to training instances in
(18). The weight of a particular training bag Y or instance y can be
different in every prediction procedure and depends on the
unseen bag X or instance x at hand. More specifically, consider
expression (11). To classify the unseen bag, the contribution of the
training bags Y is ranked and weighted based on the fuzzy
implication of Rp(X,Y) and C(Y). The former is dependent on X
itself and this can result in a different weight being assigned to the
same bag Y for all new bags X. Furthermore, all training bags are
assigned a different weight in the OWA-step, even when they
belong to the same class. Analogous remarks hold for (18). Sum-
marizing, the weights assigned in our methods can differ among
all bags and instances, not just among classes, and they are
adaptive. This is clearly different from the setup of the cost-
sensitive methods.

5. Experiments

In this section, we present the experimental evaluation of our
proposal. In Section 5.1, we discuss the setup of the experiments.
The evaluation itself is divided into two main parts. Firstly, in
Sections 5.2 and 5.3 we compare the different weighting schemes
for the proposed bag-based and instance-based classifiers
respectively. The second part, presented in Section 5.4, provides a
comparison of our proposal to previously introduced multi-
instance classifiers handling class imbalance.
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5.1. Experimental setup

Table 1 lists all datasets included in our experiments. Among
these datasets, 26 (those above the line: WIRSel and Corel) are
used in Sections 5.2 and 5.3 to evaluate the different weighting
schemes within the two families of classifiers. In order to make the
comparison with state-of-the-art methods in Section 5.4, we use
all the datasets listed in Table 1. In total, there are 34 datasets from
different application domains, namely textual, image and phar-
maceutical applications. Their IR ranges from 2.98 to 19.0.

As evaluation measures, we use the Area Under the ROC-Curve
(AUC, [46]) and the geometric mean of the class-wise accuracies
(GMean). Both are commonly used to evaluate classifier perfor-
mance in the context of class imbalance (e.g. [47]). All reported
results are obtained by five-fold cross validation. We use the
Wilcoxon test [48] to check for statistical significance in the
observed differences in performance of two classifiers. This is a
non-parametric test, which ranks the differences in performances
of two classifiers for each dataset, ignoring the signs, and com-
pares the ranks for the positive and the negative differences. The
p-value calculated by the Wilcoxon test represents the probability
of obtaining a result at least as extreme as that obtained in the
experiment, assuming that the two classifiers have similar per-
formance (null hypothesis). A p-value smaller than a given sig-
nificance level a suggests that the null hypothesis is false, i.e.,
there are statistically significant differences between the com-
pared methods. In this paper, we use a=0.05. Non-parametric
tests are preferred over parametric alternatives [49,50].

5.2. Bag-based classifiers

Figs. 4 and 5 present the results of OWAL and OWAIA bag-to-class
aggregations respectively. Taking the two metrics into account, both
figures show the superiority of weighting schemes 1V, and Ws. The
former was also among the best performing ones in the original
IFROWANN proposal [17]. In their experimental work, scheme Wg
also attained good results, but this does not hold in our case. The
difference between schemes s and Wg lies in their aggregation
weights for the negative class. In multi-instance classification, the
exponential vector used by Wg seems to be a less optimal combi-
nation  with  the linearly increasing  weight  vector
for the positive class. We note that W, also makes use of the expo-
nential vector for the negative class, but uses an analogous vector for
the positive class as well. This results in a balanced approximation of
the two classes, which is reflected in the classification results.

Table 1
Datasets used in the experimental study.

Name # Att. #Bag IR Name # Att. #Bag IR
WIRSel-1 304 113 4.38 Corel8 9 2000 19.00
WIRSel-2 298 113 4.38 Corel9 9 2000 19.00
WIRSel-3 303 113 4.38 Corel10 9 2000 19.00
WIRSel-4 303 113 3.71 Corell1 9 2000 19.00
WIRSel-5 302 113 3.71 Corel12 9 2000 19.00
WIRSel-6 304 113 3.71 Corel13 9 2000 19.00
Corell 9 2000 19.00 Corel14 9 2000 19.00
Corel2 9 2000 19.00 Corell5 9 2000 19.00
Corel3 9 2000 19.00  Corell6 9 2000 19.00
Corel4 9 2000 19.00 Corell17 9 2000 19.00
Corel5 9 2000 19.00 Corel18 9 2000 19.00
Corel6 9 2000 19.00 Corel19 9 2000 19.00
Corel7 9 3000 19.00 Corel20 9 2000 19.00
Thioredoxin 8 193 6.72 Function 200 5242 10.83
Elephant 230 125 4.00 Atoms 10 167 2.98
Fox 230 121 4,76 Bonds 16 160 3.57
Tiger 230 126 3.85 Chains 24 152 4.63
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Fig. 4. Ranking of bag-based classifiers using OWAL aggregation based on their
AUC and GMean. The horizontal lines correspond to the highest values attained for
the AUC (blue) and GMean (red). (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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Fig. 5. Ranking of bag-based classifiers using OWAIA aggregation based on their
AUC and GMean. The horizontal lines correspond to the highest values attained for
the AUC (blue) and GMean (red). (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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Fig. 6. Ranking of instance-based classifiers using OWAIA aggregation based on
their AUC and GMean. The horizontal lines correspond to the highest values
attained for the AUC (blue) and GMean (red). (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this
paper.)

5.3. Instance-based classifiers

The results of the OWAIA bag-to-class-approximation aggregation
can be found in Fig. 6. The same conclusions as in Section 5.2 can be
drawn: weighting schemes W, and W5 yield the best results.

For the OWAL aggregation, we took the comparison a little bit
further, varying the y parameter in schemes Ws and Wg instead of
using its default value y = 0.1 recommended in [17]. We evaluated
y=0.05,0.1,0.2,0.3,0.4,0.5. The results are presented in Fig. 7.
We again find W, and W5 on top and observe that W5 attains good
results for various values of y. The performance of Wg improves by
lowering the value of ¥ to 0.05, but this does not bring it to the
same level as W, and Ws. An important observation is that W, has
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a slight dominance over Ws with respect to their AUC, but con-
sidering the GMean, a large gap is observed between the results of
Ws and that of W;,. This difference can be explained as follows. The
higher AUC value of W, suggests that it could outperform Ws, if
the classification decision procedure were to be changed. Indeed,
AUC provides a global picture of the classification strength of a
method among different thresholds on the predicted class prob-
ability above which an instance is classified as positive, that is,
among different decision procedures. The GMean considers the
classification outcome associated with one particular, chosen
procedure. The results show that scheme Ws seems to combine
better with our selected class assignment method compared to
W,. Taking both evaluation measures into account, Ws might
therefore be favored over W, for the instance-based classifiers.
In order to evaluate whether the class-dependency of the
weight vectors indeed leads to an improvement in classification
performance, we also consider versions of the instance-based
classifiers in which the weight vectors do not differ for the two
classes. We fix the aggregation to OWAL aggregation, but replace
the use of OWAy,. in (18) by one of three class-independent
weighting schemes. In the first one, we use the traditional mini-
mum operator. We refer to this version as STDmin. Secondly, we
consider OWA aggregation by means of a weight vector softening
the minimum. We use the two alternatives of linear or inverse
additive weights, but take care to reverse the order of the weights
given in (15) and (16), as we now require a softening of the
minimum rather than of the maximum. These two schemes are
referred to as OWALmin and OWAIAmin respectively. In Fig. 8, we
compare the fuzzy rough instance-based classifiers using class-
dependent weight vectors with these three alternatives. Classifiers
using W, and Ws obtained the best results with respect to AUC,
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Fig. 7. Ranking of instance-based classifiers using OWAL aggregation based on
their AUC and GMean.
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while regarding GMean the one using s performs best. The
difference in the two evaluation measures has been discussed
above. The figure shows that our current proposals yield the best
results, but we must recognize that even those classifiers using the
same weight vector for both classes show a fairly good perfor-
mance, which demonstrates that our fuzzy rough classifiers are
inherently robust to class imbalance. Among these classifiers, the
best performance is achieved with the standard minimum
operator. It is followed by the OWA operator with inverse additive
weights, whose weight distribution is closer to the standard
minimum than that of the linearly increasing weights model.

5.4. Comparison with the state-of-the-art

In this section, we compare our proposal to state-of-the-art
multi-instance classification methods for class imbalanced data.
Note that we use the full set of 34 datasets in Table 1 in this
comparison. Among our fuzzy rough classifiers, there are several
that stand out for their good performance, like those bag-based
using W, and Ws in Figs. 4 and 5 and those instance-based using
W, and Ws in Figs. 6 and 7. We select one representative of each
family: the bag-based classifier using weighting scheme W, and
the instance-based classifier with scheme s (y =0.1). Both use
OWAL aggregation. In the remainder, we denote them as FRB and
FRI for short.

We compare these methods to state-of-the-art methods
described in Section 2.3. We select BagSMOTE as a representative
preprocessing method, as well as the cost-sensitive boosting
algorithms Ab1, Ab2, Ab3 and Ab4. In the experiments, we use the
decision tree learning algorithm MITI [51] as multi-instance base
classifier for both BagSMOTE and the boosting methods, as
recommended by [6].

Table 2 presents the AUC and GMean results. Our proposals
appear in the top position for both evaluation measures: FRI per-
forms best for AUC, FRB for GMean. For the other measure, they
each appear in third place. We also observe that the results exhibit
a relatively low variance over the datasets, meaning that our
methods perform consistently well. Depending on whether the
application warrants the optimization of AUC or GMean, FRI or FRB
can be selected. The difference between the two measures has
been discussed above: AUC represents the behavior of the method
among a range of decision procedures, while GMean considers the
classification outcome at hand. A multi-instance classification
procedure consists of assigning labels to unseen bags. The better
GMean of the bag-based classifier FRB could intuitively be
explained by its natural extraction of this assignment from infor-
mation solely derived from the training bags, not their instances.
However, the higher AUC value of the instance-based classifier FRI
shows that aggregating instance-level predictions might even
improve upon this, provided an adjusted decision procedure

S is used.
1F N S As in [5,6], we can conclude that Ab3 performs best among the
- ey o - - BT Q- - e - - - - R R o . i . . .
& alternative cost-sensitive boosting algorithms. It attains a good
070 F T TS T T IRY 1 S
Table 2
051 AUC and GMean results for the classifiers. We include the standard deviation of
these values taken over all datasets.
0.25 -
Method AUC Method GMean
0 T T T
STDmin ~ OWAIAmin OWALmin FRI 0.8568 + 0.0875 FRB 0.7364 + 0.1391
Ab3 0.8309 + 0.1038 BagSMOTE 0.7227 + 0.1505
[[0AUC  B3GMean | FRB 0.8190 + 0.1155 FRI 0.7167 £ 01752
Ab4 0.7798 + 0.0965 Ab3 0.5383 + 0.2005
Fig. 8. Ranking of FRI-OWAL classifiers using class-dependent and class-indepen- Ab1 0.7757 + 0.1076 Ab1 0.4921 + 0.2367
dent weights. The horizontal lines correspond to the highest values attained for the BagSMOTE 0.7536; 0.1066 Ab2 0.3654; 0.2493
AUC (blue) and GMean (red). (For interpretation of the references to color in this Ab2 0.7230 + 01450 Ab4 0.0455 + 0.1184

figure caption, the reader is referred to the web version of this paper.)
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Table 3
Results of the Wilcoxon test. For significance level a=0.05, p-values implying
significant differences are printed in bold.

Measure Comparison R* R~ p-value

AUC FRI vs Ab3 405.0 190.0 0.064831

AUC FRI vs BagSMOTE 591.0 4.0 <0.000001

GMean FRB vs Ab3 529.0 66.0 0.000073

GMean FRB vs BagSMOTE 308.0 287.0 0.850828
Table 4

AUC and GMean results for the classifiers, taken as averages over the 8 datasets
below the horizontal line in Table 1. We include the standard deviation of these
values taken over all datasets.

Method AUC Method GMean

FRI 0.7742 + 0.1166 FRB 0.5870 + 0.1902
Ab3 0.7495 + 0.1200 BagSMOTE 0.5718 +0.1846
Ab4 0.7268 + 0.1093 FRI 0.5492 + 0.2547
Ab1 0.7081 + 0.1243 Ab3 0.5300 +0.2528
FRB 0.6892 + 0.1436 Ab1 0.4238 + 0.3074
BagSMOTE 0.6617 + 0.1088 Ab2 0.2004 +0.2329
Ab2 0.6179 + 0.1395 Ab4 0.1427 + 0.1881

AUC result, but, although outperforming its relatives, looses many
points when considering the GMean. The BagSMOTE preproces-
sing algorithm obtains good GMean values, but its performance
with regard to AUC is poor. Since our proposals obtain good results
for both measures, they can clearly be preferred.

For each evaluation measure, we used the Wilcoxon test to
determine whether significant differences are present between
the best performing method (either FRI or FRB) and its competi-
tors Ab3 and BagSMOTE. The results of this analysis are presented
in Table 3. We can conclude that our proposal, represented by FRI,
is particularly strong for the AUC measure. For GMean, FRB is
shown to significantly outperform Ab3. FRB obtains equivalent
GMean results as BagSMOTE, but since the performance of the
latter with regard to AUC is very poor, we can still conclude that
FRB can be preferred over BagSMOTE.

Lastly, we consider the comparison of this group of methods
with respect to the eight datasets below the horizontal line in
Table 1. These datasets were not used in Sections 5.2 and 5.3 and
our selected classifiers FRB and FRI are therefore not optimized for
them. Nevertheless, Table 4 shows that they also perform well in
this situation. As before, FRI attains the highest AUC value and FRB
performs best for GMean. Roughly the same ranking of methods as
in Table 2 can be observed, apart from a slight drop in performance
of FRB with respect to the AUC, with Ab1 and Ab4 now also out-
performing our method for this measure. However, its vast dom-
inance over these methods considering the GMean shows that FRB
is still preferred over them.

6. Concluding remarks

Class imbalance is encountered in several multi-instance
applications, but has been little studied in the literature so far. In
this paper, we developed an extension of the successful single-
instance classification method IFROWANN to the multi-instance
setting. We proposed two classifier families, one at bag-level and
one at instance-level. The classifiers are based on fuzzy rough
set theory and their decision criterion relies on the predicted
membership degree of an unseen bag to the lower approximation
of the classes.

The defining characteristic of the proposal is its use of class-
dependent weight vectors in OWA aggregations. We

experimentally compared several weighting schemes and were
able to put forward the best performing ones. Furthermore, our
experiments showed that our fuzzy rough classifiers outperform
the existing proposals of multi-instance classifiers dealing with
class imbalance.

We have limited ourselves to two-class problems, as is com-
mon practice in MIL and imbalanced classification. Nevertheless,
multi-class imbalance also presents itself. An important future
research challenge is therefore the extension of the current pro-
posal to handle more than two classes. The key step will be the
development of appropriate weighting schemes in this setting.

Conflict of interest

There is no conflict of interest.

Acknowledgments

The research of Sarah Vluymans is funded by the Special
Research Fund (BOF) of Ghent University (Grant number BOF.
DO0C.2014.0074). This work was partially supported by the Spanish
Ministry of Economy and Competitiveness under the project
TIN2014-57251-P and the Andalusian Research Plans P11-TIC-7765
and P10-TIC-6858, and by project PYR-2014-8 of the Genil Pro-
gram of CEI BioTic GRANADA.

References

[1] T.G. Dietterich, RH. Lathrop, T. Lozano-Perez, Solving the multiple instance
problem with axis-parallel rectangles, Artif. Intell. 89 (1-2) (1997) 31-71.

[2] H. He, E. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. Data Eng.
21 (9) (2009) 1263-1284.

[3] V. Lépez, A. Fernandez, S. Garcia, V. Palade, F. Herrera, An insight into classi-
fication with imbalanced data: empirical results and current trends on using
data intrinsic characteristics, Inf. Sci. 250 (2013) 113-141.

[4] Y. Sun, A. Wong, M. Kamel, Classification of imbalanced data: a review, Int. J.
Pattern Recognit. Artif. Intell. 23 (4) (2009) 687-719.

[5] X. Wang, X. Liu, N. Japkowicz, S. Matwin, Resampling and cost-sensitive
methods for imbalanced multi-instance learning, in: Proceedings of the 2013
IEEE 13th International Conference on Data Mining Workshops (ICDMW),
2013, pp. 808-816.

[6] X. Wang, S. Matwin, N. Japkowicz, X. Liu, Cost-sensitive boosting algorithms
for imbalanced multi-instance datasets, in: O. Zaiane, S. Zilles (Eds.), Advances
in Artificial Intelligence, Springer, Regina, Canada, 2013, pp. 174-186.

[7] C. Mera, M. Orozco-Alzate, ]. Branch, Improving representation of the positive
class in imbalanced multiple-instance learning, in: A. Campilho, M. Kamel
(Eds.), Image Analysis and Recognition, Springer, Vilamoura, Portugal, 2014,
pp. 266-273.

[8] R. Duda, P. Hart, Pattern Classification and Scene Analysis, Wiley, New York,
1973.

[9] X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan,
A. Ng, B. Liu, S.Y. Philip, et al., Top 10 algorithms in data mining, Knowl. Inf.
Syst. 14 (1) (2008) 1-37.

[10] R. Jensen, C. Cornelis, Fuzzy-rough nearest neighbour classification, in:
J. Peters, A. Skowron, C. Chan, J. Grzymala-Busse, W. Ziarko (Eds.), Transactions
on Rough Sets XIII, Springer, Berlin, Heidelberg, 2011, pp. 56-72.

[11] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst. 17
(2-3) (1990) 191-209.

[12] L. Zadeh, Fuzzy sets, Inf. Control 8 (3) (1965) 338-353.

[13] Z. Pawlak, Rough sets, Int. ]. Comput. Inf. Sci. 11 (5) (1982) 341-356.

[14] R. Bhatt, M. Gopal, FRCT: fuzzy-rough classification trees, Pattern Anal. Appl.
11 (1) (2008) 73-88.

[15] D. Chen, Q. He, X. Wang, FRSVMs: fuzzy rough set based support vector
machines, Fuzzy Sets Syst. 161 (4) (2010) 596-607.

[16] R. Jensen, C. Cornelis, Fuzzy-rough nearest neighbour classification and pre-
diction, Theor. Comput. Sci. 412 (42) (2011) 5871-5884.

[17] E. Ramentol, S. Vluymans, N. Verbiest, Y. Caballero, R. Bello Perez, C. Cornelis,
F. Herrera, IFROWANN: imbalanced fuzzy-rough ordered weighted average
nearest neighbor classification, IEEE Trans. Fuzzy Syst. 23 (5) (2015)
1622-1637.

[18] R. Yager, On ordered weighted averaging aggregation operators in multi-
criteria decision making, IEEE Trans. Syst. Man Cybern. 18 (1) (1988) 183-190.


http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref1
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref1
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref1
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref2
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref2
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref2
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref3
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref3
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref3
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref3
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref4
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref4
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref4
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref6
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref6
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref6
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref6
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref7
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref7
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref7
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref7
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref7
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref8
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref8
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref9
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref9
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref9
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref9
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref10
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref10
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref10
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref10
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref11
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref11
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref11
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref12
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref12
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref13
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref13
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref14
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref14
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref14
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref15
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref15
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref15
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref16
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref16
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref16
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref17
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref17
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref17
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref17
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref17
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref18
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref18
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref18

S. Vluymans et al. / Pattern Recognition 53 (2016) 36-45 45

[19] L. De Raedt, Attribute-value learning versus inductive logic programming: the
missing links, in: D. Page (Ed.), Inductive Logic Programming, Lecture Notes in
Computer Science, vol. 1446, Springer, Berlin/Heidelberg, 1998, pp. 1-8.

[20] S. Feng, W. Xiong, B. Li, C. Lang, X. Huang, Hierarchical sparse representation
based multi-instance semi-supervised learning with application to image
categorization, Signal Process. 94 (2014) 595-607.

[21] K. Zhang, H. Song, Real-time visual tracking via online weighted multiple
instance learning, Pattern Recognit. 46 (1) (2013) 397-411.

[22] B. Babenko, M.H. Yang, S. Belongie, Robust object tracking with online mul-
tiple instance learning, IEEE Trans. Pattern Anal. Mach. Intell. 33 (8) (2011)
1619-1632.

[23] FU. Minhas, A. Ben-Hur, Multiple instance learning of Calmodulin binding
sites, Bioinformatics 28 (18) (2012) i416-i422.

[24] G. Fu, X. Nan, H. Liu, RY. Patel, P.R. Daga, Y. Chen, D.E. Wilkins, RJ. Doerksen,
Implementation of multiple-instance learning in drug activity prediction, BMC
Bioinform. 13 (15) (2012) 1-12.

[25] R. Teramoto, H. Kashima, Prediction of protein-ligand binding affinities using
multiple instance learning, J. Mol. Graph. Model. 29 (3) (2010) 492-497.

[26] D.S. Tarragd, C. Cornelis, R. Bello, F. Herrera, A multi-instance learning wrapper
based on the Rocchio classifier for web index recommendation, Knowl.-Based
Syst. 59 (2014) 173-181.

[27] A. Zafra, C. Romero, S. Ventura, E. Herrera-Viedma, Multi-instance genetic
programming for web index recommendation, Expert Syst. Appl. 36 (9) (2009)
11470-11479.

[28] Z. Zhou, K. Jiang, M. Li, Multi-Instance Learning Based Web Mining, Appl.
Intell. 22 (2005) 135-147.

[29] S. Andrews, I. Tsochantaridis, T. Hofmann, Support vector machines for
multiple-instance learning, in: Advances in Neural Information Processing
Systems, vol. 15, 2003, pp. 561-568.

[30] L. Sun, Y. Ly, K. Yang, S. Li, ECG analysis using multiple instance learning for
myocardial infarction detection, IEEE Trans. Biomed. Eng. 59 (12) (2012)
3348-3356.

[31] M. Popescu, A. Mahnot, Early illness recognition using in-home monitoring
sensors and multiple instance learning, Methods Inf. Med. 51 (4) (2012)
359-367.

[32] S. Wang, M.T. McKenna, T.B. Nguyen, J.E. Burns, N. Petrick, B. Sahiner, R.
M. Summers, Seeing is believing: video classification for computed tomo-
graphic colonography using multiple-instance learning, IEEE Trans. Med.
Imaging 31 (5) (2012) 1141-1153.

[33] N. Weidmann, E. Frank, B. Pfahringer, A two-level learning method for gen-
eralized multi-instance problems, in: Machine Learning: ECML 2003, Springer,
Cavtat-Dubrovnik, Croatia, 2003, pp. 468-479.

[34] ]J. Amores, Multiple instance classification: review, taxonomy and comparative
study, Artif. Intell. 201 (2013) 81-105.

[35] G. Weiss, Mining with rare cases, in: 0. Maimon, L. Rokach (Eds.), Data Mining
and Knowledge Discovery Handbook, Springer, New York, USA, 2005,
pp. 765-776.

[36] V. Lépez, A. Fernandez, ]. Moreno-Torres, F. Herrera, Analysis of preprocessing
vs. cost-sensitive learning for imbalanced classification. Open problems on
intrinsic data characteristics, Expert Syst. Appl. 39 (7) (2012) 6585-6608.

[37] N. Chawla, K. Bowyer, L. Hall, W. Kegelmeyer, SMOTE: synthetic minority over-
sampling technique, ]J. Artif. Intell. Res. 16 (2002) 321-357.

[38] Y. Freund, R. Schapire, Experiments with a new boosting algorithm, in: Pro-
ceedings of the 1996 International Conference on Machine Learning (ICML),
vol. 96, 1996, pp. 148-156.

[39] Y. Sun, M. Kamel, A. Wong, Y. Wang, Cost-sensitive boosting for classification
of imbalanced data, Pattern Recognit. 40 (12) (2007) 3358-3378.

[40] N. Verbiest, C. Cornelis, R. Jensen, Fuzzy rough positive region based nearest
neighbour classification, in: Proceedings of the 2012 IEEE International Con-
ference on Fuzzy Systems (FUZZ-IEEE), 2012, pp. 1-7.

[41] C. Cornelis, N. Verbiest, R. Jensen, Ordered weighted average based fuzzy
rough sets, in: J. Yu, S. Greco, P. Lingras, G. Wang, A. Skowron (Eds.), Rough Set
and Knowledge Technology, Springer, Beijing, China, 2010, pp. 78-85.

[42] M. Zhang, Z. Zhou, Multi-instance clustering with applications to multi-
instance prediction, Appl. Intell. 31 (1) (2009) 47-68.

[43] J. Keller, M. Gray, ]. Givens, A fuzzy k-nearest neighbor algorithm, IEEE Trans.
Syst. Man Cybern. 15 (4) (1985) 580-585.

[44] M. Lamata, E. Pérez, Obtaining OWA operators starting from a linear order and
preference quantifiers, Int. J. Intell. Syst. 27 (3) (2012) 242-258.

[45] N. Verbiest, Fuzzy rough and evolutionary approaches to instance selection,
Ph.D. Thesis, Ghent University, 2014.

[46] T. Fawcett, An introduction to ROC analysis, Pattern Recognit. Lett. 27 (8)
(2006) 861-874.

[47] S. Garcia, F. Herrera, Evolutionary undersampling for classification with
imbalanced datasets: proposals and taxonomy, Evolut. Comput. 17 (3) (2009)
275-306.

[48] E. Wilcoxon, Individual comparisons by ranking methods, Biom. Bull. 1 (6)
(1945) 80-83.

[49] ]. Demsar, Statistical comparisons of classifiers over multiple data sets, J.
Mach. Learn. Res. 7 (2006) 1-30.

[50] S. Garcia, A. Fernandez, J. Luengo, F. Herrera, Advanced nonparametric tests for
multiple comparisons in the design of experiments in computational intelli-
gence and data mining: experimental analysis of power, Inf. Sci. 180 (10)
(2010) 2044-2064.

[51] H. Blockeel, D. Page, A. Srinivasan, Multi-instance tree learning, in: Proceed-
ings of the 22nd International Conference on Machine Learning (ICML), 2005,
pp. 57-64.

Sarah Vluymans holds an M.Sc. degree (2014) in Mathematical Computer Science from Ghent University. Currently, she is a Ph.D student at Ghent University. Her research is

focused on the integration of fuzzy rough set theory in machine learning techniques.

Danel Sanchez Tarragé obtained his Ph.D. degree from the University of Granada in 2014. He is currently working as a postdoctoral researcher at the University of Las Villas,

Cuba. His primary research focus is on multi-instance learning.

Yvan Saeys obtained his M.Sc. (2000) and Ph.D. (2004) in Computer Science at Ghent University. He is currently leading the DAMBI research group (Data Mining and
Modeling for Biomedicine), where his research focuses on the development and application of data mining and machine learning techniques for biological and medical

applications.

Chris Cornelis holds an M.Sc. (2000) and Ph.D. degree (2004) in Computer Science from Ghent University. Currently, he is a postdoctoral fellow at the University of Granada
(Ramén y Cajal programme) and a guest professor at Ghent University. His research interests include fuzzy rough sets, instance selection and classification.

Francisco Herrera received his M.Sc. (1988) and Ph.D. (1991) in Mathematics from the University of Granada and is a professor at the Department of Computer Science and
Artificial Intelligence. He is an Editor in Chief of “Information Fusion” and “Progress in Artificial Intelligence” and on the editorial board of several more.


http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref20
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref20
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref20
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref20
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref21
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref21
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref21
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref22
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref22
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref22
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref22
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref23
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref23
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref23
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref24
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref24
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref24
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref24
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref25
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref25
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref25
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref26
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref26
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref26
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref26
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref27
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref27
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref27
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref27
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref28
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref28
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref28
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref30
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref30
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref30
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref30
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref31
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref31
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref31
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref31
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref32
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref32
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref32
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref32
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref32
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref34
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref34
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref34
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref35
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref35
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref35
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref35
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref36
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref36
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref36
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref36
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref37
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref37
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref37
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref39
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref39
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref39
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref41
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref41
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref41
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref41
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref42
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref42
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref42
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref43
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref43
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref43
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref44
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref44
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref44
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref46
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref46
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref46
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref47
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref47
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref47
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref47
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref48
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref48
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref48
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref49
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref49
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref49
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref50
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref50
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref50
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref50
http://refhub.elsevier.com/S0031-3203(15)00444-6/sbref50

	Fuzzy rough classifiers for class imbalanced multi-instance data
	Introduction
	The class imbalance problem in multi-instance classification
	Multi-instance classification
	The class imbalance problem
	Related work

	Fuzzy rough ordered weighted average approach to imbalanced classification
	The IFROWANN algorithm
	Class dependent OWA weight vectors

	Fuzzy rough multi-instance classifiers for imbalanced classification
	Fuzzy rough bag-based multi-instance classifiers
	Fuzzy rough instance-based multi-instance classifiers
	Discussion: weight assignment and differences with cost-sensitive methods

	Experiments
	Experimental setup
	Bag-based classifiers
	Instance-based classifiers
	Comparison with the state-of-the-art

	Concluding remarks
	Conflict of interest
	Acknowledgments
	References




