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Classification problems with an imbalanced class distribution have received an increased amount of
attention within the machine learning community over the last decade. They are encountered in a
growing number of real-world situations and pose a challenge to standard machine learning techniques.
We propose a new hybrid method specifically tailored to handle class imbalance, called EPRENNID. It
performs an evolutionary prototype reduction focused on providing diverse solutions to prevent the
method from overfitting the training set. It also allows us to explicitly reduce the underrepresented class,
which the most common preprocessing solutions handling class imbalance usually protect. As part of the
experimental study, we show that the proposed prototype reduction method outperforms state-of-the-
art preprocessing techniques. The preprocessing step yields multiple prototype sets that are later used in
an ensemble, performing a weighted voting scheme with the nearest neighbor classifier. EPRENNID is
experimentally shown to significantly outperform previous proposals.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Class imbalance is present in a dataset when its instances are
unevenly distributed among the classes. It is encountered in many
real-world situations such as medical diagnosis [1], microarray
data analysis [2] or software quality evaluation [3]. Many appli-
cations are inherently prone to class imbalance, motivating the
increased amount of attention to this issue within the machine
learning community [4].

The class imbalance problem [5] refers to the fact that the
performance of learning algorithms can be severely hampered by
data imbalance. In this work, we focus on two-class imbalanced
classification, where the elements of the majority class outnumber
those of the minority class. Traditionally, the majority elements are
denoted as negative, whereas the minority elements are referred to
as positive. Standard classification techniques may not perform
well in this context, as they internally assume equal class dis-
tributions. Consequently, over the last decade, a considerable
amount of work has been proposed in the specialized literature to
Mathematics, Computer Sci-

ymans).
alleviate the imbalance problem [6–8]. Some approaches work at
the data level, while others develop custom classification pro-
cesses. At the data level, the so-called data sampling methods
modify the training dataset to produce a better balance between
classes [9,10]. Solutions at the algorithm level are modifications of
existing methods and internally deal with the intrinsic challenges
of imbalanced classification [11,12].

Prototype reduction techniques [13] were originally developed
to simplify large training datasets in order to improve the noise
tolerance, the speed and the storage requirements of learning
models [14,15]. They can be applied to imbalanced datasets [16–
18] as a data level approach, balancing majority and minority
classes. Two main families of prototype reduction techniques exist
in the literature: prototype selection (PS) [19] and prototype
generation (PG) [20]. The former is limited to selecting a subset of
instances from the original training data, while the latter can
create new artificial instances to better adjust the decision
boundaries of the classes. However, PG methods are known to be
susceptible to overfitting [20,21]. The best performing models are
evolutionary-based techniques, such as differential evolution [22].
In [23], the authors showed that a hybrid setting of PS and PG can
significantly improve the classification process in a balanced class
setting. To the best of our knowledge, no hybrid PS-PG techniques
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have been developed to deal with imbalanced classification pro-
blems so far.

In this paper, we propose a combined model for the classifi-
cation of two-class imbalanced data, integrating both a hybrid
preprocessing and a classification step. We extend the framework
of [23] for use in the presence of class imbalance, considerably
modifying both PS and PG stages. We also aim at introducing di-
versity in the process. The multiple prototype sets resulting from
the preprocessing step are further combined in a custom ensemble
for classification. The classification step is an extension of the k
nearest neighbor classifier (kNN [24]). We call our method
EPRENNID, an Evolutionary Prototype Reduction based Ensemble
for Nearest Neighbor classification of Imbalanced Data.

The main contributions of this work are as follows:

� We first introduce a new evolutionary PS method specifically
tuned to handle class imbalance. Although it is related to un-
dersampling methods, it takes a step away from them by al-
lowing the removal of minority elements from the dataset, as in
[25]. Most existing methods do not allow such kind of reduction
of non-representative or noisy elements from the positive class.

� To alleviate the overfitting issues of prototype reduction mod-
els, we take advantage of the evolutionary nature of the pro-
posed method. Instead of yielding a single reduced set,
EPRENNID provides several well-performing and diverse ones.

� The evolutionary PG method used in this work [23] has been
modified to handle the class imbalance problem.

� Finally, the optimized prototype sets are used in a classifier
ensemble, using an adaptive scheme selecting the most suitable
prototype sets to classify each single target instance with kNN.

To analyze the performance of our proposal, we carry out an
extensive experimental study on 35 two-class imbalanced data-
sets, categorized into different groups corresponding to the diffi-
culty of identifying minority elements. We compare our model
with state-of-the-art models and apply non-parametric statistical
tests to check whether there are significant differences among
them.

The remainder of this paper is structured as follows. In Section
2, we review the PS and PG schemes and provide more details on
related work in imbalanced classification. Section 3 introduces the
proposed model, with a detailed explanation of the separate pre-
processing and classification phases. We have conducted a com-
prehensive experimental study. Its setup is described in Section 4,
while Section 5 lists and discusses our results. Finally, Section 6
formulates the conclusions of this work and outlines future re-
search directions.
2. Preliminaries and related work

This section provides the necessary background for the re-
mainder of the paper. Section 2.1 presents prototype selection and
generation techniques, focusing on the methods on which our
model is based. Section 2.2 introduces the problem of classification
with imbalanced datasets and its evaluation is recalled in Section
2.3.

2.1. Prototype reduction

Prototype reduction techniques aim to reduce the available
training set = { … }T x x x, , , n1 2 of labeled instances to a smaller set
of prototypes = { … }S y y y, , , r1 2 , with <r n and each yi either
drawn from T or artificially constructed. The set S, rather than the
entire set T, is used afterwards to train the classifier.

These methods are commonly combined and designed to be
used with the kNN classifier. This lazy learning algorithm [26]
assigns new input instances to the class to which the majority of
their k nearest neighbors in the training set belongs. Despite its
performance, it suffers from several drawbacks such as low effi-
ciency, high storage requirements and sensitivity to noise. PS and
PG techniques can be beneficial to alleviate these issues. To that
end, the instances contained in S should form a good representa-
tion of the original class distributions. Furthermore, their size re-
lative to that of T should be small enough in order to considerably
reduce the storage and execution time requirements of kNN.

A PS method reduces T to S by selecting a subset of its in-
stances. This implies that for every instance ∈y Si there exists an
element ∈x Tj such that yi¼xj. In [19], a taxonomy for PS methods
was proposed and an extensive experimental study was con-
ducted. The main difference between PG and PS is that the former
can either select elements from T or construct artificial ones, while
the latter is restricted to selecting elements from T. Therefore, a set
S constructed by a PG method is not necessarily a subset of T, al-
lowing for a larger flexibility in the construction of S. For PG
methods, a related taxonomy has been proposed in [20]. In what
follows, we describe the PS and PG methods on which we base our
proposal.

2.1.1. Steady state memetic algorithm for instance selection
The Steady State Memetic Algorithm (SSMA) is a genetic algo-

rithm for PS. In several experimental studies (e.g. [19,23]), it has
been shown to be one of the best-performing PS methods, which
is due to its optimization procedure performed in each iteration.
As a genetic algorithm, it evolves a population of I individuals, the
chromosomes, over a number of generations G. Each individual
corresponds to a candidate subset and is encoded as a bitstring,
where a 0 in the ith position means that the ith element of T is not
included in the subset, while a 1 means that it is. The quality of an
individual, that is, how good a solution it is, is evaluated by a so-
called fitness function. To calculate the fitness of a candidate
subset S, SSMA uses a combined criterion, namely the accuracy of
the kNN classifier on the entire training set T using S as prototype
set and the reduction in size of S relative to T.

The population is optimized over the subsequent generations,
such that the final fittest individual corresponds to an optimal
solution. To guide the evolution, it uses two genetic operators:
crossover and mutation. In each generation, two parents are se-
lected to produce two new individuals by means of the Half Uni-
form Crossover (HUX) procedure: positions in which the parents
take on the same value are simply copied to the children, while for
the remaining ones, each child randomly copies half of each
parent.

Afterwards, random mutation is applied to the children. This
procedure changes the value of a randomly selected position with
probability p. The most defining aspect of the SSMA method is its
use of an optimization procedure, the so-called meme. This is an
iterative optimization process that pursues a double objective to
improve individuals of the population: the reduction of the
number of selected prototypes and the enhancement of the clas-
sification accuracy. The meme is applied on a generated child
when its fitness value is higher than the current lowest fitness in
the population. When its fitness is lower, the optimization is only
executed with a small probability. We refer to the original proposal
[27] for a detailed description.

2.1.2. Scale factor local search in differential evolution
Scale Factor Local Search in Differential Evolution (SFLSDE) [28]

was shown to be one of the top performing PG methods in the
experimental study of [23]. It is a positioning adjustment algo-
rithm, optimizing the positions of the instances in the dataset. The
method uses differential evolution (DE [29,22]), which follows the



Table 1
Confusion matrix obtained after classification of a two-class dataset.

Actual/predicted Positive Negative

Positive TP FN
Negative FP TN
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evolutionary framework, evolving a population of candidate so-
lutions over a number of generations. The evolution is guided by
custom mutation and crossover operators. In general, for each
individual xi, mutation is achieved by randomly selecting two
other chromosomes x1 and x2 from the current population. A new
individual is created by increasing xi by the difference of x1 and x2,
weighted by a scale factor >F 0. A number of different mutation
operators exist, but we have chosen to use the DE/RandToBest/1
strategy, which makes use of the current fittest xbest individual in
the population. It increases xi by both the difference of the two
randomly selected individuals as well as the difference of xi and
xbest, weighting both terms by F. After mutation, crossover is per-
formed, randomly modifying the mutated individual in certain
positions. The crossover is guided by another user-specified
parameter Cr.

SFLSDE is a memetic DE algorithm and modifies the general
mutation and crossover schemes, integrating two local searches.
The method uses adaptive values for the F and Cr parameters.
Specifically, each instance xi has its custom values Fi and Cri values
assigned to it, which are updated in each iteration. When updating
the scale factors Fi, two local searches are used: the golden section
search and hill-climbing. We refer to [28] for further details.

2.2. Imbalanced classification

In a wide range of classification problems, the number of in-
stances that belong to each class can be radically skewed. Standard
classifiers tend to be biased towards the majority class, although
the minority class is normally the most interesting class.

Several approaches have been developed to alleviate the im-
balance problem either at the data level or by designing especially
designed classification methods that address the particular chal-
lenges associated to these types of problems. At the data level, data
sampling methods modify the dataset to find a better balance be-
tween the classes, such that class imbalance should not hinder a
posterior classification process. A first group consists of under-
sampling methods, which remove a part of the majority class. This
can be done in a random way [9] or more complex heuristics for
selecting majority class candidates for removal can be put in place
[30,16]. By reducing the size of the dataset, undersampling
methods are actually performing prototype selection. However,
they are constrained in their application, as they are usually only
allowed to reduce the majority class, leaving the minority ele-
ments untouched.

The strategy adopted by a second kind of methods consists of
finding a more favorable balance between classes by means of
oversampling the minority class. The size of this class is increased
by adding duplicates of existing minority instances or by con-
structing artificial elements based on the ones at hand. A
straightforward approach is presented in [9]. It involves the du-
plication of randomly selected minority elements. The SMOTE
technique [10] laid the foundation of more complex oversampling
methods. Instead of duplicating existing minority elements and
thereby increasing their weight in the dataset, it generates a
number of synthetic instances assigning them to the minority
class. Several later proposals (e.g. [31–33]) are modifications of
SMOTE, replacing some of its random components by more com-
plex procedures.

Finally, several hybrid data sampling methods, both under-
sampling the majority and oversampling the minority class, have
been designed as well. They often combine an initial oversampling
step by posterior data cleaning [9]. The first phase usually results
in a perfectly balanced dataset, on which the data cleaning is
executed. The latter can be performed on either the entire inter-
mediate set or be restricted to the newly generated instances.
Alternatively, a complete intertwining of the oversampling and
undersampling approaches can be set up, generating minority
elements and removing majority instances at the same time
[34,35].

Apart from the data level approaches discussed above, some
specific classification algorithms tolerating class imbalance have
been proposed as well. These include the cost-sensitive learners,
like cost-sensitive kNN [12], cost-sensitive C4.5 [11], cost-sensitive
SVM [36,37] and cost-sensitive neural networks [38], which
modify traditional classifiers by assigning different costs to the
misclassification of minority and majority instances. These costs
are used in the construction of the classification model and reduce
the dominance of majority over minority elements.

A number of ensemble techniques have also been specifically
designed to handle the classification of imbalanced data with
multiple applications [39]. Most commonly, they use a standard
ensemble learning technique, such as the boosting [40] or bagging
[41] schemes, and incorporate some heuristics to deal with class
imbalance or cost-sensitive models [42]. Other ensemble-based
approaches analyze the influence of noisy data in imbalanced
classification [43]. Prominent and recent examples include the
SMOTEBoost [44], SMOTEBagging [45], RB-Bagging [46], NBBag
[47], and EUSBoost [48] methods. Very recent proposals also deal
with multi-class imbalanced data [49].

2.3. Evaluation of imbalanced classifiers

In this section, we review the important issue of the evaluation
of the classification performance on imbalanced data. Table 1
presents a generic confusion matrix for binary classification pro-
blems, displaying the number of true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) obtained in a
classification experiment. As this paper focuses on binary pro-
blems, we restrict this matrix to the binary case as well, but its
generalization to more than two classes is straightforward.

In traditional classification applications, the performance of a
classifier is commonly assessed by the classification accuracy
(percentage of correctly classified examples, that is, = +acc TP TN

n
,

where n is the size of the dataset). In the presence of class im-
balance this measure usually provides misleading results, because
it does not distinguish between the number of correct labels of
different classes, making it sensitive to skewness in class dis-
tributions [50].

As an alternative to the overall accuracy, the geometric mean
g_mean is often used [16,51,52]. This measure is defined as

_ =
+

·
+

g mean
TP

TP FN
TN

TN FP
.

Another widely used evaluation measure in this domain is the
Area under the ROC-curve (AUC) [7,9,16]. A ROC-curve is defined
for probabilistic classifiers on binary problems and reflects the
trade-off between its true positive TP and false positive FP rates.
The area under it expresses how well the classifier achieves this, in
a single measure.

For a discrete classifier, outputting actual class labels rather
than class probability estimates, a ROC-curve can be constructed
by converting its crisp output to the required class probabilities. As
noted in [53], one needs to consider the inner workings of the
method to extract these values. For example, when applying the
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kNN classifier on a binary problem, an instance is assigned to the
class to which the majority of its k nearest neighbors belong. The
probabilities of belonging to the positive and negative classes can
be set to +k

k
and −k

k
respectively, where +k represents the number of

positive elements among the k neighbors and −k the number of
negative ones. As shown in [54], when k¼1, the AUC is computed
as

= + −
AUC

TP FN1
2

.

The difference between AUC and g_mean is that the AUC pre-
sents a global picture of the strength of the classifier, varying the
threshold of how likely instances should belong to the positive
class to be assigned to it (except in the case of kNN and k¼1),
while g_mean solely considers the standard decision criterion,
assigning instances to the class to which they most likely belong.

As discussed in [53], ROC-curves are insensitive to changes in
class distribution, rendering the AUC a proper measure to use in
the classification of imbalanced data. This results from the fact that
the points of the curve are determined using the row-wise ratios
of the confusion matrix. By using the rows separately, the ROC-
curve and the AUC do not depend on the actual class distribution.
3. Proposed model: EPRENNID

In this section, we introduce our new model for the classifica-
tion of imbalanced data, incorporating both a preprocessing and a
classification step. The former involves the combination of PS and
PG and the latter uses an ensemble of well-performing prototype
sets, provided by the preprocessing step, in a weighted voting
scheme. Its different stages are depicted in Fig. 1.

The description of EPRENNID is divided into two main parts. In
Section 3.1 we discuss its preprocessing phase and in Section 3.2,
we proceed with the classification part of our model, which is an
ensemble approach using kNN.

3.1. Preprocessing: a hybrid prototype reduction model for im-
balanced data

In this section, we propose a hybrid prototype reduction model
to preprocess imbalanced data. Based on the model presented in
[23], in which the authors combined PS and PG models for stan-
dard classification, our proposal will hybridize these two processes
to alleviate the weaknesses of the isolated models in the im-
balanced context.

By means of PS, a number of well-performing prototype sets
are generated, which are further optimized using a PG method.
Fig. 1. Schematic workflow of EPRENNID. In a first step, diverse prototype sets (numPS)
prototype sets are refined by using SFLSDEImb to optimize the positioning of the proto
weighted vote to classify test instances.
The underlying motivation for applying such hybridization is that
PG models are more flexible than PS techniques, allowing us to
obtain more accurate reduced sets that are not limited to selecting
a subset of instances from the original training set. However, PG
models also suffer from several drawbacks such as initialization
issues (appropriate choice of the number of prototypes per class)
and more complex search spaces, in which PS models can be
exploited to ease the posterior PG process. More details about the
benefits of hybridizing PS and PG can be found in [23]. We use the
most successful combination suggested by their experiments: the
PS method SSMA (Section 2.1.1) and the PG method SFLSDE (Sec-
tion 2.1.2).

The hybrid prototype reduction step incorporated in EPRENNID
is considerably different from the proposal of [23] in order to al-
leviate the overfitting problems of these models and handle im-
balance problems.

� Firstly, we provide a wide variety of reduced sets with a newly
proposed PS method, SSMAImb. This method entirely replaces
the SSMA step in [23] to take into account the class imbalance,
allowing elimination of both positive and negative examples
(Section 3.1.1).

� Secondly, the optimization performed by SFLSDE has been
modified as well (named SFLSDEImb), by means of a new ob-
jective function, more appropriately evaluating the performance
of a prototype set in a classification process (Section 3.1.2).

� Finally, we combine the above two methods in a hybrid setting,
optimizing multiple SSMAImb generated prototype sets with
SFLSDEImb. We use a diversity mechanism to select a diverse set
of well-performing prototype sets to deal with the overfitting
problem often encountered by PG. They are later optimized in
separate populations, out of which a final diverse set is again
selected to be used in the classification step. In this way, during
classification, EPRENNID has the flexibility to select prototype
sets that have proven to perform well in the neighborhood of a
specific target, instead of relying on one prototype set to per-
form well in the entire feature space (Section 3.1.3).

3.1.1. SSMAImb

Even though SSMA performs very well on balanced data, it fails
when faced with class imbalance. A preliminary experimental
study [54] showed that the direct application of this method sig-
nificantly worsens the classification performance and tends to
remove all the examples from the minority class. Nevertheless, its
good performance on balanced data, its use of the optimization
step and its flexibility motivated us to adapt it to tackle im-
balanced problems. We have kept the defining aspects of SSMA in
place, i.e. it remains a steady state memetic algorithm, but we have
integrated some imbalance-resistant heuristics at three crucial
are selected from the training data using the proposed SSMAImb algorithm. These
types of every subset. Finally, the resulting pre-processed datasets are used in a
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points: the fitness function, the parent selection mechanism and
the meme optimization. We call the modified method SSMAImb.

Fitness function modifications: The first change that needs to be
made lies with the fitness function, as it has some clear short-
comings in the context of class imbalance. By evaluating the
classification performance by the accuracy and explicitly using the
reduction, small subsets consisting of mostly negative elements
can easily attain high fitness values and give the impression of
representing high quality subsets. As an example, consider a
training set T consisting of 10 positive and 90 negative elements
and a singleton candidate subset S of one negative instance. Using
the 1NN rule as the classifier, all instances are classified as nega-
tive, yielding an accuracy of 90%. The reduction rate would be 99%.
The combination results in a high fitness value, even though this
set will never be able to classify any positive element correctly. To
remedy this situation, we propose a new fitness function, similar
to the one used in [16]:

( ) = _ − − ·
( )

fitness S g mean P1
1

IR
,

1S

where g_mean replaces the accuracy to evaluate the classification
performance of S. This is determined by using kNN and leave-one-
out cross-validation. The value IRS corresponds to the imbalance
ratio of the set S. This measure evaluates how imbalanced a set is

and is defined as =IRS
Maj
Min

S

S
, whereMajS andMinS correspond to the

cardinality of the majority and minority classes in S respectively. It
is important to note that the majority and minority classes in S do
not necessarily correspond to those in T. Finally, the parameter P
determines the weight of the second term and therefore how
much class imbalance is penalized in S. The authors of [16] pro-
posed to use P¼0.2 and we have adopted this value as well. We
evaluated other values for P in a preliminary experimental study,
but no significant differences in performance were observed, so
we decided to use its default value. The new fitness function favors
subsets S with a good classification performance and that are not
too imbalanced. The fitness function is used to decide whether the
meme optimization is applied or not. In a later stage of our pro-
posal (see Section 3.1.3), it is also applied in the selection of the
fittest individuals.

Parent selection mechanism: When selecting parents to create
offspring, the original SSMA method assigns a higher probability of
being selected to individuals with a higher fitness. However,
SSMAImb does not use the fitness measure for such purpose, be-
cause it is more focused on providing good classification perfor-
mance (P¼0.2). The parent selection procedure of SSMAImb aims to
explicitly favor more balanced sets in the population as well, re-
ducing the imbalanced ratio while keeping the g-mean high, in-
dependently of any parameter P. Thus, we propose a newmeasure,
defined as

( ) = ·
_ ·

_ +
( )

Sel S
g mean

g mean
2

1
IR

1
IR

,

2

S

S

which corresponds to the harmonic mean of g_mean and 1
IRS
. The

harmonic mean of two values tends more strongly to the smaller
one, meaning that both inputs should attain high values for it to be
large. In this case, this corresponds to a high value for g_mean and
low IR. Chromosomes attaining higher (·)Sel values have a higher
probability of being selected for reproduction.

The HUX operator must deal with a constraint posed by im-
balanced problems: avoid creating children that do not contain
any positive instances. For example, consider two parents that
differ in all genes in a dataset with | | =T 11, with 3 positive and
8 negative instances:

⏟
      1 0 1 0 1 0 1 0 1 0 1 and 0 1 0 1 0 1 0 1 0 1 0.

Minority Majority Minority Majority

In the construction of their children, randomly half of the positions
of each parent are used. This could yield a child without minority
class elements:

   0 0 0 1 0 1 1 0 1 0 1.
Minority

Majority

To tackle this issue, the HUX operator will be initially limited to the
positions of the majority elements. This creates two partial chil-
dren with only majority elements. Next, the minority positions are
filled up in each child. When both parents take on the same value,
this value is copied to the child. Otherwise, we set the position to
1 while there are fewer minority than majority elements in the
chromosome. When a perfect balance has been achieved, we go
back to selecting a random value. This procedure depends on the
order in which the minority genes are considered. We first use the
genes set to 1 in the fittest parent, randomly ordered.

Meme optimization: Finally, the meme optimization procedure
has been modified as well. First, its evaluation of the classification
performance by the accuracy has been replaced by the AUC. Note
that our new fitness function uses the g_mean measure, while we
now evaluate classification performance by the AUC. By in-
corporating the two measures in the PS algorithm, we avoid
overfitting one of them and instead aim to optimize both. Fur-
thermore, instead of trying to increase the reduction, we are al-
lowing only majority positions to be set to 0 and minority posi-
tions to be set to 1. The majority and minority classes are again
determined within the chromosome at hand. When the chromo-
some is perfectly balanced, that is, the same number of elements
for both classes are selected, no optimization is performed. Note
that an empty set S is also perfectly balanced, but in such a si-
tuation S is optimized by adding an arbitrary element of each class.
By setting majority genes to 0 and minority genes to 1, IRS can only
decrease, possibly up to a point where a perfect balance is
achieved and an imbalance in the other direction would be cre-
ated. To prevent this, the optimization halts prematurely when
this occurs. We present the modified optimization procedure in
Algorithm 1.

Algorithm 1. Optimization procedure of SSMAImb.
quire: A chromosome = { … }S s s s, , , n1 2

sure: The optimized chromosome

Determine the majority and minority class in S.

while there are untested positions do
←⁎S S.

Select a random untested minority position with si¼0 or

majority position with si¼1.

Change the value of the selected position in Sn.
←⁎AUCS AUC of kNN, using Sn as prototype set.

←AUCS AUC of kNN, using S as prototype set.

← −⁎gain AUC AUCS S.
if μ≥gain then

← ⁎S S
end if

if =IR 1S then
halt the optimization

end if
end while
15:

In the original algorithm, the value μ is a given threshold. If
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μ ≥ 0, a modified chromosome is only accepted when it results in a
higher AUC of the classifier. When μ < 0, individuals can also be
accepted when they correspond to a set S with lower classification
performance, preventing a premature convergence to a local op-
timum. The value of this parameter is adaptive. It is initialized as
μ¼0, specification by the user is not required. When after a given
number of generations the performance of the best chromosome
in the population has not improved, it is increased internally by
0.001. When the reduction corresponding to the best chromosome
has not increased for a given number of populations, μ is de-
creased by 0.001. The value 0.001 was chosen as it is used in
combination with the AUC, which is a number in the interval [ ]0, 1 .

3.1.2. SFLSDEImb

As a second step in the preprocessing phase, we apply a PG
algorithm. We have opted to combine SSMAImb with a modified
version of SFLSDE. This combination yielded the best results in
[23], making it a potential candidate for extension to imbalanced
classification problems. Nevertheless, the authors used the accu-
racy of the 1NN classifier to evaluate the fitness of the individuals
during DE. Following our discussion in Section 2.3, the accuracy is
not an appropriate fit performance measure for class imbalance in
the training set and we have accordingly changed it to g_mean. We
do not modify the other DE operators of mutation and crossover as
we did in the PS step. The PG method is applied after the dataset
has been preprocessed by SSMAImb. The individuals coming from
this PS step are already more balanced, implying that the genetic
operators in SFLSDE do not have to be specifically tuned to handle
class imbalance. As before, we denote the modified DE algorithm
as SFLSDEImb.

3.1.3. Hybridizing SSMAImb and SFLSDEImb

As SSMAImb is a genetic algorithm, it encounters a high number
of candidate prototype sets during its run. Even though these do
not correspond to the final fittest solution, they might still con-
stitute valid alternatives performing well in the classification. To
use these solutions and enhance the performance of our algo-
rithm, we therefore do not restrict ourselves to selecting only the
fittest solution found by SSMAImb, but rather select a diverse set of
fit individuals, setting up a voting committee for the final classi-
fication step (Section 3.2).

The user specifies the desired number numPS of prototype sets,
which are selected from among the 50% fittest chromosomes en-
countered during the entire execution. The selection procedure is
described in Algorithm 2. The first set is chosen as the overall
fittest one. The remaining sets are selected by an incremental
procedure, continuously adding subsets diverse enough from the
ones previously selected, until numPS have been chosen.

The diversity measure between two prototype sets S1 and S2 is
based on Yule's Q-statistic [55]. This is a well-known measure in
the ensemble community that ensures a good level of diversity in
the classification behavior of two datasets [56]. It has recently
been shown that promoting diversity by means of the Q-statistic
in an ensemble for imbalanced classification has a positive effect
on its performance evaluated by both AUC and g_mean [57]. The
examples of the training set T are classified with the NN1 rule,
using both prototype sets S1 and S2 as reference sets. Their di-
versity is computed as follows:

( ) ← − −
+ ( )

diversity S S
n n n n
n n n n

, 1 ,
31 2

00 11 01 10

00 11 01 10

where n00 represents the number of instances that none of the
classifiers predicted correctly, n11 the number of samples correctly
classified by both of them, and n01 and n10 counts the number of
samples predicted by S1 and not by S2 and vice versa.
Algorithm 2. Selection of a diverse set of fit prototype sets.
quire: A complete set S of candidate prototype sets, an in-
teger numPS
sure: Set div of numPS selected prototype sets
← { }div S , where S is the fittest individual in S

← −numPS numPS 1
while >numPS 0 do

←diversity 0max
←S nullbest
for all ∈S S do

←diversity 0curr
for all ∈P div do

← + ( )diversity diversity diversity S P,curr curr
end for

if >diversity diversitycurr max then
←diversity diversitymax curr
←S Sbest
end if

end for
← ⧹T T Sbest
← ∪ { }div div Sbest
← −numPS numPS 1

end while
19:

Each selected prototype set undergoes position adjustment by
SFLSDEImb, in order to further optimize the positions of the pro-
totypes. Initial populations on which DE is being applied should
contain individuals covering the entire population space, which is
why [29] suggested filling it in a random way. In our framework,
each prototype selected after the PS step seeds a separate popu-
lation. The population is generated randomly, but the structure of
the seeding chromosome is preserved, in that all individuals have
the same class sizes.

After execution of SFLSDEImb, instead of selecting the final fit-
test individual from each population, we use a procedure similar
to the one described in Algorithm 2 to preserve the diversity in-
itially injected between the populations. We have incorporated a
slight modification in this stage, namely by weighting the diversity
measure by the fitness of the subset. In this way, we achieve a
trade-off between fitness and diversity, obtaining a set of diverse
prototype sets without undoing the efforts of the optimization.

3.2. Classification

In [58], an ensemble approach to kNN classification using PS
was introduced. In each iteration of a boosting algorithm, PS was
applied to train a classifier to improve the classification of difficult
instances. PS is used to construct subsets of the training set able to
better classify these difficult instances. Although we are also using
an ensemble approach for the kNN classifier, incorporating PS, the
classification process set up in EPRENNID is very different from the
one in [58]. We are not using a boosting scheme, but constructing
an ensemble based on a diverse set of preprocessed prototype sets
S. These are used in a weighted vote to perform the classification.
In particular, when classifying a target instance x, prototype sets
performing well in the neighborhood of x are assigned a larger
weight in the vote compared to ones not performing particularly
well there.

For each target instance x, different weights are assigned to all
prototype sets. For each set S, we consider the Ks nearest neighbors
of x in the training set. Each neighbor is classified by 1NN using S
as prototype set. The weight of S is set equal to the number of
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correctly classified neighbors and is therefore an integer contained
in the interval [ ]K0, s . When all sets have been processed, the
weights are normalized by dividing them all by the maximal
weight that was encountered.

When the weights have been determined, EPRENNID proceeds
with the final classification of x. The instance is classified by kNN
numPS times, using each prototype set once, where k is specified
by the user. Each set votes for the class to which it assigns x, using
its computed weight. Finally, x is assigned to the class with the
highest number of votes.
4. Experimental setup

This section discusses our experimental setup. We introduce
the datasets on which our experiments are run (Section 4.1), the
state-of-the-art methods for imbalanced classification to which
EPRENNID is compared (Section 4.2), the evaluation measures
(Section 4.3) and the statistical tests that we used (Section 4.4).

4.1. Datasets

We have selected 35 two-class imbalanced datasets on which
all methods are executed. They were constructed by taking real-
world datasets available from the UCI [59] or KEEL dataset [60]
repositories and consequently merging or removing classes until
only two remain. This procedure is common practice and has been
used in other experimental studies as well (e.g. [2,48,52,61]).

Different kinds of minority class examples may have a different
influence on learning classifiers [62,63]. To enrich the performed
analysis, we have further divided the datasets into three sub-
groups, dense, medium and sparse, which represent different de-
grees of difficulty to recognize minority elements. Minority in-
stances in dense datasets are grouped closely together, while they
are more spread out in sparse datasets.

Inspired by [62], we use the local neighborhood of minority
elements to consider them as safe, borderline, rare or outliers. In
this work, we propose an alternative definition that is more con-
servative than the one used in [62]. For each minority instance, we
determine its five nearest neighbors in the dataset and denote it
as:

� Safe: The five nearest neighbors of this instance all belong to the
Table 2
Description of the real-world two-class datasets used in the experimental study. This tabl
of imbalance between the majority and minority classes.

Dataset Inst IR

DENSE abalone-3vs11 502 32.4
ecoli4 336 15.8
glass6 214 6.38
haberman 306 2.78
iris0 150 2.00
kddcup-bovsb 2233 73.4
new-thyroid1 215 5.14

MEDIUM abalone17vs78910 2338 39.3
appendicitis 106 4.05
cleveland0vs4 173 12.3
ecoli3 336 8.60
glass4 214 15.4
movementlibras1 336 13.0

SPARSE abalone20vs8910 1916 72.6
ecoli0147vs2356 336 10.5
glass5 214 22.7
ionosphere-bredvsg 235 22.5
magic-hredvsgred 2645 54.1
phoneme-1redvs0red 2543 46.9
minority class.
� Borderline: The instance has one or two majority class elements

among its five nearest neighbors.
� Rare: The instance has three or four of its five nearest neighbors

belonging to the majority class.
� Outlier: All five nearest neighbors of the instance belong to the

majority class.

The three groups of datasets are constructed based on the di-
vision of their minority instances among these four types.

� In a dense dataset, at least half of the minority elements are safe
or borderline.

� On the other hand, when more than half of the minority in-
stances are rare elements or outliers, the dataset is considered
sparse.

� In all remaining cases, the dataset is assigned to the medium
group.

Table 2 provides an overview of all datasets. We specify the
number of instances they contain and the degree of imbalance
between the two classes, represented by the IR. The datasets are
divided among the three groups, of which the sizes range between
11 and 13.
4.2. Methods

We have chosen a number of popular, well-performing data
sampling methods to compare our model with. Preprocessing
methods are used in conjunction with a later classification step.
Since the base classification in EPRENNID is performed by the kNN
classifier, we have opted to use it for the other data sampling
methods as well for a fair comparison.

Below, we provide a short descriptive overview, including
specifications with regard to their parameter settings. A specific
choice of parameters over the different data sources may result in
better performance, but our purpose here is to analyze the general
performance of the techniques without a time-consuming para-
meter tuning step. Their operations should provide good enough
results even though the parameters are not optimized for a par-
ticular problem. For this reason, we always use the default values
recommended by their developers.
e lists the number of instances (Inst) and the IR of the dataset, measuring the degree

Dataset Inst IR

7 page-blocks0 5472 8.79
0 segment0 2308 6.02

shuttle2vs5 3316 66.67
texture2redvs34 1042 23.81
vehicle2 846 2.88

3 wisconsin 683 1.86

1 segment6redvs345 1002 82.50
shuttle67vs1redB 2023 86.96

1 vehicle0 846 3.25
wdbc-MredBvsB 372 23.80

6 yeast4 1484 28.10
0
9 shuttle6vs23 230 22.00
9 wdbc-MredvsB 365 44.63
8 winequality-red4 1599 29.17
0 winequality-white3vs7 900 44.00
0 yeast0256vs3789 1004 9.14
8



Table 3
Parameter settings for the EPRENNID method.

Phase Parameter values

SSMAImb Evaluations¼10000, Population¼30,
=p 0.001mutation , k¼1

SFLSDEImb Iterations¼500, Fl¼0.1, Fu¼0.9,
iterSFGSS¼8, iterSFHC¼20

Hybridization numPS¼40, Population¼10
Classification =K 5s , =k 1, 3, 5
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� Borderline-SMOTE2 (Border2, [31]): This oversampling proce-
dure is a modification of SMOTE. It uses minority elements
located near the decision boundaries as seeds for the construc-
tion of artificial instances. Artificial minority elements are
introduced on the line segment between the seed instance
and a randomly selected element from among their k nearest
positive neighbors. For each seed, one synthetic element is also
generated on the line segment connecting it to its nearest
negative neighbor.

� SMOTE-TL (SMT-TL, [9]): A Tomek Link (TL) is defined as a pair
of opposite class elements which are located more closely to
each other than to any other element in the dataset. The
SMOTE-TL method consists of first applying SMOTE and after-
ward removing all pairs of elements that form a TL.

� SMOTE-RSBn (SMT-RSB [64]): Similar to SMOTE-TL, this method
first applies SMOTE on the dataset and afterward removes
certain instances. All original instances are automatically re-
tained, but the synthetic elements are required to belong to the
rough lower approximation [65] of the minority class. If they do
not satisfy this criterion, they are removed.

� NCR [30]: This undersampling method seeks to remove harmful
majority instances. It uses the Edited Nearest Neighbor method
with k¼3 [66] to remove noisy negative instances. When a
negative element is misclassified by 3NN, it is removed from the
dataset. When a positive instance is misclassified by the 3NN
rule, all of the negative instances contributing to this misclassi-
fication are removed.

� Spider2 [35]: This is a hybrid data sampling method. It has a
number of options to be set, where we have chosen the best
ones put forward by [35]. In a first phase, negative instances
that are misclassified by 3NN are relabeled as positive. Secondly,
a number of duplicates of misclassified positive elements are
added to the dataset.

� SSMAImb (Section 3): We have also included our modified
SSMAImb algorithm described above, leaving out the PG optimi-
zation step and the ensemble classification procedure. This
allows us to determine whether the added complexity of the
latter two steps improves the performance of SSMAImb or
whether the actual strength of our model lies in the PS step
alone.

� IPADE-ID (IPADE [18]): This is a previously proposed method for
imbalanced classification using DE, making it an interesting
competitor of EPRENNID. It is an extension of the IPADE method
[67] to the imbalanced domain. In both the internal workings as
well as the final classification step of IPADE-ID, we are using the
kNN classifier. This makes for a fair comparison with EPRENNID
and the data sampling methods, as they use kNN as well.

� Evolutionary undersampling (EUS [16]): Based on the PS meth-
od CHC [68], the authors proposed a modified version to handle
class imbalance, similar to what has been done in this paper for
the SSMA method. They developed two settings, that either
focus on balancing the dataset (EBUS) or optimizing the
classification performance (EUSCM). Furthermore, they provide
an option to perform a global selection (GS), removing instances
of both classes in the reduction process, or majority selection
(MS), solely reducing the majority class. Their custom fitness
functions use either the AUC or g_mean to evaluate the
classification performance. We have selected the best perform-
ing setting, the EBUS-MS method, using g_mean in its fitness
evaluations.

In addition to these data sampling models, some representative
ensemble-based techniques are also considered:

� SMOTEBagging [45]: This bagging procedure constructs boot-
strap samples of the training set by applying the SMOTE over-
sampling method. The resampled version of the majority class is
always obtained via random resampling. In sampling the
minority class for a bootstrap sample, a given percentage is
obtained via random resampling, while the other part is con-
structed by creating synthetic minority instances with SMOTE.
The percentage of random resampling is varied between the
different bootstrap samples. A balance between the two classes
is guaranteed in each sample.

� SMOTEBoost [44]: This ensemble method uses SMOTE in each
iteration of the AdaBoost.M2 boosting algorithm [69]. The
oversampling step creates synthetic minority elements in order
to better represent previously misclassified minority instances,
thereby implicitly increasing their weights in the current
interation.

� EUSBoost [48]: Similar to SMOTEBoost, EUSBoost embeds the
EUS method described above in AdaBoost.M2. In each boosting
round, the undersampling step reduces the majority class to a
subset.

The parameter settings of EPRENNID are presented in Table 3.
SSMAImb is a modified version of SSMA and we have used the same
default parameters as the latter method, as proposed in [27]. In the
PG step, we use the default parameters used in [23] for SFLSDEImb.
For more detail on these parameter values, we refer to [23,28]. In
the hybridization step, we use 40 populations of 10 individuals
each. The populations are kept small on purpose, to avoid that
they all converge to the same solution, which would result in a loss
of diversity. In order to provide a more global picture, we have set
k to 1, 3 and 5 for the kNN classifier used in the final classification
step.

4.3. Evaluation measures

We evaluate the classification performance by the two popular
methods discussed in Section 2.2: the AUC and g_mean. All results
are obtained by means of five-fold stratified cross validation. We
note that both EPRENNID and all included methods, apart from
NCR and Spider2, contain random components. To account for this
degree of randomness, we repeat the experiments 10 times and
report the averages and standard deviation over these 10 runs.

4.4. Statistical analysis

In order to test for significance in the observed differences in
the experimental results, we apply non-parametric statistical tests,
as recommended in [70,71]. We use the Friedman test [72] to
verify whether any significant differences in performance are
present among a group of methods. When the p-value of this test
is lower than a specified significance level α, the null hypothesis of
equivalent performance is rejected and we conclude that sig-
nificant differences exist among the methods.

To determine where these significant differences occur, we
apply the Nemenyi post hoc test. In this test, the performance of
two classifiers is significantly different only if their average ranks
differ by a certain critical distance. The critical distance depends
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on the number of algorithms, the number of datasets and the
critical value for a significance level provided by a Studentized
range statistic. The result of the Nemenyi post hoc test is plotted
with an average ranks diagram. The ranks are depicted on the axis,
so that the best algorithms are at the right side of the diagram. A
line with the length of the critical distance is drawn between those
algorithms that do not differ significantly (in performance) for a
significance level of α¼0.05. More information about these tests
and other statistical procedures can be found at http://sci2s.ugr.es/
sicidm/.
5. Experimental results

We have conducted a thorough experimental study comparing
our method to the current state-of-the-art in imbalanced classifi-
cation. This section presents and interprets our experimental re-
sults, including a statistical analysis. In Section 5.1, we consider the
internal reduction associated with our model. Section 5.2 presents
an initial overview of the classification results. We divide the
further discussion of these results into two main parts. Section 5.3
compares EPRENNID with data sampling models, while Section 5.4
presents a comparison with ensemble-based models. Due to the
extent of our experimental analysis, we are unable to list all results
here. The complete results are reported on the associated web
page http://www.cwi.ugent.be/sarah.php.

5.1. A note on reduction

Before discussing the classification performance of our propo-
sal in detail, we briefly note that the average reduction of the
Table 4
Overview of all classification results.

1NN AUC

Dense Medium Sparse

EPRENNID 0.962670.003 0.951470.004 0.902070
Border2 0.929170.004 0.813570.018 0.692670
SMT-TL 0.931370.005 0.857570.019 0.776370
SMT-RSB 0.926770.004 0.815470.026 0.708470
NCR 0.9263 0.8358 0.7400
Spider2 0.9181 0.8027 0.7110
SSMAImb 0.932670.005 0.872270.017 0.787370
IPADE 0.919070.009 0.879570.022 0.811170
EUS 0.927670.007 0.873770.014 0.783670
SMOTEBagging 0.954470.006 0.921070.010 0.851670
SMOTEBoost 0.941970.014 0.867170.036 0.779770
EUSBoost 0.932970.015 0.858070.056 0.725470

3NN
EPRENNID 0.963770.002 0.952270.006 0.884570
Border2 0.936770.010 0.837270.049 0.725770
SMT-TL 0.939970.007 0.884470.029 0.816170
SMT-RSB 0.940970.009 0.866170.031 0.743170
NCR 0.9393 0.8847 0.7825
Spider2 0.9487 0.8624 0.7484
SSMAImb 0.941770.011 0.898570.034 0.815070
IPADE 0.857570.035 0.787670.058 0.744770
EUS 0.937870.013 0.896770.028 0.796170

5NN
EPRENNID 0.960170.002 0.945770.006 0.876370
Border2 0.939670.014 0.855370.052 0.748870
SMT-TL 0.944370.010 0.901970.019 0.830270
SMT-RSB 0.942970.012 0.881670.033 0.758470
NCR 0.9479 0.8998 0.7982
Spider2 0.9466 0.8851 0.7662
SSMAImb 0.941470.017 0.891570.042 0.796770
IPADE 0.876070.032 0.815370.048 0.758270
EUS 0.938770.017 0.900170.033 0.786870
prototype sets in the ensemble in EPRENNID is 0.6413 (dense),
0.8123 (medium), 0.8904 (sparse) and 0.7733 (all). The global re-
duction after the SSMAImb step however is only 0.3820 (dense),
0.6108 (medium), 0.7393 (sparse) and 0.5662 (all). The global re-
duction is computed by taking the union of the prototype sets and
comparing it to the full training set. Since we guarantee a level of
diversity between the sets in the ensemble, the global reduction is
noticeably lower than the average reduction. Since reduction is not
the most relevant measure for our method, we do not further
compare these values with those obtained by the data sampling
methods and instead focus on the classification performance.

5.2. Overview of results

In Table 4, we present a compact overview of the classification
results of all included methods, using both the AUC and g_mean as
evaluation measures. As noted above, we consider three different
values for k in the classification step of EPRENNID. The data
sampling methods are combined with 1NN, 3NN and 5NN. The
ensemble methods are only evaluated for k¼1, as motivated in
Section 5.4. We list the average values for each dataset group,
combined with the average standard deviation over 10 runs where
applicable. The reader can refer back to this table throughout our
discussion in the remainder of the paper. The full results can be
consulted at http://www.cwi.ugent.be/sarah.php.

5.3. Comparison with data sampling models

In this section, we compare EPRENNID to the selected data
sampling methods. In addition to Table 4, Table 5 lists the full
results of the classification by 1NN evaluated using the AUC. The
g_mean

Dense Medium Sparse

.011 0.928970.006 0.865170.017 0.737270.018

.053 0.929470.004 0.813070.019 0.69370.056

.029 0.931170.005 0.857470.020 0.77670.030

.043 0.926970.004 0.816070.029 0.70870.045
0.9228 0.8067 0.747
0.9137 0.6425 0.568

.034 0.931870.005 0.871270.018 0.78270.035
.026 0.916870.010 0.868770.032 0.78370.044
.028 0.927270.008 0.873470.015 0.78570.030
.014 0.928570.007 0.853670.013 0.71770.016
.036 0.844170.061 0.367770.148 0.26270.096
.073 0.882870.050 0.625070.227 0.34970.174

.013 0.921770.004 0.875270.014 0.741270.028

.069 0.936870.011 0.837870.052 0.725770.073

.037 0.939770.008 0.884370.030 0.816670.040

.049 0.940670.009 0.866370.032 0.743570.052
0.9152 0.7628 0.5531
0.9182 0.7844 0.6111

.044 0.935070.012 0.888570.035 0.797270.048

.052 0.401170.225 0.541670.210 0.443670.205
.044 0.937470.014 0.896770.030 0.795970.047

.012 0.913770.006 0.865170.019 0.692170.038

.071 0.939770.014 0.855370.055 0.748870.075
.039 0.943970.011 0.901570.020 0.829870.042
.058 0.943070.013 0.882170.035 0.758970.062

0.9048 0.6954 0.4496
0.9189 0.7847 0.6267

.057 0.933170.018 0.876770.047 0.777670.062

.046 0.474670.220 0.618470.164 0.515370.176

.051 0.937870.018 0.899970.035 0.787370.056

http://sci2s.ugr.es/sicidm/
http://sci2s.ugr.es/sicidm/
http://www.cwi.ugent.be/sarah.php
http://www.cwi.ugent.be/sarah.php


Table 5
Classification performance of 1NN evaluated by the AUC of the classifier in all the datasets. The results of all algorithms, apart from NCR and Spider2, were taken as averages
over 10 runs. We report the corresponding standard deviation as well. The best results in each group of datasets is printed in bold.

EPRENNID Border2 SMT-TL SMT-RSB IPADE SSMAImb EUS NCR Spider2

abalone-3vs11 1.000070.000 1.000070.000 1.000070.000 1.000070.000 0.999370.001 0.998870.000 0.999070.001 1.0000 1.0000
ecoli4 0.974370.015 0.905970.013 0.903570.013 0.911070.011 0.923170.026 0.907870.007 0.891370.019 0.8623 0.8702
glass6 0.947270.013 0.865470.006 0.881370.008 0.867070.009 0.909670.022 0.916470.009 0.881770.027 0.8852 0.8659
haberman 0.642270.009 0.586670.020 0.585270.018 0.555570.015 0.606070.015 0.565770.015 0.555870.008 0.5727 0.5734
iris0 1.000070.000 1.000070.000 1.000070.000 1.000070.000 0.999570.002 1.000070.000 1.000070.000 1.0000 1.0000
kddcup-bovsb 1.000070.000 1.000070.000 1.000070.000 1.000070.000 0.999970.000 1.000070.000 1.000070.000 1.0000 1.0000
new-thyroid1 0.998570.000 0.988770.005 0.981370.008 0.980070.006 0.978570.008 0.976770.008 0.987170.003 0.9917 0.9663
page-blocks0 0.976670.002 0.907470.002 0.923970.003 0.913370.002 0.864670.005 0.914270.014 0.913770.012 0.9096 0.8923
segment0 0.999670.001 0.994770.000 0.994670.000 0.994770.000 0.962670.005 0.990570.001 0.988270.001 0.9939 0.9856
shuttle2vs5 1.000070.000 1.000070.000 1.000070.000 1.000070.000 0.999570.000 1.000070.000 1.000070.000 1.0000 1.0000
texture2redvs34 0.988470.003 0.902670.003 0.910470.007 0.916270.003 0.903470.015 0.941670.005 0.943270.014 0.9068 0.8953
vehicle2 0.996070.001 0.960770.002 0.951370.003 0.953870.003 0.827970.012 0.936670.008 0.931370.004 0.9430 0.9108
wisconsin 0.991470.001 0.965970.002 0.975670.002 0.955670.002 0.972870.003 0.975170.003 0.967670.004 0.9769 0.9749

Mean dense 0.962670.003 0.929170.004 0.931370.005 0.926770.004 0.919070.009 0.932670.005 0.927670.007 0.9263 0.9181

abalone17vs78910 0.935370.004 0.591270.052 0.749270.018 0.711070.023 0.833470.009 0.799970.025 0.780870.018 0.6932 0.6298
appendicitis 0.772270.010 0.754070.005 0.729270.013 0.734470.013 0.758170.021 0.726870.010 0.706970.007 0.7115 0.7218
cleveland0vs4 0.969070.005 0.777770.020 0.842870.024 0.627170.099 0.863670.049 0.848570.044 0.917170.022 0.8325 0.7116
ecoli3 0.920870.009 0.813770.009 0.850270.009 0.813770.018 0.877570.020 0.841870.013 0.839170.010 0.8150 0.8398
glass4 0.972870.004 0.861770.007 0.888370.017 0.829270.030 0.859770.031 0.877670.008 0.888370.018 0.8892 0.8158
movementlibras1 0.991170.006 0.935870.003 0.902470.004 0.947470.012 0.912170.024 0.934070.003 0.951870.010 0.9376 0.9118
segment6redvs345 0.999770.000 0.795370.054 0.884670.064 0.794870.054 0.971970.026 0.955370.028 0.930870.005 0.8641 0.8162
shuttle67vs1redB 1.000070.000 1.000070.000 1.000070.000 1.000070.000 0.975070.015 0.981770.011 0.983770.012 0.9750 0.9750
vehicle0 0.985270.001 0.933270.002 0.938170.003 0.928270.003 0.888470.014 0.921270.001 0.913170.007 0.9216 0.9132
wdbc-MredBvsB 0.996070.001 0.819470.014 0.877270.040 0.894170.005 0.926970.033 0.885970.031 0.876970.039 0.7986 0.8000
yeast4 0.923270.004 0.666670.033 0.771070.018 0.690070.029 0.808270.005 0.822070.015 0.821770.012 0.7552 0.6944

Mean medium 0.951470.004 0.813570.018 0.857570.019 0.815470.026 0.879570.022 0.872270.017 0.873770.014 0.8358 0.8027

abalone20vs8910 0.917570.012 0.647570.043 0.771470.018 0.725170.026 0.871270.018 0.774870.019 0.802070.030 0.6862 0.6348
ecoli0147vs2356 0.943970.005 0.825870.006 0.879970.010 0.824470.007 0.885370.016 0.895670.013 0.875470.017 0.8707 0.8320
glass5 0.990270.003 0.837770.050 0.829870.050 0.837770.050 0.863370.069 0.892070.075 0.853770.066 0.9280 0.8854
ionosphere-bredvsg 0.855670.033 0.685270.062 0.760670.058 0.535270.112 0.704870.061 0.743170.068 0.711770.061 0.6478 0.6478
magic-hredvsgred 0.872370.010 0.532770.074 0.744670.018 0.612770.044 0.776370.025 0.727170.026 0.715870.006 0.6563 0.5691
phoneme-1redvs0red 0.881770.007 0.549170.068 0.710670.024 0.615470.047 0.759870.012 0.760570.019 0.762570.014 0.6079 0.5998
shuttle6vs23 0.978670.023 0.934970.020 0.956670.023 0.934970.023 0.960070.021 0.927170.023 0.880870.026 0.9000 0.9000
wdbc-MredvsB 0.996970.001 0.945770.004 0.944670.005 0.891470.009 0.946970.002 0.878470.057 0.946670.038 0.9000 0.9000
winequality-red4 0.719070.009 0.364170.157 0.593970.028 0.514470.060 0.652870.016 0.609170.026 0.626570.009 0.5658 0.5243
winequality-white-3vs7 0.925070.007 0.529070.089 0.587470.076 0.547570.084 0.698070.039 0.674570.042 0.682170.031 0.5710 0.5409
yeast0256s3789 0.841370.008 0.766570.010 0.759770.005 0.753370.007 0.803970.008 0.778470.006 0.762070.016 0.8059 0.7870

Mean sparse 0.902070.011 0.692670.053 0.776370.029 0.708470.043 0.811170.026 0.787370.034 0.783670.028 0.7400 0.7110
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data sampling methods were combined with 1NN and the value of
k in the classification step of EPRENNID was set to 1 as well. For
each group of datasets, the result of the best-performing method is
printed in bold. In order not to clutter this discussion, we do not
list the complete results of the g_mean measure nor for 3NN and
5NN. The results of the statistical analyses relevant to this section
can be found in Fig. 2, plotting the average ranks diagrams. We
note that we have taken the entire group of 35 datasets to perform
the statistical analysis, rather than doing this group-wise, as the
sizes of the groups are rather small. We discuss the results of the
two evaluation measures, AUC and g_mean, separately in Sections
5.3.1 and 5.3.2 respectively. In Section 5.3.3, we compare EPREN-
NID to the data sampling methods in terms of their runtime.

5.3.1. Analysis of the AUC results
The conducted experimental study represented in Fig. 2 sug-

gests that EPRENNID dominates all previous proposals with re-
spect to the AUC for all values of k. For 1NN, the IPADE-ID method
outperforms most data sampling methods, showing the strength
of DE in the imbalanced domain, but it is further improved upon
by EPRENNID. For higher values of k, IPADE-ID does not perform
well, being dominated by all data sampling methods, while
EPRENNID still comes out on top.

An interesting point to observe is that the absolute differences
in the obtained values increase with the difficulty of the datasets,
going from the dense to the sparse groups. This conclusion is si-
milar to the one drawn in the experimental study of [35], which
also investigated the effect of the distribution of the minority in-
stances on the performance of several methods. In particular,
taking the results of 1NN in Table 5 as an example, we observe that
the difference between the best and worst performing methods
increases from 0.0445 for the dense group, over 0.1487 for the
medium group to 0.2094 for the sparse datasets. Furthermore,
even though the AUC of EPRENNID does decrease with the diffi-
culty of the dataset, this decrease is less prominent than for other
methods. For instance, while EPRENNID only loses 0.0606, its
closest competitors IPADE-ID and EUS face a decrease in AUC of
about 0.1079 and 0.1440. Although their dataset-wise results are
not printed here, similar conclusions can be drawn for 3NN and
5NN. This observation shows the good performance of EPRENNID
for all types of class imbalance.

We note that our new PS method SSMAImb also performs tol-
erably well, most prominently so for 1NN. For this classifier, it
yields better results than all included data sampling methods,
putting it at the same level as IPADE-ID. It is interesting to observe
that SSMAImb, a true undersampling method removing both posi-
tive and negative elements, is able to outperform undersampling
(NCR, EUS), oversampling (Borderline-SMOTE2) and hybrid



Fig. 2. Average ranks diagrams for AUC and g_mean using 1NN, 3NN and 5NN classifiers. Better algorithms are located on the right side of the plot (rank closer to 1). Those
that differ by less than the critical distance computed for a p-value¼0.05 are linked by a red line.

Fig. 3. Comparison of EPRENNID with partially constructed models. In SSMAImb,
only the PS step is performed. SSMAImbþSFLSDEImb is the same as EPRENNID, apart
from the important fact that only one prototype set is constructed. This comparison
was done for 1NN, of which the performance was evaluated by the AUC.
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(SMOTE-TL, SMOTE-RSB, Spider2) data sampling methods. This
constitutes clear evidence that the complete protection of the
minority class, incorporated by all these methods, is not necessa-
rily justified. Allowing the removal of minority elements, which
can also be noisy or redundant, provides us with an added flex-
ibility, which makes it possible to handling class imbalance more
appropriately. For higher values of k, SSMAImb remains steadily at
the top and, apart from by EPRENNID, is only improved by NCR
and SMOTE-TL for 5NN. We conclude that we have proposed a
strong PS method able to handle class imbalance, but it can
nevertheless be further improved by hybridizing it with PG and
including the ensemble classification. From Fig. 2, we observe that,
for all classifiers, our method has the best rank with respect to the
AUC values. Comparing EPRENNID to the others with the Nemenyi
post hoc test, we conclude that it yields significantly better results
than all other methods under consideration, since none of the
others is located within the critical distance of our proposal. This
statement holds for all three classifiers and confirms the clear
dominance of our new method over the state-of-the-art in data
sampling.

Finally, in Fig. 3, we visually compare the full EPRENNID model
to three partially constructed ones, in order to determine whether
the added complexity of the full model increases its performance.
The figure is based on the performance of 1NN evaluated by the
AUC. We already observed that solely applying SSMAImb, generat-
ing a single prototype set, yields good classification results, al-
though they are improved upon by EPRENNID. Furthermore, op-
timizing this single subset by SFLSDEImb does not on its own
increase the performance, as presented by SSMAImb-SFLSDEImb in
the figure. This setup results in a slight decrease in performance,
which we suspect to be due to the overfitting problem to which PG
methods are prone [20]. We also consider the extension of
SSMAImb with the ensemble approach in EPRENNID, without op-
timizing the prototype sets by SFLSDEImb. This setting is re-
presented by SSMAImb-Ens. Although giving an improvement over
SSMAImb, it is itself clearly improved upon by introducing the
optimization step by PG. The optimization of multiple diverse



Table 7
AUC results for the ensemble-based models using 1NN as base classifier, with
standard deviations over 10 runs.

Dataset SMOTEBagging EUSBoost SMOTEBoost

abalone-3vs11 0.999570.0010 0.998270.0014 1.000070.0000
ecoli4 0.956470.0104 0.902970.0208 0.956370.0250
glass6 0.918670.0250 0.897670.0488 0.910570.0471
haberman 0.613670.0127 0.559770.0470 0.576170.0518
iris0 1.000070.0000 1.000070.0000 1.000070.0000
kddcup-bovsb 1.000070.0000 0.999070.0009 1.000070.0000
new-thyroid1 0.992170.0022 0.988170.0038 0.994270.0060
page-blocks0 0.965970.0044 0.902570.0139 0.924870.0082
segment0 0.996770.0059 0.995470.0036 0.996970.0012
shuttle2vs5 1.000070.0000 1.000070.0000 1.000070.0000
texture2redvs34 0.981670.0063 0.952670.0288 0.954070.0232
vehicle2 0.991770.0020 0.955170.0163 0.968670.0120
wisconsin 0.990570.0029 0.976470.0085 0.963770.0105

Mean dense 0.954470.0056 0.932970.0149 0.941970.0142
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prototype sets and their aggregation into a classification ensemble
is shown to be truly worth the effort.

5.3.2. Analysis of the g_mean results
With respect to the evaluation by g_mean, the results are less

favorable for EPRENNID, as shown in Table 4. For 1NN, we observe
that EPRENNID still outperforms several state-of-the-art data
sampling methods, but it is itself outperformed by the IPADE-ID
method for medium and sparse datasets. The undersampling
method EUS combined with 1NN yields better average results than
EPRENNID as well. Our PS method SSMAImb still exhibits very good
overall behavior, again proving its obvious strength for imbalanced
classification.

In combination with 3NN, we observe that the hybrid data
sampling methods SMOTE-TL and SMOTE-RSBn perform better
than before, placing them at the same level as EPRENNID, IPADE-
ID, SSMAImb and EUS. For 5NN, the hybrid data sampling methods,
especially SMOTE-TL, dominate. EPRENNID yields decent results,
although its overall average result for g_mean is lower than that of
SSMAImb. Considering this phenomenon more closely, we observed
that this is due to a decrease in performance of EPRENNID on
sparse datasets, for which its average g_mean value is considerably
lower than that of SSMAImb, as can be seen in Table 4. In a sparse
dataset, the minority class is severely spread out over the feature
space, making it more difficult for kNN to classify them correctly,
especially for higher values of k. By using the ensemble approach
in EPRENNID, misclassifications can build up, resulting in a de-
crease in performance. We conclude that in such a setting, where
higher values of k are used to classify a sparse dataset with the
kNN rule, it might be more appropriate to stick to the preproces-
sing method SSMAImb.

In the statistical analysis of the g_mean values (Fig. 2), SMOTE-
TL is assigned the best rank for all values of k. For 1NN, 3NN and
5NN, SMOTE-TL is shown to significantly outperform NCR and
Spider2. For 3NN and 5NN, it also performs significantly better
than IPADE and EPRENNID. As noted above, upon closer ex-
amination it is revealed that the poor average result of EPRENNID
in this case is due to an inferior performance on the sparse
datasets.

Nevertheless, by taking the results of both evaluation measures
into account, we can conclude that our new proposal of a hybrid
model, integrating PS and PG in its preprocessing step and using a
Table 6
Runtime results for the data sampling methods using the 1NN as classifier.

Preprocessing (s) Dense Medium Sparse

EPRENNID 6285.09371089.312 702.119750.100 669.144797.315
Border2 0.25170.012 0.09170.011 0.07570.010
SMT-TL 3.28370.013 0.83770.008 1.06570.007
SMT-RSB 3.17670.137 1.73270.072 2.08470.061
IPADE 137.123751.000 5.89172.852 5.69772.798
SSMAImb 113.327710.907 25.04572.116 39.54773.501
EUS 1152.029714.996 170.54972.473 129.58672.667
NCR 0.99570.039 0.27970.025 0.33970.031
Spider2 2.21270.103 0.55470.043 0.68170.044

Classification (ms) Dense Medium Sparse

EPRENNID 137.997728.917 70.78678.813 18.26174.164
Border2 488.872747.487 143.804714.858 145.282715.684
SMT-TL 473.463737.858 109.44979.733 142.340714.580
SMT-RSB 485.849742.917 142.452713.077 144.506717.950
IPADE 5.07571.043 3.73570.721 3.03170.558
SSMAImb 36.19872.991 7.29871.504 5.87671.137
EUS 36.21572.541 7.58271.036 6.30470.889
NCR 251.820725.394 57.25875.336 72.30977.640
Spider2 278.728724.861 83.23479.049 84.69678.225
weighted voting procedure in its classification, is competitive with
the state-of-the-art data sampling methods as well as IPADE-ID.

5.3.3. Runtime analysis
In this section, we present the runtimes of the different data

sampling methods and our proposal, for both the preprocessing
and classification steps. The results for 1NN can be found in Ta-
ble 6, presenting the average group-wise runtime for EPRENNID
and the data sampling methods. The values for 3NN and 5NN, for
which the conclusions are similar, are available on http://www.
cwi.ugent.be/sarah.php. We distinguish between the preproces-
sing and classification times. The former, given in seconds, refers
to the necessary time to balance the dataset (data sampling
methods) or the full construction of the prototype set ensemble
(EPRENNID). The latter, which is given in milliseconds, is the
average time spent to label one test instance based on the pre-
processed dataset (data sampling methods) or using the prepared
ensemble in a weighted vote (EPRENNID). We note that this
comparison is somewhat unfair towards EPRENNID, as our pro-
posal constructs an entire classification ensemble, while the data
sampling methods merely resample the dataset. As such, it can be
expected that the preprocessing time for our proposal is longer, as
abalone17vs78910 0.875370.0108 0.708570.0791 0.753170.0230
appendicitis 0.718570.0183 0.667370.0886 0.779570.0296
cleveland0vs4 0.949170.0128 0.924270.0410 0.840270.0775
ecoli3 0.905870.0135 0.825670.0445 0.825270.0378
glass4 0.970770.0046 0.868670.0682 0.857070.0841
movementlibras1 0.977070.0014 0.930370.0628 0.959970.0325
segment6redvs345 0.935670.0362 0.943770.0421 0.900270.0333
shuttle67vs1redB 0.978970.0005 0.946370.0534 0.973370.0129
vehicle0 0.978370.0030 0.930970.0194 0.933170.0114
wdbc-MredBvsB 0.991470.0023 0.927270.0445 0.951770.0288
yeast4 0.850770.0100 0.764870.0696 0.764770.0230

Mean medium 0.921070.0103 0.858070.0557 0.867170.0358

abalone20vs8910 0.835970.0184 0.610070.0965 0.802470.0286
ecoli0147vs2356 0.918570.0068 0.880170.0521 0.865170.0243
glass5 0.989170.0019 0.912770.0374 0.904170.0395
ionosphere-bredvsg 0.877170.0167 0.768170.0839 0.865070.0357
magic-hredvsgred 0.769370.0208 0.545570.0819 0.660770.0235
phoneme-1redvs0red 0.815070.0115 0.623170.0753 0.673070.0196
shuttle6vs23 0.998070.0007 0.961870.0285 0.922570.0802
wdbc-MredvsB 0.947470.0242 0.965970.0460 0.839970.0218
winequality-red4 0.641470.0187 0.562970.0905 0.567470.0297
winequality-white3vs7 0.741070.0198 0.510570.1375 0.671370.0743
yeast0256vs3789 0.835070.0113 0.638970.0699 0.805770.0164

Mean sparse 0.851670.0137 0.725470.0727 0.779770.0358

http://www.cwi.ugent.be/sarah.php
http://www.cwi.ugent.be/sarah.php
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is also clear in Table 6. However, we note that the preprocessing
step only has to be executed once for each dataset. The resampled
dataset or constructed ensemble can be reused in every sub-
sequent classification. The classification time for EPRENNID is not
high and indeed noticeably lower than that of SMOTE-TL, one of its
closest competitors in terms of classification performance. Never-
theless, if the required runtime of EPRENNID cannot be afforded by
the user, he can resort to our SSMAImb method instead, which has a
good classification performance (Table 4) and a reasonable run-
time. In Section 5.4, we compare the runtime of EPRENNID to
other ensemble methods, which makes for a fairer comparison.

5.4. Comparison with ensemble-based models

In this section, we compare EPRENNID to other ensemble-
based models for imbalanced classification described in Section
4.2. We note that to establish a fair comparison between the dif-
ferent ensemble methods, we use the 1NN technique as base
classifier in all cases. All ensembles use the same number of
classifiers internally, set to the same value as the number of pro-
totype sets used by EPRENNID.

Table 7 collects the results on all datasets, evaluating the
classification performance of the 1NN classifier in terms of the
AUC measure. As we saw in the comparison of EPRENNID with
data sampling methods, our proposal dominates the other meth-
ods for all datasets groups. Its dominance becomes more apparent
for increasing difficulty of the dataset, going from the dense, to the
medium, to the sparse group. Fig. 4 depicts the statistical evalua-
tion by means of average ranks diagrams. It shows that EPRENNID
significantly outperforms SMOTEBagging, SMOTEBoost and EU-
SBoost with respect to the AUC obtained over all datasets. Con-
sidering the evaluation by g_mean (Table 4 and Fig. 4), our method
also obtains the best average results and best rank in the statistical
test. It is shown to be significantly better than the two boosting
methods EUSBoost and SMOTEBoost.

We also comment on the computational complexity of
Fig. 4. Average ranks diagrams for AUC and g_mean using the 1NN classifier for the ense
closer to 1). Those that differ by less than the critical distance computed for a p-value¼0.
legend, the reader is referred to the web version of this article.)

Table 8
Runtime results for the ensemble-based metho

Building (s) Dense M

EPRENNID 6285.09371089.312 70
SMOTEBagging 2687.6837438.284 12
SMOTEBoost 6895.59071112.069 28
EUSBoost 5901.0967418.371 10

Classification (ms) Dense M

EPRENNID 137.997728.917 70
SMOTEBagging 25.92476.102 28
SMOTEBoost 50.297710.121 50
EUSBoost 7.39270.990 2.9
EPRENNID compared to the other ensembles. In order to do so,
Table 8 presents the average group-wise runtime required by each
method, differentiating between building and classification times.
The building time refers to the necessary time to create the en-
semble, while the classification time involves the average time
spent to label a test instance. The former is given in seconds, the
latter in milliseconds. We observe that both are comparable be-
tween the four models. The classification time of EPRENNID is
slightly higher than that of the other models, which is due to the
target-specific weight construction for the prototype sets in the
ensemble. This component is not present in the other ensemble-
based methods. Nevertheless, taking the prediction results into
account, EPRENNID may be preferred over the other three models,
especially for imbalanced datasets with higher difficulty. Indeed,
we observe that for the medium and sparse groups, the average
building time of EPRENNID is the lowest among the four models
and its classification performance is highly superior as well, as
indicated in Table 4 and Fig. 4.
6. Conclusion and future work

In this work, we have introduced a new combined preproces-
sing and classification model able to cope with imbalanced data.
Inspired by previous work in a balanced class setting, we proposed
a new genetic PS model taking class imbalance into account. While
most of the data sampling methods completely protect the min-
ority class, the proposed model can reduce both majority and
minority class examples, when necessary.

In our experiments, we were able to show that our new PS
method outperforms several popular data sampling methods used
in imbalanced classification. This shows that strenuously protect-
ing minority elements is not necessarily the best option and in-
cluding more flexible heuristics can prove to be more useful in
dealing with class imbalance.

Secondly, we proposed to select not one, but a diverse set of
mble-based models. Better algorithms are located on the right side of the plot (rank
05 are linked by a red line. (For interpretation of the references to color in this figure

ds.

edium Sparse

2.119750.100 669.144797.315
58.393786.260 1619.8577111.510
50.1027252.999 3871.1087386.373
53.4777143.183 1158.963758.233

edium Sparse

.78678.813 18.26174.164

.39875.536 25.08974.736

.40978.781 44.00078.653
6870.746 1.79870.224
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well-performing prototype sets generated by the PS method.
These sets were further optimized by a differential evolution
scheme. As a final step, we set up an ensemble with the optimized
prototype sets. The implemented voting strategy allows to assign
prototype sets performing well in the neighborhood of a target
instance a larger weight in its classification.

Our model does not aim to perform a significant data reduction
of the dataset, but to increase the overall performance. Our ex-
periments showed that it significantly outperforms state-of-the-
art data sampling methods and ensemble-based methods, as well
as a previous proposal using differential evolution in imbalanced
classification, for the AUC measure. However, for the g_mean
measure, it provides a similar performance in comparison to state-
of-the-art models. In terms of computational cost, it is fairly si-
milar to other ensemble-based methods.

As future work, we consider to study how an artificial injection
of noisy examples may affect the behavior of our proposal.
Moreover, we also intend to extend the presented approach to use
other classifiers, like decision trees and support vector machines.
This will require the development of custom prototype reduction
methods for these classifiers in the class imbalance domain.
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