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One  of the  most  accurate  types  of  prototype  selection  algorithms,  preprocessing  techniques  that  select a
subset of  instances  from  the  data  before  applying  nearest  neighbor  classification  to  it,  are  evolutionary
approaches.  These  algorithms  result  in  very  high  accuracy  and reduction  rates,  but  unfortunately  come
at  a substantial  computational  cost.  In  this  paper,  we  introduce  a  framework  that  allows  to efficiently
use  the intermediary  results  of  the prototype  selection  algorithms  to  further  increase  their  accuracy
performance.  Instead  of  only  using  the  fittest  prototype  subset  generated  by  the  evolutionary  algorithm,
we  use  multiple  prototype  subsets  in  an  ensemble  setting.  Secondly,  in  order  to  classify  a  test  instance,
volutionary algorithms
 Nearest Neighbor
nsembles

we  only  use  prototype  subsets  that  accurately  classify  training  instances  in  the  neighborhood  of that  test
instance.  In  an  experimental  evaluation,  we  apply  our  new  framework  to four  state-of-the-art  prototype
selection  algorithms  and show  that,  by using  our  framework,  more  accurate  results  are  obtained  after  less
evaluations  of  the  prototype  selection  method.  We  also  present  a case  study  with a  prototype  generation
algorithm,  showing  that  our  framework  is  easily  extended  to other  preprocessing  paradigms  as  well.

© 2016  Elsevier  B.V.  All  rights  reserved.
. Introduction

Classification, the task of labeling instances described by fea-
ures using already labeled training data, is an important field in
ata mining with numerous applications in research and indus-
ry. A widely used and easy to understand classification method is

 Nearest Neighbors (KNN, [1]). In order to classify an unlabeled
nstance, KNN looks up the K instances in the training data clos-
st to it and assigns the instance to the majority class among these
earest neighbors.

One of the main drawbacks associated with KNN classification is

hat the lazy learning nature of KNN implies that any instance can
ave an impact on the classification of new instances. As a result,
NN is highly susceptible to noise, which often occurs in datasets
rawn from real-world situations due to, for instance, human

∗ Corresponding author at: Department of Applied Mathematics, Computer Sci-
nce and Statistics, Ghent University, Belgium.

E-mail address: Sarah.Vluymans@UGent.be (S. Vluymans).

ttp://dx.doi.org/10.1016/j.asoc.2016.03.015
568-4946/© 2016 Elsevier B.V. All rights reserved.
annotation, measuring errors or data transmission. Furthermore,
storing the entire training set can imply high storage needs and
look-up times.

A successful solution to these problems is Prototype Selec-
tion (PS, [2]). This preprocessing technique selects a subset of the
data in order to improve the accuracy of the KNN classification
applied afterwards or to reduce the storage requirements signif-
icantly. Many PS methods have been proposed in the literature. An
extensive overview and taxonomy can be found in [3]. They are
most commonly combined with the 1NN classifier, which is most
sensitive to noise. We  therefore also focus on this classifier here.
Evolutionary approaches to PS [4–7] have proven to be the best
among state-of-the-art PS methods, both with respect to accuracy
and reduction [3]. They are able to improve the classification accu-
racy of 1NN significantly and at the same time reduce the data by up
to 90 percent. The combination of this type of methods and near-
est neighbor classification has consequently been widely explored

(e.g. [8–13]). The good performance of evolutionary PS algorithms
is achieved by producing and evaluating many generations of can-
didate prototype subsets. Unfortunately, this means that they tend
to be slow.

dx.doi.org/10.1016/j.asoc.2016.03.015
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2016.03.015&domain=pdf
mailto:Sarah.Vluymans@UGent.be
dx.doi.org/10.1016/j.asoc.2016.03.015
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In this paper we propose a classification framework, called
nsembles of Evolutionary Generated Prototype Subsets (EEGPS),
hat draws more information out of the long calculations that evo-
utionary PS methods make. During the course of an evolutionary
S algorithm, many good prototype subsets are encountered, but
nly the overall best prototype subset is used. However, candi-
ate prototype subsets that are globally not optimal might still be
seful to classify instances in certain regions of the feature space.
he PS algorithms solely recognize that these subsets are not the
verall best and discard them without further question. The large
omputational cost of the algorithms can be more appropriately
sed by storing them for later use. The sub-optimal subsets have
een constructed and evaluated anyway, there is little or no addi-
ional cost in saving them. EEGPS implements this idea by using

ultiple prototype subsets, that were generated during the exe-
ution of an evolutionary PS algorithm. In order to classify a test
nstance, the EEGPS classifier uses an ensemble of prototype sub-
ets that perform well in the region of that test instance, as opposed
o using a single prototype set combined with KNN. As the EEGPS
ramework uses prototype subsets already generated by the PS
lgorithm, the additional running time needed to apply EEGPS is
mall. Moreover, we will experimentally demonstrate that when
sing the EEGPS framework, less evaluations of the PS algorithm
re needed to obtain similar and even better results than when
sing the traditional PS setting. This proposal takes a clear step
way from traditional PS algorithms described in [3], both evolu-
ionary and non-evolutionary. All such methods lead to a single
educed training set, which is considered optimal based on cer-
ain internal evaluation criteria. This set is used in the classification
f new instances. None of these methods yield multiple subsets
hat can be set up in an ensemble. Naturally, applying them several
imes to the same training set (with varying parameter values) can
ield multiple different subsets. The point of our development of
EGPS is that we do not need to apply an existing PS method mul-
iple times with additional parameter tuning, but rather that we
an readily use information already generated by one application
f the best performing PS methods: the evolutionary algorithms.
he main novelty and contributions of this work are the following:

. We  propose the recovery of information generated by evolution-
ary PS methods, which is traditionally entirely discarded. Instead
of solely keeping track of the fittest individual in the population,
we store every encountered candidate. Afterwards, we select
a good-performing and diverse set from among them. This set
is used rather than the single fittest individual, thereby maxi-
mally exploiting the large computational cost of the evolutionary
method.

. We  develop a custom classification ensemble based on the
selected group of prototype subsets. Within this ensemble, the
subsets are dynamically weighted, based on the test instance to
classify, in order to assign more weight to subsets performing
well in the neighborhood of the test instance.

. We  experimentally show that the additional cost of the EEGPS
framework compared to the traditional setting is negligible and
that its application can lead to an increased classification accu-
racy.

he remainder of this paper is organized as follows. In Section 2 we
rovide the reader with the basics of evolutionary PS algorithms.

n Section 3 we present the EEGPS framework and in Section 4 we
xperimentally demonstrate the good performance of EEGPS. We

onclude our experimental study in Section 5 with an example
pplication of how our framework can be extended to other evolu-
ionary data reduction algorithms as well. We  conclude and point
ut future research directions in Section 6.
mputing 44 (2016) 75–88

2. Preliminaries: evolutionary prototype selection

In this section we  provide the background on evolutionary PS
algorithms necessary for the understanding of the remainder of
the paper and for the interpretation of the results obtained in the
experimental evaluation. We first discuss the general framework
of evolutionary PS techniques [14] and afterwards the four state-
of-the-art techniques used in our experiments.

The core component of an evolutionary algorithm is a popula-
tion that changes over several generations. It consists of individuals
represented by chromosomes. The evolution is guided by genetic
operators: recombination (crossover) and mutation. Each chromo-
some represents a solution. How good a solution it is, is evaluated
by the so-called fitness function. It assesses the quality of the indi-
viduals and is the main driver of the evolutionary algorithm.

In the remainder, we denote the training set by T. For evolution-
ary PS methods, chromosomes correspond to prototype subsets of
T and are encoded as binary strings of length |T|. A 1 on the ith
position means that the ith instance of T is included in the proto-
type subset, a 0 means that it is not. All evolutionary PS methods
discussed in this paper randomly initialize the population, that is,
random binary strings of length |T| constitute the initial population.

The fitness function used in the four evolutionary PS algorithms
recalled below consists of two  components, the leave-one-out
training accuracy acc(S) associated with the prototype subset S ⊆ T
and the reduction red(S) that compares the size of S to the size of
the original training set T. The fitness function balances these two
components using a parameter  ̨ ∈ [0, 1] as follows:

fitness(S) =  ̨ · acc(S) + (1 − ˛) · red(S). (1)

As the fitness function incorporates both the accuracy and the
reduction, the evolutionary PS method finds small prototype sub-
sets that result in accurate predictions.

All considered PS methods use the same mutation operator that
flips the bit in the gene with a given probability. This probability
is kept low, as this operator is based on the rarer phenomenon
of mutation in nature. The algorithms halt when a predetermined
number of fitness evaluations is reached. The other components of
the evolutionary algorithm scheme are different for each specific
evolutionary PS method; we  discuss them in detail below.

We  recall four state-of-the-art evolutionary-based PS methods.
These algorithms perform very well on a broad selection of datasets,
as experimentally demonstrated in [3]. We first discuss two  basic
algorithms, the Generational Genetic Algorithm (GGA, [5,6]) and
the Steady State Genetic Algorithm (SSGA, [4]). These algorithms
both follow the general scheme of evolutionary algorithms, but
they differ by the fact that SSGA only generates two  new individ-
uals in each generation, whereas GGA replaces a more substantial
part of its population. Next, we discuss the Steady State Memetic
Algorithm (SSMA, [7]), that adds an optimization phase to the SSGA
algorithm, and the Adaptive Search for Instance Selection (CHC, [4])
algorithm that extends GGA.

2.1. Generational Genetic Algorithm (GGA, [5,6])

Parent selection in the GGA algorithm uses a stochastic pro-
cedure where fitter individuals in the population have a higher
chance of being selected. There are as many parents selected as
there are individuals in the population, which means that some
individuals can be selected multiple times. These parents are ran-
domly matched in pairs. Crossover happens between these parents
with a given probability. The two-point crossover operator is used,

which exchanges one part of the chromosome between the two
parents. The generated offspring consists of the children resulting
from the crossover procedure and the parents that were selected
but did not undergo crossover. Elitism is applied, meaning that
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he best individual in the previous generation is copied to the
ew generation without any changes. The entire offspring, except
he least fit individual, survives and goes to the next genera-
ion.

.2. Steady State Genetic Algorithm (SSGA, [4])

The SSGA algorithm selects two parents in each generation.
ach parent is selected by means of a binary tournament, which
eans that two individuals are randomly picked from the popula-

ion and the fittest one is selected. These parents are recombined
sing the two-point crossover operator. The recombination does
ot depend on a given probability, but is always performed instead.
he newly generated individuals replace the two  least fit ones from
he current population, provided the former attain a higher fitness
alue.

.3. Steady State Memetic Algorithm (SSMA, [7])

SSMA proceeds like SSGA, except that after the recombination
nd mutation phase, each of the generated children undergoes a
ocal optimization. If the fitness of the child is higher than a certain
hreshold, the optimization is performed. In the other case, the opti-

ization only takes place with a low probability. In this way, the
ptimization is only carried out if the generated child is likely to be
ncluded in the next generations and superfluous calculations are
voided. The local optimization procedure considers each instance
n the prototype subset corresponding to the child and removes it if
he gain in training accuracy of the new prototype subset is higher
han a certain threshold.

.4. Adaptive Search for Instance Selection (CHC, [4])

In the same way as GGA, the CHC procedure selects all indi-

iduals in the population as parents. These parents are randomly
aired and recombination takes place if the number of genes in
hich two parents differ is higher than a certain threshold. By
romoting diversity, it is ensured that the evolutionary procedure

Trainin g Data

Run M pbest% best 
Determine

Procedure to classify on 

Determine

weights
W

W

W

ig. 1. Workflow of the EEGPS framework: the evolutionary PS algorithm M is carried o
olutions that were generated by M.  These pdiv solutions are used to classify test instance
eighted voting strategy.
mputing 44 (2016) 75–88 77

does not get prematurely stuck in a local optimum. The threshold is
fixed to a fourth of the size of the training data, but this number is
decreased when no parents can be matched. The crossover operator
randomly interchanges half of the bits in which the parents differ
and always takes place. The generated children are merged with
the original population to the offspring and the fittest p individuals
survive, with p the size of the population. If the new generation
does not differ enough from the previous one, the population is re-
initialized by taking the fittest individual and copying it p times.
In each copy a certain percentage of bits is set to 1 with a given
probability.

3. Proposed framework: Ensembles of Evolutionary
Generated Prototype Subsets (EEGPS)

During the application of an evolutionary PS algorithm many
good and diverse prototype subsets are encountered, but only the
final fittest one is used for the classification of test instances. The
effort put in the construction and evaluation of the intermediate
candidates is therefore not fully taken advantage of. The first idea
of EEGPS is to use multiple good prototype subsets encountered
during the PS algorithm to classify test instances. Even though
these prototype subsets are globally not optimal, they may  still
have good properties and can be useful for classification. The sec-
ond idea of EEGPS is that prototype subsets can be good to classify
test instances in a particular region of the feature space, but that
they are less suited to classify test instances in other regions. Using
a single prototype subset neglects this idea. When using multiple
prototype subsets, one can guide which prototype subsets to use to
classify a test instance, depending on which of them perform well
in the region of that test instance.

The EEGPS framework encapsulates both ideas. Below, we use
the notation M for the evolutionary PS method at hand and set

E(S) to the value of the evaluation function of M for a prototype
subset S. In our case, where evolutionary PS methods are used, E(·)
corresponds to the fitness function. The general workflow of the
EEGPS framework is depicted in Fig. 1.

pdiv% di verse

Determine

Use for

classification of

all tes t instances

e test instanc e t

Weig hted

voting

Classification of t

ut and the pdiv most diverse solutions are selected from among the pbest% fittest
s. In order to classify one test instance, the solutions get a weight that is used in the
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.1. Description of EEGPS

The main steps of the EEGPS framework are summarized below.
efore the classification of test instances takes place, the following
teps are carried out:

. Determine best: Execute M and store the pbest% prototype sub-
sets with the highest values for E in best.

. Determine div: Select the pdiv% most diverse prototype subsets
among best and store them in div.

he parameters pbest and pdiv are user-defined. These two steps
et up the prototype subsets used in the ensemble. Once they are
arried out, the classification of test instances can start. For each
ndividual test instance t, the selected prototype sets are assigned
ustom weights, to appropriately classify this particular instance.
n order to classify t, the following steps are performed:

. Determine weights: Assign a weight W(S) to each prototype
subset S in div that expresses to what extent S is suited for clas-
sification of instances in the neighborhood of size nk of t.

. Weighted voting: Classify t using all the prototype subsets in
div and use a weighted voting strategy to determine its final
classification label.

he parameter nk is user-defined. Below, we discuss the separate
teps in more detail.

Determine best. The evolutionary algorithm M is carried out as
sual, except that all prototype subsets encountered are stored in a
et during the execution. When M terminates, the pbest% prototype
ubsets with the highest fitness value are determined and stored in
est.

lgorithm 1. Procedure to measure the diversity between two
rototype subsets.

nput: Training set T, prototype subsets S1, S2 ⊆ T
utput: diversity(S1, S2)
: n00← 0, n01← 0, n10← 0, n11← 0
:  for each x ∈ T do
: if x is classified correctly by 1NN, using S1 then
:  if x is classified correctly by 1NN, using S2 then
:  n11← n11 + 1
: else
: n10← n10 + 1
: else
: if x is classified correctly by 1NN, using S2 then
0: n01← n01 + 1
1: else
2: n00← n00 + 1
3: Qav(S1, S2) ← n00n11−n01n10

n00n11+n01n10
4: diversity(S1, S2) ← 1 − Qav(S1, S2)

Determine div. The prototype subsets in best can contain many
imilar prototype subsets. It is important to select a diverse sub-
et of prototype subsets from among best. As the prototype subsets
re used for classification, we want to ensure that the classification
sing the different prototype subsets is diverse. In [15], an exper-

mental study was carried out to compare measures of diversity
n classifier ensembles. This study showed that the Qav function,

hich measures the similarity between two classifiers, generally
chieves good results. It is therefore used in this work. The proce-
ure to measure the diversity between two prototype subsets S1
nd S2 is given in Algorithm 1. The value n00 is the number of train
nstances misclassified by both S1 and S2, while n11 is the number

f train instances correctly classified by S1 and S2. The remaining
alues n01 and n10 correspond to the number of instances correctly
lassified by one set and misclassified by the other. These values
re calculated in lines 2–12. Once they are known, the Qav measure
mputing 44 (2016) 75–88

can be calculated in line 13. Note that if S1 and S2 return exactly
the same classification output, the value of Qav(S1, S2) equals one.
As we are not interested in the similarity but in the diversity of the
classification, we return one minus Qav(S1, S2) as the final diversity
measure in line 14.

In order to obtain the most diverse prototype subsets among
best, Algorithm 2 is used, setting the parameter S to best. Firstly, in
line 1, the desired final number of prototype subsets is calculated
based on the parameter pdiv. The set of most diverse prototype
subsets div is initialized with the subset for which the evaluation
function E is highest in line 2. This is the prototype subset that
would have been used in the traditional PS setting. In lines 5–17,
other prototype subsets are added until div has the desired size
ndiv. The diversity between a prototype subset S and the set of
prototype subsets already selected in div is defined as the sum of
the diversities between S and the prototype subsets P ∈ div.  This
value is calculated in lines 10 and 11. In each iteration of the while
loop, the prototype subset Sbest for which the total diversity with
div is maximal is added to it.

Algorithm 2. Procedure to select the most diverse prototype sub-
sets among a set of prototype subsets.

Input: A set S of candidate prototype sets, parameter pdiv
Output: Set div of selected prototype sets
1:  ndiv ← pdiv · |S|
2: div ← {S}, where S is the fittest individual in S
3: S ← S \ {S}
4: ndiv ← ndiv − 1
5: while ndiv > 0 do
6: divmax← 0
7: Sbest← null
8: for eachS ∈ S do
9: divcurrent← 0
10: for each P ∈ div
11: divcurrent← divcurrent + diversity(S, P)
12: if divcurrent > divmax do
13: divmax← divcurrent

14: Sbest← S
15: S ← S \ Sbest

16: div ← div ∪ {Sbest}
17: ndiv ← ndiv − 1

Determine weights. Once the set div consisting of good and
diverse prototype subsets is established, the classification of test
instances can begin. When classifying a test instance t, we want to
use prototype subsets in div that are good at classifying instances
in the region of t. We  assume that a prototype subset is good in
the region of t if it classifies t’s nearest neighbors in T correctly. The
outline of the process that assigns weights to a prototype subset S
is listed in Algorithm 3.

Algorithm 3. Procedure to assign weights to a prototype sub-
set based on how well it classifies instances in the region of a test
instance.
Input: Training set T, prototype subset S ⊆ T, test instance t, parameter nk
Output: weight W(S)
1: N ← nk nearest neighbors of t in T
2: W(S) ← 0
3: for each x ∈ N do
4: if x ∈ S then
5: Determine the nearest neighbor y of x in S \ {x}
6: else
7: Determine the nearest neighbor y of x in S
8:  if x and y belong to the same class then
9: W(S) ← W(S) + 1
In line 1, the nk nearest neighbors of t are determined within
T and stored in the set N. Note that we use the entire training
set T rather than a prototype subset to determine the neighbors,
as T itself forms the most complete description of the problem
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pace that we have at our disposal. Determining neighbors in a
educed prototype set can result in more distant elements acting
s neighbors in the weighting procedure and they will not be suit-
ble representatives of the region around the target. The neighbors
tored in N are classified in lines 4–9 using a leave-one-out proce-
ure with S as pool of candidate nearest neighbors. Each time one
f the neighbors is classified correctly, the weight of the prototype
ubset S is raised by one in line 9. This implies that the resulting
eights are between 0 and nk.  Using this approach, prototype sub-

ets that classify instances near t well, are associated with high
eights.

Weighted voting. The weights assigned to the prototype subsets
re used in a weighted voting procedure. The procedure is outlined
n Algorithm 4. Let C be the set of all available class labels. The score
f every label in C is initialized at 0 at the beginning of the weighted
oting process. Next, the test instance t is classified using each of
he prototype subsets as pool of nearest neighbors in lines 3–5.
he score of the predicted class c is augmented by the weight of the
orresponding prototype subset. This implies that the classification
ased on prototype subsets that are well suited to classify instances

n the region of t are taken more into account. In lines 6–11 the class
abel with the highest score is determined. This label is returned as
he final prediction for t. We  internally ensure that in case of ties,
he final prediction is randomly drawn from the tied labels.

lgorithm 4. Weighted voting strategy used to classify test
nstances.
nput: Training set T, class labels C, set of prototype subsets div, weight W(S)

associated to each prototype subset S in div, test instance t
utput: Class label prediction cbest

: for each c ∈ C do
: score(c) ← 0
: for each prototype subset S ∈ div do
:  c← class of the nearest neighbor of t in S
:  score(c) ← score(c) + W(S)
: scorebest← −1
: cbest← null
: for each c ∈ C do
: if score(c) > scorebest then
0: scorebest← score(c)
1: cbest← c

.2. Computational complexity of the proposed approach

In this section, we discuss the complexity of our framework.
t is known that genetic approaches for PS impose a larger com-
utational cost compared to other (simpler) PS algorithms (e.g.
3]). On the other hand, as stated above, they do perform best
ith respect to accuracy and reduction of the generated proto-

ype set, which makes them still preferable over the alternative
aster approaches. As will be clear from the experimental results
resented in Section 4, the additional time needed by EEGPS com-
ared to the traditional PS setting is negligible, combined with a
ignificant increase in accuracy. This constitutes the fundamental
otivation of our proposal.
The sole modification that has been made to the PS algorithms

hemselves, is the storing of all encountered prototype subsets. This
as no influence on the runtime, but does imply additional storage
equirements. However, this is no longer an insurmountable dis-
dvantage nowadays, as storage has become cheap. The additional
ost of EEGPS lies with the construction of the ensemble and the
odified classification process. Let nev be the number of genera-

ions and p the size of the population in the genetic algorithm. The

otal number of candidate subsets constructed by an evolutionary
S method depends on its survival strategy. As described above,
n GGA and CHC, almost the entire population is replaced in each
eneration. This implies that a total number of p · nev candidates
mputing 44 (2016) 75–88 79

will have been constructed in the end. For SSGA and SSMA, which
are steady state genetic algorithms, at most two individuals are
replaced every generation. This results in a total number of candi-
dates of p + 2 · nev. Note that these values are upper bounds, as the
same prototype subset can be encountered multiple times. Below,
we denote the total number of stored chromosomes as Ch.  It is clear
that, for all considered methods, this number is linear in both p and
nev.

The construction of the ensemble in EEGPS consists of two steps:
(a) the selection of the pbest% best subsets and (b) the selection of
the pdiv% most diverse subsets among those. The first step can be
handled in O(Ch) time, since it only requires one pass through the
set of candidates. Their fitness has already been computed during
the PS algorithm. Afterwards, Algorithm 2 is applied to the con-
structed set best. For the pairwise diversity calculations between
two subsets S1 and S2, Algorithm 1 is used. During the PS algo-
rithm, the fitness of both S1 and S2 was  calculated by means of
(1). This calculation involved computing the accuracy of 1NN on
T using the elements in the subset as prototypes. This means that
the classification step in lines 2–12 of Algorithm 1 has already been
performed and, if stored, does not need to be repeated. The entire
execution of this procedure therefore has complexity O(|T |). More-
over, we  can ensure that every pairwise diversity computation is
only computed once and stored, such that no duplicate calculations
are performed in Algorithm 2. Calculating all pairwise diversity val-
ues can be performed in O(|T | · |best|2) time before Algorithm 2 is
called. The largest cost of this algorithm lies with the while loop
in lines 5-17. In every iteration, of which there are at most |best|,
the prototype set Sbest adding the most diversity to div is deter-
mined. Each iteration has therefore a cost of O(|best|2), bringing
the total cost of Algorithm 2 to O(|best|3). The total time needed for
the construction of the ensemble is

O(Ch + |T | · |best|2 + |best|3) = O(Ch + |T | · Ch2 + Ch3)

= O(|T | · Ch2 + Ch3).

As a reminder, the value Ch is linear in both p and nev. The con-
struction time of the ensemble is consequently at most cubic in p
and nev and linear in |T|. The largest cost of the traditional genetic
PS algorithms lies with the fitness calculations, which yield a cost
quadratic in |T| in each generation. As we will show in the experi-
mental section, the additional time needed by EEGPS compared to
the traditional PS setting will be negligible.

The classification of a test instance by EEGPS is performed by (a)
computing the weights of the generated subsets and (b) determin-
ing the weighted vote. We  compare this step to the complexity of
1NN, since this is the classifier normally combined with the PS pro-
cedure. To classify a test instance t with 1NN and a single prototype
subset S, we  only need to determine its nearest neighbor in S. This
can be achieved in O(|S|) = O(|T |) time. The first step in the clas-
sification of t by EEGPS is the calculation of the weights by means
of Algorithm 3. For a subset S, this algorithm takes up O(nk)  time.
Indeed, the weights are based on the nearest nk training instances
and, as noted above, the classification of these instances by S has
already been determined and stored during the PS algorithm. As a
result, the cost of finding the weights of all prototype sets in the
ensemble is O(nk · Ch).  Finally, Algorithm 4 is applied. Its cost is
determined by lines 3–5. In this case, since t is a test instance and
not known at training time, the classification of this instance by S
needs to be done explicitly. Line 4 therefore has a cost of O(|T |). In
its totality, the for loop (and Algorithm 4) requires O(Ch · |T |). We

conclude that the classification of t by EEGPS costs O(Ch · (|T | + nk))
time, compared to the O(|T |) cost of 1NN. Both are linear in |T|,
but, due to the extra factor Ch,  the former can be expected to be
somewhat slower than the latter.
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Table 1
Datasets used in the experimental evaluation. We  specify the number of instances (inst), features (feat) and classes (cl).
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. Experimental evaluation

In this section we assess the performance of the EEGPS frame-
ork. In Section 4.1 we present the outline of the experimental

et-up and in Section 4.2 we analyze the influence of the EEGPS
arameters on the performance of the EEGPS framework. In Sec-
ions 4.3 and 4.4, we evaluate and discuss how the accuracy of the
EGPS framework relates to the traditional evolutionary PS accu-
acy and provide some general guidelines for its use. In Sections 4.5
nd 4.6 we discuss the relation of our approach to a weighted KNN
lgorithm and touch upon the matter of reduction related to PS.

.1. Experimental set-up

We  evaluate the proposed algorithms on the 40 datasets above
he horizontal line described in Table 1 taken from the UCI [16]
nd KEEL [17] dataset repositories. The five larger datasets below
he line are used in Section 4.3 to illustrate the efficiency of our
pproach. We  use a 10 fold cross-validation procedure on each
ataset, that is, we divide the data in 10 folds and use each fold
s test data and the remaining folds as training data. We apply

he EEGPS framework in conjunction with the GGA, SSGA, CHC and
SMA evolutionary PS algorithms discussed in Section 2. For each
f these PS methods, we compare the performance of the algo-
ithm within the EEGPS framework (that uses 1NN as classifier as
described in Section 3) against the setting where the PS algorithm
is used as preprocessing algorithm followed by 1NN classification.

As the proposed algorithms have a random component, we
repeat each experiment 5 times. All results reported are the average
results over the 10 folds and 5 runs. By repeating the experiments
several times and reporting the average results, we  account for the
stochastic nature of the algorithms. Increasing this number of iter-
ations further may  render our conclusions more convincing, but we
think the threat of invalidity should be low. Related studies (e.g. [3])
sometimes use fewer iterations. We  report the classification accu-
racy, defined as the number of correctly classified objects divided by
the total number of objects, and the running time. To assist fellow
researchers in the replication of our experiments (see e.g. [18]), we
list the parameters values used for the evolutionary PS algorithms
in Table 2. These are the settings that were suggested in the original
proposals [4–7].

We consider the number of evaluations used in the evolutionary
PS algorithm as a parameter of the EEGPS framework. There are four
parameters in total in the EEGPS framework:
• nev: Number of evaluations used in the evolutionary PS algo-
rithm. We use nev = 1000, 2000, . . .,  10,000.
• pbest: Selected percentage of fittest prototype subsets. We  use

pbest = 1, 5, 10, 50, 100.
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Table  2
Parameter settings of the evolutionary PS algorithms used in the experimental
evaluation.

GGA Mutation probability 0.01
Crossover probability 0.6
Population size 100
˛  in the fitness function 0.5

SSGA Mutation probability 0.01
Population size 100
˛  in the fitness function 0.5

CHC Population size 100
˛  in the fitness function 0.5
Percentage of genes changed in restart (%) 35

SSMA Mutation probability 0.01

•

•
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Population size 100
˛  in the fitness function 0.5

pdiv: Selected percentage of most diverse prototype subsets. We
use pdiv = 1, 5, 10, 50, 100.
nk: Number of neighbors used to assess the quality of the proto-
type subset. We  use nk = 1, 3, 5.

.2. Analysis of the EEGPS parameters

In this section, we consider the effect of the different parameters
f our proposal on its performance. We  note that the baseline accu-
acy of 1NN without any preprocessing is 0.7390, taken as average
ver the 40 datasets above the line in Table 1. The results pre-
ented below will show that all considered methods lead to a clear
mprovement over this value, providing a first indication of their
mportance.

.2.1. Performance of the original PS algorithms
In order to interpret the results of EEGPS, we first need to

now more about the performance of the original evolutionary PS
lgorithms. In Fig. 2, we show the accuracy values when the PS
lgorithms are applied in the traditional scheme, that is, the PS
lgorithm is applied to the training data and the test instances are
lassified with 1NN using the resulting prototype subset as pool of

andidate nearest neighbors. A crucial first conclusion, which will
e reflected in our further analysis, is that the more complex meth-
ds CHC and SSMA generally outperform their simpler relatives
GA and SSGA.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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ig. 2. Accuracy results for the PS algorithms in their traditional setting and for
ifferent values of nev.
mputing 44 (2016) 75–88 81

4.2.2. Influence of the nk parameter
We first study the influence of nk on the accuracy of the EEGPS

framework based on the average accuracy for the different param-
eter settings listed above. The results are listed in Appendix A. For
each evolutionary method, we highlight which value for nk we
observed to be optimal among the evaluated set:

GGA nk = 1 is optimal, independent from the values of nev, pdiv
or pbest.

CHC nk = 3 is optimal in most cases. For some values of pdiv and
pbest using nk = 5 is optimal, but in those cases the differ-
ence between nk = 3 and nk = 5 is not large (the maximum
difference is 0.0006). For high values of all three param-
eters pdiv, pbest and nev, the parameter setting nk = 1 is
optimal.

SSGA either nk = 1 or nk = 3 is optimal, depending on the other
parameter values. For instance, for the lowest evaluated
nev-value 1000, we  find that, if pbest = 10, nk = 3 is optimal
and nk = 1 otherwise. For the highest value nev = 10,000,
the setting nk = 3 generally performs best.

SSMA nk = 3 is optimal.

Referring back to Fig. 2, we  can conclude that the better the PS
algorithm performs, the higher nk should be. For instance, the worst
performing PS algorithm GGA always has nk = 1 as optimal param-
eter and the best performing algorithm CHC has mostly nk = 3 as
optimal parameter value (sometimes even nk = 5). A possible expla-
nation could be that when nk is higher, more prototype subsets are
taken into account to classify the test instance, as non-zero weights
are more likely to occur. Using more prototype subsets is benefi-
cial when they are of high enough quality. The fact that a given PS
algorithm performs better, implies that the population has a higher
quality and that, in general, the generated prototype subsets are
better. This could explain why the best performing PS algorithms
work better when nk is higher. Another explanation can be found
in the fact that when the prototype subsets are of high quality, it is
not important that the neighbor on which the quality is evaluated
is the closest to the test instance. The quality of prototype subsets
that are a bit further than the nearest neighbor is still good enough
to improve the classification of the test instance.

These two explanations also clarify why CHC has nk = 1 as opti-
mal  parameter when many prototype subsets are considered, that
is, when the three values pdiv, pbest and nev are high. Observe in
Fig. 2 that for a low number of evaluations, CHC does not perform
well, which means that low quality subsets were generated. Even
though the quality of the generated sets clearly improves over sub-
sequent iterations, all encountered sets are stored. When pdiv and
pbest are high, the earlier, low quality subsets represent a substan-
tial part of the ensemble. In that case, it is better to use nk = 1, for
similar reasons as given above.

4.2.3. Influence of the pbest and pdiv parameter
Based on our conclusions in the previous section, we  use nk = 1

for GGA and SSGA and nk = 3 for SSMA and CHC in the remain-
der of the analysis. We  visualize the effect of the parameters pbest
and pdiv in Fig. 3. To condense the required space, we  present the
results for nev = 10,000 as a representative value. In each subfigure,
the average accuracy is represented. We  can draw the following
conclusions:

GGA Fig. 3(a) shows that the performance improves when

pbest is higher. For each value of pbest, the best value for
pdiv is 50%.

CHC in Fig. 3(b), we observe that when 10,000 evaluations are
carried out, the best combination is found for pbest = 10
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4.2.4. Influence of the nevnev parameter
In Fig. 4, we plot the results of the evolutionary PS algorithms

in the EEGPS framework for different values of nev. For GGA and
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ig. 3. Illustration of the pbest and pdiv sensitivity of the four PS methods within th
SGA,  we set nk = 1. For CHC and SSMA, we set nk = 3.

and pdiv = 50. We  briefly note that for lower values of nev,
i.e. 1000 or 5000 evaluations, the best value for pbest is
also 10, but it is best combined with pdiv = 5 in that case.

SGA as for GGA, Fig. 3(c) shows a better performance of SSGA
for increasing values of pbest. When nev = 10,000, the best
pdiv value depends on the selected pbest. For lower values
of nev, we found the combination pbest = 100 and pdiv = 50
to be optimal within the evaluated set.

SMA for this method, Fig. 3(d) shows that the results are less
clear-cut. Nevertheless, our results allow us to conclude
that pbest = 10 performs well for nev = 10,000 and all other
values of nev. It is best combined with pdiv = 50.

As in Section 4.2.2, we see a clear difference between the results
or the more basic methods GGA and SSGA on the one hand and the
esults for CHC and SSMA on the other. For GGA and SSGA it is good
o consider all prototype subsets (pbest = 100) and to remove half
f the solutions that are similar to others (pdiv = 50), while for CHC
nd SSMA, it is in general better to select less solutions (pbest = 10
r pbest = 50) and to remove half of the solutions that are similar to
thers (pdiv = 50).

From these results we can conclude that it is useful to perform
he crucial step of selecting the most diverse among the best proto-
ype subsets, as we find values pdiv < 100 to outperform pdiv = 100.
he differences between the methods can again be explained con-
idering the results in Fig. 2. The best prototype subsets produced
y SSMA and CHC are of higher quality than the best prototype sub-
ets produced by SSGA or GGA. Therefore, it seems that for SSMA
nd CHC it is better to only work with these high quality prototype

ubsets and that the other generated prototype subsets deteriorate
he performance of the ensemble. The difference between the best
rototype subsets generated by SSGA and GGA and the remain-

ng ones is smaller, meaning that these prototype subsets do not
S framework. For each methods, the parameter nev was set to 10,000. For GGA  and

deteriorate the accuracy of the ensemble and can even improve it,
by increasing the diversity.

We  conclude that for GGA and SSGA, the parameter setting
pbest = 100 and pdiv = 50 is a good choice and that for SSMA and CHC,
pbest = 10 and pdiv = 50 is a good choice in most cases. We  use these
settings in the following paragraph, where we  study the influence
of the number of evaluations on the performance of EEGPS.
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
number of evaluations

Fig. 4. Accuracy results for the PS algorithms within EEGPS for different values of
nev.
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SGA, the remaining parameters were set to pbest = 100, pdiv = 50
nd nk = 1. For CHC and SSMA, we used pbest = 10, pdiv = 50 and
k = 3. These correspond with our conclusions from Sections 4.2.2
nd 4.2.3. The results for GGA and CHC are in line with our
xpectations: when more evaluations are taken, the quality of the
rototype subsets improves and hence the accuracy is higher. How-
ver, it is interesting to see that the accuracy of SSGA increases
ntil nev = 3000 and then decreases. Considering Fig. 2, this can be
xplained by the fact that SSGA fastly improves until nev = 3000
nd afterwards only does so slightly. This means that more eval-
ations do not result in significantly better prototype subsets
nd many prototype subsets of similar quality are added to the
nsemble, which apparently worsens the performance. This is most
ikely due to the unavoidable decrease in diversity within the
elected group of prototype subsets that this phenomenon will
esult in.

The accuracy of SSMA first decreases and then slightly increases,
ut never reaches the accuracy that was obtained after 1000 evalu-
tions. An explanation is once more found in Fig. 2, that shows that
SMA only very slowly improves its best prototype subset. Since
e use pbest = 10 for SSMA, the prototype subsets that are used

or SSMA in the EEGPS framework are all high-quality prototype
ubsets, but they might be very similar to each other. Taking more
valuations means that more of these similar prototype subsets are
dded, which possibly deteriorates the performance by decreasing
he diversity of the ensemble. After 3000 evaluations the accuracy
mproves again, which might be due to the fact that the optimiza-
ion step in the SSMA algorithm creates very high quality prototype
ubsets.

.3. Comparison of EEGPS to the evolutionary PS methods

In the previous section, we studied the influence of the EEGPS
arameters on the performance of the evolutionary PS methods
ithin our framework. We  concluded that for GGA and SSGA, nk = 1,

best = 100 and pdiv = 50 were the best settings, while for CHC and
SMA nk = 3, pbest = 10 and pdiv = 50 is a good choice. We  now verify
hether the EEGPS framework improves the classification accuracy

f the PS methods used in the traditional setting. Recall that the
volutionary PS methods under consideration have been shown to
e the best performing PS techniques in the experimental study of
3].

In Fig. 5 we visualize the improvement in accuracy when using
he EEGPS framework. EEGPS has on average a positive influence
n all evolutionary PS algorithms and has the most influence on the
HC and SSMA algorithms. For all PS algorithms except SSMA, the

mprovement decreases when more evaluations are used. To test if
he improvement is significant, we use the Wilcoxon statistical test
19] to compare the EEGPS variants of the PS algorithm against the
S algorithm in the traditional setting, as recommended in e.g. [20].
he sum of ranks in favor of EEGPS is given by R+, while R− is the
um of ranks in favor of the PS algorithm in the traditional setting.
dditionally, the p-value is reported, which reflects the probability
f obtaining a more extreme result than the one observed, when
e assume the methods to perform equivalently (null hypothesis).
e carry out the test at the 5 percent significance level. For each

volutionary PS algorithm, we test if the EEGPS variant significantly
mproves it, for increasing values of nev. The values of the statistics
re listed in Table 3 for GGA and SSGA and in Table 4 for CHC and
SMA.

For GGA, the table shows that the EEGPS framework significantly
mproves GGA when in both settings less than 6000 evaluations are

sed, excepting the setting where PS performs 6000 evaluations
nd EEGPS only 1000. For 8000 or 10,000 evaluations, EEGPS does
ot significantly improve GGA, but the low p-values do suggest that
here is some improvement. Additionally, we note that for each
Fig. 5. Improvement in accuracy when using the EEGPS framework for the evolu-
tionary PS algorithms.

comparison, R+ is higher than R−, which also suggests that using
the EEGPS framework is at least as accurate as the evolutionary
algorithm. Even when only 1000 evaluations are used in the EEGPS
framework, the result does not seem to be worse than when GGA
uses 10,000 evaluations.

The EEGPS framework only significantly improves the SSGA
algorithm when the latter is allowed to perform less than 4000
evaluations. This result could be expected from Fig. 5: there is only
a high average improvement for low values of nev and for higher
values the benefits of the EEGPS framework are less clear. However,
as for GGA, we see that in all comparisons, the R+ value is higher
than R−, indicating that the EEGPS framework is at least as good as
the traditional GGA, even when only a small number of evaluations
are used.

The improvement achieved by the EEGPS framework is very
clear when using CHC or SSMA. For all comparisons, the p-values
are below 0.5, showing that the EEGPS framework significantly
improves CHC and SSMA. It is remarkable that the results obtained
using the EEGPS framework with 1000 evaluations are significantly
better than when using CHC or SSMA with 10,000 evaluations.
This shows that by taking maximum advantage of the work
performed by an evolutionary PS method, we  can outperform
the traditional setting by even using considerably less evalua-
tions.

To conclude this experimental evaluation, we study the addi-
tional time required to carry out the evolutionary PS algorithms
within the EEGPS framework, which includes the time to select the
best and most diverse prototype subsets and the time to classify
the test instances. The results are presented in Fig. 6. We  observe
that the additional time is small, especially compared to the run-
ning time required by the evolutionary PS algorithms themselves,
which take up several minutes on average. For CHC and SSMA, the
additional time required is smaller, as the best parameter settings
for these algorithms are nk = 3, pbest = 10 and pdiv = 50 as opposed to
the other two  algorithms that have nk = 1, pbest = 100 and pdiv = 50
as best parameter settings.

To further illustrate the efficiency of our approach, we  con-

duct some additional experiments for CHC and SSMA on the five
larger datasets below the horizontal line in Table 1. For CHC we
use nev = 10,000, for SSMA we  set this value to nev = 1000, since
these values attained the best results in our analysis above. The



84 N. Verbiest et al. / Applied Soft Computing 44 (2016) 75–88

Table 3
Statistics of the Wilcoxon test comparing the GGA and SSGA PS algorithms in the EEGPS framework (R+) with their traditional setting (R−) for different values of nev. p-Values
corresponding to significant differences are printed in bold.
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esults of these experiments are presented in Table 5, which were
gain taken as averages over five runs of the algorithms. As before,
e can observe the clear advantage on the classification accu-

acy of using the PS methods within the EEGPS framework. The
able further reports the ratio of the runtime of the PS algorithm
ithin EEGPS over the runtime of the method in its traditional
etting. Since the ratios are all close to 1, it is clear that the
dditional time required by EEPGS time is minor. We  conclude
hat we obtain an increase in accuracy with limited additional
ffort.
4.4. Guidelines

To summarize, for their use within the EEGPS framework in
practice, we can recommend the following parameter values for
the PS algorithms:
GGA nk = 1, pbest = 100, pdiv = 50, nev = 10,000.
CHC nk = 3, pbest = 10, pdiv = 50, nev = 10,000.
SSGA nk = 1, pbest = 100, pdiv = 50, nev = 3000.
SSMA nk = 3, pbest = 10, pdiv = 50, nev = 1000.
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Table  4
Statistics of the Wilcoxon test comparing the CHC and SSMA PS algorithm in the EEGPS framework (R+) with their traditional setting (R−) for different values of nev. p-Values
corresponding to significant differences are printed in bold.
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able 5
ccuracy results of CHC and SSMA with and without EEGPS for five larger datasets.
e  also present the ratio (Rat.) of the execution times of the methods within the

ramework compared to the traditional setting.

Dataset CHC SSMA

PS EEGPS Rat. PS EEGPS Rat.

magic 0.8159 0.8205 1.0083 0.8176 0.8210 1.0027
penbased 0.9562 0.9820 1.0026 0.9822 0.9832 1.0037
phoneme 0.8234 0.8407 1.0073 0.8533 0.8614 1.0144
ring 0.8764 0.8769 1.0070 0.9238 0.9331 1.0029
twonorm 0.9658 0.9671 1.0066 0.9603 0.9623 1.0037
The overall highest accuracy values were obtained by SSMA and
CHC within EEGPS, setting the parameters as specified above.

4.5. Relation to KNN

As 1NN is applied with each prototype set, one could argue that
the proposed classification ensemble is highly related to KNN, with
K set equal to the number of prototype sets being used and its
own prototype set taken as their union. Nevertheless, these two
techniques are certainly different. For KNN, every prototype can
act as a neighbor for a target instance a single time. In EEGPS, the

same element can be selected multiple times, when it is present in
several prototype sets and is determined as the nearest neighbor
of a target instance within more than one of them. Consequently,
EEGPS uses an adaptive rather than fixed value of K. Furthermore,
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framework over SFLSDE itself. In many other cases, the integration
Fig. 6. Additional time required by EEGPS.

he weight of a neighbor builds up as it is selected more often,
hich cannot be modeled with a straightforward weighted KNN

pproach. We  have conducted a set of experiments showing that
he performance of EEGPS is superior to that of KNN using the union
f all prototype sets as its own prototype sets. Using the settings
dvised in Section 4.4, we found respective accuracies of 0.4909
GGA), 0.4765 (CHC), 0.4905 (SSGA) and 0.6544 (SSMA) in this
et-up. Recall that the baseline average accuracy of 1NN without
reprocessing is 0.7390. The performance of our EEGPS framework

s clearly substantially better than this suggested related approach.
t was evident that the considerable number of prototype sets used
n the ensemble lead to a lower global reduction when combined,
ecause a level of diversity has been guaranteed between them.
his implies that their union more closely coincides with the origi-
al training set. The performance of KNN was therefore found to be

ow, as it could not benefit from a decent PS. Moreover, the num-
er K can be high, namely the number of prototype sets used by
EGPS, which means that too many neighbors are used to classify
est instances, deteriorating the prediction.

.6. A note on reduction

Our clear aim in the development of the EEGPS framework lies
ith the improvement of the classification performance related
ith an evolutionary PS method with minimal additional effort.

he other two issues of KNN for which PS was originally proposed,
amely its possible high storage and runtime requirements, are less
ritical nowadays, as hard drives have become relatively cheap and
he stored dataset can be searched efficiently by the use of appropri-
te data structures (e.g. [21,22]). Still, as a side-note we also report
n indication of the achieved reduction, because a high reduction
emains a goal of certain PS methods. Since we are working with

 set of prototype sets, we choose to report the average reduction
hey individually attain compared to the original training set. For
0,000 evaluations, using the same values for the other parame-
ers as above, we find average reductions of 80.25%, 79.67%, 97.04%
nd 95.37% for GGA, SSGA, CHC and SSMA respectively. When we
onsider the union of all these sets, we obtain an indication of the
lobal reduction. Using these same settings, for GGA and SSGA, the

lobal reduction was found to be 0%. This is understandable, since

 very high number of prototype subsets will be used (pbest = 100,
div = 50) and a level of diversity has been ascertained between
mputing 44 (2016) 75–88

them. For CHC and SSMA we found average global reductions of
87.68% and 93.11% respectively.

5. Extension of the framework: application to prototype
generation

In order to show that the EEGPS framework can easily incorpo-
rate other genetic preprocessing approaches as well, we present its
application to a prototype generation (PG) method. In fact, any pre-
processing method that encounters multiple candidate (reduced or
modified) training sets during its execution can be integrated in our
framework. The sole modification which needs to be made to the
algorithm under consideration, is the implementation of a mecha-
nism storing all encountered solutions. The final construction of the
ensemble and the classification process are not method-specific.

PG is similar to PS in that both preprocessing paradigms con-
struct a reduced training set. As described above, PS does so by
selecting a subset of the instances in the training set. This implies
that all elements in the resulting prototype set already appeared
in the original, unreduced training set. PG differs from this set-up.
Apart from selecting existing instances, these methods also allow
the construction of artificial elements. The final prototype set is
therefore not necessarily a subset of the training set. We  refer the
reader to [23] for a review, taxonomy and experimental compari-
son of PG methods. As for PS methods, the focus of PG lies on the
1NN classifier.

A group of PG methods is based on differential evolution (DE,
[24]). Like the genetic algorithms discussed above, DE evolves a
population of candidate solutions over a number of generations,
guided by custom genetic operators. It is therefore perfectly suited
to be integrated in the framework proposed in this paper. An
experimental comparison between PG methods based on DE was
conducted in [9]. This study concluded that Scale Factor Local
Search in Differential Evolution (SFLSDE, [25]) is one of the top-
performing methods within this group. We  therefore select it as a
representative PG method to be evaluated with our framework.

SFLSDE is a positioning adjustment algorithm. It initializes the
candidate prototype subsets in the population by selecting a given
percentage of the original training instances. In each iteration, it
optimizes the positions of the instances in these sets by moving
them across the feature space. The number of instances remains
unchanged. SFLSDE is a memetic DE algorithm with custom muta-
tion and crossover schemes, integrating local search components.
We refer to [25] for further details.

Within EEGPS, every prototype subset constructed by SFLSDE is
stored. When the algorithm terminates, the classification ensemble
is constructed as described in Section 3. In these experiments, we
have not varied the nev parameter, but have set it to 500, as was
done in [9]. The remaining internal parameters of SFLSDE have also
been set to the values used in that study. We  do vary the remain-
ing three parameters of the framework. For the percentages pbest
and pdiv, we  use the values 10, 50 and 100. The value nk is set to
1, 3 and 5. Table 6 presents the results of the experiments, that is,
the average accuracy attained by SFLSDE within the correspond-
ing EEGPS setting over the 40 datasets above the line in Table 1.
As for the PS methods, the additional time required to construct
the ensemble is negligible compared to the time needed for the
execution of SFLSDE itself: the former never reached more than
0.3% of the latter. With respect to the accuracy, the benefits of the
framework are less clear than they were for the genetic PS meth-
ods. Only for three settings do we observe a slight advantage of the
of SFLSDE in EEGPS leads to a decrease in accuracy. This is most
likely due to the sensitivity of PG methods to overfitting, as noted
in e.g. [8]. The combination of multiple overfitted subsets in the
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Table  6
Accuracy results of SFLSDE within the EEGPS framework for several parameter set-
tings. The baseline average accuracy of 1NN after SFLDE is 0.7464. Higher values are
printed in bold.

pbest pdiv nk

1 3 5

10 10 0.7092 0.7141 0.7126
10  50 0.7194 0.7237 0.7215
10  100 0.7202 0.7253 0.7224
50  10 0.7266 0.7299 0.7280
50  50 0.7306 0.7347 0.7318
50  100 0.7322 0.7355 0.7326

e
b
a
t
T
t
e
l
a
s
w
n
E

6

E
t
I
t
s

T
A

100 10 0.7393 0.7427 0.7390
100 50 0.7444 0.7468 0.7425
100 100 0.7463 0.7470 0.7429

nsemble will accentuate this effect. Furthermore, since the num-
er of instances in each prototype subset is the same and the subsets
re optimized by moving the instances within them, we can expect
hem to be too related to guarantee a sufficient level of diversity.
he ensemble therefore loses power. We  conclude that, as opposed
o the PS methods considered above, SFLSDE with its default param-
ters seems less suitable for integration within our framework. The
esson learned from this case study is that, although our framework
llows for an easy integration of many different methods, the user
hould always consider whether the extension is appropriate and
hether the encountered subsets are diverse enough. In any case,
o objection can be made to the little additional time required by
EGPS, as was confirmed in this section.

. Conclusion

In this paper we proposed a framework called Ensembles of
volutionary Generated Prototype Subsets (EEGPS) that allows
o use an evolutionary PS algorithm in a more efficient manner.

nstead of only using the fittest prototype subset generated by
he evolutionary PS algorithm, we use multiple fit prototype
ubsets in an ensemble framework. In order to classify a new test

able A.1
verage accuracy of the EEGPS framework over 40 datasets for different parameter settin

nev pbest pdiv GGA CHC 

nk = 1 nk = 3 nk = 5 nk = 1 nk = 3 

1000 10 10 0.7653 0.7643 0.7610 0.7835 0.7883 

1000  10 50 0.7683 0.7659 0.7625 0.7854 0.7907 

1000  10 100 0.7672 0.7640 0.7596 0.7850 0.7889 

1000  50 10 0.7725 0.7700 0.7660 0.7822 0.7906 

1000  50 50 0.7736 0.7712 0.7675 0.7825 0.7902 

1000  50 100 0.7728 0.7692 0.7645 0.7828 0.7905 

1000  100 10 0.7734 0.7715 0.7675 0.7788 0.7877 

1000  100 50 0.7740 0.7718 0.7682 0.7806 0.7887 

1000  100 100 0.7739 0.7711 0.7665 0.7785 0.7863 

5000  10 10 0.7707 0.7680 0.7647 0.7892 0.7932 

5000  10 50 0.7716 0.7687 0.7654 0.7900 0.7929 

5000  10 100 0.7707 0.7664 0.7633 0.7888 0.7918 

5000  50 10 0.7739 0.7702 0.7666 0.7800 0.7855 

5000  50 50 0.7747 0.7706 0.7670 0.7820 0.7911 

5000  50 100 0.7736 0.7687 0.7645 0.7782 0.7812 

5000  100 10 0.7760 0.7737 0.7705 0.7798 0.7833 

5000  100 50 0.7768 0.7744 0.7714 0.7782 0.7812 

5000  100 100 0.7761 0.7720 0.7683 0.7771 0.7753 

10,000 10 10 0.7740 0.7723 0.7701 0.7881 0.7936 

10,000 10 50 0.7750 0.7729 0.7703 0.7891 0.7940 

10,000 10 100 0.7739 0.7705 0.7677 0.7875 0.7926 

10,000 50 10 0.7772 0.7750 0.7719 0.7818 0.7860 

10,000 50 50 0.7783 0.7757 0.7732 0.7828 0.7871 

10,000 50 100 0.7770 0.7735 0.7702 0.7807 0.7801 

10,000 100 10 0.7776 0.7768 0.7739 0.7820 0.7868 

10,000 100 50 0.7785 0.7774 0.7743 0.7807 0.7801 

10,000 100 100 0.7777 0.7758 0.7724 0.7807 0.7797 
mputing 44 (2016) 75–88 87

instance, it is determined which prototype subsets are well suited
to classify instances in the neighborhood of that test instance. Those
prototype subsets are used in a voting strategy to determine the
class of the test instance. Our experimental study clearly shows
the benefits of this EEGPS strategy. Using EEGPS, the results are
more accurate and good results are already obtained after a small
number of evaluations, whereas PS algorithms in the traditional
setting require many evaluations to achieve a good performance.
We have also shown that any preprocessing method that encoun-
ters multiple candidate training sets during its execution can be
easily plugged into EEGPS. The results in this paper were obtained
using the KNN classifier. This approach could be extended for other
classifiers and moreover, some ideas could also be applied for other
ensemble classification techniques, where elements of the ensem-
ble can be selected based on their performance for neighboring
instances of the instance to be classified.

Finally, as we live in the big data era where datasets can com-
monly contain millions of instances [26], an important next step
will also be the extension of the proposed framework to that setting.
The focus of this paper was  on the development of the framework,
the comparison of evolutionary PS methods with and without using
the framework and the extensive evaluation of the internal param-
eters. Very large datasets were excluded from the current study, as
one can follow earlier proposals (e.g. [27,28]) to obtain the desired
extension to big data in a straightforward way.

Acknowledgments

The research of Sarah Vluymans is funded by the Special
Research Fund (BOF) of Ghent University. Chris Cornelis was  par-
tially supported by the Spanish Ministry of Science and Technology
under the project TIN2011-28488 and the Andalusian Research
Plans P11-TIC-7765, P10-TIC-6858 and P12-TIC-2958.
Appendix A. Table of results

In Table A.1, we present an overview of experimental results of
EEGPS, where we  vary the parameters nev,  nk,  pbest and pdiv. All

gs.

SGA SSMA

nk = 5 nk = 1 nk = 3 nk = 5 nk = 1 nk = 3 nk = 5

0.7860 0.7585 0.7613 0.7585 0.7849 0.7912 0.7895
0.7895 0.7606 0.7628 0.7595 0.7876 0.7939 0.7925
0.7863 0.7600 0.7605 0.7569 0.7882 0.7936 0.7906
0.7903 0.7700 0.7661 0.7629 0.7824 0.7889 0.7863
0.7907 0.7706 0.7664 0.7632 0.7868 0.7965 0.7937
0.7893 0.7702 0.7647 0.7608 0.7780 0.7851 0.7809
0.7873 0.7739 0.7725 0.7690 0.7813 0.7855 0.7824
0.7893 0.7745 0.7741 0.7701 0.7780 0.7851 0.7809
0.7848 0.7739 0.7709 0.7671 0.7760 0.7778 0.7726
0.7922 0.7612 0.7636 0.7627 0.7808 0.7880 0.7863
0.7924 0.7630 0.7635 0.7626 0.7821 0.7902 0.7886
0.7893 0.7637 0.7634 0.7622 0.7795 0.7875 0.7849
0.7842 0.7695 0.7692 0.7662 0.7829 0.7890 0.7856
0.7913 0.7700 0.7696 0.7668 0.7783 0.7825 0.7777
0.7766 0.7696 0.7672 0.7643 0.7779 0.7810 0.7761
0.7807 0.7738 0.7749 0.7725 0.7813 0.7874 0.7832
0.7766 0.7752 0.7745 0.7706 0.7779 0.7810 0.7761
0.7691 0.7716 0.7706 0.7680 0.7779 0.7809 0.7760
0.7935 0.7653 0.7657 0.7645 0.7818 0.7882 0.7850
0.7941 0.7669 0.7654 0.7645 0.7832 0.7921 0.7889
0.7914 0.7673 0.7653 0.7641 0.7783 0.7840 0.7790
0.7842 0.7690 0.7715 0.7692 0.7815 0.7876 0.7836
0.7840 0.7701 0.7718 0.7691 0.7782 0.7815 0.7768
0.7757 0.7680 0.7691 0.7664 0.7782 0.7813 0.7765
0.7843 0.7731 0.7752 0.7727 0.7786 0.7830 0.7780
0.7757 0.7728 0.7747 0.7715 0.7782 0.7813 0.7765
0.7751 0.7698 0.7691 0.7666 0.7782 0.7813 0.7765
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alues are average accuracies of EEGPS over the 40 datasets above
he line in Table 1. These results were discussed in Section 4.2.2.
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