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One of the most accurate types of prototype selection algorithms, preprocessing techniques that select a
subset of instances from the data before applying nearest neighbor classification to it, are evolutionary
approaches. These algorithms result in very high accuracy and reduction rates, but unfortunately come
at a substantial computational cost. In this paper, we introduce a framework that allows to efficiently
use the intermediary results of the prototype selection algorithms to further increase their accuracy
performance. Instead of only using the fittest prototype subset generated by the evolutionary algorithm,
we use multiple prototype subsets in an ensemble setting. Secondly, in order to classify a test instance,
we only use prototype subsets that accurately classify training instances in the neighborhood of that test
instance. In an experimental evaluation, we apply our new framework to four state-of-the-art prototype
selection algorithms and show that, by using our framework, more accurate results are obtained after less
evaluations of the prototype selection method. We also present a case study with a prototype generation
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algorithm, showing that our framework is easily extended to other preprocessing paradigms as well.
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1. Introduction

Classification, the task of labeling instances described by fea-
tures using already labeled training data, is an important field in
data mining with numerous applications in research and indus-
try. A widely used and easy to understand classification method is
K Nearest Neighbors (KNN, [1]). In order to classify an unlabeled
instance, KNN looks up the K instances in the training data clos-
est to it and assigns the instance to the majority class among these
nearest neighbors.

One of the main drawbacks associated with KNN classification is
that the lazy learning nature of KNN implies that any instance can
have an impact on the classification of new instances. As a result,
KNN is highly susceptible to noise, which often occurs in datasets
drawn from real-world situations due to, for instance, human
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annotation, measuring errors or data transmission. Furthermore,
storing the entire training set can imply high storage needs and
look-up times.

A successful solution to these problems is Prototype Selec-
tion (PS, [2]). This preprocessing technique selects a subset of the
data in order to improve the accuracy of the KNN classification
applied afterwards or to reduce the storage requirements signif-
icantly. Many PS methods have been proposed in the literature. An
extensive overview and taxonomy can be found in [3]. They are
most commonly combined with the 1NN classifier, which is most
sensitive to noise. We therefore also focus on this classifier here.
Evolutionary approaches to PS [4-7] have proven to be the best
among state-of-the-art PS methods, both with respect to accuracy
and reduction [3]. They are able to improve the classification accu-
racy of INN significantly and at the same time reduce the data by up
to 90 percent. The combination of this type of methods and near-
est neighbor classification has consequently been widely explored
(e.g. [8-13]). The good performance of evolutionary PS algorithms
is achieved by producing and evaluating many generations of can-
didate prototype subsets. Unfortunately, this means that they tend
to be slow.
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In this paper we propose a classification framework, called
Ensembles of Evolutionary Generated Prototype Subsets (EEGPS),
that draws more information out of the long calculations that evo-
lutionary PS methods make. During the course of an evolutionary
PS algorithm, many good prototype subsets are encountered, but
only the overall best prototype subset is used. However, candi-
date prototype subsets that are globally not optimal might still be
useful to classify instances in certain regions of the feature space.
The PS algorithms solely recognize that these subsets are not the
overall best and discard them without further question. The large
computational cost of the algorithms can be more appropriately
used by storing them for later use. The sub-optimal subsets have
been constructed and evaluated anyway, there is little or no addi-
tional cost in saving them. EEGPS implements this idea by using
multiple prototype subsets, that were generated during the exe-
cution of an evolutionary PS algorithm. In order to classify a test
instance, the EEGPS classifier uses an ensemble of prototype sub-
sets that perform well in the region of that test instance, as opposed
to using a single prototype set combined with KNN. As the EEGPS
framework uses prototype subsets already generated by the PS
algorithm, the additional running time needed to apply EEGPS is
small. Moreover, we will experimentally demonstrate that when
using the EEGPS framework, less evaluations of the PS algorithm
are needed to obtain similar and even better results than when
using the traditional PS setting. This proposal takes a clear step
away from traditional PS algorithms described in [3], both evolu-
tionary and non-evolutionary. All such methods lead to a single
reduced training set, which is considered optimal based on cer-
tain internal evaluation criteria. This set is used in the classification
of new instances. None of these methods yield multiple subsets
that can be set up in an ensemble. Naturally, applying them several
times to the same training set (with varying parameter values) can
yield multiple different subsets. The point of our development of
EEGPS is that we do not need to apply an existing PS method mul-
tiple times with additional parameter tuning, but rather that we
can readily use information already generated by one application
of the best performing PS methods: the evolutionary algorithms.
The main novelty and contributions of this work are the following:

1. We propose the recovery of information generated by evolution-
ary PS methods, which is traditionally entirely discarded. Instead
of solely keeping track of the fittest individual in the population,
we store every encountered candidate. Afterwards, we select
a good-performing and diverse set from among them. This set
is used rather than the single fittest individual, thereby maxi-
mally exploiting the large computational cost of the evolutionary
method.

2. We develop a custom classification ensemble based on the
selected group of prototype subsets. Within this ensemble, the
subsets are dynamically weighted, based on the test instance to
classify, in order to assign more weight to subsets performing
well in the neighborhood of the test instance.

3. We experimentally show that the additional cost of the EEGPS
framework compared to the traditional setting is negligible and
that its application can lead to an increased classification accu-
racy.

The remainder of this paper is organized as follows. In Section 2 we
provide the reader with the basics of evolutionary PS algorithms.
In Section 3 we present the EEGPS framework and in Section 4 we
experimentally demonstrate the good performance of EEGPS. We
conclude our experimental study in Section5 with an example
application of how our framework can be extended to other evolu-
tionary data reduction algorithms as well. We conclude and point
out future research directions in Section 6.

2. Preliminaries: evolutionary prototype selection

In this section we provide the background on evolutionary PS
algorithms necessary for the understanding of the remainder of
the paper and for the interpretation of the results obtained in the
experimental evaluation. We first discuss the general framework
of evolutionary PS techniques [14] and afterwards the four state-
of-the-art techniques used in our experiments.

The core component of an evolutionary algorithm is a popula-
tion that changes over several generations. It consists of individuals
represented by chromosomes. The evolution is guided by genetic
operators: recombination (crossover) and mutation. Each chromo-
some represents a solution. How good a solution it is, is evaluated
by the so-called fitness function. It assesses the quality of the indi-
viduals and is the main driver of the evolutionary algorithm.

In the remainder, we denote the training set by T. For evolution-
ary PS methods, chromosomes correspond to prototype subsets of
T and are encoded as binary strings of length |T|. A 1 on the ith
position means that the ith instance of T is included in the proto-
type subset, a 0 means that it is not. All evolutionary PS methods
discussed in this paper randomly initialize the population, that is,
random binary strings of length |T| constitute the initial population.

The fitness function used in the four evolutionary PS algorithms
recalled below consists of two components, the leave-one-out
training accuracy acc(S) associated with the prototype subset SCT
and the reduction red(S) that compares the size of S to the size of
the original training set T. The fitness function balances these two
components using a parameter « < [0, 1] as follows:

fitness(S) = - acc(S) + (1 — «) - red(S). (1)

As the fitness function incorporates both the accuracy and the
reduction, the evolutionary PS method finds small prototype sub-
sets that result in accurate predictions.

All considered PS methods use the same mutation operator that
flips the bit in the gene with a given probability. This probability
is kept low, as this operator is based on the rarer phenomenon
of mutation in nature. The algorithms halt when a predetermined
number of fitness evaluations is reached. The other components of
the evolutionary algorithm scheme are different for each specific
evolutionary PS method; we discuss them in detail below.

We recall four state-of-the-art evolutionary-based PS methods.
These algorithms perform very well on a broad selection of datasets,
as experimentally demonstrated in [3]. We first discuss two basic
algorithms, the Generational Genetic Algorithm (GGA, [5,6]) and
the Steady State Genetic Algorithm (SSGA, [4]). These algorithms
both follow the general scheme of evolutionary algorithms, but
they differ by the fact that SSGA only generates two new individ-
uals in each generation, whereas GGA replaces a more substantial
part of its population. Next, we discuss the Steady State Memetic
Algorithm (SSMA, [7]), that adds an optimization phase to the SSGA
algorithm, and the Adaptive Search for Instance Selection (CHC, [4])
algorithm that extends GGA.

2.1. Generational Genetic Algorithm (GGA, [5,6])

Parent selection in the GGA algorithm uses a stochastic pro-
cedure where fitter individuals in the population have a higher
chance of being selected. There are as many parents selected as
there are individuals in the population, which means that some
individuals can be selected multiple times. These parents are ran-
domly matched in pairs. Crossover happens between these parents
with a given probability. The two-point crossover operator is used,
which exchanges one part of the chromosome between the two
parents. The generated offspring consists of the children resulting
from the crossover procedure and the parents that were selected
but did not undergo crossover. Elitism is applied, meaning that
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the best individual in the previous generation is copied to the
new generation without any changes. The entire offspring, except
the least fit individual, survives and goes to the next genera-
tion.

2.2. Steady State Genetic Algorithm (SSGA, [4])

The SSGA algorithm selects two parents in each generation.
Each parent is selected by means of a binary tournament, which
means that two individuals are randomly picked from the popula-
tion and the fittest one is selected. These parents are recombined
using the two-point crossover operator. The recombination does
not depend on a given probability, but is always performed instead.
The newly generated individuals replace the two least fit ones from
the current population, provided the former attain a higher fitness
value.

2.3. Steady State Memetic Algorithm (SSMA, [7])

SSMA proceeds like SSGA, except that after the recombination
and mutation phase, each of the generated children undergoes a
local optimization. If the fitness of the child is higher than a certain
threshold, the optimizationis performed. In the other case, the opti-
mization only takes place with a low probability. In this way, the
optimization is only carried out if the generated child is likely to be
included in the next generations and superfluous calculations are
avoided. The local optimization procedure considers each instance
in the prototype subset corresponding to the child and removes it if
the gain in training accuracy of the new prototype subset is higher
than a certain threshold.

2.4. Adaptive Search for Instance Selection (CHC, [4])

In the same way as GGA, the CHC procedure selects all indi-
viduals in the population as parents. These parents are randomly
paired and recombination takes place if the number of genes in
which two parents differ is higher than a certain threshold. By
promoting diversity, it is ensured that the evolutionary procedure
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3. Proposed framework: Ensembles of Evolutionary
Generated Prototype Subsets (EEGPS)

During the application of an evolutionary PS algorithm many
good and diverse prototype subsets are encountered, but only the
final fittest one is used for the classification of test instances. The
effort put in the construction and evaluation of the intermediate
candidates is therefore not fully taken advantage of. The first idea
of EEGPS is to use multiple good prototype subsets encountered
during the PS algorithm to classify test instances. Even though
these prototype subsets are globally not optimal, they may still
have good properties and can be useful for classification. The sec-
ond idea of EEGPS is that prototype subsets can be good to classify
test instances in a particular region of the feature space, but that
they are less suited to classify test instances in other regions. Using
a single prototype subset neglects this idea. When using multiple
prototype subsets, one can guide which prototype subsets to use to
classify a test instance, depending on which of them perform well
in the region of that test instance.

The EEGPS framework encapsulates both ideas. Below, we use
the notation M for the evolutionary PS method at hand and set
E(S) to the value of the evaluation function of M for a prototype
subset S. In our case, where evolutionary PS methods are used, E(-)
corresponds to the fitness function. The general workflow of the
EEGPS framework is depicted in Fig. 1.
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3.1. Description of EEGPS

The main steps of the EEGPS framework are summarized below.
Before the classification of test instances takes place, the following
steps are carried out:

1. Determine best: Execute M and store the pbest% prototype sub-
sets with the highest values for E in best.

2. Determine div: Select the pdiv% most diverse prototype subsets
among best and store them in div.

The parameters pbest and pdiv are user-defined. These two steps
set up the prototype subsets used in the ensemble. Once they are
carried out, the classification of test instances can start. For each
individual test instance t, the selected prototype sets are assigned
custom weights, to appropriately classify this particular instance.
In order to classify t, the following steps are performed:

3. Determine weights: Assign a weight W(S) to each prototype
subset S in div that expresses to what extent S is suited for clas-
sification of instances in the neighborhood of size nk of t.

4. Weighted voting: Classify t using all the prototype subsets in
div and use a weighted voting strategy to determine its final
classification label.

The parameter nk is user-defined. Below, we discuss the separate
steps in more detail.

Determine best. The evolutionary algorithm M is carried out as
usual, except that all prototype subsets encountered are stored in a
set during the execution. When M terminates, the pbest% prototype
subsets with the highest fitness value are determined and stored in
best.

Algorithm 1. Procedure to measure the diversity between two
prototype subsets.

Input: Training set T, prototype subsets S1,S, €T
Output: diversity(S1, S2)

1: ngp <~ 0, ng; < 0,119 <~ 0,171 <0

2: for eachx ¢ Tdo

if x is classified correctly by 1NN, using S; then
4 if x is classified correctly by 1NN, using S, then
5 ny <npp+1

6: else
7

8

w

Ny <np+1

else
9: if x is classified correctly by 1NN, using S, then
10: Ng1 < Ngp +1
11: else
12: Ngo < Npo +1

13: Qu(S1,S2) < MooM11—Mo1M10

NooN11+Mp1M10

14: diversity(Si1, Sy) < 1 — Qu(S1, S2)

Determine div. The prototype subsets in best can contain many
similar prototype subsets. It is important to select a diverse sub-
set of prototype subsets from among best. As the prototype subsets
are used for classification, we want to ensure that the classification
using the different prototype subsets is diverse. In [15], an exper-
imental study was carried out to compare measures of diversity
in classifier ensembles. This study showed that the Qg function,
which measures the similarity between two classifiers, generally
achieves good results. It is therefore used in this work. The proce-
dure to measure the diversity between two prototype subsets S;
and S, is given in Algorithm 1. The value ngg is the number of train
instances misclassified by both S and S,, while ny4 is the number
of train instances correctly classified by S; and S,. The remaining
values ng; and nyg correspond to the number of instances correctly
classified by one set and misclassified by the other. These values
are calculated in lines 2-12. Once they are known, the Qqy measure

can be calculated in line 13. Note that if S; and S, return exactly
the same classification output, the value of Q4,(S1, S2) equals one.
As we are not interested in the similarity but in the diversity of the
classification, we return one minus Qgy(S1, S2) as the final diversity
measure in line 14.

In order to obtain the most diverse prototype subsets among
best, Algorithm 2 is used, setting the parameter S to best. Firstly, in
line 1, the desired final number of prototype subsets is calculated
based on the parameter pdiv. The set of most diverse prototype
subsets div is initialized with the subset for which the evaluation
function E is highest in line 2. This is the prototype subset that
would have been used in the traditional PS setting. In lines 5-17,
other prototype subsets are added until div has the desired size
ndiv. The diversity between a prototype subset S and the set of
prototype subsets already selected in div is defined as the sum of
the diversities between S and the prototype subsets P € div. This
value is calculated in lines 10 and 11. In each iteration of the while
loop, the prototype subset Sps; for which the total diversity with
div is maximal is added to it.

Algorithm 2. Procedure to select the most diverse prototype sub-
sets among a set of prototype subsets.

Input: A set S of candidate prototype sets, parameter pdiv
Output: Set div of selected prototype sets

1: ndiv < pdiv - |S|

2: div < {S}, where S is the fittest individual in S
3:S<S\{S}

4: ndiv < ndiv -1
5: while ndiv>0 do
6

7

8

diVipay <0
Spest < null
for eachS € Sdo
9: diveyrrent < 0
10: for each P e div
11: divVeyrrent < diVeyrrent + diversity(S, P)
12: if diveyrrent > divingy do
13: diVimax < diVeyrrent
14: Shest < S

15: S < S\ Spest
16:  div < divU {Spest}
17:  ndiv < ndiv -1

Determine weights. Once the set div consisting of good and
diverse prototype subsets is established, the classification of test
instances can begin. When classifying a test instance t, we want to
use prototype subsets in div that are good at classifying instances
in the region of t. We assume that a prototype subset is good in
the region of t if it classifies t’s nearest neighbors in T correctly. The
outline of the process that assigns weights to a prototype subset S
is listed in Algorithm 3.

Algorithm 3. Procedure to assign weights to a prototype sub-
set based on how well it classifies instances in the region of a test
instance.

Input: Training set T, prototype subset S C T, test instance t, parameter nk
Output: weight W(S)

1: N < nk nearest neighbors of t in T

2: W(S)«<0

3: for eachx € Ndo

4: ifx € Sthen

5 Determine the nearest neighbor y of x in S\ {x}
6: else

7 Determine the nearest neighbor y of xin S

8: if x and y belong to the same class then

9 W(S) <~ W(S)+1

In line 1, the nk nearest neighbors of t are determined within
T and stored in the set N. Note that we use the entire training
set T rather than a prototype subset to determine the neighbors,
as T itself forms the most complete description of the problem
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space that we have at our disposal. Determining neighbors in a
reduced prototype set can result in more distant elements acting
as neighbors in the weighting procedure and they will not be suit-
able representatives of the region around the target. The neighbors
stored in N are classified in lines 4-9 using a leave-one-out proce-
dure with S as pool of candidate nearest neighbors. Each time one
of the neighbors is classified correctly, the weight of the prototype
subset S is raised by one in line 9. This implies that the resulting
weights are between 0 and nk. Using this approach, prototype sub-
sets that classify instances near t well, are associated with high
weights.

Weighted voting. The weights assigned to the prototype subsets
are used in a weighted voting procedure. The procedure is outlined
in Algorithm 4. Let Cbe the set of all available class labels. The score
of every label in Cis initialized at O at the beginning of the weighted
voting process. Next, the test instance t is classified using each of
the prototype subsets as pool of nearest neighbors in lines 3-5.
The score of the predicted class c is augmented by the weight of the
corresponding prototype subset. This implies that the classification
based on prototype subsets that are well suited to classify instances
in the region of t are taken more into account. In lines 6-11 the class
label with the highest score is determined. This label is returned as
the final prediction for t. We internally ensure that in case of ties,
the final prediction is randomly drawn from the tied labels.

Algorithm 4. Weighted voting strategy used to classify test

instances.

Input: Training set T, class labels C, set of prototype subsets div, weight W(S)
associated to each prototype subset S in div, test instance t

Output: Class label prediction Cpes;

1: for each c € Cdo

2: score(c)«0

3: for each prototype subset S e divdo

4: c< class of the nearest neighbor of t in S

5: score(c) < score(c)+W(S)

6: scorepest < —1

7: Cpest < null

8: for each c € Cdo

9: if score(c)> scorepess then

10: SCOT€pest < SCOTE(C)

11: Cpest < C

3.2. Computational complexity of the proposed approach

In this section, we discuss the complexity of our framework.
It is known that genetic approaches for PS impose a larger com-
putational cost compared to other (simpler) PS algorithms (e.g.
[3]). On the other hand, as stated above, they do perform best
with respect to accuracy and reduction of the generated proto-
type set, which makes them still preferable over the alternative
faster approaches. As will be clear from the experimental results
presented in Section 4, the additional time needed by EEGPS com-
pared to the traditional PS setting is negligible, combined with a
significant increase in accuracy. This constitutes the fundamental
motivation of our proposal.

The sole modification that has been made to the PS algorithms
themselves, is the storing of all encountered prototype subsets. This
has no influence on the runtime, but does imply additional storage
requirements. However, this is no longer an insurmountable dis-
advantage nowadays, as storage has become cheap. The additional
cost of EEGPS lies with the construction of the ensemble and the
modified classification process. Let nev be the number of genera-
tions and p the size of the population in the genetic algorithm. The
total number of candidate subsets constructed by an evolutionary
PS method depends on its survival strategy. As described above,
in GGA and CHC, almost the entire population is replaced in each
generation. This implies that a total number of p - nev candidates

will have been constructed in the end. For SSGA and SSMA, which
are steady state genetic algorithms, at most two individuals are
replaced every generation. This results in a total number of candi-
dates of p+2 - nev. Note that these values are upper bounds, as the
same prototype subset can be encountered multiple times. Below,
we denote the total number of stored chromosomes as Ch. It is clear
that, for all considered methods, this number is linear in both p and
nev.

The construction of the ensemble in EEGPS consists of two steps:
(a) the selection of the pbest% best subsets and (b) the selection of
the pdiv% most diverse subsets among those. The first step can be
handled in O(Ch) time, since it only requires one pass through the
set of candidates. Their fitness has already been computed during
the PS algorithm. Afterwards, Algorithm 2 is applied to the con-
structed set best. For the pairwise diversity calculations between
two subsets S; and S,, Algorithm 1 is used. During the PS algo-
rithm, the fitness of both S; and S; was calculated by means of
(1). This calculation involved computing the accuracy of 1NN on
T using the elements in the subset as prototypes. This means that
the classification step in lines 2-12 of Algorithm 1 has already been
performed and, if stored, does not need to be repeated. The entire
execution of this procedure therefore has complexity O(|T|). More-
over, we can ensure that every pairwise diversity computation is
only computed once and stored, such that no duplicate calculations
are performed in Algorithm 2. Calculating all pairwise diversity val-
ues can be performed in O(|T|- |best|?) time before Algorithm 2 is
called. The largest cost of this algorithm lies with the while loop
in lines 5-17. In every iteration, of which there are at most |best|,
the prototype set Sp.; adding the most diversity to div is deter-
mined. Each iteration has therefore a cost of O(|best|2), bringing
the total cost of Algorithm 2 to O(|best|3). The total time needed for
the construction of the ensemble is

O(Ch + |T| - |best|? + |best]?) = O(Ch + |T|-Ch® + Ch®)
= O(|T|-Ch? + Ch>).

As a reminder, the value Ch is linear in both p and nev. The con-
struction time of the ensemble is consequently at most cubic in p
and nev and linear in |T|. The largest cost of the traditional genetic
PS algorithms lies with the fitness calculations, which yield a cost
quadratic in |T| in each generation. As we will show in the experi-
mental section, the additional time needed by EEGPS compared to
the traditional PS setting will be negligible.

The classification of a test instance by EEGPS is performed by (a)
computing the weights of the generated subsets and (b) determin-
ing the weighted vote. We compare this step to the complexity of
1NN, since this is the classifier normally combined with the PS pro-
cedure. To classify a test instance t with 1NN and a single prototype
subset S, we only need to determine its nearest neighbor in S. This
can be achieved in O(|S|) = O(|T|) time. The first step in the clas-
sification of t by EEGPS is the calculation of the weights by means
of Algorithm 3. For a subset S, this algorithm takes up O(nk) time.
Indeed, the weights are based on the nearest nk training instances
and, as noted above, the classification of these instances by S has
already been determined and stored during the PS algorithm. As a
result, the cost of finding the weights of all prototype sets in the
ensemble is O(nk - Ch). Finally, Algorithm 4 is applied. Its cost is
determined by lines 3-5. In this case, since t is a test instance and
not known at training time, the classification of this instance by S
needs to be done explicitly. Line 4 therefore has a cost of O(|T|). In
its totality, the for loop (and Algorithm 4) requires O(Ch-|T|). We
conclude that the classification of t by EEGPS costs O(Ch - (|T| + nk))
time, compared to the O(|T|) cost of 1NN. Both are linear in |T],
but, due to the extra factor Ch, the former can be expected to be
somewhat slower than the latter.
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Table 1

Datasets used in the experimental evaluation. We specify the number of instances (inst), features (feat) and classes (cl).

inst feat «cl inst feat cl

appendicitis 106 7 2 | housevotes 232 16 2
australian 690 14 2 | iris 150 4 3
automobile 150 25 6 | led7digit 500 7 10
balance 625 4 3 | lymphography 148 18 4
bands 365 19 2 | mammographic 830 5 2
breast 277 9 2 | monk-2 432 6 2
bupa 345 6 2 | movement_libras 360 90 15
car 1728 6 4 | newthyroid 215 5 3
cleveland 297 13 5 | pima 768 8 2
contraceptive 1473 9 3 | saheart 462 9 2
crx 653 15 2 | sonar 208 60 2
dermatology 358 34 6 | specttheart 267 44 2
ecoli 336 7 8 | tae 151 5 3
flare 1066 11 6 | tic-tac-toe 958 9 2
german 1000 20 2 | vehicle 846 18 4
glass 214 9 7 | vowel 990 13 11
haberman 306 3 2 | wine 178 13 3
hayes-roth 160 4 3 | wisconsin 683 9 2
heart 2270 13 2 | yeast 1484 8 10
hepatitis 80 19 2 | zoo 101 16 7
magic 19020 10 2 | ring 7400 20 2
penbased 10992 16 10 | twonorm 7400 20 2
phoneme 5404 5 2

4. Experimental evaluation

In this section we assess the performance of the EEGPS frame-
work. In Section4.1 we present the outline of the experimental
set-up and in Section4.2 we analyze the influence of the EEGPS
parameters on the performance of the EEGPS framework. In Sec-
tions 4.3 and 4.4, we evaluate and discuss how the accuracy of the
EEGPS framework relates to the traditional evolutionary PS accu-
racy and provide some general guidelines for its use. In Sections 4.5
and 4.6 we discuss the relation of our approach to a weighted KNN
algorithm and touch upon the matter of reduction related to PS.

4.1. Experimental set-up

We evaluate the proposed algorithms on the 40 datasets above
the horizontal line described in Table 1 taken from the UCI [16]
and KEEL [17] dataset repositories. The five larger datasets below
the line are used in Section4.3 to illustrate the efficiency of our
approach. We use a 10 fold cross-validation procedure on each
dataset, that is, we divide the data in 10 folds and use each fold
as test data and the remaining folds as training data. We apply
the EEGPS framework in conjunction with the GGA, SSGA, CHC and
SSMA evolutionary PS algorithms discussed in Section 2. For each
of these PS methods, we compare the performance of the algo-
rithm within the EEGPS framework (that uses 1NN as classifier as

described in Section 3) against the setting where the PS algorithm
is used as preprocessing algorithm followed by 1NN classification.

As the proposed algorithms have a random component, we
repeat each experiment 5 times. All results reported are the average
results over the 10 folds and 5 runs. By repeating the experiments
several times and reporting the average results, we account for the
stochastic nature of the algorithms. Increasing this number of iter-
ations further may render our conclusions more convincing, but we
think the threat of invalidity should be low. Related studies (e.g.[3])
sometimes use fewer iterations. We report the classification accu-
racy, defined as the number of correctly classified objects divided by
the total number of objects, and the running time. To assist fellow
researchers in the replication of our experiments (see e.g. [18]), we
list the parameters values used for the evolutionary PS algorithms
in Table 2. These are the settings that were suggested in the original
proposals [4-7].

We consider the number of evaluations used in the evolutionary
PS algorithm as a parameter of the EEGPS framework. There are four
parameters in total in the EEGPS framework:

e nev: Number of evaluations used in the evolutionary PS algo-
rithm. We use nev=1000, 2000, .. ., 10,000.

e pbest: Selected percentage of fittest prototype subsets. We use
pbest=1, 5,10, 50, 100.
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Table 2
Parameter settings of the evolutionary PS algorithms used in the experimental
evaluation.

GGA Mutation probability 0.01
Crossover probability 0.6
Population size 100
« in the fitness function 0.5
SSGA Mutation probability 0.01
Population size 100
« in the fitness function 0.5
CHC Population size 100
« in the fitness function 0.5
Percentage of genes changed in restart (%) 35
SSMA Mutation probability 0.01
Population size 100
« in the fitness function 0.5

e pdiv: Selected percentage of most diverse prototype subsets. We
use pdiv=1, 5, 10, 50, 100.

e nk: Number of neighbors used to assess the quality of the proto-
type subset. We use nk=1, 3, 5.

4.2. Analysis of the EEGPS parameters

In this section, we consider the effect of the different parameters
of our proposal on its performance. We note that the baseline accu-
racy of 1NN without any preprocessing is 0.7390, taken as average
over the 40 datasets above the line in Table 1. The results pre-
sented below will show that all considered methods lead to a clear
improvement over this value, providing a first indication of their
importance.

4.2.1. Performance of the original PS algorithms

In order to interpret the results of EEGPS, we first need to
know more about the performance of the original evolutionary PS
algorithms. In Fig. 2, we show the accuracy values when the PS
algorithms are applied in the traditional scheme, that is, the PS
algorithm is applied to the training data and the test instances are
classified with 1NN using the resulting prototype subset as pool of
candidate nearest neighbors. A crucial first conclusion, which will
be reflected in our further analysis, is that the more complex meth-
ods CHC and SSMA generally outperform their simpler relatives
GGA and SSGA.
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Fig. 2. Accuracy results for the PS algorithms in their traditional setting and for
different values of nev.

4.2.2. Influence of the nk parameter

We first study the influence of nk on the accuracy of the EEGPS
framework based on the average accuracy for the different param-
eter settings listed above. The results are listed in Appendix A. For
each evolutionary method, we highlight which value for nk we
observed to be optimal among the evaluated set:

GGA nk=1is optimal, independent from the values of nev, pdiv
or pbest.
CHC nk =3 is optimal in most cases. For some values of pdiv and

pbest using nk =5 is optimal, but in those cases the differ-
ence between nk =3 and nk =5 is not large (the maximum
difference is 0.0006). For high values of all three param-
eters pdiv, pbest and nev, the parameter setting nk=1 is
optimal.

either nk=1 or nk=3 is optimal, depending on the other
parameter values. For instance, for the lowest evaluated
nev-value 1000, we find that, if pbest =10, nk =3 is optimal
and nk=1 otherwise. For the highest value nev=10,000,
the setting nk =3 generally performs best.

nk=3 is optimal.

SSGA

SSMA

Referring back to Fig. 2, we can conclude that the better the PS
algorithm performs, the higher nk should be. For instance, the worst
performing PS algorithm GGA always has nk=1 as optimal param-
eter and the best performing algorithm CHC has mostly nk=3 as
optimal parameter value (sometimes even nk=5). A possible expla-
nation could be that when nk is higher, more prototype subsets are
taken into account to classify the test instance, as non-zero weights
are more likely to occur. Using more prototype subsets is benefi-
cial when they are of high enough quality. The fact that a given PS
algorithm performs better, implies that the population has a higher
quality and that, in general, the generated prototype subsets are
better. This could explain why the best performing PS algorithms
work better when nk is higher. Another explanation can be found
in the fact that when the prototype subsets are of high quality, it is
not important that the neighbor on which the quality is evaluated
is the closest to the test instance. The quality of prototype subsets
that are a bit further than the nearest neighbor is still good enough
to improve the classification of the test instance.

These two explanations also clarify why CHC has nk=1 as opti-
mal parameter when many prototype subsets are considered, that
is, when the three values pdiv, pbest and nev are high. Observe in
Fig. 2 that for a low number of evaluations, CHC does not perform
well, which means that low quality subsets were generated. Even
though the quality of the generated sets clearly improves over sub-
sequent iterations, all encountered sets are stored. When pdiv and
pbest are high, the earlier, low quality subsets represent a substan-
tial part of the ensemble. In that case, it is better to use nk=1, for
similar reasons as given above.

4.2.3. Influence of the pbest and pdiv parameter

Based on our conclusions in the previous section, we use nk=1
for GGA and SSGA and nk=3 for SSMA and CHC in the remain-
der of the analysis. We visualize the effect of the parameters pbest
and pdiv in Fig. 3. To condense the required space, we present the
results for nev=10,000 as a representative value. In each subfigure,
the average accuracy is represented. We can draw the following
conclusions:

GGA Fig. 3(a) shows that the performance improves when
pbest is higher. For each value of pbest, the best value for
pdiv is 50%.

CHC in Fig. 3(b), we observe that when 10,000 evaluations are
carried out, the best combination is found for pbest=10
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Fig. 3. Illustration of the pbest and pdiv sensitivity of the four PS methods within the EEGPS framework. For each methods, the parameter nev was set to 10,000. For GGA and

SSGA, we set nk=1. For CHC and SSMA, we set nk = 3.

and pdiv =50. We briefly note that for lower values of nev,
i.e. 1000 or 5000 evaluations, the best value for pbest is
also 10, but it is best combined with pdiv=>5 in that case.
as for GGA, Fig. 3(c) shows a better performance of SSGA
for increasing values of pbest. When nev=10,000, the best
pdiv value depends on the selected pbest. For lower values
of nev, we found the combination pbest =100 and pdiv =50
to be optimal within the evaluated set.

for this method, Fig. 3(d) shows that the results are less
clear-cut. Nevertheless, our results allow us to conclude
that pbest =10 performs well for nev= 10,000 and all other
values of nev. It is best combined with pdiv =50.

SSGA

SSMA

Asin Section4.2.2, we see a clear difference between the results
for the more basic methods GGA and SSGA on the one hand and the
results for CHC and SSMA on the other. For GGA and SSGA it is good
to consider all prototype subsets (pbest=100) and to remove half
of the solutions that are similar to others (pdiv=50), while for CHC
and SSMA, it is in general better to select less solutions (pbest=10
or pbest=50) and to remove half of the solutions that are similar to
others (pdiv=>50).

From these results we can conclude that it is useful to perform
the crucial step of selecting the most diverse among the best proto-
type subsets, as we find values pdiv < 100 to outperform pdiv = 100.
The differences between the methods can again be explained con-
sidering the results in Fig. 2. The best prototype subsets produced
by SSMA and CHC are of higher quality than the best prototype sub-
sets produced by SSGA or GGA. Therefore, it seems that for SSMA
and CHC it is better to only work with these high quality prototype
subsets and that the other generated prototype subsets deteriorate
the performance of the ensemble. The difference between the best
prototype subsets generated by SSGA and GGA and the remain-
ing ones is smaller, meaning that these prototype subsets do not

deteriorate the accuracy of the ensemble and can even improve it,
by increasing the diversity.

We conclude that for GGA and SSGA, the parameter setting
pbest=100and pdiv =50is a good choice and that for SSMA and CHC,
pbest=10 and pdiv =50 is a good choice in most cases. We use these
settings in the following paragraph, where we study the influence
of the number of evaluations on the performance of EEGPS.

4.2.4. Influence of the nevnev parameter
In Fig. 4, we plot the results of the evolutionary PS algorithms
in the EEGPS framework for different values of nev. For GGA and
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Fig. 4. Accuracy results for the PS algorithms within EEGPS for different values of
nev.
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SSGA, the remaining parameters were set to pbest=100, pdiv=50
and nk=1. For CHC and SSMA, we used pbest=10, pdiv=50 and
nk=3. These correspond with our conclusions from Sections 4.2.2
and 4.2.3. The results for GGA and CHC are in line with our
expectations: when more evaluations are taken, the quality of the
prototype subsets improves and hence the accuracy is higher. How-
ever, it is interesting to see that the accuracy of SSGA increases
until nev=3000 and then decreases. Considering Fig. 2, this can be
explained by the fact that SSGA fastly improves until nev=3000
and afterwards only does so slightly. This means that more eval-
uations do not result in significantly better prototype subsets
and many prototype subsets of similar quality are added to the
ensemble, which apparently worsens the performance. This is most
likely due to the unavoidable decrease in diversity within the
selected group of prototype subsets that this phenomenon will
result in.

The accuracy of SSMA first decreases and then slightly increases,
but never reaches the accuracy that was obtained after 1000 evalu-
ations. An explanation is once more found in Fig. 2, that shows that
SSMA only very slowly improves its best prototype subset. Since
we use pbest=10 for SSMA, the prototype subsets that are used
for SSMA in the EEGPS framework are all high-quality prototype
subsets, but they might be very similar to each other. Taking more
evaluations means that more of these similar prototype subsets are
added, which possibly deteriorates the performance by decreasing
the diversity of the ensemble. After 3000 evaluations the accuracy
improves again, which might be due to the fact that the optimiza-
tion step in the SSMA algorithm creates very high quality prototype
subsets.

4.3. Comparison of EEGPS to the evolutionary PS methods

In the previous section, we studied the influence of the EEGPS
parameters on the performance of the evolutionary PS methods
within our framework. We concluded that for GGA and SSGA, nk=1,
pbest=100 and pdiv =50 were the best settings, while for CHC and
SSMA nk =3, pbest=10 and pdiv =50 is a good choice. We now verify
whether the EEGPS framework improves the classification accuracy
of the PS methods used in the traditional setting. Recall that the
evolutionary PS methods under consideration have been shown to
be the best performing PS techniques in the experimental study of
[3].

In Fig. 5 we visualize the improvement in accuracy when using
the EEGPS framework. EEGPS has on average a positive influence
on all evolutionary PS algorithms and has the most influence on the
CHC and SSMA algorithms. For all PS algorithms except SSMA, the
improvement decreases when more evaluations are used. To test if
the improvement is significant, we use the Wilcoxon statistical test
[19] to compare the EEGPS variants of the PS algorithm against the
PS algorithm in the traditional setting, as recommended in e.g. [20].
The sum of ranks in favor of EEGPS is given by R*, while R~ is the
sum of ranks in favor of the PS algorithm in the traditional setting.
Additionally, the p-value is reported, which reflects the probability
of obtaining a more extreme result than the one observed, when
we assume the methods to perform equivalently (null hypothesis).
We carry out the test at the 5 percent significance level. For each
evolutionary PS algorithm, we test if the EEGPS variant significantly
improves it, for increasing values of nev. The values of the statistics
are listed in Table 3 for GGA and SSGA and in Table 4 for CHC and
SSMA.

For GGA, the table shows that the EEGPS framework significantly
improves GGA when in both settings less than 6000 evaluations are
used, excepting the setting where PS performs 6000 evaluations
and EEGPS only 1000. For 8000 or 10,000 evaluations, EEGPS does
not significantly improve GGA, but the low p-values do suggest that
there is some improvement. Additionally, we note that for each
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Fig. 5. Improvement in accuracy when using the EEGPS framework for the evolu-
tionary PS algorithms.

comparison, R* is higher than R—, which also suggests that using
the EEGPS framework is at least as accurate as the evolutionary
algorithm. Even when only 1000 evaluations are used in the EEGPS
framework, the result does not seem to be worse than when GGA
uses 10,000 evaluations.

The EEGPS framework only significantly improves the SSGA
algorithm when the latter is allowed to perform less than 4000
evaluations. This result could be expected from Fig. 5: there is only
a high average improvement for low values of nev and for higher
values the benefits of the EEGPS framework are less clear. However,
as for GGA, we see that in all comparisons, the R* value is higher
than R—, indicating that the EEGPS framework is at least as good as
the traditional GGA, even when only a small number of evaluations
are used.

The improvement achieved by the EEGPS framework is very
clear when using CHC or SSMA. For all comparisons, the p-values
are below 0.5, showing that the EEGPS framework significantly
improves CHC and SSMA. It is remarkable that the results obtained
using the EEGPS framework with 1000 evaluations are significantly
better than when using CHC or SSMA with 10,000 evaluations.
This shows that by taking maximum advantage of the work
performed by an evolutionary PS method, we can outperform
the traditional setting by even using considerably less evalua-
tions.

To conclude this experimental evaluation, we study the addi-
tional time required to carry out the evolutionary PS algorithms
within the EEGPS framework, which includes the time to select the
best and most diverse prototype subsets and the time to classify
the test instances. The results are presented in Fig. 6. We observe
that the additional time is small, especially compared to the run-
ning time required by the evolutionary PS algorithms themselves,
which take up several minutes on average. For CHC and SSMA, the
additional time required is smaller, as the best parameter settings
for these algorithms are nk = 3, pbest = 10 and pdiv =50 as opposed to
the other two algorithms that have nk =1, pbest=100 and pdiv =50
as best parameter settings.

To further illustrate the efficiency of our approach, we con-
duct some additional experiments for CHC and SSMA on the five
larger datasets below the horizontal line in Table 1. For CHC we
use nev=10,000, for SSMA we set this value to nev=1000, since
these values attained the best results in our analysis above. The
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Statistics of the Wilcoxon test comparing the GGA and SSGA PS algorithms in the EEGPS framework (R*) with their traditional setting (R~) for different values of nev. p-Values
corresponding to significant differences are printed in bold.

PS / EEGPS |1000 2000 3000 4000 5000 6000 8000 10000
RT 705 728 727 732 734 737 743 738
1000 R~ |115 92 93 88 86 83 r 82
P 0.00007 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001
RT 669 683 661 702 675 707 706 714
2000 R~ |151 137 119 118 105 113 114 106
P 0.00049 0.00024 0.00015 0.00008 0.00007 0.00006 0.00007 0.00004
RT [615 626 637 647 653 660 659 664
3000 R~ |205 194 183 173 167 160 161 156
P 0.00574 0.00361 0.00223 0.00141 0.00106 0.00076 0.00080 0.00062
RT [585 576 606 617 619 621 629 634
4000 R~ |235 204 214 203 201 199 191 186
s P 0.01833 0.00925 0.00826 0.00529 0.00486 0.00447 0.00312 0.00255
O RT [562 568 578 585 589 595 604 615
5000 R~ |258 252 242 235 231 225 216 205
P 0.04038 0.03314 0.02352 0.01833 0.01583 0.01265 0.00894 0.00574
RT [542 530 565 551 555 558 567 601
6000 R~ |278 250 255 229 225 222 213 219
P 0.07492 0.04992 0.03661 0.02421 0.02091 0.01870 0.01325 0.01005
RT [478.5 491 499 501 507 513 516 525
8000 R~ |341.5 329 321 319 313 307 304 295
P 0.35288 0.27331 0.22898 0.21874 0.19002 0.16417 0.15229 0.12055
RT [a77 486 487 493 495 502 507 494
10000 R~ |343 334 333 327 325 318 313 286
P 0.36426 0.30383 0.29755 0.26171 0.25046 0.21375 0.19002 0.14476
R* |676 677 694 683 648 666 624 635
1000 R~ 144 143 126 137 132 154 156 185
P 0.00034 0.00032 0.00013 0.00024 0.00031 0.00057 0.00107 0.00244
RT [590 602 640 607 613 601 589 581
2000 R~ 230 218 180 213 207 219 231 239
P 0.01526 0.00967 0.00195 0.00794 0.00623 0.01005 0.01583 0.02116
RT [554 560 591 567 549 555 526 544
3000 R~ |266 260 229 253 231 265 254 276
P 0.05211 0.04308 0.01470 0.03426 0.02603 0.05050 0.05680 0.07063
RT [525 530 557 544 520 534 507 522
< 4000 R~ 295 290 263 276 260 286 273 298
U P 0.12055 0.10530 0.04741 0.07063 0.06859 0.0942  0.10107 0.13050
n RT [518 523 546 527 511 525 495 520
N 5000 R~ |302 297 274 293 269 295 285 300
p 0.14474 0.12711 0.06655 0.11426 0.08997 0.12055 0.14095 0.13747
RT |500 502 523 504 486 500 480 502
6000 R~ 320 318 297 316 294 320 300 318
p 0.22382 0.21375 0.12711 0.20401 0.17809 0.22382 0.20662 0.21375
RT 485 486 506 490 471 477 472.5 468
8000 R~ [335 334 314 330 309 343 347.5 352
P 0.31019 0.30383 0.19460 0.27924 0.25540 0.36426 0.73325 0.43168
RT 474 475 501 478 459 468 438 436
10000 R~ |346 345 319 342 321 352 342 344
P 0.38596 0.37864 0.21874 0.35719 0.33211 0.43168 0.49852 0.51640

results of these experiments are presented in Table 5, which were
again taken as averages over five runs of the algorithms. As before,
we can observe the clear advantage on the classification accu-
racy of using the PS methods within the EEGPS framework. The
table further reports the ratio of the runtime of the PS algorithm
within EEGPS over the runtime of the method in its traditional
setting. Since the ratios are all close to 1, it is clear that the
additional time required by EEPGS time is minor. We conclude
that we obtain an increase in accuracy with limited additional
effort.

4.4. Guidelines

To summarize, for their use within the EEGPS framework in
practice, we can recommend the following parameter values for
the PS algorithms:

GGA nk=1, pbest=100, pdiv=>50, nev=10,000.
CHC nk=3, pbest=10, pdiv =50, nev=10,000.
SSGA  nk=1, pbest=100, pdiv=>50, nev=3000.
SSMA  nk=3, pbest=10, pdiv=>50, nev=1000.
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Statistics of the Wilcoxon test comparing the CHC and SSMA PS algorithm in the EEGPS framework (R*) with their traditional setting (R~ ) for different values of nev. p-Values
corresponding to significant differences are printed in bold.

PS / EEGPS | 1000 2000 3000 4000 5000 6000 8000 10000
RT [780 729 738 696 639 630 621 594
1000 R~ |40 91 82 124 141 150 199 226
p | < 10E-5 0.00002 0.00001 0.00012 0.00050 0.00079 0.00447 0.01314
RT [778 703 711 710 695 679 643 619
2000 R~ |42 7 69 110 125 141 177 201
p | < 10E-5 0.00001 0.00001 0.00005 0.00012 0.00029 0.00170 0.00486
RT [782 738.5 748 711 692 690 657 633
3000 R~ |38 81.5 72 109 128 130 163 187
p |< 10E-5 0.00003 0.00001 0.00005 0.00015 0.00016 0.00088 0.00262
RT [796 750 767 705 711 716 685 628
4000 R~ |24 70 53 75 109 104 135 152
1 p |<10E-5 0.00001 < 10E-5 0.00001 0.00005 0.00004 0.00021 0.00087
g RT [796 755 772 712 687 718 665 667
5000 R~ |24 65 48 68 93 102 115 153
p |<10E-5 < 10e-5 < 10e-5 0.00001 0.00003 0.00003 0.00012 0.00054
RT [793 755 769 747 731 714 702 684
6000 R~ |27 65 51 73 89 106 118 136
p |<10E-5 < 10E-5 < 108E-5 0.00001 0.00002 0.00004 0.00008 0.00023
RT 792 763 770 749 706 725 711 686
8000 R~ |28 57 50 71 74 95 109 134
p |<10E-5 < 108-5 < 10-5 0.00001 0.00001 0.00002 0.00005 0.00020
RT |787 726 766 748 734 723 711 649
10000 R~ |33 54 54 72 86 97 109 131
p |<10E-5 < 10E-5 < 108-5 0.00001 0.00001 0.00003 0.00005 0.00029
R | 790 780 778 776 767 770 770 767
1000 R~ |30 40 42 44 53 50 50 53
p < 10E-5 < 10E-5 < 10E-5 < 10E-5 < 10E-5 < 10E-5 < 10E-5 < 10E-5
RT 759 747 748 742 732 736 738 736
2000 R~ |61 73 72 78 88 84 82 84
p | < 10E-5 0.00001 0.00001 0.00001 0.00002 0.00001 0.00001 0.00001
RT [743 733 725 723 711 718 714 716
3000 R~ |77 87 95 97 109 102 106 104
p |0.00001 0.00001 0.00002 0.00003 0.00005 0.00003 0.00004 0.00004
RT [756 733 725 719 702 715 705 710
<« 4000 R™ |64 87 95 101 118 105 115 110
S p |< 10E-5 0.00001 0.00002 0.00003 0.00008 0.00004 0.00007 0.00005
72} RT [767 752 747 709 697 699 690 728
N 5000 R~ |53 68 73 71 83 81 90 92
p |<10E-5 < 10E-5 0.00001 0.00001 0.00002 0.00002 0.00003 0.00002
RT [758 741 714 739 725 696 723 726
6000 R~ |62 79 66 81 95 84 97 94
p | < 10E-5 0.00001 0.00001 0.00001 0.00002 0.00002 0.00003 0.00002
RT [772 765 770 762 750 754 754 721
8000 R~ |48 55 50 58 70 66 66 59
p |<10E-5 < 10E-5 < 10E-5 < 108-5 0.00001 < 10B-5 < 10E-5 < 10E-5
RT 752 746 754 746 733 732 744 738
10000 R~ |28 34 26 34 47 48 36 42
P < 10E-5 < 10E-5 < 10E-5 < 10E-5 < 10E-5 < 10E-5 < 10E-5 < 10E-5
The overall highest accuracy values were obtained by SSMA and
CHC within EEGPS, setting the parameters as specified above.
Table 5

Accuracy results of CHC and SSMA with and without EEGPS for five larger datasets.
We also present the ratio (Rat.) of the execution times of the methods within the
framework compared to the traditional setting.

Dataset CHC SSMA
PS EEGPS Rat. PS EEGPS Rat.
magic 0.8159 0.8205 1.0083 0.8176 0.8210 1.0027

penbased 0.9562 0.9820 1.0026 0.9822 0.9832 1.0037
phoneme 0.8234 0.8407 1.0073 0.8533 0.8614 1.0144
ring 0.8764 0.8769 1.0070 0.9238 0.9331 1.0029
twonorm 0.9658 0.9671 1.0066 0.9603 0.9623 1.0037

4.5. Relation to KNN

As 1NN is applied with each prototype set, one could argue that
the proposed classification ensemble is highly related to KNN, with
K set equal to the number of prototype sets being used and its
own prototype set taken as their union. Nevertheless, these two
techniques are certainly different. For KNN, every prototype can
act as a neighbor for a target instance a single time. In EEGPS, the
same element can be selected multiple times, when it is present in
several prototype sets and is determined as the nearest neighbor
of a target instance within more than one of them. Consequently,
EEGPS uses an adaptive rather than fixed value of K. Furthermore,



86 N. Verbiest et al. / Applied Soft Computing 44 (2016) 75-88

T T
—— GGA
—a— CHC

SSGA
1.8 | | —®—SSMA

16} .

=

5}

|

& a4 :
12} :

—
[FE—. —r—{—{—M

| | | | | | | | | |
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
number of evaluations

Fig. 6. Additional time required by EEGPS.

the weight of a neighbor builds up as it is selected more often,
which cannot be modeled with a straightforward weighted KNN
approach. We have conducted a set of experiments showing that
the performance of EEGPS is superior to that of KNN using the union
of all prototype sets as its own prototype sets. Using the settings
advised in Section4.4, we found respective accuracies of 0.4909
(GGA), 0.4765 (CHC), 0.4905 (SSGA) and 0.6544 (SSMA) in this
set-up. Recall that the baseline average accuracy of 1NN without
preprocessing is 0.7390. The performance of our EEGPS framework
is clearly substantially better than this suggested related approach.
It was evident that the considerable number of prototype sets used
in the ensemble lead to a lower global reduction when combined,
because a level of diversity has been guaranteed between them.
This implies that their union more closely coincides with the origi-
nal training set. The performance of KNN was therefore found to be
low, as it could not benefit from a decent PS. Moreover, the num-
ber K can be high, namely the number of prototype sets used by
EEGPS, which means that too many neighbors are used to classify
test instances, deteriorating the prediction.

4.6. A note on reduction

Our clear aim in the development of the EEGPS framework lies
with the improvement of the classification performance related
with an evolutionary PS method with minimal additional effort.
The other two issues of KNN for which PS was originally proposed,
namely its possible high storage and runtime requirements, are less
critical nowadays, as hard drives have become relatively cheap and
the stored dataset can be searched efficiently by the use of appropri-
ate data structures (e.g. [21,22]). Still, as a side-note we also report
an indication of the achieved reduction, because a high reduction
remains a goal of certain PS methods. Since we are working with
a set of prototype sets, we choose to report the average reduction
they individually attain compared to the original training set. For
10,000 evaluations, using the same values for the other parame-
ters as above, we find average reductions of 80.25%, 79.67%, 97.04%
and 95.37% for GGA, SSGA, CHC and SSMA respectively. When we
consider the union of all these sets, we obtain an indication of the
global reduction. Using these same settings, for GGA and SSGA, the
global reduction was found to be 0%. This is understandable, since
a very high number of prototype subsets will be used (pbest =100,
pdiv=50) and a level of diversity has been ascertained between

them. For CHC and SSMA we found average global reductions of
87.68% and 93.11% respectively.

5. Extension of the framework: application to prototype
generation

In order to show that the EEGPS framework can easily incorpo-
rate other genetic preprocessing approaches as well, we present its
application to a prototype generation (PG) method. In fact, any pre-
processing method that encounters multiple candidate (reduced or
modified) training sets during its execution can be integrated in our
framework. The sole modification which needs to be made to the
algorithm under consideration, is the implementation of a mecha-
nism storing all encountered solutions. The final construction of the
ensemble and the classification process are not method-specific.

PG is similar to PS in that both preprocessing paradigms con-
struct a reduced training set. As described above, PS does so by
selecting a subset of the instances in the training set. This implies
that all elements in the resulting prototype set already appeared
in the original, unreduced training set. PG differs from this set-up.
Apart from selecting existing instances, these methods also allow
the construction of artificial elements. The final prototype set is
therefore not necessarily a subset of the training set. We refer the
reader to [23] for a review, taxonomy and experimental compari-
son of PG methods. As for PS methods, the focus of PG lies on the
1NN classifier.

A group of PG methods is based on differential evolution (DE,
[24]). Like the genetic algorithms discussed above, DE evolves a
population of candidate solutions over a number of generations,
guided by custom genetic operators. It is therefore perfectly suited
to be integrated in the framework proposed in this paper. An
experimental comparison between PG methods based on DE was
conducted in [9]. This study concluded that Scale Factor Local
Search in Differential Evolution (SFLSDE, [25]) is one of the top-
performing methods within this group. We therefore select it as a
representative PG method to be evaluated with our framework.

SFLSDE is a positioning adjustment algorithm. It initializes the
candidate prototype subsets in the population by selecting a given
percentage of the original training instances. In each iteration, it
optimizes the positions of the instances in these sets by moving
them across the feature space. The number of instances remains
unchanged. SFLSDE is a memetic DE algorithm with custom muta-
tion and crossover schemes, integrating local search components.
We refer to [25] for further details.

Within EEGPS, every prototype subset constructed by SFLSDE is
stored. When the algorithm terminates, the classification ensemble
is constructed as described in Section 3. In these experiments, we
have not varied the nev parameter, but have set it to 500, as was
done in [9]. The remaining internal parameters of SFLSDE have also
been set to the values used in that study. We do vary the remain-
ing three parameters of the framework. For the percentages pbest
and pdiv, we use the values 10, 50 and 100. The value nk is set to
1, 3 and 5. Table 6 presents the results of the experiments, that is,
the average accuracy attained by SFLSDE within the correspond-
ing EEGPS setting over the 40 datasets above the line in Table 1.
As for the PS methods, the additional time required to construct
the ensemble is negligible compared to the time needed for the
execution of SFLSDE itself: the former never reached more than
0.3% of the latter. With respect to the accuracy, the benefits of the
framework are less clear than they were for the genetic PS meth-
ods. Only for three settings do we observe a slight advantage of the
framework over SFLSDE itself. In many other cases, the integration
of SFLSDE in EEGPS leads to a decrease in accuracy. This is most
likely due to the sensitivity of PG methods to overfitting, as noted
in e.g. [8]. The combination of multiple overfitted subsets in the



N. Verbiest et al. / Applied Soft Computing 44 (2016) 75-88 87

Table 6

Accuracy results of SFLSDE within the EEGPS framework for several parameter set-
tings. The baseline average accuracy of 1NN after SFLDE is 0.7464. Higher values are
printed in bold.

pbest pdiv nk
1 3 5
10 10 0.7092 0.7141 0.7126
10 50 0.7194 0.7237 0.7215
10 100 0.7202 0.7253 0.7224
50 10 0.7266 0.7299 0.7280
50 50 0.7306 0.7347 0.7318
50 100 0.7322 0.7355 0.7326
100 10 0.7393 0.7427 0.7390
100 50 0.7444 0.7468 0.7425
100 100 0.7463 0.7470 0.7429

ensemble will accentuate this effect. Furthermore, since the num-
ber of instances in each prototype subset is the same and the subsets
are optimized by moving the instances within them, we can expect
them to be too related to guarantee a sufficient level of diversity.
The ensemble therefore loses power. We conclude that, as opposed
to the PS methods considered above, SFLSDE with its default param-
eters seems less suitable for integration within our framework. The
lesson learned from this case study is that, although our framework
allows for an easy integration of many different methods, the user
should always consider whether the extension is appropriate and
whether the encountered subsets are diverse enough. In any case,
no objection can be made to the little additional time required by
EEGPS, as was confirmed in this section.

6. Conclusion

In this paper we proposed a framework called Ensembles of
Evolutionary Generated Prototype Subsets (EEGPS) that allows
to use an evolutionary PS algorithm in a more efficient manner.
Instead of only using the fittest prototype subset generated by
the evolutionary PS algorithm, we use multiple fit prototype
subsets in an ensemble framework. In order to classify a new test

instance, it is determined which prototype subsets are well suited
to classify instances in the neighborhood of that test instance. Those
prototype subsets are used in a voting strategy to determine the
class of the test instance. Our experimental study clearly shows
the benefits of this EEGPS strategy. Using EEGPS, the results are
more accurate and good results are already obtained after a small
number of evaluations, whereas PS algorithms in the traditional
setting require many evaluations to achieve a good performance.
We have also shown that any preprocessing method that encoun-
ters multiple candidate training sets during its execution can be
easily plugged into EEGPS. The results in this paper were obtained
using the KNN classifier. This approach could be extended for other
classifiers and moreover, some ideas could also be applied for other
ensemble classification techniques, where elements of the ensem-
ble can be selected based on their performance for neighboring
instances of the instance to be classified.

Finally, as we live in the big data era where datasets can com-
monly contain millions of instances [26], an important next step
will also be the extension of the proposed framework to that setting.
The focus of this paper was on the development of the framework,
the comparison of evolutionary PS methods with and without using
the framework and the extensive evaluation of the internal param-
eters. Very large datasets were excluded from the current study, as
one can follow earlier proposals (e.g. [27,28]) to obtain the desired
extension to big data in a straightforward way.
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Appendix A. Table of results

In Table A.1, we present an overview of experimental results of
EEGPS, where we vary the parameters nev, nk, pbest and pdiv. All

Table A.1
Average accuracy of the EEGPS framework over 40 datasets for different parameter settings.
nev pbest pdiv GGA CHC SGA SSMA
nk=1 nk=3 nk=5 nk=1 nk=3 nk=5 nk=1 nk=3 nk=5 nk=1 nk=3 nk=5
1000 10 10 0.7653 0.7643 0.7610 0.7835 0.7883 0.7860 0.7585 0.7613 0.7585 0.7849 0.7912 0.7895
1000 10 50 0.7683 0.7659 0.7625 0.7854 0.7907 0.7895 0.7606 0.7628 0.7595 0.7876 0.7939 0.7925
1000 10 100 0.7672 0.7640 0.7596 0.7850 0.7889 0.7863 0.7600 0.7605 0.7569 0.7882 0.7936 0.7906
1000 50 10 0.7725 0.7700 0.7660 0.7822 0.7906 0.7903 0.7700 0.7661 0.7629 0.7824 0.7889 0.7863
1000 50 50 0.7736 0.7712 0.7675 0.7825 0.7902 0.7907 0.7706 0.7664 0.7632 0.7868 0.7965 0.7937
1000 50 100 0.7728 0.7692 0.7645 0.7828 0.7905 0.7893 0.7702 0.7647 0.7608 0.7780 0.7851 0.7809
1000 100 10 0.7734 0.7715 0.7675 0.7788 0.7877 0.7873 0.7739 0.7725 0.7690 0.7813 0.7855 0.7824
1000 100 50 0.7740 0.7718 0.7682 0.7806 0.7887 0.7893 0.7745 0.7741 0.7701 0.7780 0.7851 0.7809
1000 100 100 0.7739 0.7711 0.7665 0.7785 0.7863 0.7848 0.7739 0.7709 0.7671 0.7760 0.7778 0.7726
5000 10 10 0.7707 0.7680 0.7647 0.7892 0.7932 0.7922 0.7612 0.7636 0.7627 0.7808 0.7880 0.7863
5000 10 50 0.7716 0.7687 0.7654 0.7900 0.7929 0.7924 0.7630 0.7635 0.7626 0.7821 0.7902 0.7886
5000 10 100 0.7707 0.7664 0.7633 0.7888 0.7918 0.7893 0.7637 0.7634 0.7622 0.7795 0.7875 0.7849
5000 50 10 0.7739 0.7702 0.7666 0.7800 0.7855 0.7842 0.7695 0.7692 0.7662 0.7829 0.7890 0.7856
5000 50 50 0.7747 0.7706 0.7670 0.7820 0.7911 0.7913 0.7700 0.7696 0.7668 0.7783 0.7825 0.7777
5000 50 100 0.7736 0.7687 0.7645 0.7782 0.7812 0.7766 0.7696 0.7672 0.7643 0.7779 0.7810 0.7761
5000 100 10 0.7760 0.7737 0.7705 0.7798 0.7833 0.7807 0.7738 0.7749 0.7725 0.7813 0.7874 0.7832
5000 100 50 0.7768 0.7744 0.7714 0.7782 0.7812 0.7766 0.7752 0.7745 0.7706 0.7779 0.7810 0.7761
5000 100 100 0.7761 0.7720 0.7683 0.7771 0.7753 0.7691 0.7716 0.7706 0.7680 0.7779 0.7809 0.7760
10,000 10 10 0.7740 0.7723 0.7701 0.7881 0.7936 0.7935 0.7653 0.7657 0.7645 0.7818 0.7882 0.7850
10,000 10 50 0.7750 0.7729 0.7703 0.7891 0.7940 0.7941 0.7669 0.7654 0.7645 0.7832 0.7921 0.7889
10,000 10 100 0.7739 0.7705 0.7677 0.7875 0.7926 0.7914 0.7673 0.7653 0.7641 0.7783 0.7840 0.7790
10,000 50 10 0.7772 0.7750 0.7719 0.7818 0.7860 0.7842 0.7690 0.7715 0.7692 0.7815 0.7876 0.7836
10,000 50 50 0.7783 0.7757 0.7732 0.7828 0.7871 0.7840 0.7701 0.7718 0.7691 0.7782 0.7815 0.7768
10,000 50 100 0.7770 0.7735 0.7702 0.7807 0.7801 0.7757 0.7680 0.7691 0.7664 0.7782 0.7813 0.7765
10,000 100 10 0.7776 0.7768 0.7739 0.7820 0.7868 0.7843 0.7731 0.7752 0.7727 0.7786 0.7830 0.7780
10,000 100 50 0.7785 0.7774 0.7743 0.7807 0.7801 0.7757 0.7728 0.7747 0.7715 0.7782 0.7813 0.7765
10,000 100 100 0.7777 0.7758 0.7724 0.7807 0.7797 0.7751 0.7698 0.7691 0.7666 0.7782 0.7813 0.7765
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values are average accuracies of EEGPS over the 40 datasets above
the line in Table 1. These results were discussed in Section 4.2.2.
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