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to work on ensembles of prototype selection methods. Muchas gracias, Prof.
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1. Introduction

In 2006, Clive Humby said at the ANA Senior marketer’s summit that Data
is the new oil and this might not be far from the truth. In its raw format oil is
not valuable, but once it is refined and changed into petrol, plastic, chemicals
etc., it is profitable. The same holds for data: tables containing numbers are not
helpful on their own, but the knowledge abstracted from data is indispensable to
companies, research, governments and other interest groups.
Data mining, the process of extracting information from data, has become an
important research topic over the last decades, confirmed by numerous publi-
cations and conferences in the field1. The information revealed by data mining
processes is limitless. Consider for instance a dataset consisting of supermarket
customers described by characteristics such as age, sex and living place. Through
clustering [102, 110, 173] techniques, one can detect groups of customers that
are highly related to each other. If one has records about the weekly expenses
of customers, one can predict the weekly expenses of new customers based
on their characteristics through regression [16, 71, 90, 136]. If it is known
which customers in the data are interested in a certain product, classification [1]
algorithms can predict if a new customer will be interested in that product or
not.
There are many other examples of information that can be derived from data,
but in this work we focus on classification. Formally, given a dataset of instances
described by conditional features and a decision feature (class), classifiers aim
to predict the class of a new instance given its conditional features. Most clas-
sifiers first build a model based on the data and then feed the new instance to
the model to predict its class. For instance, Support Vector Machines (SVMs,
[25, 128, 175, 186]) construct a function that models a separating border be-
tween the different classes in the data, and the value of that function for the

1The Microsoft Academic Search repository has over 70000 publications on data mining, of which
40000 were published in the last ten years
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new instance then determines to what class it most likely belongs. Decision trees
[130, 16, 93] generate rules from the data following a tree structure that predict
the class of a new instance. Another example is Naive Bayes (NB, [43]), this
classifier assumes that all features are independent and calculates probabilities
from the given data such that the probability that a certain instance belongs
to a certain class given its conditional features can be predicted. An example
of a somewhat different classifier is K Nearest Neighbors (KNN, [32]). This
classifier has no modeling phase. A new instance is classified directly by looking
up the closest instances in the data and classifying it to the class mostly occurring
among those nearest neighbors.
Before the data can be used to build the classification model and to classify new
instances, it generally needs preprocessing. For instance, there can be missing
values [10, 64, 66, 67] in the data that need to be imputed. Some classifiers are
not able to handle continuous data, so discretization [59, 89, 103] should be
applied. Preprocessing can also be used to speed up or improve the classification
process afterward. A good example is Feature Selection (FS, [68, 92, 104, 138]),
where redundant or misleading features are removed from the data.
This thesis focuses on instance selection [27, 55, 98, 159, 183], the preprocess-
ing technique where a subset of the instances in the data is selected before using
it for classification. Although this technique is less frequently applied in applica-
tions than FS, many researchers have proposed instance selection techniques and
have experimentally demonstrated that instance selection can indeed improve
and speed up classification.
Instance selection has mostly been applied in the context of KNN classification.
In that case, it is referred to as Prototype Selection (PS, [55]). The reason
why researchers mostly focus on PS for KNN classification is that it has a direct
influence on the classification as the KNN classifier has no buffering classification
model between removing instances and classifying new ones. In this thesis we
principally focus on PS, but we also study if instance selection can be used for
SVMs, in that case we refer to it as Training Set Selection (TSS, [27, 183]).
The algorithms proposed in this thesis are based on evolutionary algorithms
on the one hand and fuzzy rough set theory on the other hand. Evolutionary
algorithms [63] are search strategies to solve optimization algorithms inspired
on biological phenomena. Different evolutionary algorithms use different strate-
gies to create new candidate solutions and to guide a search to improve their
quality. For instance, ant colony optimization [44] algorithms can find good
paths through graphs, inspired by the behavior of ants that leave pheromones on
the route between their colony and food. Particle swarm optimization algorithms
[88, 127] move candidate solutions (particles) around in the search-space, mak-
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ing sure that the solution is locally optimal but also heading towards the global
best solution. Structural optimization problems can be solved using artificial bee
colony algorithms [86]. These algorithms are based on the behavior of honey
bees in a swarm, where bees inform each other using waggle dances about where
to find nectar.
In this work we consider Genetic Algorithms (GAs, [63]), search strategies in-
spired on biological evolution. The key component of GAs is the fitness function
that evaluates candidate solutions. These solutions to the optimization problem
are contained in a population that evolves over several generations. A new gen-
eration is formed by recombination and mutation of individuals in the previous
population. GAs have been successfully applied in many fields of data mining
like regression [174], classification [7, 35], FS [22, 36, 99, 177] and instance
selection [21, 97, 98]. In this work we further elaborate on the latter two.
Apart from evolutionary algorithms, we also use fuzzy rough set theory [29, 45,
46] to tackle instance selection. It is the hybridization of rough set theory [124]
and fuzzy set theory [181]. The former, rough set theory, models inconsistencies
and incompleteness in data. Consider for example a classification dataset and a
class A within that dataset. An inconsistency occurs when two instances have
the same feature values, but one instance belongs to class A and the other does
not. In that case, the instances do not belong to the lower approximation of A,
but do belong to the upper approximation. More specifically, the lower approxi-
mation of A consists of all instances that belong to A and for which there are no
instances with the same features but a different class from A. In other words,
these are instances that definitely belong to A. The lower approximation consists
of instances that belong to A or instances that have exactly the same features as
some instance in A. These are instances for which some inconsistency exists.
Rough set theory has been used extensively in data mining. However, the model
has one important drawback, being that it cannot handle continuous features
in the dataset. This problem can be alleviated using discretization techniques
but this generally comes with information loss. Therefore, many authors have
studied how rough set theory can be extended using fuzzy set theory [29, 45, 46]
which extends traditional set theory in the sense that instances can belong to a
set to a certain degree between 0 and 1. The keystone of fuzzy rough set theory
is the fuzzy relation, which expresses gradual indiscernibility between instances.
A fuzzy rough set consists of the lower and upper fuzzy rough approximation,
two fuzzy sets to which instances belong to a certain extent.
Fuzzy rough set theory has been widely used in several data mining topics.
Most research has been done on FS with fuzzy rough sets [14, 30, 84, 85],
mainly focusing on preserving the predictive power of datasets with the least
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features possible. Some preliminary research has been done on using fuzzy rough
set theory for instance selection [80] and its combination with FS [36, 120].
Apart from using fuzzy rough set theory for preprocessing, it has also been
used successfully to tackle classification directly, for instance in rule induction
[42, 65, 77, 82, 106, 157, 166, 189], improving K nearest neighbor classification
[15, 79, 81, 109, 129, 142], enhancing decision trees [13, 47, 83, 185] and
boosting SVMs [25, 26, 128, 175, 186].
In this thesis we study instance selection using fuzzy rough set theory and genetic
algorithms. Using genetic algorithms for instance selection has been proven to
be very successful, this is why we further elaborate on this research direction in
this work. Using fuzzy rough set theory for instance selection is not explored
much, but we think that fuzzy rough set theory is a good model to assess the
quality of instances, as it is designed to model inconsistencies in the data.
After introducing preliminaries necessary for the understanding of the thesis in
Chapter 2, we start off by introducing a new type of fuzzy rough sets, called
Ordered Weighted Average (OWA, [176]) fuzzy rough sets [31] in Chapter 3.
This model is motivated by the fact that the traditional fuzzy rough set model is
not robust against noisy data: changing one value in the data can change the
membership values of instances to the fuzzy rough lower and upper approxima-
tion drastically. Moreover, existing robust extensions of fuzzy rough set models
are not able to preserve the theoretical properties of the traditional fuzzy rough
set model, or need parameter tuning to perform well in data mining applications.
Using OWA operators to soften the strict minimum and maximum operators in
the formulas for the fuzzy rough lower and upper approximations, we are able
to construct a robust fuzzy rough set model that preserves the most important
theoretical properties.
In Chapter 4 we develop a PS technique based on fuzzy rough set theory, called
Fuzzy Rough Prototype Selection (FRPS, [159, 160]). The main idea is that the
quality of instances is assessed using fuzzy rough set theory, and that a threshold
to decide which instances to retain is tuned automatically. In the experimental
study we derive that using the OWA fuzzy rough set model improves upon the
traditional fuzzy rough set model. Additionally, we conclude that FRPS signifi-
cantly improves the state of the art in PS, and that FRPS is faster than the genetic
approaches to PS.
Motivated by the good performance of FRPS, we study its combination with FS
in Chapter 5. A possible research path could be to use a fuzzy rough approach
for the FS part, but as most FS techniques based on fuzzy rough set theory aim to
maintain the predictive power of the data rather than improving it, we decide not
to do so. Instead, we use a genetic approach to FS, as this technique has shown
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to perform well in experimental studies. We consider different settings, where
FS is applied first followed by PS and the other way around. Additionally, we
propose a simultaneous approach, called SIM-FRPS-SSGA [38], that carries out
a genetic algorithm for FS and applies FRPS at certain stages of the algorithm.
The experimental approach shows that the simultaneous approach improves the
sequential application of its components. Moreover, SIM-FRPS-SSGA significantly
improves the baselines in FS and PS.
In Chapter 4 and 5 we developed preprocessing techniques for KNN classification.
In Chapter 6, we study if these techniques are also advantageous for SVM classi-
fication. As mentioned before, TSS does not affect SVM classification directly, as
the SVM classification model buffers between the selection of instances and the
classification of new instances. This is reflected in the results of the experimental
study: the effect of TSS on SVMs is more limited than the influence of PS on KNN.
We adjust the PS algorithms for SVMs by calculating the training accuracy in the
evaluation functions using SVMs instead of KNN. Some of the techniques that
work well for KNN do not perform well for SVMs, like FRPS. On the other hand,
genetic approaches adjusted for SVMs are able to significantly improve SVM
classification. The experimental study additionally shows that our FS approaches
decrease the performance of SVMs.
We turn back to PS for KNN classification in Chapter 7 and elaborate on ge-
netic approaches to PS. We observe that genetic PS algorithms only use the best
prototype subset found during the course of the search algorithm, while many
good but suboptimal solutions are found throughout the algorithm. We design
a framework were multiple prototype subsets are used to classify test data. In
order to classify a new instance, the prototype subsets that perform well in the
neighborhood of that instance are used to classify it. We apply this framework
to the Generational Genetic Algorithm (GGA, [97, 98]) and call the approach
GGA improved by ensembles (GGA-ENS). The experimental study shows that
GGA-ENS significantly outperforms GGA in the traditional setting with PS, and
that GGA-ENS only requires a small additional running time cost. Moreover,
GGA-ENS outperforms GGA for a smaller number of evaluations, and applying
GGA with 10 000 evaluations has similar results as using GGA-ENS with 1 000
evaluations, meaning that GGA-ENS attains the same results as GGA with a
fraction of the running time required.
In Chapter 8 we study how FRPS can be used for imbalanced data, which is data
with one or more classes underrepresented. Classifying this type of data needs
special attention, as traditional classification techniques typically classify the
majority instances correctly and neglect minority instances. We adjust FRPS for
imbalanced data and call the new technique Fuzzy Rough Imbalanced Prototype
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Selection (FRIPS, [163]). This technique tunes the threshold in such a way that
both the minority and the majority instances are classified well. An experimental
study shows that FRIPS improves FRPS for imbalanced data. Additionally, we
study if using FRPS after balancing the data using the Synthetic Minority Over-
sampling TEchnique (SMOTE, [23]) is valuable. We conclude that SMOTE-FRPS
does indeed improve SMOTE and other state-of-the-art preprocessing techniques
for imbalanced data.
In the setting of FRPS followed by KNN, an instance is either removed or either
retained in the data. In Chapter 9 we explore a different research path, where
instances are weighted according to their quality based on fuzzy rough set theory.
We improve the Fuzzy Nearest Neighbor (FNN, [87]) algorithm, which classi-
fies instances using a nearest neighbor approach and weighting the importance
of the neighbors depending on the distance between these neighbors and the
instance to be classified. We improve this approach by additionally weighting
the neighbors according to their quality, based on fuzzy rough set theory. We
propose two methods, POSitive region Nearest Neighbor (POSNN, [161]) and
Quality, Frequency and Similarity Nearest Neighbor (QFSNN, [162]), in which
the former multiplies the weights whereas the latter tunes the weights given to
the components automatically.
We conclude the thesis with an overview of the results obtained and suggestions
for further research in the last concluding chapter.



2. Preliminaries

In this chapter we provide preliminaries that are necessary for the under-
standing of the rest of this thesis. In Section 2.1 we present the two classifiers
that are used in this work and techniques to evaluate classifiers. In Section 2.2
we give a general background on evolutionary algorithms. In Section 2.3 we
review the basics of fuzzy rough set theory, and in Section 2.4 we explore the
state-of-the-art in instance selection.

2.1 Classification

Classification and regression problems can be modeled by means of a decision
system (U,A ∪ {d}), which consists of the set U containing instances that are
described by the conditional attributes A and a decision attribute d. In some
applications, multiple decision attributes are given, but in this work we only
consider one decision attribute. The value of an instance x ∈ U for an attribute
b ∈ A ∪ {d} is denoted by b(x). The value d(x) is continuous for regression
problems and takes values in a finite set for classification problems. As this work
only considers classification problems we assume that d(x) takes values in a
finite set from now on.
Classification methods aim to predict the class d(t) of a new target instance t,
based on the knowledge in the given training data U . That is, the conditional
attribute values of t are given and d(t) needs to be determined making use of
the training instances U and their attribute and class values.
Many classification techniques are available. In this work, we consider two
of the most well-known techniques, K Nearest Neighbor (KNN) classification
and Support Vector Machine (SVM) classification. The first is a lazy learning
technique, i.e. new instances can be classified immediately without training a
model. SVM classification requires a model to be trained, but is very fast in the
testing phase when new instances need to be classified. These classifiers are
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discussed in Section 2.1.1 and 2.1.2, respectively. In Section 2.1.3 we discuss
how classifiers can be evaluated.

2.1.1 K Nearest Neighbor (KNN) classification

One of the most simple and easy-to-understand classification methods is KNN
[32]. It is model-free, which means that there is no training phase. In order to
classify an instance t, the K training instances that are closest to the instance t
are looked up, and t is classified to the class that occurs most among these K
nearest neighbors. In case of ties, a random choice is made among the classes
that occur most frequently.
In order to determine the K nearest neighbors, a distance measure needs to be
chosen. We define the distance between two instances x and y as follows:

dist(x, y) =
∑
a∈A

dista(x, y), (2.1)

where the distance between two instances x and y for one attribute a is defined
by:

dista(x, y) = (a(x)− a(y))2 (2.2)

for a continuous attribute and by

dista(x, y) =

{
1, if a(x) 6= a(y)

0, otherwise
(2.3)

for a discrete attribute. Note that
√
dist(x, y) corresponds to the Euclidean

distance if there are no discrete attributes.
As all attributes get equal weights in the distance function, it is important that
the data is normalized before applying KNN. Otherwise, the determination of
the nearest neighbors would be highly dependent on the scales of the attributes.
KNN has many advantages, the main one being that no assumptions need to be
made about the data. On the other hand, KNN needs high storage requirements
and has low efficiency caused by multiple computations of distances between
the test and training instances.

2.1.2 Support Vector Machine (SVM) classification

For each instance x ∈ U = {x1, . . . , xn} we denote by x its feature vector, that is,

x = (a1(x), . . . , am(x))t.
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We first consider the two-class case, where d(x) is either −1 or 1 for each x ∈ U .
In Section 2.1.2.1 we consider a very simple form of support vector machines,
separating hyperplanes, where it is assumed that the two classes can be separated
linearly. In Section 2.1.2.2 where support vector classifiers are presented we
omit this restriction and allow that instances can fall on the wrong side of the
separating border. In Section 2.1.2.3 we take this approach one step further and
use kernels to allow for non-linear borders. In Section 2.1.2.4 we discuss how
the SVM optimization problem can be tackled efficiently, and in Section 2.1.2.5
we discuss how the probabilities returned by the SVM can be rescaled. Finally,
in Section 2.1.2.6 we discuss how classification problems with more than two
classes can be approached using SVMs.

2.1.2.1 Separating hyperplanes

The simplest form of SVMs are separating hyperplanes. A hyperplane Hβ repre-
sented by a function f is defined by

Hβ ↔ f(x) = β0 + βtx = 0, (2.4)

where β and β0 are m-dimensional vectors. A hyperplane is a separating
hyperplane if for all instances x ∈ U it holds that f(x) < 0 if d(x) = −1 and
f(x) ≥ 0 if d(x) = 1. We say that the data U is linearly separable if such a
separating hyperplane exists. In that case there might exist multiple separating
hyperplanes. The optimal separating hyperplane is selected, it maximizes the
sum of the distances between the hyperplane and the closest instances from each
class (called the support vectors), also referred to as the margin. An example
of linearly separable data is given in Figure 2.1.1. There are infinitely many
separating hyperplanes, the one indicated with a solid line is optimal.
It can be shown that this problem is equivalent to solving the optimization
problem that finds β and β0 such that

1

2
||β|| (2.5)

is minimized, subject to

∀x ∈ U : d(x)(βtx+ β0) ≥ 1. (2.6)

This can be reformulated as the minimization problem that finds β and β0 such
that the following Lagrange primal function

LP =
1

2
||β||2 −

n∑
i=1

αi(d(xi)(β
txi + β0)− 1) (2.7)
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is minimal, where ∀i ∈ {1, . . . , n}, αi ≥ 0 are the Lagrange multipliers. Setting
the derivatives w.r.t. β and β0 equal to zero yields the following equations:

β =

n∑
i=1

αid(xi)xi (2.8)

0 =

n∑
i=1

αid(xi). (2.9)

This means that β can be calculated if we know the optimal values for the La-
grange multipliers. Substituting the above first-order conditions in the Lagrange
primal function yields the Wolfe dual function

LD =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjxi
txj (2.10)

that needs to be maximized subject to the conditions ∀i ∈ {1, . . . , n}αi ≥ 0 and

0 =
n∑
i=1

αid(xi). This is a convex optimization problem, and the solution needs

to satisfy the Karush-Kuhn-Tucker (KKT) conditions. They are given by Equations
(2.6), (2.8), (2.9), ∀i ∈ {1, . . . , n}αi ≥ 0 and

∀i ∈ {1, . . . , n}αi(yi(βtxi + β0)− 1) = 0 (2.11)

From these KKT conditions, it follows that the optimal parameter vector β is
a linear combination of the feature vectors xi for which αi > 0, and it can
be shown that these correspond to the support vectors. This means that the
separating hyperplane mostly takes into account points close to the decision
boundary and gives zero weights to all other points.
After the optimal hyperplane Hβ ↔ f(x) = 0 is found, a new test instance t can
be classified by applying f to it. If f(t) ≥ 0, t should be classified to the positive
class and else to the negative class.

2.1.2.2 Support vector classifiers

In many cases the data is not linearly separable as classes may overlap. Support
vector classifiers deal with this problem by allowing some of the instances to fall
on the wrong side of the separating hyperplane. An example is given in Figure
2.1.2, where it is impossible to find a line that perfectly separates the classes.
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Figure 2.1.1: Linearly separable data and separating hyperplanes, the separating
hyperplane indicated with a solid line optimizes the margin.

Support vector classifiers associate a slack variable ξi to each instance xi ∈ U ,
where ξi ≥ 0. The condition in Equation (2.6) is modified to:

∀xi ∈ U : d(xi)(β
txi + β0) ≥ 1− ξi. (2.12)

The value ξi indicates how much each point xi falls at the wrong side of the
margin. The sum of these values is bounded:

n∑
i=1

ξi ≤ Q, (2.13)

with Q the maximum number of instances that are allowed to fall on the wrong
side of the separating hyperplane. The problem can be formulated as the
optimization problem that finds β and β0 such that

1

2
||β||2 + C

n∑
i=1

ξi (2.14)

is minimized, subject to

∀i ∈ {1, . . . , n} : ξi ≥ 0 (2.15)

and Equation (2.12). The cost parameter C takes over the role of Q. A large
value of C only allows few misclassifications, while a small value of C allows for
more misclassifications. The above problem is equivalent to finding β,β0 and
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ξ1, . . . , ξn such that

LP =
1

2
||β||2 +C

n∑
i=1

ξi−
n∑
i=1

αi(d(xi)(β
txi +β0)− (1− ξi))−

n∑
i=1

µiξi (2.16)

is minimal, where ∀i ∈ {1, . . . , n}, αi, µi ≥ 0 are the Lagrange multipliers. The
optimization problem is subject to

β =

n∑
i=1

αid(xi)xi (2.17)

0 =

n∑
i=1

αid(xi) (2.18)

∀i ∈ {1, . . . , n} : αi = C − µi. (2.19)

It follows that the solution for β is again a linear combination of the instances
xi ∈ U with αi > 0. It can be shown that these points are exactly on the
boundary of the margin around the separating hyperplane, the support vectors.

2.1.2.3 Support vector machines

Both separating hyperplanes and support vector classifiers separate the classes
linearly. In some cases this is not meaningful, as illustrated in Figure 2.1.3. In
order to have more flexible borders, kernel functions can be used. Assume that
we have a function h that maps instance vectors x from the original feature space
to another feature space of a higher dimension. The SVM can then be applied to
the transformed training data in the new feature space.
SVMs only use x in the inner product with other vectors y, which means that
calculating h(x) or h(y) separately is not necessary, it suffices to know the value
of h(x)h(y). A kernel function K can be used to calculate these values. It is
a function that corresponds to the inner product of h(x) and h(y) in the new
feature space:

∀x,y ∈ U : K(x,y) = h(x)th(y). (2.20)

The optimization problem is then the maximization problem that finds α1, . . . , αn
such that the Lagrange function

LD =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjd(xi)d(xj)K(xi,xj) (2.21)
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Figure 2.1.2: Example of data that is not linearly separable. The data is separated
by the hyperplane Hβ and two instances fall on the wrong side of Hβ.

is maximized under the constraints
n∑
i=1

αid(xi) (2.22)

and
∀i ∈ {1, . . . , n}0 ≤ αi ≤ C. (2.23)

The simplest kernel function is the linear kernel:

K(x,y) = xty (2.24)

When this kernel is used, the SVM model is equivalent to the support vector
classifier.
A kernel that is very often used is the Radial Basis Function Kernel (RBF), defined
as follows for x, y ∈ U :

K(x,y) = exp(−||x− y||2

2δ2
). (2.25)

The parameter δ > 0 is called the bandwidth and determines how smooth the
decision boundary of the SVM is: a low value of δ results in a very irregular
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Figure 2.1.3: Data where separating the data linearly is not meaningful. Using
kernels more flexibility for the separating boundaries is allowed.

boundary, while a high value of δ results in an SVM with a smooth decision
boundary.

2.1.2.4 Sequential Minimal Optimization (SMO)

The Quadratic Program (QP, [122]) to be solved in Equation (2.21) is solved
when the matrix Qij = d(xi)d(xj)K(xi,xj) is positive semi-definite and when
the KKT conditions are fulfilled:

∀i ∈ {1, . . . , n} :
αi = 0⇒ d(xi)f(xi) ≥ 1

0 < αi < C ⇒ d(xi)f(xi) = 1
αi = C ⇒ d(xi)f(xi) ≤ 1.

(2.26)

Solving this QP using traditional QP solving techniques is not feasible for SVM
problems, as the matrix that needs to be stored is quadratic in the number
of instances. Sequential Minimal Optimizaton (SMO, [125]) is a much faster
alternative for traditional QP solving techniques. The main idea is that the
problem is decomposed in several smaller optimization problems that can be
solved analytically. At each step, two Lagrange multipliers are jointly optimized.
These two Lagrange multipliers are chosen such that at each step in the process



2.1 Classification 19

the smallest possible optimization problem at that point is solved. After the
optimal values are found for the two Lagrange multipliers, the SVM is updated
to reflect the new optimal values.
The main advantage of this strategy is that solving the optimization problem for
two Lagrange multipliers can be done analytically. As a result, each sub-problem
can be solved so fast that the entire QP can be solved quickly.

2.1.2.5 Platt’s scaling

As discussed previously, the separating hyperplanes are represented by a function
f that takes values in (−∞,+∞). That is, a test instance t is classified to the
negative class if f(t) ∈ (−∞, 0] and to the positive class if f(t) ∈ (0,∞) However,
it is more useful to obtain probabilities. Therefore, Platt’s method [126, 153]
estimates the probabilities P (d(t) = 1|f). A sigmoid model is used as follows:

P (d(t) = 1|f) = 1

1 + exp(Af +B)
. (2.27)

The parameters A and B are estimated using maximum likelihood estimation
on the training data. This scaling can also be seen as training the model to find
a better threshold: instead of using the standard 0 as threshold to classify test
instances, the model is trained to find a better threshold.

2.1.2.6 The multi-class case

The discussed methods apply to two-class problems. A traditional approach to
handle multi-class problems is pairwise coupling [52, 73, 123], also referred to
as all-versus-all, where the multi-class problem is decomposed in all possible
multiple two-class problems and the majority voting principle is applied. For
instance, when there are k classes, for each pair of classes i and j with i, j ≤ k
and i 6= j, a binary SVM is constructed. A new instance is classified by all
classifiers, and each class gets a vote if the new instance is classified to that class.
The class with the highest number of votes is the final class returned for that
instance.
Another approach is the so-called one-versus-all technique [52]. In this case, k
training datasets are considered, where in each dataset one class is the positive
class and the remaining classes form the negative class. The SVM is trained on
each of these training datasets and the target instance t is classified by each SVM.
Each SVM returns a probability value p expressing the confidence that t should
be classified to the positive class. Finally, t is classified to the class for which this
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probability is maximal.
There is no agreement in the literature about which strategy to use. Some authors
argue that pairwise coupling is more practical than one-versus-all as the training
process is quicker and moreover pairwise coupling is more accurate[4]. Other
authors disagree and claim that the one-versus-all strategy is equally accurate
[133].

2.1.3 Evaluation of classification

In this section we discuss three important steps that are taken when evaluating
classifiers. The classifier is applied to multiple datasets, using a validation
scheme (Section 2.1.3.1). The classification performance is then measured using
an evaluation measure (Section 2.1.3.2). Once these evaluation measures are
obtained for each dataset, classifiers can be compared among each other using
statistical tests (Section 2.1.3.3).

2.1.3.1 Validation Schemes

A classifier is usually evaluated in a setting with both train and test data. For
instance, support vector machines use the train data to find support vectors, and
the KNN technique uses the entire train data as model. In order to evaluate
the classifier built on the train data, test data is needed. The classifier labels
each example in the test data and this classification can then be evaluated using
evaluation measures.
The oldest validation methods used the entire data set both for training and
testing. Obviously the resulting performance will be too optimistic [100], as the
classes of the instances are known in the model.
A more reasonable way to evaluate a classification method on a data set is hold
out evaluation [40], which splits the data into two parts. The train data is usually
bigger than the test data, typically the train data doubles the size of the test data.
Although this design is simple and easy to use, it has some disadvantages, the
main one being that the data is not fully explored, that is, the evaluation is only
carried out on a small fraction of the data. Moreover, it can happen that the
instances included in the test data are too easy or too difficult to classify, resulting
in a misleading high or low performance. Another problem that might occur
is that instances essential to build the model are not included in the training
set. This problem can be partially alleviated by running the hold-out evaluation
several times, but still it might happen that some essential instances are never
included in the train data or that instances hard to classify are never evaluated
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in the test data.
In order to deal with this problem, a more systematic approach to repeat the
hold out evaluation was developed. The widely used evaluation design called
K-fold cross validation [149], splits the data into K equal parts, and each of
these parts is classified by a model built on the remaining K − 1 parts. The main
advantage of this technique is that each data point is evaluated exactly once.
The choice of K is a trade-off between bias and variance [91]. For low values
of K, the sizes of the training sets in the K-fold cross validation procedure are
smaller, and the classifications are more biased depending on how the perfor-
mance of the classifier changes with the instances included in the train data
and with sample size. For instance, when K = 2, the two training sets are
completely different and only cover one half of the original data, so the quality
of the predictions can differ drastically for the two train sets. When K = 5, all
train sets have 60 percent of the data in common, so the bias will be lower. For
high values of K, the variance of the procedure is higher due to the stronger
dependence on the train data, as all training sets are very similar to one another.
Typical good values for K are 5 or 10. When K equals the data size, K-fold cross
validation is referred to as Leave-One-Out cross validation. In this case, each
instance is classified by building a model on all remaining instances and applying
the resulting model on the instance.
Finally, we note that the data should be divided in folds carefully. Stratifica-
tion processes [41, 117, 118, 119, 145, 184] make sure that the global data
distribution is reflected in the separate folds.

2.1.3.2 Evaluation Measures

Once a validation scheme is chosen, the classifier can build its model on the
training data and classify the test instances based on this model. Afterwards,
evaluation measures are needed to describe how well this classification is done.
We study how we can assess the quality of a given classifier based on a list of the
real classes of instances and the predicted classes1.
A representation that is very useful when evaluating a classifier is the so-called
confusion matrix M . The dimension of the squared matrix M is k, the number
of classes, and the entry Mij denotes how many times an instance with real class
ci was classified as cj (i, j ∈ {1, . . . , k}). Based on the confusion matrix, many
metrics can be defined.

1Note that we only consider evaluation measures for discrete classifiers, i.e. a classifier that
returns a class as label, as opposed to probabilistic classifiers that return for each class the probability
that the instance belongs to it.
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We first discuss metrics that are only defined for binary classification problems.
In the binary case, where there are two classes namely the positive (P) and the
negative (N) class, we denote by True Positives (TP) and True Negatives (TN) the
number of correctly classified positive and negative instances respectively. False
Negatives (FN) stands for the number of instances that are predicted negative
but that are actually positive, while the False Positives (FP) are the number of
instances that are falsely classified to the positive class.
The recall (also referred to as true positive rate or sensitivity) is the number of
true positives compared to the number of truly positive instances:

recall =
TP

TP + FN
. (2.28)

It reflects how well the positive instances are classified. The false alarm (denoted
by falarm here, also known as the false positive rate) is the number of false
positives compared to the number of negative instances:

falarm =
FP

TN + FP
. (2.29)

It is clear that a balance between the recall and false alarm values should be
aimed for. The Receiver Operating Characteristics (ROC, [111]) curve plots the
recall against the false alarm for probabilistic classifiers. The Area Under the
Curve (AUC) is then the surface under this ROC curve, and expresses how good
the balance between recall and false alarm is. The Approximate Area Under the
Curve (AAUC):

AAUC =
recall − falarm

2
(2.30)

measure can be seen as an approximation of the AUC for discrete classifiers.
The precision is the number of true positives compared to the number of instances
predicted positive:

precision =
TP

TP + FP
. (2.31)

This measure expresses how many of the instances predicted positive are indeed
positive.
Another metric is the specificity (also called true negative rate), defined as the
number of correctly classified negative instances divided by the number of truly
negative instances:

specificity =
TN

FP + TN
. (2.32)
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This is the analogue of the recall for the negative instances, and reflects how
well negative instances are classified.
All metrics above are defined for binary classification problems, but they can
easily be used for multi-class problems. A common practice is to calculate the
measure for each class separately and then to average the metrics over all classes
(one vs. all).
The most well-known evaluation measure for multiclass problems is the classifi-
cation accuracy, denoted by acc. It is defined as the ratio of correctly classified
instances, which can also be expressed as the sum of the diagonal elements in
the confusion matrix:

acc =

k∑
i=1

Mii. (2.33)

It is a general measure that gives an idea of the overall performance of the
classifier.
Another metric that can handle multi-class problems is Cohen’s kappa [12],
which is an agreement measure that compensates for classifications that may be
due to chance, defined as follows:

κ =

n
k∑
i=1

Mii −
k∑
i=1

Mi.M.i

n2 −
k∑
i=1

Mi.M.i

, (2.34)

where M.i is the sum of the elements in the ith column of M and Mi. the sum of
the elements in the ith row of M .
There is no simple answer to the question which evaluation metric to use, and in
general there is no classifier that is optimal for each evaluation metric. When
evaluating general classification problems, the accuracy is mostly sufficient,
together with an analysis of Cohen’s kappa. In case of imbalanced problems,
i.e. data where one or more classes are underrepresented, the accuracy mostly
reflects the accuracy of the classification of the majority class. Therefore, the
accuracy is less appropriate when evaluating imbalanced problems, and the
AAUC is more appropriate, as it takes into account the class imbalance. When
considering real-world problems, one should be careful when selecting appro-
priate evaluation metrics. For instance, when there is a high cost related to
classifying instances to the negative class, a high false alarm is problematic.
When it is more important to not misclassify positive instances, a high recall is
important. In some cases it is recommended to use multiple evaluation metrics,
and a balance between them should be aimed for.
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2.1.3.3 Non-parametric statistical tests

When evaluating a new classifier, it is important to compare it to the state of the
art. Deciding if a new algorithm is better than existing ones is not a trivial task.
It can happen that an algorithm is better than another algorithm on average,
but this good average performance can be due to some outliers. In general,
there is no algorithm that is the best in all situations, as suggested by the no free
lunch theorem [170]. For these and other reasons, it is crucial to use appropriate
statistical tests to verify that a new classifier indeed outperforms the state of the
art.
A major distinction between different statistical tests is whether they are paramet-
ric [144] or non-parametric [37, 56, 108, 144]. All considered statistical tests,
both parametric and non-parametric, assume independent instances. Parametric
tests, in contrast to non-parametric tests, are based on an underlying parametric
distribution of the (transformed) results of the considered evaluation measure.
In order to use parametric statistical tests meaningfully, these distributional
assumptions on the observations must be fulfilled.
Depending on the setting, pairwise or multiple comparison tests should be per-
formed. A pairwise test aims to detect a significant difference between two
classifiers, while a multiple comparison test aims to detect significant differences
between multiple classifiers.
All statistical tests, both parametric and non-parametric, follow the same pattern.
They assume a null hypothesis, stating that there is no difference between the
classifiers’ performance, e.g., expressed by the mean or median difference in
performance. Before the test is carried out, a significance level is fixed which
is an upper bound for the probability of falsely rejecting the null hypothesis.
The statistical test can reject the null-hypothesis at this significance level, which
means that with high confidence at least one of the classifiers significantly out-
performs the others, or not reject it at this significance level, which means that
there is no strong or sufficient evidence to believe that one classifier is better than
the others. In the latter case, it is not guarenteed that there are no differences
between the classifiers, the only conclusion then is that the test cannot find
significant differences at this significance level. This might be because there are
indeed no differences in performance, or because the power (the probability
of correctly rejecting the null hypothesis) of the test is too low, caused by an
insufficient amount of datasets.
The decision to reject the null hypothesis is based on whether the observed test
statistic is bigger than some critical value or equivalently, whether the corre-
sponding p-value is smaller than the prespecified significance level. Recall that
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the p-value returned by a statistical test is the probability that a more extreme
observation than the observed one is true.
In the remainder of this section, the number of classifiers is denoted by k, the
number of cases by n and the significance level by α. The calculated evaluation
measure of case i based on classifier j is denoted Yij . We only discuss non-
parametric statistical tests as the assumptions for parametric statistical tests are
in general not fulfilled or too few cases are available to check the validity of
these assumptions in our case. That is, we mostly work with about 40 datasets
and the results are generally not normally distributed. Strictly speaking, the null
hypothesis of the non-parametric tests presented here state that the distribution
of the performance of all classifiers is the same. Different tests then differ in
what alternatives they aim to detect.
We make a distinction between pairwise and multiple comparisons.

2.1.3.4 Pairwise comparisons: Wilcoxon’s signed-ranks test

Wilcoxon’s signed-ranks test [167] uses the differences Yi1 − Yi2. Under the
null hypothesis, the distribution of these differences is symmetric around the
median and hence we must have that the distribution of the positive differences
is the same as the distribution of the negative differences. The Wilcoxon signed
rank test aims to detect a deviation from this to reject the null hypothesis. The
procedure assigns a rank to each difference according to the absolute value of
these differences, where the mean of ranks is assigned to cases with ties. Next,
the sum of the ranks of the positive differences R+ and the sum of the negative
differences R− are calculated. When few instances are available, to reject the
null hypothesis, min(R+, R−) should be less than or equal than a critical value
depending on the significance level and the number of instances, or equivalently,
when the corresponding p-value is lower than the significance level, see [144]
for tables. When a sufficient number of instances is available (as a rule of thumb,
more than 50 instances), one can rely on the asymptotic approximation of the
distribution of R+ or R−.

2.1.3.5 Multiple comparisons

In this section we first discuss the Friedman test that detects if there are signifi-
cant differences among a set of methods, and then explain the Holm post-hoc
procedure that tests if the method with the highest rank significantly outperforms
others.
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Friedman’s test Friedman’s test [49, 50] ranks the classifiers for each instance,
according to the evaluation measure (let rji denote the corresponding rank). Next
the average rank Rj for each classifier over the different instances is calculated,
Rj =

∑n
i=1 r

j
i /n. The best method gets rank 1, the second best method gets rank

2 and so on. Under the null hypothesis, all classifiers are equivalent and hence
the average ranks of the different classifiers should be similar. The Friedman test
aims to detect a deviation from this.
For a sufficient number of instances and classifiers (as a rule of thumb n > 10
and k > 5), the test statistic of the Friedman test approximately follows a chi-
square distribution with k − 1 degrees of freedom. For a small number of data
sets and classifiers, exact critical values have been computed [144, 182]. If the
test statistic exceeds the corresponding critical value, it means that there are
significant differences between the methods, but no other conclusion whatsoever
can be made.

Detecting pairwise differences: Holm’s post-hoc procedure When the null
hypothesis (stating that all classifiers perform equivalently) is rejected, the
average ranks calculated by Friedman’s test itself can be used to get a meaningful
ranking of which methods perform best. However, post-hoc procedures are still
needed to evaluate which pairwise differences are significant. It is tempting to
use multiple pairwise comparisons to get more information. However, this will
lead to an accumulation of the Type I error coming from the combination of
pairwise comparisons, also referred to as the Family Wise Error Rate (FWER,
[121]), which is the probability of making at least one false discovery among the
different hypotheses.
Therefore we consider post-hoc procedures based on adjusted p-values of the
pairwise comparisons to control the FWER. Recall that the p-value returned by a
statistical test is the probability that a more extreme observation than the current
one is observed, assuming the null hypothesis holds. This simple p-value reflects
this probability of one comparison, but does not take into account the remaining
comparisons. Adjusted p-values (APV) deal with this problem and after the
adjustment, these APVs can be compared with the nominal significance level
α. The post-hoc procedures that we discuss first are all designed for multiple
comparisons with a control method, that is, we compare one algorithm against
the k − 1 remaining ones. In the following, pj denotes the p-value obtained
for the jth null hypothesis, stating that the control method and the jth method
are performing equally well. The p-values are ordered from smallest to largest:
p1 ≤ . . . ≤ pk−1, and the corresponding null hypotheses are rewritten accordingly
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as H1, . . . ,Hk−1.
The Holm [76] procedure is the most popular post-hoc procedure and starts with
the lowest p-value. If p1 ≤ α/(k − 1), the first null hypothesis is rejected and the
next comparison is made. If p2 ≤ α/(k − 2), also the second null hypothesis H2

is rejected and the next null hypothesis is verified. This process continues until
a null hypothesis cannot be rejected anymore. In that case, all remaining null
hypotheses are retained as well. The adjusted p-values for the Holm procedure
are min [max{(k − j)pj : 1 ≤ j ≤ i}, 1].

2.2 Evolutionary algorithms

In the 1950s, researchers started to study how optimization problems can be
modeled and solved inspired by biological evolution. Nowadays, these Evolution-
ary Algortithms (EAs, [63]) are widespread in research and have been applied
successfully in a wide range of domains.
There are many variants of EAs, but they all share the underlying idea that a
population of individuals is improved by means of natural selection, founded
on the survival of the fittest principle. The general scheme of EAs is depicted in
Figure 2.2.1. Candidate solutions to the optimization problem form a population
of individuals. The quality of these solutions is measured by means of a fitness
function. The higher the value of an individual for the fitness function, the
better the individual and the more likely the individual survives and is selected
as parent to create the next generation of individuals. This new generation of
individuals is formed by applying recombination and mutation operators to the
fittest individuals in the previous generation. The newly created individuals
compete to survive with the old ones to be included in the next generation.
This process continues until a certain termination criterion is met and the fittest
individual is returned as solution.
There are two factors that are at the base of EAs’ strength. The first is the
diversity and novelty among the candidate solutions during the course of the
generations, achieved by using good mutation and recombination operators. The
second is the strive for good quality candidate solutions, achieved by selection
operators that improve the fitness of individuals generation after generation.

Different subgroups of EAs only deviate from the general scheme in Figure
2.2.1 by technical details. An important distinction that needs to be made is
the way in which individuals are represented. The subgroup of EAs that we
consider are Genetic Algorithms (GAs) where individuals are represented by
binary strings.
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Figure 2.2.1: General scheme of evolutionary algorithms

In the following we discuss the separate components of GAs in more detail.
• Representation

Candidate solutions to optimization problems take different forms like sets,
integers or matrices. In order to present a solving strategy, it is important
that these candidate solutions can be translated to a general form. GAs
represent each candidate solution by a binary string. Each position in the
binary string is called a gene or also a locus. The candidate solution in the
original optimization problem is called the phenotype, the representation
in the GA is called the genotype and the transformation from phenotype
to genotype is called representation. All candidate solutions in the original
optimization problem form the phenospace, while the possible solutions in
the GA representation form the genospace.
For instance, when the goal is to find an optimal subset of a set P , the
subsets S ⊆ P can be presented by binary strings of length |P |, where
each gene corresponds to an element in P , and the gene is 1 if the element
is included in S and 0 else. The subset itself is the phenotype, its binary
representation is called the genotype. The phenospace consists of all
subsets S ⊆ P and the genospace consists of all binary strings of length
|P |.

• Fitness function
The fitness function reflects the quality of the individuals. This fitness
function drives the improvement of the individuals over time. In most
cases the fitness function needs the inverse representation function, that is,
given the genotype of an individual, the fitness function needs to translate
this genotype to the phenotype of the individual, in order to assess its
quality.
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• Population
The population consists of genotypes of individuals and changes over time:
the individuals do not change or adapt but the population does. The initial
population mostly consists of randomly generated individuals.

• Parent selection
In each generation parents are selected for recombination. Individuals
with a higher fitness are more likely to be selected, but individuals with a
low fitness are also given a low chance of being selected. Parent selection
is one of the main drives for quality improvement of the population.

• Crossover
Crossover is the process where two parent genotypes are recombined into
one or two new genotypes for offspring. There are two random components
in crossover. The first is which parents to use for crossover, the second is
which parts of these parents to recombine. In Figure 2.2.2 two examples
of crossover operators are depicted. The first is one-point crossover, where
the first part of the first genotype is attached to the second part of the
second genotype, and the first part of the second genotype is attached to
the second part of the first genotype. The second is two-point crossover,
where a part in the middle of the genotype is interchanged between the
two genotypes.
The principle of crossover is that the features of both parents are combined.
It is hoped that the good characteristics of both parents are recombined in
the same genotype.

• Mutation
Mutations are unary changes of the individuals: the genotype of the
individual undergoes random changes and the resulting mutant is offspring
for the next generation. A common mutation is to change the gene of
a genotype with a (low) probability. Mutations ensure that the entire
genospace can be searched and avoid the GA to get stuck in local optima,
but on the other hand the low mutation probability ensures that good
solutions are not drastically changed during the course of the GA.

• Survivor Selection
After offspring is produced, it needs to be decided which individuals to
keep in the population. Survivor selection chooses the fittest individuals
and pushes them to the next generation. Some algorithms only select the
fittest individuals from the offspring, while others merge the offspring
and the previous population and select the fittest individuals among them.
Survivor selection is mostly deterministic, while parent selection has a
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(a) Single-point crossover

(b) Two-point crossover

Figure 2.2.2: Two examples of crossover operators

random component.

• Termination
Deciding when to halt the GA can be based on different criteria. One
possibility is to require that the fitness of the best individual reaches a
certain threshold. In some cases it is possible that this limit is never reached,
therefore an additional criterion should be imposed. Another option is to
limit the number of fitness evaluations or the number of generations, or to
stop the GA when the diversity within the population drops below a certain
level.

The procedure of GAs typically consists of two phases: exploration and exploita-
tion. During the exploration phase, the population is very diverse and the entire
genospace is explored. The fitness increases very fast in that phase. During the
exploitation phase, the GA only searches in specific regions of the genospace in
the neighborhood of good individuals.

2.3 Fuzzy Rough Set Theory

We recall the basic concepts of fuzzy rough set theory that are needed for the
understanding of the remainder of this work. Fuzzy rough set theory is built
upon two other theories, namely fuzzy set theory and rough set theory, discussed
in Section 2.3.1 and 2.3.2 respectively. The hybridization of both theories that
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we use in this work is presented in Section 2.3.3, and in Section 2.3.4 we relate
fuzzy rough set theory to classification problems.

2.3.1 Fuzzy Set Theory

We first recall the most important concepts of fuzzy set theory. We define fuzzy
sets, introduce fuzzy logical operators and finally discuss the notion of fuzzy
indiscernibility relations.

Fuzzy sets

In 1965, Lotfi Askar Zadeh introduced fuzzy set theory [181]. He observed
that traditional crisp sets that are at the basis of logic are not able to describe
everything in reality. For instance, it is hard to define the set of smart people.
One could say that people with an IQ higher than 120 belong to the set of smart
people, but this distinction is artificial. Someone with an IQ of 119 can almost
not be distinguished from someone with an IQ of 120, and therefore someone
with an IQ of 119 should also belong to the set of smart people if someone of
120 does.
Zadeh proposed fuzzy sets to overcome this problem. He defined a fuzzy set
A as a mapping from the universe U to the interval [0, 1]. The value A(x) for
x ∈ U is called the membership degree of x in A. Using this model, elements in
the universe can belong to a set to a certain degree. In the example, one could
say that someone with an IQ of 120 belongs to degree 0.9 to the set of smart
people, and someone with an IQ of 119 to degree 0.89. Finding a good fuzzy set
to model concepts can be challenging and subjective, but it is more meaningful
than trying to make an artificial crisp distinction between elements.
Note that fuzzy sets are an extension of crisp sets: any crisp set A can be modeled
by means of a fuzzy set as follows:

∀x ∈ U : A(x) =

{
1 if x ∈ A
0 else. (2.35)

The cardinality of a fuzzy set A is defined as the sum of the membership values
of all elements in the universe to A:

|A| =
∑
x∈U

A(x). (2.36)
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Fuzzy logical operators

Extending crisp sets to fuzzy sets requires new logical operators. For instance, in
crisp set theory the proposition an element belongs to the set A and to the set B is
either true or false. If we want to extend this proposition to fuzzy set theory, we
need fuzzy logical operators that extend the logical conjunction ∧, in order to
express to what extent an instance x belongs to A and B given the membership
degrees A(x) and B(x).
The conjunction ∧ and the disjunction ∨ are extended by means of a so-called
t-norm T and t-conorm S respectively, which are mappings T ,S : [0, 1]2 → [0, 1]
that satisfy the following conditions:
• T and S are increasing in both arguments
• T and S are commutative
• T and S are associative
• ∀x ∈ U : T (x, 1) = x and ∀x ∈ U : S(x, 0) = x.

The most important examples of t-norms are the minimum operator TM , which
is the largest t-norm, the product operator TP and the Łukasiewicz t-norm TL:

∀x, y ∈ [0, 1] : TM (x, y) = min(x, y)
∀x, y ∈ [0, 1] : TP (x, y) = xy
∀x, y ∈ [0, 1] : TL(x, y) = max(0, x+ y − 1).

(2.37)

Well-known examples of t-conorms are the maximum operator SM , which is the
smallest t-conorm, the probabilistic sum SP and the Łukasiewicz t-conorm SL:

∀x, y ∈ [0, 1] : SM (x, y) = max(x, y)
∀x, y ∈ [0, 1] : SP (x, y) = x+ y − xy
∀x, y ∈ [0, 1] : SL(x, y) = min(1, x+ y).

(2.38)

The implication → is extended by fuzzy implicators, which are mappings I :
[0, 1]2 → [0, 1] that satisfy
• I is decreasing in the first and increasing in the second argument
• I satisfies I(1, 0) = 0 and I(1, 1) = I(0, 1) = I(0, 0) = 1.

The most used implicator is the Łukasiewicz implicator IL, defined by

∀x, y ∈ [0, 1] : IL(x, y) = min(1, 1− x+ y). (2.39)

Fuzzy relations

A special type of fuzzy sets are binary fuzzy relations in U , these are fuzzy sets R
in U2 and express to what extent x and y are related to each other. In the context
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of fuzzy rough set theory, we use relations to model indiscernibility between in-
stances, therefore we refer to them as indiscernibility relations. We require that R
is at least a fuzzy tolerance relation, that is, R is reflexive (∀x ∈ U : R(x, x) = 1)
and symmetric (∀x, y ∈ U : R(x, y) = R(y, x)). These two conditions correspond
to the reflexivity and symmetry conditions of the equivalence relation. The third
condition for an equivalence relation, transitivity, is translated to T -transitivity
for a certain t-norm T :

∀x, y, z ∈ U : T (R(x, y), R(y, z)) ≤ R(x, z). (2.40)

In this case we call R a T -similarity relation. Note that when R is TM -transitive,
R is T -transitive for all t-norms T . In this case we call R a similarity relation.

2.3.2 Rough Set Theory

Rough set theory was initiated by Zdzisław Pawlak ([124]) in the early eighties
to handle the problem of incomplete information. He considered a universe U
consisting of elements, an equivalence relation R on U and a concept A ⊆ U
within the universe. The problem of incomplete information states that it might
not be possible to discern the concept A based on the equivalence relation R,
that is, there can exist two elements x and y in U that are equivalent for R but
for which x belongs to A and y does not. This is illustrated in Figure 2.3.1:
the universe is partitioned in squares using the equivalence relation, and the
concept A does not follow the lines of the squares, which means that A cannot
be described using R.
This problem of incomplete information occurs often in real life. Consider for

instance the problem of spam classification. Assume that the universe consists of
spam and non-spam e-mails, and say that the concept is spam. The equivalence
relation is defined based on a predefined list of 10 words that occur often in spam
e-mail, and we say that two e-mails are equivalent (i.e., indiscernible) if they
contain the same words among the list of 10 words. Some equivalence classes
will be completely contained in the spam group, and some will be completely
contained in the non-spam group. However, it is very likely that there exist two
e-mails that contain the same words among the list of 10 words, but for which
one is spam and the other non-spam. In this case, the equivalence relation is not
able to distinguish between spam and non-spam.
Pawlak addressed this problem by approximating the concept A. The lower
approximation contains all the equivalence classes that are contained in A, and
the upper approximation contains the equivalence classes for which at least one
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U

A

Equivalence class w.r.t. R

Figure 2.3.1: A universe U partitioned by an equivalence relation R and a
concept A ⊆ U that cannot be defined using R.

element is in A, as indicated in Figure 2.3.2.
Formally, the lower approximation of A by means of R is defined as follows:

R ↓ A = {x ∈ U |∀y ∈ U : (x, y) ∈ R→ y ∈ A}. (2.41)

Note that an equivalence relation is reflexive, therefore x is only contained in
R ↓ A if x ∈ A. The upper approximation is defined by:

R ↑ A = {x ∈ U |∃y ∈ U : (x, y) ∈ R ∧ y ∈ A}. (2.42)

The lower approximation in the spam example consists of all e-mails that are
spam and for which all e-mails indiscernible from it are also spam. The upper
approximation consists of e-mails that are spam and e-mails that are non-spam
but for which there exists an e-mail indiscernible from it that is spam.

2.3.3 Fuzzy Rough Set Theory

Fuzzy set theory enables us to model vague information, while rough set theory
models incomplete information. These two theories are not competing but
complement each other. Many models to hybridize rough sets and fuzzy sets
have been proposed [105, 171, 172, 178], but we restrict ourselves to the
implicator/t-norm model [29, 45, 46].
A fuzzy rough set is the pair of lower and upper approximations of a fuzzy set
A in a universe U on which a fuzzy relation R is defined. The fuzzy rough
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Figure 2.3.2: The concept A is approximated by means of the lower and upper
approximation

model is obtained by fuzzifying the definitions of the crisp lower and upper
approximation. Recall that the condition for an element x ∈ U to belong to the
crisp lower approximation is that

∀y ∈ U : (x, y) ∈ R→ y ∈ A. (2.43)

The equivalence relationR is now a fuzzy relation andA is a fuzzy set. The values
R(x, y) and A(y) are connected by a fuzzy implication I, so I(R(x, y), A(y))
expresses to what extent elements that are similar to x belong to A. The
membership value of an element x ∈ U to the lower approximation is high if
these values I(R(x, y), A(y)) are high for all y ∈ U :

∀x ∈ U : (R ↓ A)(x) = min
y∈U
I(R(x, y), A(y)). (2.44)

The fuzzy lower approximation can be derived similarly, except that now the
logical operator ∧ is replaced by a t-norm:

∀x ∈ U : (R ↑ A)(x) = max
y∈U
T (R(x, y), A(y)). (2.45)

This upper approximation expresses to what extent there exist instances that are
similar to x and belong to A.
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2.3.4 Using (fuzzy) rough set theory for decision systems

Rough sets and fuzzy rough sets are particularly useful to model a decision
system (U,A ∪ {d}). The universe U corresponds to the set of instances. The
indiscernibility relation R can be modeled by means of the conditional attributes
A: instances x and y for which the conditional attributes are highly related will
have a high membership degree R(x, y) or will be equivalent for R. The concepts
to be approximated correspond to the decision classes that are derived from the
decision attribute.
We first show how rough set theory can be deployed to approximate the decision
classes in the decision system. Assume that we can derive an equivalence relation
R from the attributes that partitions the universe U , and that the instances are
divided in three classes as depicted in Figure 2.3.3. The lower approximations
of the classes, indicated in gray in Figure 2.3.3 are particularly interesting: the
instances in these regions are typical for their classes: based on the equivalence
relation R, and hence also based on the attributes in A, the classes of those
instances can unambiguously be determined. Formally, the union of the lower
approximations of all classes is called the positive region, defined as follows:

POS =
⋃
x∈U

R ↓ [x]d, (2.46)

where [x]d = {y ∈ U |d(x) = d(y)} is the decision class of x.
The positive region can easily be extended to the fuzzy case:

∀x ∈ U : POS(x) = max
y∈U

(R ↓ [y]d)(x). (2.47)

As [y]d(x) only takes values in {0, 1} for classification problems and I(a, 0) = 0
for all a ∈ [0, 1], the positive region can also be written as follows [30]:

∀x ∈ U : POS(x) = (R ↓ [x]d)(x), (2.48)

and can be interpreted as the extent to which instances indiscernible from x
belong to the class of x.
This fuzzy rough positive region is very useful in many aspects of machine
learning. For instance, fuzzy rough feature selection techniques select features
such that the membership degrees of the instances to the fuzzy rough positive
region are maximized [30], or instance selection techniques select instances with
a high membership degree to the fuzzy rough positive region [80].
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U

Equivalence class w.r.t. R

Figure 2.3.3: Decision system where the universe, consisting of three classes, is
partitioned by an equivalence relation R. The positive region is indicated in gray

2.4 Instance Selection

Data preprocessing is an important step in data mining. Real-world datasets can
be noisy, huge, have missing values, have irrelevant features, contain superfluous
instances, and so on. Instance selection deals with some of these issues. It is the
process where a subset of instances is selected before classification takes place.
We distinguish three types of instance selection methods based on their purpose.
Instance selection methods that focus on improving the accuracy of the classifier
that is applied afterwards are called edition techniques. Methods whose main
goal is to reduce the storage requirements are called condensation algorithms.
Some instance selection methods achieve both goals simultaneously, they are
called hybrid methods.
Another distinction that should be made is between wrapper algorithms and filter
algorithms. Wrapper instance selection algorithms use a classifier to evaluate
candidate subsets during the instance selection process, while filter algorithms
do not. Wrapper algorithms are usually slower but more accurate than filter
techniques [55].
In this section we present the state-of-the-art of instance selection techniques.
We limit ourselves to instance selection techniques that were designed for KNN or
SVM classification. In Section 2.4.1, we discuss instance selection techniques that
were designed as preprocessing techniques for KNN classification, and we refer to
them as Prototype Selection (PS, [55]) techniques. In Section 2.4.2, we discuss
two techniques that were developed as preprocessors for SVM classification,
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referred to as Training Set Selection (TSS) algorithms. Note that filter PS
techniques can be used in combination with SVMs, but we describe them in a
separate section as they were designed for KNN specifically. An overview of all
techniques is given in Figure 2.4.1.

2.4.1 Prototype Selection

A lot of research has been done on PS, and as a result many methods have been
proposed in the literature. In the following we discuss the state-of-the-art in PS
algorithms. We always denote the original training data by U and the selected
subset of prototypes by S.

2.4.1.1 Filter PS techniques

The first large group of methods are methods that are all variations and improved
versions of two basic methods, Edited Nearest Neighbors (ENN) and Condensed
Nearest Neighbors (CNN).
• Edited Nearest Neighbor (ENN, [168])

The ENN method considers all instances in U and marks x ∈ U if x is
wrongly classified when applying the KNN rule with U \ {x} as pool of
possible nearest neighbors. After all instances are considered, the marked
instances are removed.

• Condensed Nearest Neighbor (CNN, [72])
The CNN method initializes S with one element of each class, and then
proceeds by classifying all instances in U using KNN with S as pool of
possible nearest neighbors. Each time an instance x ∈ U is classified
incorrectly, it is added to S. The process is repeated until all instances in
U are classified correctly using S as pool of possible nearest neighbors or
until S = U .

CNN only selects the instances that are necessary to classify the instances in U
correctly, which means that it mainly removes superfluous instances, that is, CNN
is a condensation method. On the other hand, ENN removes those instances
that deteriorate the classification of instances in U , so ENN is an editing method.
Both methods are simple basic methods that have been improved in several ways.
We first discuss PS methods that aim to improve ENN.
• All-K Nearest Neighbor (All-KNN, [154])

ENN depends on K, the number of neighbors that KNN looks up to classify
the instances in U . The All-KNN PS method depends on a parameter Kmax
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Figure 2.4.1: Overview of the state-of-the-art instance selection methods for
KNN (PS) and for SVM (TSS) classification.



40 Preliminaries

and proceeds as follows; it carries out ENN with all K = 1, . . . ,Kmax and
removes the instances that were removed by at least one of those ENN
runs. As a result, All-KNN always removes more instances than ENN.

• Modified Edited Nearest Neighbor (MENN, [74])
The MENN PS method only slightly modifies ENN. During the ENN process,
instead of considering the K nearest neighbors, K + l neighbors are con-
sidered, where l is the number of instances that are at the same distance of
the furthest nearest neighbor.

The second group of PS methods are based on the ideas of CNN and have in
common that they start with an empty prototype set S and add instances if they
are necessary for the classification of instances in U .
• Fast Condensed Nearest Neighbor algorithm (FCNN, [5])

The FCNN algorithm initializes S with the centroid instances of all classes,
these are the instances that are closest to the geometric mean of the
instances of each class. For each instance x ∈ S, the Voronoi cell Vor(x)
consists of the instances in U that are closer to x than to any other instance.
Among the instances in V or(x) that are from a different class than x, the
closest one is added to S. This process is repeated for all instances in S
until no instances are removed in an iteration.

• Modified Condensed Nearest Neighbor (MCNN, [39])
The MCNN algorithm proceeds as CNN, but instead of adding an instance to
S when it is misclassified, it is marked. After classifying all instances in U ,
the instances closest to the centroids of each class among the misclassified
instances are added to S. This process is repeated until there are no
misclassifications anymore.

• Reduced Nearest Neighbor (RNN, [62])
RNN is a decremental version of the CNN algorithm. It starts with S = U
and removes each instance x from S if such a removal does not cause any
other instances in U to be misclassified by the instances remaining in S
using the 1NN rule.

Apart from these algorithms that are closely related to ENN or CNN, there are
other algorithms that use the KNN rule in the course of the algorithm:
• Combined-Pruner (C-Pruner, [187])

The C-Pruner algorithm defines the coverage set of an instance x as the
instances that have the same class as x and for which x is one of the
nearest neighbors. C-Pruner considers three types of instances. An instance
is superfluous if it is classified correctly by its nearest neighbors. A critical
instance is an instance that has at least one instance in its coverage set
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that is not superfluous or that has at least one instance in its coverage
set that is not superfluous if the instance itself would be deleted. A noisy
instance is an instance that is not superfluous and that has more instances
in its nearest neighbor set than in its coverage. C-pruner deletes noisy
instances and superfluous instances that are not critical. The order of
removal is important. An instance x is removed earlier than an instance
y if the number of nearest neighbors of x that have the same class as x is
larger than the number of nearest neighbors of y that have the same class
as y. Ties can occur, in that case the instance for which the distance to the
nearest instance of a different class is smaller should be removed first. If
ties persist, a random selection is made.

• Decremental Reduction Optimization Procedure (DROP3, [169])
There are many versions of the DROP algorithm, we consider the DROP3
algorithm. It first carries out ENN in order to remove noise from the
data. Next, it removes an instance x if instances that have x as nearest
neighbor and that are classified correctly by their nearest neighbors, are
also classified correctly when removing x. Instances that are closest to an
instance from a different class are removed first.

• Model Class Selection, (MOCS, [18])
MOCS marks an instance for removal if the number of times it is one of
the nearest neighbors of another instance y and its class equals the class of
that instance y is lower than the number of times it is one of the nearest
neighbors of another instance y, and its class is different from the class of
that instance y.

• Instance-Based Selection (IB3, [2])
The IB3 algorithm is the best-performing PS algorithm among a range of
instance based algorithms. It gradually adds instances to the prototype
subset S and updates the classification performance of the instances each
time an element is added. This classification performance of an element
y ∈ S is the number of times y contributes to a correct classification. When
S is the current subset and a new element x is added, the nearest neighbors
of x in S \ {x} are calculated. If x is classified correctly by these nearest
neighbors, the number of times these neighbors contribute to a correct
classification is increased by one. Note that the classification performance
of an element x ∈ S only depends on instances that are added to S later
than x. As a result it is a measure to assess how well new instances will be
classified by x. An instance in S is called acceptable if the number of times
it contributes to a correct classification is significantly higher than its class
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frequency and unacceptable if this number is significantly lower than its
class frequency. The overall algorithm follows the next steps. The prototype
subset S is initialized with a random element. Then, for each element
x ∈ U , the following procedure is carried out. The element y in S that is
most similar to x among the acceptable instances in S is selected. If there
are no acceptable instances in S, a random element is chosen. If the classes
of x and y are different, y is added to S, and the classification performance
of the instances in S is updated. Instances that become unacceptable are
removed from S.

• Iterative Case Filtering (ICF, [17]) The ICF algorithm defines the reach-
ability set of an element x as the instances that are closer to x than any
instance of a different class of x. The coverage set of x consists of instances
for which x is in their reachability set. Instances in the reachability set of x
contribute to the correct classification, while x contributes to the correct
classification of instances in the coverage set of x. ICF starts by applying
ENN on the training set, the resulting set is S. Next, the coverage and
reachability set are calculated for each instance in S. Instances for which
the reachability set is larger than the coverage set are marked for removal,
and all marked instances are removed. This process, excluding ENN, is
repeated until no changes occur in S.

• Modified Selective Subset (MSS, [8]) MSS calculates for each instance
the distance to the closest instance from a different class. Next, all instances
are considered one by one, instances with a smaller distance are considered
first. An instance x is added to the prototype subset if there exists an
instance in U \ S that is closer to x than to the closest instance from a
different class.

• Reconsistent, [107]
The Reconsistent algorithm constructs two sets M and N that are merged
to S at the end of the algorithm. Both sets are constructed based on the
definition of a special neighborhood for each instance x, that is obtained
by first adding the nearest neighbor of x, and then adding instances such
that the centroid of the current neighborhood is closest to x. This is
repeated until a neighbor from a different class would be added. The
set N is initialized as U and for each instance in S the neighborhood
is determined. Then, the instance x ∈ S determined with the largest
neigborhood. Instances in this neighborhood are removed from S, and
if these instances are also included in neighborhoods of other instances
they are removed from these neighborhoods. This is repeated until all
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neighborhoods are empty. The set M is initialized as the empty set, and
classifies all instances in U using M as pool of candidate nearest neighbors.
If an instance is classified incorrectly, it is added to M . Then M is updated
in the same way as S.

The last algorithms that we discuss are not based on the KNN rule. The following
three algorithms use graphs to model the decision system:
• Hit Miss Network Edition Iterative (HMNEI, [112])

HMNEI builds a hit and miss network, which is a graph where the nodes
are the instances in U and where the directed edges connect an instance
with its nearest neighbor from each class. For an instance x, the incoming
edges from instances of the same class are hits, while incoming edges
from instances of a different class are misses. HMNEI marks instances for
removal if they have more misses than hits, as these instances are on the
decision borders. In order to make sure that the dataset does not become
too imbalanced, instances are only removed if there are enough instances
of that class remaining. The procedure is repeated until no changes occur
in an iteration.

• Relative Neighborhood Graph Editing (RNG, [141])
The RNG algorithm calculates the neighborhood graph as follows. Each
instance is a node, and two instances x and y are connected by an edge if
for any other instance z, the distance between x and y is smaller than either
the distance between x and z or the distance between y and z. For each
instance the majority class among the neighbors in the graph is calculated.
Instances for which this majority class is different from their own class are
removed.

The following algorithm considers all features separately and removes points
that are internal for all features:
• Patterns by Ordered Projection (POP, [134]) The goal of POP is to

preserve the decision boundaries. POP determines for each instance x ∈ U
its weakness. For each attribute a ∈ A the weakness of x can be raised
by one. Only if the weakness of an instance equals the total number of
attributes |A|, it is not included in the instance subset that POP returns.
Determining if the weakness of an instance x ∈ U should be raised for an
attribute a ∈ A depends on the nature of a. First the numerical attributes
are processed: if the instance is an internal point for a numerical attribute
its weakness is raised by one. Next, the categorical attributes are handled.
The POP algorithm wants to return a representative set and therefore it
should return at least one example of every different categorical attribute.
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For each value of each categorical attribute, the weakness of all instances
except one is raised, namely an instance for which the weakness is minimal
among all instances that have this specific value for the considered attribute.
These are instances that are likely to be selected based on their numerical
attributes, and in this way it is ensured that for each attribute value there
will be an instance with that attribute value.

And finally, the next method is based on fuzzy rough set theory:
• Fuzzy Rough Instance Selection (FRIS, [80])

The FRIS algorithm removes instances for which the membership to the
fuzzy rough positive region is lower than a certain threshold.

2.4.1.2 Wrapper PS algorithms

An important class of PS techniques are GAs. The individuals are candidate
subsets of prototypes, represented by binary strings of length |U |. A gene is
1 if the instance corresponding to it is included in the candidate subset and 0
else. The fitness of individuals is based on two important components. The first
is the leave-one-out accuracy accS , this is the accuracy that is obtained when
classifying instances x ∈ U using the set S as pool of nearest neighbors if x /∈ S
and S \ {x} else. The second component is the reduction redS , which is the
percentage of removed instances. These two components are balanced using a
factor α ∈ [0, 1]:

fitness(S) = αaccS + (1− α)redS . (2.49)

We consider five genetic PS algorithms that share the same fitness func-
tion and representation. All algorithms halt when a certain number of fitness
evaluations has been carried out.
• Generational Genetic Algorithm (GGA, [97, 98])

The GGA algorithm follows the general scheme of evolutionary algorithms.
The population is initialized randomly. Parent selection happens stochasti-
cally, that is, individuals with a higher fitness have a higher chance of being
selected, but also individuals with a low fitness value can be selected as
parent. Once the parents are selected, parents are matched randomly and
offspring is generated using two-point crossover. Mutation only happens
with a small probability, and the probability of a 0 to 1 mutation is smaller
than the probability of a 1 to 0 mutation in order to force the algorithm
to obtain higher reduction rates. Survivor selection is done by selecting
the entire generated offspring and adding the fittest individual from the
previous population, this is also referred to as elitism.
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• Steady State Genetic Algorithm (SSGA, [21])
The SSGA algorithm differs from the GGA algorithm by its selection opera-
tors. In each generation, only two parents are chosen to generate offspring.
After the offspring is generated using crossover and mutation, the worst
individuals in the population are replaced by the two new individuals.

• Intelligent Genetic Algorithm for Edition (IGA, [75])
The IGA algorithm uses the same parent selection, survivor selection and
mutation operators as the GGA algorithm. The only point where IGA and
GGA differ is the crossover operator. IGA uses intelligent crossover, where
for each position in the genotype, it is decided if the gene from the first of
the gene from the second parent should be selected for the offspring. All
combinations are considered and the best one is selected.

• Steady State Memetic Algorithm (SSMA, [54])
The SSMA algorithm is similar to the SSGA algorithm, the difference is
that before replacing the two worst individuals an optimization step is
carried out. This optimization happens if the fitness of the offspring is
higher than the fitness of the individual in the current population with the
lowest fitness. Else, the optimization only happens with a low probability.
The optimization is achieved by changing one 1 in the genotype to a 0. The
position with the highest gain in accuracy is chosen.

• Adaptive Search for Instance Selection (CHC, [21])
The CHC algorithm selects all parents for recombination. The parents
are randomly paired, and only parents that differ enough can produce
offspring. This incest prevention takes place by measuring the hamming
distance between the parents. If this distance is smaller than a certain
threshold, no crossover takes place. If there are nearly no parent pairs left,
the threshold can be decreased. The old population and the offspring are
merged and the fittest individuals survive. No mutation takes place, but the
population is re-initialized if the population converges. This initialization
is done by considering the fittest individual found so far and changing a
fixed percentage of randomly selected genes from 1 to 0.

The following two optimization algorithms are closely related to genetic PS
algorithms.
• Random Mutation Hill-Climbing (RMHC, [146])

The RMHC algorithm starts off with a subset S containing a fixed per-
centage of instances of U (typically 90%). For a predefined number of
iterations, the RMHC algorithm removes a random element from S and
adds a random element from U \ S to it. If the leave-one-out-accuracy
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accS decreases, the previous solution is recovered, otherwise the algorithm
continues with the new solution.

• Encoding Length Explore (Explore, [20])
The explore algorithm defines a cost function based on the leave-one-
out-accuracy and the number of instances selected, but differs from the
fitness function in the way these components are aggregated. The Explore
algorithm initializes S with one element. Then for each element in x ∈ U ,
x is added to S if the cost of S decreases. After repeating this for all
instances, all instances in y ∈ S are processed one by one. If removing y
from S decreases the cost, the element is removed.

An extensive experimental evaluation [55] has shown that the wrapper ap-
proaches are amongst the most accurate PS methods. Especially GGA, CHC,
SSGA and RMHC have high accuracy rates and at the same time remove about 90
percent of the instances. The RNG filter method performs very well and is faster
than the wrapper techniques but removes less instances. The condensation meth-
ods are in general not able to maintain the performance of KNN classification,
but some of them remove up to 90 percent of the instances.

2.4.2 Training Set Selection

Not much research has been done on TSS for SVMs, only two methods have been
proposed specifically for SVMs in the literature so far.
• Multi-Class Instance Selection (MCIS, [27])

The first technique is MCIS, which can only be used in a one-versus-
all setting. When the number of classes is k, the one-versus-all scheme
considers k problems, where the i-th problem considers the i-the class as
positive and the remaining classes negative. For each of these problems, a
subset of instances S is selected, and the SVM is trained on S instead of
on the entire training set. The MCIS algorithm clusters only the positive
class and then removes instances of the positive class that are close to
the centers of the clusters and selects instances of the negative class that
are closest to the centers of the clusters. In this way, instances near the
boundary between the positive and negative class are selected.

• Sparsifying Neural Gas (SNG, [183])
Another technique developed to improve SVMs is the SNG algorithm,
which is restricted to two-class problems. The intention of SNG is to only
select instances that will likely become support vectors in the final SVM
classification. To this goal, a combination of learning vector quantization
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techniques and the growing neural gas algorithm [51] is used.





3. Ordered Weighted Average
Fuzzy Rough Sets

In many applications, the datasets at hand can contain attribute or class noise
[190]. Attribute noise can be erroneous attribute values, missing or incomplete
values, while class noise can come from contradictory examples, where two
instances have the same attribute values but a different class label, and misclas-
sifications where the instances are incorrectly annotated.
Unfortunately, the traditional fuzzy rough set model is not suited to handle this
noise, as the fuzzy rough lower and upper approximations are based on the strict
minimum and maximum operators. As a result, small changes in the dataset
can lead to drastic changes in the values of the fuzzy rough lower and upper
approximation.
Robust fuzzy rough set models extend the fuzzy rough set model and aim to
overcome this problem. A straightforward way to make the fuzzy rough set
model more robust is to elaborate on the strict minimum and maximum op-
erators that cause the robustness problem. The β precision fuzzy rough set
model [78, 139, 140] restricts the minimum and maximum operators to the
least extreme values using a cutoff parameter β. A similar approach is taken in
[115, 116], where variable precision fuzzy rough sets are introduced. Again, the
set over which the minimum or maximum is taken is restricted, and additionally
the fuzzy implication and t-norm are replaced by inclusion measures. The fuzzy
variable precision model [188] does not change the minimum and maximum
operators but cuts of the membership values of the instances to the concept
in order to omit extreme values. Vaguely quantified fuzzy rough sets [28] use
vague quantifiers to express that an element belongs to the lower (resp. upper)
approximation if most (resp. some) instances related to it belong to the concept.
Theoretical properties that the traditional fuzzy rough set model satisfy are not
always satisfied by the robust models. Moreover, some of the aforementioned
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robust models still exhibit some crispness using cut-off values, require parameter
tuning or do not embody the concept of fuzzy rough set theory.
This motivates us to introduce a new robust fuzzy rough set model, called Or-
dered Weighted Average (OWA) fuzzy rough sets [31]. We solely elaborate on
softening the minimum and maximum operators used in the traditional fuzzy
rough set model and as such, we preserve the fundamental ideas of traditional
fuzzy rough set theory.
We give the definition and discuss the properties of OWA fuzzy rough sets in
Section 3.1. To verify if our new fuzzy rough set model is more robust than the
traditional model, we design and execute an experimental evaluation to assess
the robustness in Section 3.2.

3.1 Definition and properties

We work in a universe U on which an indiscernibility relation R is defined. Recall
that the fuzzy rough lower and upper approximation of a fuzzy set A are defined
as follows:

∀x ∈ U : (R ↓ A)(x) = min
y∈U
I(R(x, y), A(y))

∀x ∈ U : (R ↑ A)(x) = max
y∈U
T (R(x, y), A(y)), (3.1)

with I an implicator and T a t-norm. As these definitions are based on the strict
minimum and maximum operators, small changes in the values of R or A can
alter the outcome of the lower and upper approximation drastically.
A straightforward way to improve the definitions of the fuzzy rough lower and
upper approximation is to replace the strict minimum and maximum operators
that are at the source of the problem. The so-called Ordered Weighted Average
(OWA, [176]) aggregator is very well suited to this goal. It is similar to the
weighted average aggregator, except that the weights are not associated with the
values but with the ordered positions of the values.
Assume that the values V = {v1, . . . , vp} need to be aggregated, and that a

weight vector W = 〈w1, . . . , wp〉 for which
p∑
i=1

wi = 1 and for all i ∈ {1, . . . , p},

wi ∈ [0, 1] holds is provided. If for all i in {1, . . . , p} ci is the i-th largest value in
V , then the OWAW aggregation of the values in V is given by:

OWAW (V ) =

p∑
i=1

(wici),
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that is, the values in V are ordered decreasingly, and the weights W are associ-
ated to the values of V in that order.
The OWA’s main strength is its flexibility, since it enables us to model a wide
range of aggregation strategies. For example, when W = 〈0, . . . , 0, 1〉 is used as
the weight vector, OWAW corresponds to the maximum, and when the weight
vector equals W = 〈1/p, . . . , 1/p〉, the average is retrieved.
The strict minimum and maximum operators in the fuzzy rough set model can
be replaced by OWA operators that behave like the minimum and maximum
operator. The weight vector Wmin used to model the minimum should associate
small weights to high values and large weights to small values. As such, the
OWAWmin

aggregator is a soft or gradual extension of the strict minimum. The
opposite holds for the aggregator OWAWmax

that models the maximum. The
vector Wmax should associate high values with high weights and low values with
low weights.
The weight vectors associated with the OWA operator can be analyzed by means
of the orness and andness degrees:

orness(〈w1, . . . , wp〉) =
1

(p− 1)

p∑
i=1

(p− i)wi (3.2)

andness(〈w1, . . . , wp〉) = 1− orness. (3.3)

An OWA operator for which the weight vector has a high orness degree re-
sembles the maximum operator, while OWA operators for which the weight
vectors have a high andness degree behave like the minimum operator. It holds
that orness(〈1, 0, . . . , 0〉) = 1 and andness(〈0, . . . , 0, 1〉) = 1. To ensure that
OWAWmax

behaves like the maximum operator, we can require that the orness
degree of Wmax is higher than 0.5, and similarly, we can require that the andness
degree of Wmin is higher than 0.5.
We give three examples of such weight vectors. The first weight vectors are
additive and are defined as follows:

W add
min = 〈 2

p(p+ 1)
,

4

p(p+ 1)
, . . . ,

2p

p(p+ 1)
〉 (3.4)

W add
max = 〈 2p

p(p+ 1)
,
2(p− 1)

p(p+ 1)
, . . . ,

2

p(p+ 1)
〉. (3.5)

Note that these weights are normalized versions of the weight vectors 〈1, 2, . . . , p〉
and 〈p, p− 1, . . . , 1〉 respectively.
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The second set of OWA weight vectors are inverse additive weights:

W inv
min = 〈 1

p
p∑
i=1

1
i

,
1

(p− 1)
p∑
i=1

1
i

, . . . ,
1

1
p∑
i=1

1
i

〉 (3.6)

W inv
max = 〈 1

1
p∑
i=1

1
i

,
1

2
p∑
i=1

1
i

, . . . ,
1

p
p∑
i=1

1
i

〉. (3.7)

The last set of OWA weight vectors are exponential:

W exp
min = 〈 1

2p
p∑
i=1

1
2i

,
1

2p−1
p∑
i=1

1
2i

, . . . ,
1

2
p∑
i=1

1
2i

〉 (3.8)

W exp
max = 〈 1

2
p∑
i=1

1
2i

,
1

22
p∑
i=1

1
2i

, . . . ,
1

2p
p∑
i=1

1
2i

〉. (3.9)

These weights change faster than the additive weights or inverse weights and
the corresponding OWA fuzzy rough model resembles more the traditional fuzzy
rough model.
In the following theorems we show that the orness degrees of the three weight
vectors that soften the maximum defined above are higher than 0.5.

Theorem 3.1.1. orness(W add
max) ≥ 0.5

Proof.

orness(W add
max) = 1

p−1

p∑
i=1

(p− i) 2(p−i+1)
p(p+1)

= 2
(p−1)p(p+1)

p∑
i=1

(p− i)(p− i+ 1)

= 2
(p−1)p(p+1)

p∑
i=1

((p2 + p)− i(2p+ 1) + i2)

= 2p(p2+p)
(p−1)p(p+1) −

2(2p+1)p(p+1)
(p−1)p(p+1)2 −

2p(p+1)(2p+1)
(p−1)p(p+1)6

= 2/3
≥ 0.5
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Theorem 3.1.2. orness(W exp
max) ≥ 0.5 for p ≥ 3.

Proof. We prove this theorem using induction. Note that the condition orness(W exp
max) ≥

0.5 is equivalent with:

p∑
i=1

(p− i) 1
2i
≥ (p− 1)0.5

p∑
i=1

1

2i
. (3.10)

First, we verify that this equation holds for p = 3:

(2
1

2
+ 1

1

4
+ 0

1

8
) =

5

4
≥ (

1

2
+

1

4
+

1

8
) =

7

8
.

Next, we assume that the theorem holds for p and prove that it holds for p+ 1.
The left-hand-side of Equation (3.10) can be rewritten as follows for p+ 1:

p+1∑
i=1

(p+ 1− i) 1
2i =

p∑
i=1

(p+ 1− i) 1
2i + (p+ 1− (p+ 1)) 1

2i

=
p∑
i=1

(p− i) 1
2i +

p∑
i=1

1
2i .

We can now use the assumption that Equation (3.10) holds for p:

p+1∑
i=1

(p+ 1− i) 1
2i ≥ 0.5(p− 1)

p∑
i=1

1
2i +

p∑
i=1

1
2i

= 0.5p
p∑
i=1

1
2i + 0.5

p∑
i=1

1
2i

≥ 0.5p
p∑
i=1

1
2i + 0.5p 1

2p+1

= 0.5p
p+1∑
i=1

1
2i .

Theorem 3.1.3. orness(W inv
max) ≥ 0.5 for p ≥ 3.

Proof. We prove this theorem using induction again. The condition orness(W inv
max) ≥

0.5 is equivalent with:

p∑
i=1

(p− i)1
i
≥ (p− 1)0.5

p∑
i=1

1

i
. (3.11)
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First, we verify that this equation holds for p = 3:

(2
1

1
+ 1

1

2
+ 0

1

3
) = 5 ≥ (

1

1
+

1

2
+

1

3
) =

11

6
.

Next, we assume that the theorem holds for p and prove that it holds for p+ 1.
The left-hand-side of Equation (3.11) can be rewritten as follows for p+ 1:

p+1∑
i=1

(p+ 1− i) 1i =
p∑
i=1

(p+ 1− i) 1i + (p+ 1− (p+ 1)) 1i

=
p∑
i=1

(p− i) 1i +
p∑
i=1

1
i .

We can now use the assumption that Equation (3.11) holds for p:

p+1∑
i=1

(p+ 1− i) 1i ≥ 0.5(p− 1)
p∑
i=1

1
i +

p∑
i=1

1
i

= 0.5p
p∑
i=1

1
i + 0.5

p∑
i=1

1
i

≥ 0.5p
p∑
i=1

1
i + 0.5p 1

p+1

= 0.5p
p+1∑
i=1

1
i .

As the weight vectors that model the minimum are the opposite of the weight
vectors that model the maximum, it immediately follows that the andness of
these minimum weight vectors is more than 0.5.
The OWA fuzzy rough model uses these weights to replace the minimum and
maximum operators:

∀x ∈ U : (R ↓OWA A)(x) = OWAWmin

y∈U
I(R(x, y), A(y))

∀x ∈ U : (R ↑OWA A)(x) = OWAWmax

y∈U
T (R(x, y), A(y)),

(3.12)

where Wmin is a vector of weights that models a soft minimum aggregator, and
Wmax a vector of weights that models a soft maximum aggregator.
In the next example, we illustrate how more values are taken into account when
calculating the OWA lower and upper approximation.
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Example 3.1. Consider a universe U consisting of 101 instances

U = {y1, . . . , y100, x}

and let A be a fuzzy set in U such that for all i = 1, . . . , 100 it holds that A(yi) =
i/100 and A(x) = 1. Let R be a symmetric indiscernibility relation such that for all
i = 1, . . . , 100 it holds that R(yi, x) = i/100 and R(x, x) = 1. Then we have the
following observations for the traditional fuzzy rough set model:
• (R ↓ A)(x) = 1, but if A(y100) = 0, (R ↓ A)(x) = 0

• (R ↓ A)(x) = 1, but if R(y1, x) = 1, (R ↓ A)(x) = 0.01
If we use additive weights, the following observations hold for the OWA fuzzy rough
set model:
• (R ↓OWA A)(x) = 1, but if A(y100) = 0, (R ↓ A)(x) = 0.9902

• (R ↓OWA A)(x) = 1, but if R(y1, x) = 1, (R ↓ A)(x) = 0.9999
This example illustrates that one change in the membership values of A or R can
result in major changes in the traditional fuzzy rough lower approximation, and
that the OWA fuzzy rough lower approximation is not sensitive to these small
changes.

An important advantage of OWA fuzzy rough sets is that the monotonicity
w.r.t. the fuzzy set A and the indiscernibility relation R is maintained. These
properties are not fulfilled for other robust fuzzy rough set models like the
variable precision fuzzy rough set model ([115, 116]) or the vaguely quantified
fuzzy rough set model ([28]).

Theorem 3.1.4. Let A1 ⊆ A2, A be fuzzy sets in U , and R1 ⊆ R2, R be indiscerni-
bililty relations in U . Then

R ↓OWA A1 ⊆ R ↓OWA A2

R ↑OWA A2 ⊆ R ↑OWA A2

R1 ↓OWA A ⊇ R2 ↓OWA A

R1 ↑OWA A ⊆ R2 ↑OWA A.

Proof. The proofs easily follow from the monotonicity properties of implica-
tors and t-norms, and the fact that if all arguments in the OWA aggregation
increase (resp. decrease), the value returned by OWA aggregation increases
(resp. decreases).
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The time complexity of the OWA fuzzy rough set model is larger than the
time complexity of the traditional fuzzy rough set model, due to the sort oper-
ation required for the OWA aggregation. If n is the number of instances and
m the number of attributes, the asymptotic time complexity of calculating the
traditional lower or upper approximation of one instance is O(nm), whereas the
asymptotic time complexity of the OWA fuzzy rough set model is O(mn log(n)).

3.2 Robustness

In the previous section we showed by means of a toy example that there are
less drastic changes in the values of the OWA fuzzy rough lower and upper
approximation when the relation R and the concept A are slightly altered than
in the traditional fuzzy rough model. In this section we want to study if this
holds in general.
We set up an experiment involving 40 KEEL [3] and UCI [6] classification datasets.

Table 3.1: Data used in the experimental evaluation
# inst. # feat. # class. # inst. # feat. # class.

appendicitis 106 7 2 housevotes 232 16 2
australian 690 14 2 iris 150 4 3
automobile 150 25 6 led7digit 500 7 10
balance 625 4 3 lymphography 148 18 4
bands 365 19 2 mammographic 830 5 2
breast 277 9 2 monk-2 432 6 2
bupa 345 6 2 movement libras 360 90 15
car 1728 6 4 newthyroid 215 5 3
cleveland 297 13 5 pima 768 8 2
contraceptive 1473 9 3 saheart 462 9 2
crx 653 15 2 sonar 208 60 2
dermatology 358 34 6 spectfheart 267 44 2
ecoli 336 7 8 tae 151 5 3
flare 1066 11 6 tic-tac-toe 958 9 2
german 1000 20 2 vehicle 846 18 4
glass 214 9 7 vowel 990 13 11
haberman 306 3 2 wine 178 13 3
hayes-roth 160 4 3 wisconsin 683 9 2
heart 2270 13 2 yeast 1484 8 10
hepatitis 80 19 2 zoo 101 16 7

The number of instances, number of features and number of classes of these
instances are listed in Table 3.1. As the positive region plays an important role in
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many data mining techniques, we measure how robust the fuzzy rough positive
region is against class and attribute noise. Assume that the data set is given by
the decision system (U,A ∪ {d}) where the attribute values are normalized such
that for each numerical conditional attribute a ∈ A and for each instance x ∈ U
it holds that a(x) ∈ [0, 1]. Recall that the fuzzy rough positive region is given by

∀x ∈ U : POS(x) = (R ↓ [x]d)(x) (3.13)

for classification problems. We use the Łukasiewicz implicator IL and define the
fuzzy tolerance relation R as follows:

∀x, y ∈ U : R(x, y) =

∑
a∈A

Ra(x, y)

|A|
, (3.14)

where Ra(x, y) = 1− |a(x)− a(y)| for continuous attributes, and Ra(x, y) is 1 if
x and y have the same values for a and 0 otherwise for a discrete attribute a.
We study the influence of attribute noise and class noise separately. For a certain
noise level n ∈ [0, 1], each attribute (resp. class) value in the new dataset has
a chance n to be altered to another value in the attribute (resp. class) range.
Denote by POS(x) the membership degree of x ∈ U to the fuzzy rough positive
region in the original dataset, by POSan(x) the membership degree of x ∈ U to
the fuzzy rough positive region in the dataset with attribute noise level n and by
POScn(x) the membership degree of x ∈ U to the fuzzy rough positive region in
the dataset with class noise level n . Consider the following error measures:

erroran =

∑
x∈U
|POS(x)− POSan(x)|

|U |
(3.15)

errorcn =

∑
x∈U
|POS(x)− POScn(x)|

|U |
. (3.16)

The larger these values, the more differences there are between the membership
degrees to the fuzzy rough positive regions of the instances in the original and
the new dataset and the less robust the model is.
For each dataset, we calculate the error measures described above. We compare
the traditional fuzzy rough model against the OWA fuzzy rough model where
either exponential or additive weights are used.
The average error values over the 40 datasets for noise levels 0.01 until 0.30 in
steps of size 0.01 are depicted in Figure 3.2.1 for attribute noise and in Figure
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Figure 3.2.1: Average values of erroran over 40 datasets

3.2.2 for class noise. For all noise levels, the OWA fuzzy rough model is more
robust than the traditional fuzzy rough model. There is a clear order on the
robustness of the OWA fuzzy rough set model: the faster the weights change and
hence the more the OWA fuzzy rough set resembles the traditional fuzzy rough
set model, the less robust. The most robust model uses the inverse additive
weights. This can be explained by the fact that if the weights associated to the
arguments of the OWA aggregation are less extreme, changing arguments has
less effect on the final value. Using weights that correspond to the average would
probably lead to an even more robust model, but in that case the orness and
andness constraints for the OWA weights would be violated.

3.3 Conclusion

The strict minimum and maximum operators in the traditional fuzzy rough set
model make it not suitable to handle noisy data. Existing approaches to improve
the robustness of fuzzy rough set theory against noise deviate from the original
idea of fuzzy rough set theory, violate theoretical properties of the traditional
fuzzy rough set model and and are not always able to handle noise appropriately.
By replacing the minimum and maximum operators by OWA aggregators, the
OWA fuzzy rough set model further fuzzifies the traditional fuzzy rough set
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Figure 3.2.2: Average values of errorcn over 40 datasets

model. The OWA fuzzy rough set model has good theoretical properties and an
experimental evaluation shows that it improves the robustness.





4. Fuzzy Rough Prototype
Selection

Fuzzy rough set theory has been proven to be very useful in several machine
learning fields like feature selection, classification, rule extraction and many
more. The use of fuzzy rough set theory in PS is almost unexplored. However,
fuzzy rough set theory intuitively seems to be an excellent tool for PS. It is
a model developed to deal with data that is inconsistent (i.e. indiscernible
instances have different classes) and vagueness (instances can be indiscernible
to some extent). By means of the fuzzy rough lower and upper approximation,
fuzzy rough set theory can model the quality or typicality of instances within
their respective classes, and hence it is an ideal tool to detect border points and
noisy instances.
Only one method, called Fuzzy Rough Instance Selection (FRIS, [80]) has so
far been presented in the literature. It calculates the membership values of
instances to the fuzzy rough positive region and removes those for which the
values are lower than a certain threshold. The authors noted that removing one
instance can greatly affect the membership values of other instances to the fuzzy
rough positive region, and therefore they introduced alternative versions of their
algorithms that iteratively re-calculate the membership values of instances to the
fuzzy rough positive region. These algorithms unfortunately come with a high
computational cost.
Although the idea of using fuzzy rough set theory for instance selection is
valuable, there are two weaknesses associated with FRIS. The first issue is the
selection of the threshold to decide if instances should be retained or not. The
second problem is the aforementioned problem that the membership values of
instances to the fuzzy rough positive region need to be recalculated each time an
instance is removed.
We introduce a new PS method based on fuzzy rough set theory, called Fuzzy
Rough Prototype Selection (FRPS), that alleviates these problems. First of all, the
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threshold is determined automatically based on the train data. Secondly, FRPS
uses a different quality measure. FRIS uses the traditional fuzzy rough positive
region to measure the quality of instances. We improve upon this by using OWA
fuzzy rough set theory, and additionally we define a quality measure based on
the fuzzy rough upper approximation. Note that, by using OWA fuzzy rough set
theory, removing one instance does not drastically change the membership values
of other instances to the fuzzy rough positive region or lower approximation.
In Section 4.1 we present the quality measures and in Section 4.2 we explain
how the prototypes are selected using these quality measures. The algorithm
presented in this chapter was proposed in [160], an earlier version of this
algorithm was presented in [159]. In Section 4.3 we discuss the relationship
between both approaches. We evaluate FRPS and compare it against the state-of-
the-art in Section 4.4.

4.1 Quality measures based on fuzzy rough set the-
ory

When observing a data set containing different classes, some of the instances
are more typical for their class than others. Consider the example in Figure
4.1.1(a) where a data set with two classes, diamonds and circles, is depicted. We
point out three types of instances that are less typical for their class or of lower
quality. In Figure 4.1.1(b), instances in overlapping regions are indicated in gray.
This situation can happen when the classes cannot be distinguished for a certain
region in the feature space. Instances in overlapping regions are not typical for
their class and as a result they are less useful for classifying new data. Another
type of instances that are less valuable for classification are mislabeled data, these
instances are indicated in gray in Figure 4.1.1(c). Mislabeling happens often in
real-world situations where data is for instance manually annotated. Using this
type of data for classification can be misleading. The last type of instances that
are less typical for the class they belong to are border instances, indicated in
gray in Figure 4.1.1(d). These instances are important for classification as they
separate the classes, but they are less typical for their class.
Fuzzy rough set theory is an excellent tool to model the quality and typicality

of instances. The positive region expresses for each instance to which extent
instances similar to it belong to the same class:

∀x ∈ U : POS(x) = (R ↓ [x]d)(x)
= min

y∈U
I(R(x, y), [x]d(y)), (4.1)
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(a) Data set with two classes (b) Data in overlapping regions

(c) Mislabeled data (d) Border instances

Figure 4.1.1: Data set with two classes, diamonds and circles. Instances that are
less typical for their class or of low quality are indicated in gray.
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where I is an implicator, U is the entire training set and [x]d denotes the class
of x. Knowing that [x]d(y) only takes values in {0, 1} and I(a, 1) = 1 for all
a ∈ [0, 1], the positive region can also be rewritten as:

∀x ∈ U : POS(x) = min
y∈U\[x]d

I(R(x, y), 0). (4.2)

This means that the membership value of x to the positive region is low if
the most similar instance from a different class than x is similar to x. Border
instances, mislabeled instances and instances in border regions will have a low
membership value to the positive region as there exist instances from other
classes that are similar to it. Note that the FRIS algorithm [80] is based on
this fuzzy rough positive region: instances x ∈ U for which POS(x) is below a
certain threshold are removed.
The positive region is only based on the lower approximation. In [162], it was
noted that it might also be interesting to use the upper approximation to assess
the quality of instances; more specifically, analogously to the positive region, the
fuzzy rough upper approximation of an instances’ own class can be calculated.
We denote this quality measure based on the fuzzy rough upper approximation
by Qu:

∀x ∈ U : Qu(x) = (R ↑ [x]d)(x) = max
y∈U\{x}

T (R(x, y), [x]d(y)), (4.3)

with T a t-norm. This value expresses the extent to which there exist instances
similar to y and in the same class of y. Note that the constraint y 6= x is
needed because otherwise the value of (R ↑ [x]d)(x) would always be equal to
1. The upper approximation is especially useful to detect mislabeled instances,
as there are no instances of the same class close to mislabeled instances. The
upper approximation of border instances and instances in overlapping regions
of classes will be higher because there do exist instances from the same class
in the surrounding regions. As Qu is not able to identify border instances nor
instances in overlapping regions, Qu should be used in combination with the
positive region. The Qpos,u value, defined as follows,

∀x ∈ U : Qpos,u(x) = POS(x) +Qu(x), (4.4)

balances the positive region and the Qu value. Border instances and instances
in overlapping regions will have a low membership value to POS but a nor-
mal membership value to Qu, while mislabeled instances will have both a low
membership value to POS and Qu. The added value of using Qpos,u is that a



4.2 The FRPS algorithm 65

further gradation between low-quality instances can be made, for instance, mis-
labeled instances will have a lower Qpos,u value than border instances. Another
advantage is that some inconsistencies can be alleviated: consider a mislabeled
instance m and its nearest neighbor x, which is of a different class than m. The
value of POS(m) is low, as desired, but at the same time, also the value POS(x)
will be low. Using QPOS,u(x) will raise the quality value of x and solve this
problem.
In the above approaches, the traditional fuzzy rough set model is used, and as a
result the values of the quality measures of the instances only depend on one
other instance (or two in the case of Qpos,u). To alleviate this weakness, the
OWA fuzzy rough set model can be used. In that case, the positive region is
calculated as:

∀x ∈ U : POS(x) = (R ↓OWA [x]d)(x)
= OWAW

y∈U\[x]d
I(R(x, y), [x]d(y)) , (4.5)

with W a min-like vector of weights. Note that instances y that are in the
same class as x are not taken into account as for these instances the value
I(R(x, y), [x]d(y)) is always equal to 1. The measure Qu can be replaced by

∀x ∈ U : QOWA
u (x) = (R ↑OWA [x]d)(x)

= OWAW
y∈[x]d,y 6=x

T (R(x, y), [x]d(y)) , (4.6)

where W is a max-like vector of weights. Now the instances y that do not have
the same class as x are not taken into account as T (R(x, y), [x]d(y)) is 0 for these
instances. Finally, the QOWA

pos,u measure is defined as:

∀x ∈ U : QOWA
pos,u (x) = POSOWA(x) +QOWA

u (x). (4.7)

4.2 The FRPS algorithm

In the previous section we introduced three quality measures for instances in
the training set U . In this section we assume that we have chosen one of those
quality measures and we denote it by Q. Instances x ∈ U for which Q(x) is high
are of good quality and should be retained in the prototype set, while instances
for which Q(x) is low are of lower quality and should be removed.
The question that automatically emerges is which threshold to use to decide if
an instance should be removed or retained. Below we outline the main ideas of
FRPS:
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1. Candidate thresholds The main idea of FRPS is that it considers a wide
range of candidate thresholds and selects the optimal one amongst them.
The most complete range of thresholds is the set T = {Q(x)|x ∈ U} that
contains the values of the quality measure Q for all instances. Multiple
instances can have the same value for Q, these duplicates are removed
from T .

2. Candidate prototype subsets For each threshold τ ∈ T the corresponding
prototype subset Sτ = {x ∈ U |Q(x) ≥ τ} is determined. It contains the
best instances, as instances with a quality value lower than τ are not
included in Sτ . Note that Sτ is never empty, and that Smin(T ) equals U .

3. Leave-one-out accuracy of the candidate subsets For each threshold
τ ∈ T , the entire training set U is classified with the 1NN classifier using
Sτ as prototype subset in a leave-one-out setting. That is, for each x ∈ U
its nearest neighbor is looked up in Sτ \ {x} if x ∈ Sτ and in Sτ else. For
each prototype subset Sτ , the corresponding training accuracy, which is
the percentage of correctly classified instances in U , is denoted by accτ .

4. Selecting the optimal prototype subset The subset Sτ for which accτ is
maximal is returned as final prototype subset. In case multiple subsets
Sτ1 , . . . , Sτt correspond to the maximal training accuracy, there are three
options. The first is to choose the subset Smax(τ1,...,τt) with the least
instances. The second option is to return Smin(τ1,...,τt) with the most
instances, and the last option is to return Smedian(τ1,...,τt).

Calculating the leave-one-out accuracy of the candidate subsets is computation-
ally the most expensive part of the FRPS algorithm. For each instance and each
candidate subset of prototypes, the nearest neighbor needs to be calculated.
The FRPS algorithm avoids this by keeping track of the nearest neighbors of
all instances and by considering the thresholds in T in an increasing manner
in step 3. The pseudocode of FRPS is given in Algorithm 4.1. Assume that the
thresholds in T are τ1 < τ2 < . . . < τt and recall that Sτ1 = U . In Line 5 to 8
we consider the lowest threshold τ1 and calculate the nearest neighbors of all
instances x in U where the pool of nearest neighbors is U = Sτ1 without x. From
line 11 to 23 we iterate over the remaining thresholds. For the second threshold
τ2 the new candidate subset is Sτ2 . Only instances in U whose nearest neighbor
in Sτ1 belongs to Sτ1 \Sτ2 have a different nearest neighbor in Sτ2 , which means
that only for those instances the nearest neighbor should be recalculated. This
strategy is repeated for the third threshold: the nearest neighbors only need
to be recalculated for instances in U whose nearest neighbor in Sτ2 belongs to
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Sτ2 \ Sτ3 . Proceeding like this ensures that during the FRPS process the number
of nearest neighbors that needs to be recalculated is limited, and as a result the
running time of FRPS is limited.
We illustrate the FRPS procedure with a toy example.

Algorithm 4.1 Outline of the FRPS algortihm
1: Input: Decision system (U,A ∪ {d})
2: T ← {Q(x)|x ∈ U}
3: Order thresholds: T = {τ1, τ2, . . . , τt} such that τ1 < τ2 < . . . < τt
4: acc← 0
5: for all x ∈ X do
6: NN(x) = nearest neighbor of x in U \ {x}
7: if d(NN(x)) = d(x) then
8: acc← acc+ 1
9: bestacc← acc

10: bestτ = {τ1}
11: for all i = 2, . . . , t do
12: S = {x ∈ U |Q(x) ≥ τi}
13: acc← 0
14: for all x ∈ X do
15: if Q(NN(x)) = τi−1 then
16: NN(x) = nearest neighbor of x in S \ {x}
17: if d(NN(x)) = d(x) then
18: acc← acc+ 1
19: if bestacc = acc then
20: bestτ = bestτ ∪ {τi}
21: else if bestacc < acc then
22: bestτ = {τi}
23: bestacc← acc
24: τ = median(bestτ ) or τ = max(bestτ ) or τ = min(bestτ )
25: Return S = {x ∈ U |Q(x) ≥ τ}

Example 4.1. Assume that there are five instances x1, . . . , x5 in the decision system
and assume that the distances between them are as in Table 4.1. The classes of the
instances and their quality are listed in the last two columns of Table 4.1. There
are three different thresholds to consider: τ1 = 0.3, τ2 = 0.5 and τ3 = 0.7. We
calculate the nearest neighbors of all instances: NN(x1) = x2, NN(x2) = x1,
NN(x3) = x1, NN(x4) = x1 and NN(x5) = x1. The current accuracy is 1, only
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Table 4.1: Toy example for FRPS with five instances

x d(x, x1) d(x, x2) d(x, x3) d(x, x4) d(x, x5) d(x) Q(x)
x1 0 0.1 0.2 0.3 0.4 A 0.3
x2 0.1 0 0.5 0.6 0.7 B 0.7
x3 0.2 0.5 0 0.8 0.9 B 0.5
x4 0.3 0.6 0.8 0 1 A 0.3
x5 0.4 0.7 0.9 1 0 B 0.7

x4 is classified correctly. The best accuracy is also 1, and the set of thresholds is
bestτ = {0.3}.
We now iterate over the remaining thresholds. The next threshold is 0.5, and the new
subset is S = {x2, x3, x5}. The nearest neighbors of all instances except x1 are not
in S so they need to be recalculated: NN(x2) = x3, NN(x3) = x2, NN(x4) = x2,
NN(x5) = x2. Again, only one instance is classified correctly, namely x2. The
current accuracy is 1, the best accuracy remains 1 and the threshold 0.5 is added to
the current set of best thresholds: bestτ = {0.3, 0.5}. The last threshold is 0.7 and
the corresponding subset is S = {x2, x5}. Only the nearest neighbor of x2 needs to
be recalculated: NN(x2) = x5. The accuracy is now 2, which is better than the
best accuracy reached so far, so bestacc = 2 and the set of best thresholds is now
bestτ = {0.7}. The final subset of prototypes that is returned is S = {x2, x5}.

4.3 Relation between FRPS and an earlier proposal

The difference between the FRPS algorithm presented in this chapter, as proposed
in [160], and the earlier version of FRPS presented in [159] (from now on
referred to as FRPS’) lies in the ordering of the instances. In Section 4.3.1 we
explain how FRPS’ orders the instances, and in Section 4.3.2 we explain how
FRPS’ is related to FRPS.

4.3.1 FRPS’

The FRPS’ algorithm uses a particular indiscernibility relation Rα that depends
on a parameter α ∈ [0,∞), called the granularity:

∀x, y ∈ U : Rα(x, y) = T
a∈A

(max(0, 1− αδa(x, y))), (4.8)
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where T is a t-norm and δa is the distance between x and y for attribute a ∈ A,
defined as

∀x, y ∈ U : δa(x, y) = |a(x)− a(y)| (4.9)

for a continuous attribute and as

∀x, y ∈ U : δa(x, y) =

{
0, if a(x) = a(y)

1, else
(4.10)

for a discrete attribute. Note that, as we work in a normalized decision system
where a(x) takes values in [0, 1] for all x in U for a continuous attribute, this
definition coincides with the one in Equation (4.29) if we use α = 1 and use a
general aggregator instead of a t-norm.
The parameter α expresses how large the differences between attribute values of
instances need to be in order to distinguish between them. When α is smaller, the
attribute values of the instances need to differ more in order to discern between
them. In the extreme case where α = 0, all instances are indiscernible with
respect to Rα. When α is larger, small differences between the attribute values
of two instances are sufficient to discern between them.
The FRPS’ algorithm introduces the granularity α(x) of an instance x ∈ U as
follows:

α(x) = sup{α ∈ [0,∞)|POSα(x) < 1}, (4.11)

that is, α(x) is the minimum value α for which x fully belongs to the positive
region POSα. When for x, y ∈ U it holds that α(x) > α(y), it means that there
are values α for which x does not fully belong to the positive region POSα and
y does, meaning that the quality of instance y is better than that of instance x.
Hence, α(x) can be used as a measure to assess the lack of predictive ability of
an instance x ∈ U .
The formula in Equation (4.11) is hard to use in an algorithm. Therefore, in
[159] the so-called minimum granularity theorem that derives a formula for α(x)
that is easy to use was proposed. First, we show that POSα is increasing in α:

Lemma 4.3.1. ∀x ∈ U : ∀α1, α2 ∈ [0,∞) : α1 ≤ α2 ⇒ POSα1
(x) ≤ POSα2

(x)

Proof. Assume y ∈ U, a ∈ A and α1 ≤ α2. Then we have

∀x ∈ U : max(0, 1− α1δa(x, y)) ≥ max(0, 1− α2δa(x, y)). (4.12)
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As t-norms are increasing in both arguments, this means:

∀x ∈ U : Rα1
(x, y) = T

a∈A
(max(0, 1− α1δa(x, y)))

≥ T
a∈A

(max(0, 1− α2δa(x, y)))

= Rα2
(x, y).

(4.13)

As implicators are decreasing in the first argument, this leads to:

POSα1
(y) = min

x∈U
I(Rα1

(x, y), [y]C(x))

≤ min
x∈U
I(Rα2(x, y), [y]d(x))

= POSα2
(y).

(4.14)

Based on this lemma, we can find an expression for α(x), depending on the
t-norm used.

Theorem 4.3.2. (Minimum granularity theorem) Let I be an implicator such that
∀t ∈ [0, 1], I(t, 0) = 1 − t holds (which is the case for e.g. the Łukasiewicz or
Kleene-Dienes implicator), and let x ∈ U . Then if T = TM or T = TP :

α(x) = max
y∈X\[x]d

1

max
a∈A

δa(x, y)
, (4.15)

and if T = TL:

α(x) = max
y∈X\[x]d

1∑
a∈A

δa(x, y)
. (4.16)

Proof. First we rewrite the positive region, based on the fact that I(t, 1) = 1 for
all t ∈ [0, 1], the assumption that I(t, 0) = 1− t for all t ∈ [0, 1] and the definition
of Rα. Assume x ∈ U , then:

POSα(x) = min
y∈U
I(Rα(x, y), [x]d(y))

= min
y∈U\[x]d

I(Rα(x, y), 0)

= min
y∈U\[x]d

1−Rα(x, y)

= 1− max
y∈U\[x]d

Rα(x, y)

= 1− max
y∈U\[x]d

T
a∈A

(max(0, 1− αδa(x, y))).

(4.17)
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Now assume that T = TM or T = TP . Then:

POSα(x) < 1
⇔ max

y∈U\[x]d
T
a∈A

(max(0, 1− αδa(x, y))) > 0

⇔ max
y∈U\[x]d

min
a∈A

(max(0, 1− αδa(x, y))) > 0

⇔ max
y∈U\[x]d

min
a∈A

(1− αδa(x, y)) > 0

⇔ max
y∈U\[x]d

(1−max
a∈A

(αδa(x, y))) > 0

⇔ (∃y ∈ U \ [x]d)(α < 1
max
a∈A

δa(x,y)
)

⇔ α < max
y∈U\[x]d

1
max
a∈A

δa(x,y)
.

(4.18)

From these equivalences it follows that

α(x) = max
y∈U\[x]d

1

max
a∈A

δa(x, y)
. (4.19)

On the other hand, when T = TL, it follows that:

POSα(x) < 1
⇔ max

y∈U\[x]d
T
a∈A

(max(0, 1− αδa(x, y))) > 0

⇔ max
y∈U\[x]d

T
a∈A

(1− αδa(x, y)) > 0

⇔ max
y∈U\[x]d

max(0, 1− αδa1(x, y) + . . .+ 1− αδam(x, y)−m+ 1) > 0

⇔ (∃y ∈ U \ [x]d)(αδa1(x, y) + . . .+ αδam(x, y) < 1)
⇔ (∃y ∈ U \ [x]d)(α < 1

α
∑

a∈A
δa(x,y)

),

(4.20)
from which it follows that

α(x) = max
y∈U\[x]d

1∑
a∈A

δa(x, y)
. (4.21)

These two expressions for α(x) are used in FRPS’ to order the instances, and the
rest of the algorithm is exactly the same as for FRPS.

4.3.2 Relation between FRPS and FRPS’

We show that the order imposed by the function α on the instances x ∈ U is
the reverse of the order that is imposed by POS on the instances x ∈ U , where
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POS is the traditional fuzzy rough positive region with α = 1, as used in the
FRPS approach. More specifically, when T = TM , the reverse order as defined
by Equation (4.19) is recovered, and when T = TL, the reverse order as defined
by Equation (4.21) is recovered.
First note that when α = 1, the expression in Equation (4.17) for the positive
region becomes:

POS(x) = 1− max
y∈U\[x]d

T
a∈A

(1− δa(x, y)). (4.22)

Assume that T = TM , then this can be rewritten as follows:

POS(x) = 1− max
y∈U\[x]d

min
a∈A

(1− δa(x, y))

= 1− max
y∈U\[x]d

(1−max
a∈A

δa(x, y))

= 1− (1− min
y∈U\[x]d

max
a∈A

δa(x, y))

= min
y∈U\[x]d

max
a∈A

δa(x, y).

(4.23)

Now assume that α(x) ≤ α(z), with α as defined in Equation (4.19). This means
that:

max
y∈U\[x]d

1

max
a∈A

δa(x, y)
≤ max
y∈U\[z]d

1

max
a∈A

δa(z, y)
, (4.24)

which is equivalent to

min
y∈U\[x]d

max
a∈A

δa(x, y) ≥ min
y∈U\[z]d

max
a∈A

δa(z, y), (4.25)

which corresponds to POS(x) ≥ POS(z).
When T = TL, the positive region can be rewritten as follows:

POS(x) = 1− max
y∈U\[x]d

TL
a∈A

(1− δa(x, y))

= 1− max
y∈U\[x]d

(
∑
a∈A

(1− δa(x, y))− |A|+ 1)

= 1 + min
y∈U\[x]d

(
∑
a∈A

(δa(x, y))− 1).

(4.26)

Now POS(x) ≤ POS(z) is equivalent to

min
y∈U\[x]d

∑
a∈A

δa(x, y) ≤ min
y∈U\[z]d

∑
a∈A

δa(z, y), (4.27)
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which is also equivalent to

max
y∈U\[x]d

1∑
a∈A

δa(x, y)
≥ max
y∈U\[z]d

1∑
a∈A

δa(z, y)
, (4.28)

which corresponds to α(x) ≥ α(z) with α as defined in Equation (4.21).
As shown above, the order imposed by the function α can also be expressed by
means of the fuzzy positive region with α = 1. This order is more intuitive and
hence we presented this form of the FRPS algorithm.
We also note that in [159] the maximum operators were replaced by OWA
operators that soften the maximum operators. This replacement is rather artificial
and has nothing to do with OWA fuzzy rough set theory. The FRPS method
introduces the OWA operators more meaningfully: instead of using the traditional
fuzzy rough positive region to order the instances, the OWA fuzzy rough positive
region is used, and the results obtained by FRPS are similar to the results in
[159].

4.4 Experimental Evaluation

In this section we experimentally evaluate the performance of FRPS. We first
discuss the experimental set-up, then compare the different parameter settings
of FRPS and finally compare FRPS with the best parameter setting to the stat-of-
the-art.

4.4.1 Experimental set-up

We first discuss the experimental set-up of the experimental evaluation. We list
the parameters that FRPS depends on and then discuss the general setting of the
experimental evaluation.

4.4.1.1 Parameters of the FRPS algorithm

The FRPS algorithm depends on four parameters, summarized in Table 4.2. The
first one relates to the indiscernibility measure R used to model the quality of
instances. We define the indiscernibility R(x, y) between two instances x, y ∈ U
as

R(x, y) = agg
a∈A

(Ra(x, y)) (4.29)
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Table 4.2: Parameters of the FRPS algorithm considered in the experimental
evaluation

Parameter Options
Similarity aggregation Average (Av.)

Lukasiewicz t-norm (Tluk)
Minimum (Min.)

Quality measure POS
Qu
Qpos,u

OWA weights strict (str.): Wmin,Wmax

additive (add.): W add
min,W

add
max

exponential (exp.): W exp
min,W

exp
max

inverse additive (inv.)= W inv
min,W

inv
max

FRPS threshold selection minimum
median
maximum

where A is the set of conditional attributes and the aggregator agg is either the
Łukasiewicz t-norm, the minimum t-norm or the average. The indiscernibility
relation Ra for a single continuous attribute is the same as in Equation (3.14)
and for a discrete attribute we use the crisp 0− 1 indiscernibility relation.
The second parameter is the type of quality measure that is used. There are three
options: POS, Qu and Qpos,u.
The third parameter determines the set of OWA weights used in the quality mea-
sures. We consider four types of OWA weights for the lower and upper approxi-
mation used for the quality measures. The first weights are Wmin = 〈0, . . . , 0, 1〉
and Wmax = 〈1, 0, . . . , 0〉 that model the minimum and maximum for the lower
and upper approximation respectively. This approach corresponds to the tradi-
tional fuzzy rough model. The other sets of weights are the additive weights,
exponential weights and inverse additive weights as defined in Chapter 3. Note
that when Qpos is used, only the first weight vector of the OWA set of weights is
used, and when Qu is used, only the second weight vector is needed.
The last parameter relates to the FRPS algorithm itself. When multiple optimal
thresholds are found during the FRPS algorithm, either the minimum, the me-
dian or the maximum among these thresholds can be selected.
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4.4.1.2 Set-up of the experimental evaluation

We apply FRPS and the state-of-the-art algorithms to the data sets listed in Table
3.1. We work with a 10 fold cross-validation setting. Each PS algorithm is applied
to the train data U and a subset S ⊆ U is returned. The test data T is classified
with the 1NN classifier using S as train data. We report the average accuracy, the
average value of Cohen’s kappa, the average percentage of removed instances
(reduction) and average running time of the PS algorithms over the 10 folds.
This running time does not include the running time of the 1NN algorithm that
follows the PS. The parameter settings for the state-of-the-art PS algorithms are
the same as suggested in [55].

4.4.2 Selecting the optimal parameter setting for FRPS

In the following we analyze the influence of the different parameters of FRPS. To
this goal we compare the different parameter settings with respect to the average
accuracy over the 40 data sets.
In Figure 4.4.1 we compare the three aggregation operators that were proposed
to model the indiscernibility of instances with respect to multiple attributes:
the Łukasiewicz t-norm, the minimum and the average. On the vertical axis
the accuracy of the FRPS algorithm is shown for different quality measures and
weight vectors. In the first graph the selected threshold is the median among
the optimal thresholds, in the second graph it is the minimum and in the last
graph the maximum. For each setting, using the average operator results in the
best accuracy. Therefore, from now on we only consider this option for the FRPS
algorithm.
The next parameter that we discuss is the weights used. In Figure 4.4.2 we
compare the weights for the different quality measures and for the different
threshold selectors. The weights corresponding to the traditional fuzzy rough set
model perform worst. When the OWA model is used, the accuracy is improved
most when inverse additive weights are chosen. Note that we showed in the
previous chapter that this weight vector is most robust against class and attribute
noise, which might be the reason for its good performance here. In the following
we only consider these inverse additive weights.
Another choice that needs to be made is which quality measure to consider. Recall
that the positive region can be used, the upper approximation or a combination
of both. In Figure 4.4.3 we compare these quality measures against each other.
The Qu measure clearly performs worse than the others. The quality measure
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based on the fuzzy rough upper approximation expresses for each instance to
what extent there exist instances indiscernible from it in the same class. If we
only use this measure to assess the quality of instances, we do not have sufficient
information: we have no information about instances from other classes, and
instances with high Qu values can lie very closely to instances of other classes.
The results for POS and QPOS,u are similar, which shows that using the fuzzy
rough positive region membership values results in the best performance, and
that using the fuzzy rough upper approximation has no added value. Apparently,
knowledge about how far instances from other classes are is much more valuable
than knowledge about how close instances from the same class are. We will use
POS in the remainder of the analysis.
From Figure 4.4.3 we also see that the way in which the final threshold is selected
among the optimal ones does not influence the accuracy much. As the best result
is obtained using the minimum in combination with the other parameters, we
will use the minimum in the following. This means that among the optimal
subsets, the largest one is returned.
Summarized, the optimal parameter setting for the FRPS algorithm is to use the
average operator to aggregate the indiscernibility degrees corresponding to the
different attributes, to use the OWA fuzzy rough positive region with inverse
additive weights and to select the minimum among the optimal thresholds. In
the next section we compare this version of FRPS with the state-of-the-art.

4.4.3 Comparison of FRPS with the state-of-the-art

In Table 4.3 we show the averages of the evaluation measures over the 40 data
sets, ordered according to performance. FRPS has the highest accuracy, and has
the best value for Cohen’s kappa. The closest competitors of FRPS with respect to
accuracy or Cohen’s kappa are the genetic approaches and RNG. When we look at
running time, FRPS is slower than the filter approaches, but is clearly faster than
the wrapper methods. That is, FRPS is more accurate than wrapper methods
but without the computational cost that wrapper methods usually require. FRPS
removes about one third of the instances. We did not expect a high reduction
rate as FRPS is designed as an editing method that only removes instances that
deteriorate the classification, FRPS does not aim to remove a large amount of
instances.
To test if FRPS significantly outperforms the state of the art in PS methods, we
first compare it pairwise with all state-of-the-art methods using the statistical
Wilcoxon test. In Table 4.4 we show the values of the statistics of this test: the
sum of ranks in favor of FRPS (R+), the sum of ranks in favor of the other PS
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Figure 4.4.3: Comparison of the quality measures used in the FRPS algorithm.

algorithm (R-) and the asymptotic p-value (ass. p-value). FRPS significantly out-
performs most of the state-of-the-art PS methods, except the genetic approaches
SSGA, CHC and GGA. However, the low p-values suggest that FRPS does improve
them. Note that all of these methods are slower than FRPS.
As we lose control of the family-wise error rate using the Wilcoxon test for
multiple pairwise comparisons, we also use the Friedman test and Holm post-hoc
procedure. We only compare the 7 best algorithms, as too many algorithms
may reduce the power of the Friedman comparison. These algorithms are FRPS
and additionally SSGA, SSMA, CHC, GGA, RNG and RMHC. When we compare
these algorithms with respect to accuracy, the value of the Friedman statistic
is 18.632143 and the p-value is 0.004832, which means that the Friedman test
detects significant differences. When comparing the algorithms with respect to
Cohen’s kappa, the Friedman statistic is 12.950893 and the p-value is 0.043822,
so again significant differences are detected. The Friedman rankings are listed
in Table 4.5. FRPS get the best ranking, both for accuracy and Cohen’s kappa.
In the same table, we list the adjusted p-values of Holm’s post-hoc procedure
comparing FRPS with the other algorithms with respect to accuracy and Cohen’s
kappa. FRPS significantly outperforms RMHC and SSMA with respect to accu-
racy. The other comparisons return low values, suggesting that FRPS improves
these algorithms. Holm’s post-hoc procedure that compares FRPS with the other
algorithms with respect to Cohen’s kappa only shows that FRPS significantly out-
performs RMHC, again the low p-values corresponding to the other comparisons
suggest that FPRS improves the other algorithms.
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In summary, we can state that FRPS significantly outperforms all filter PS meth-
ods with respect to accuracy. FRPS performs better or at least as well as the
wrapper PS methods. The average experimental running time of FRPS is lower
than the running time of the wrapper PS methods. In the next subsection, we
analyze the theoretical time complexity of FRPS and compare it against the time
complexity of the wrapper PS methods.

4.4.4 Theoretical time complexity of FRPS

Denote by n the number of instances and by m the number of features. In
order to calculate the quality measure at hand for each instance, O(n2log(n)m)
calculations are needed. Afterward, the nearest neighbors of all instances are
calculated, requiring O(n2m) calculations. Next, FRPS iterates through all can-
didate thresholds and recalculates the nearest neighbors corresponding to the
current threshold. In the worst case, the entire run through all thresholds re-
quires O(n3m) calculations, as a result the worst time complexity is O(n3m).
The average time complexity is lower: in each iteration, there is only 1/n chance
for needing to recalculate the nearest neighbor of an instance. Hence, the aver-
age time complexity of FRPS is O(n2log(n)m).
The time complexity of most wrapper PS algorithms is O(nevn2m) where nev
denotes the number of evaluations carried out. For each out of the nev eval-
uations, the training accuracy needs to be calculated, which requires O(n2m)
calculations. As a typical value for nev is 10 000, which is in the range of n, the
worst time complexity of FRPS is similar to the time complexity of wrapper PS
algorithms, but the average time complexity of FRPS is more favorable.

4.5 Conclusion

In this chapter we have introduced a new approach to PS based on fuzzy rough
set theory, called FRPS. As the fuzzy rough set model is designed to model
inconsistent and vague information in data, it seems to be an excellent tool to
detect border and noisy instances. We assess the quality of instances by means of
the fuzzy rough lower and upper approximation, and experimentally determined
that especially the fuzzy rough lower approximation is suited to model the
usefulness of instances for NN classification. FRPS automatically determines a
threshold to decide which instances to retain. Using the OWA fuzzy rough set
model introduced in the previous chapter further improves our technique.
We experimentally showed that FRPS significantly improves the state-of-the-art in
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Table 4.3: Comparison of FRPS with the state-of-the-art in PS
Accuracy κ Reduction Time (s)

FRPS 0.7771 FRPS 0.5696 CHC 0.9706 1NN 0
SSGA 0.7676 SSGA 0.5602 SSMA 0.9386 POP 0.0113
CHC 0.7660 CHC 0.5403 GGA 0.9363 CNN 0.0124
GGA 0.7614 GGA 0.5361 RNN 0.9151 IB3 0.0383
RNG 0.7586 SSMA 0.5333 CPruner 0.9150 MSS 0.0463
SSMA 0.7549 HMNEI 0.5332 MCNN 0.9034 FCNN 0.0506
RMHC 0.7542 RNG 0.5298 RMHC 0.9015 ModelCS 0.0515
ModelCS 0.7538 RMHC 0.5290 SSGA 0.8887 MENN 0.0706
AllKNN 0.7470 ModelCS 0.5271 DROP3 0.8183 MCNN 0.0738
HMNEI 0.7467 FRIS 0.5228 ICF 0.7155 AllKNN 0.0909
FRIS 0.7435 AllKNN 0.5079 IB3 0.6912 HMNEI 0.1280
MENN 0.7419 POP 0.4998 FCNN 0.6151 CPruner 0.1633
POP 0.7353 1NN 0.4997 CNN 0.5576 ICF 0.1724
1NN 0.7293 MENN 0.4858 HMNEI 0.5522 Reconsistent 0.4454
RNN 0.7272 MSS 0.4806 Reconsistent 0.5398 DROP3 0.5554
MSS 0.7270 RNN 0.4741 MENN 0.5222 FRIS 0.7495
FCNN 0.7095 IB3 0.4711 MSS 0.4226 FRPS 3.9383
IB3 0.7088 CNN 0.4702 FRPS 0.3789 RNG 7.0373
CNN 0.7016 FCNN 0.4699 AllKNN 0.3697 RNN 15.8304
DROP3 0.7015 DROP3 0.4523 RNG 0.2525 CHC 23.4272
Reconsistent 0.6922 MCNN 0.4476 ModelCS 0.1307 SSMA 26.9842
ICF 0.6870 Reconsistent 0.4415 FRIS 0.0865 RMHC 31.7803
MCNN 0.6830 ICF 0.4333 POP 0.0638 SSGA 56.1130
CPruner 0.6718 CPruner 0.3298 1NN 0 GGA 83.4444
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Table 4.4: Statistics of the Wilcoxon test comparing FRPS to the state-of-the-art
in PS with respect to accuracy and Cohen’s Kappa κ.

Accuracy κ
R+ R- p-value R+ R- p-value

AllKNN 693.0 127.0 0.000139 694.0 126.0 0.000131
CHC 454.0 326.0 0.368068 471.0 309.0 0.255399
CNN 788.0 32.0 0 724.0 96.0 0.000024
CPruner 798.0 22.0 0 820.0 0.0 0
DROP3 811.0 9.0 0 780.0 40.0 ≤ 0.000001
FCNN 772.0 48.0 ≤ 0.000001 755.0 65.0 0.000003
GGA 554.0 266.0 0.052105 566.0 254.0 0.035417
HMNEI 677.0 143.0 0.000324 588.0 232.0 0.016428
IB3 816.0 4.0 0 759.0 61.0 0.000003
ICF 810.0 10.0 0 785.0 35.0 0
MCNN 799.0 21.0 0 756.0 64.0 0.000003
MENN 583.0 197.0 0.006928 631.0 149.0 0.000751
ModelCS 702.0 118.0 0.000084 589.0 231.0 0.015834
MSS 762.0 58.0 0.000002 717.0 103.0 0.000036
POP 749.0 71.0 0.000005 638.0 182.0 0.002131
Reconsistent 820.0 0 0 798.0 22.0 0
RMHC 611.0 209.0 0.00676 589.0 231.0 0.015834
RNG 558.0 262.0 0.04593 599.0 221.0 0.010861
RNN 769.0 51.0 ≤ 0.000001 769.0 51.0 ≤ 0.000001
SSMA 596.0 184.0 0.003955 564.0 216.0 0.014886
FRIS 708.0 112.0 0.00006 612.0 208.0 0.006492
SSGA 546.0 274.0 0.066545 518.0 302.0 0.144736
1NN 770.0 50.0 ≤ 0.000001 670.0 150.0 0.000463
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Table 4.5: Friedman rankings of FRPS and the best state-of-the-art PS methods
with respect to accuracy and Cohen’s kappa κ, and adjusted p-values returned
by Holm’s post-hoc procedure.

Accuracy Kappa
Friedman Ranking Adj. p-value Friedman Ranking Adj. p-value

CHC 3.738 0.2804 3.950 0.1486
GGA 4.013 0.1228 4.125 0.1486
RMHC 4.925 0.0005 4.788 0.0024
RNG 3.688 0.2804 4.038 0.1486
SSMA 4.388 0.0240 4.100 0.1486
SSGA 4.225 0.0519 3.925 0.1486
FRPS 3.025 - 3.075 -

PS methods, with the additional asset that FRPS is faster than the most accurate
PS techniques. In the next two chapters we further elaborate on FRPS and use
it in combination with feature selection and verify if FRPS also benefits SVM
classification.





5. Combining Fuzzy Rough and
Evolutionary Prototype and

Feature Selection

As shown in the previous chapter, FRPS is a very accurate PS method that
improves the state-of-the-art. In this chapter we want to study if combining
Feature Selection (FS, [68, 92, 138, 104]) with FRPS can further enhance the
performance of 1NN classification. FS is a well-studied topic in data mining
that removes features from the data before using it for classification. Many
researchers have studied the use of fuzzy rough set theory for FS. Most of the
work focuses on removing as many features as possible preserving the predictive
ability of the decision system [30, 14, 85, 84]. In [120], the authors introduce
a method that simultaneously carries out PS and FS, based on the concept of
bireducts [147]. Again, the authors aim to find a prototype and feature subset
that preserves the predictive ability of the decision system.
As we are interested in raising the accuracy, even at the cost of removing less
features, we do not use fuzzy rough set theory for the FS component. Motivated
by the fact that a Steady-State Genetic Algorithm for FS (further referred to as
FS-SSGA) is able to improve the accuracy of 1NN [36], we will work with this
algorithm in this chapter. A straightforward way to combine FRPS and FS-SSGA
would be to apply these algorithms in sequence. However, the question raises
which order to use: first apply FS and then PS or the other way around. In order
to decide which features to remove, one should not rely on noisy instances, but
on the other hand, noisy instances should not be determined using misleading
features. Intuitively, one feels that the prototype and feature subsets should be
adapted to each other and therefore a simultaneous approach is in place.
This strategy has been applied successfully in [36], where the authors simultane-
ously apply SSGA for PS (denoted by PS-SSGA in the following) and QuickReduct
(QR, [30]), a FS algorithm based on fuzzy rough set theory. Their proposal, to
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which we refer as SIM-SSGA-QR, carries out the PS-SSGA algorithm and applies
QR at certain stages in the algorithm. As such, the feature and prototype subset
are accustomed to each other. We propose SIM-FRPS-SSGA, which carries out
FS-SSGA and applies FRPS at certain stages in the algorithm. Based on the
observation from the previous chapter that FRPS outperforms PS-SSGA and
the fact that FS-SSGA improves QR, we expect SIM-FRPS-SSGA to outperform
SIM-SSGA-QR.
We present the algorithm in Section 5.1, discuss the baselines against which we
compare SIM-FRPS-SSGA in Section 5.2 and we experimentally evaluate the
performance of SIM-FRPS-SSGA in Section 5.3.

5.1 Simultaneous FRPS and SSGA Feature Selec-
tion

A straightforward way to combine FS and PS would be to first apply FRPS
to the dataset, followed by FS, or the other way around. However, the FRPS
process highly depends on the features included in the dataset, and also the FS
process depends on the instances included in the data. This problem demands
for approaches that simultaneously carry out PS and FS.
The SIM-FRPS-SSGA algorithm [38] uses the FRPS algorithm for the PS part and
relies on an evolutionary search strategy for the FS process. The main idea is
that an evolutionary algorithm for FS is carried out, and that at certain points in
the algorithm the instances in the decision system are updated using FRPS.
We first recall the FS-SSGA algorithm, an evolutionary strategy for FS that is
at the basis of SIM-FRPS-SSGA. The outline of FS-SSGA is given in Algorithm
5.1. Feature subsets are represented by binary strings where a gene is 1 if the
feature is included and 0 else. The fitness of an individual i depends on two
components. The first component is the accuracy acci obtained when classifying
each instance x ∈ U with the 1NN rule using U \{x} as pool of candidate nearest
neighbors, where distances are only based on the feature subset represented by
the individual i. The second component is the percentage of removed features
redi, that is, the smaller the feature subset, the higher the fitness. The two
components are balanced using a parameter α:

fitnessi = αacci + (1− α)redi. (5.1)

The higher α, the less important the reduction.
In each generation, two parents are selected in the population using a binary
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tournament: the first parent is the fittest one among two randomly picked
different individuals, and the second parent is selected in the same way. Next,
two-point crossover is applied to these parents and two children are produced.
Mutation is applied to these two children, that is, for each gene in the child, the
bit is flipped with a certain low probability. Next, the fitness of the offspring
is calculated, and if the fitness of the two worst individuals in the current
population is lower than the fitness of this offspring, these worst individuals
are replaced by the offspring. This process is repeated until a certain maximum
number of evaluations is reached.

Our proposal, SIM-FRPS-SSGA is based on this FS-SSGA algorithm. Before

Algorithm 5.1 Outline of the FS-SSGA algorithm
1: Input: A decision system (U,A ∪ {d}), parameters nmaxev , α
2: Initialize the chromosomes in the population P : random binary strings of

length |A|.
3: Evaluate the individuals in P , nev ← |P |
4: while nev < nmaxev do
5: Select two parents p1 and p2 for offspring in P (binary tournament)
6: Apply two-point crossover to p1 and p2, offspring is c1 and c2
7: Apply bit-flip mutation to c1 and c2
8: Evaluate c1 and c2
9: nev ← nev + 2

10: Replace two worst individuals in P if fitness of c1 and c2 is better
11: Output: The feature subset corresponding to the fittest individual in P .

introducing our algorithm we fix an important notation: given a decision system
(U,B ∪ {d}) with B ⊆ A, we denote by FRPS(U,B ∪ {d}) the prototype subset
returned by FRPS when B is used as feature subset. That is, instead of using the
entire feature set A to calculate the quality measure in FRPS and to evaluate
candidate prototype subsets, only the features in B are used.
The outline of SIM-FRPS-SSGA is given in Algorithm 5.2. During the course
of the algorithm, the subset of features B and the subset of instances S are
simultaneously updated. The feature subset B is initialized as the entire feature
set in line 3, and S is initialized by applying the FRPS algorithm to the original
decision system with all features included in line 2.
Next, the first steps of the SSGA algorithm for FS are applied in line 13 to 18.
First, two parents are selected in the population using a binary tournament.
These parents produce two children using two-point crossover, and mutation
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is applied to this offspring. Next, the fitness of the offspring is calculated. The
reduction component is derived as usual, but the accuracy component is more
involved. In order to calculate the leave-one-out-accuracy, all instances in U are
classified using the current subset S of instances as pool of candidate nearest
neighbors, where distances are based on the feature subset that is represented by
the current fittest individual. The two least fit individuals in the population are
replaced by the offspring if their fitness is worse. The best individual is stored in
B in line 22.
After every 50 generations (note that in each generation two evaluations are
completed), a PS step is carried out in line 11 and 12. The FRPS algorithm is
applied using the feature subset B, that is, the quality measures are based on
the features B and also the training accuracy is obtained using the features in B
only. Only if the leave-one-out accuracy is improved with this FRPS step, the new
prototype subset is used. After a certain number of evaluations is reached, the
SIM-FRPS-SSGA algorithm turns into a stabilizing phase, where no PS is carried
out anymore, but where only the feature subset is optimized. This stabilization
phase ensures that the final feature subset is sufficiently optimized for the final
prototype subset.

5.1.1 Theoretical time complexity of SIM-FRPS-SSGA

We denote by n the number of instances and by m the number of features in the
decision system. Recall from the last chapter that the worst theoretical time com-
plexity of FRPS is O(n3m), and the average time complexity O(n2log(n)m). The
FS-SSGA algorithm requiresO(nevn2m) operations: for each evaluation, all near-
est neighbors need to be recalculated, which requires O(n2m) operations. This
means that the SIM-FRPS-SSGA algorithm requires at least O(nevn2m) opera-
tions. Additionally, the FRPS algorithm needs to be carried outO(nev/100) times.
This means that the worst time complexity of SIM-FRPS-SSGA is O(nevn3m)
and the average time complexity O(nevn2log(n)m). Note that in practice, the
algorithm will be faster as the application of FS-SSGA and FRPS is carried out
on a part of the data in each step. FRPS removes on average about 40 percent of
the instances, which means that FS-SSGA is mostly carried out on 60 percent
of the instances. On the other hand, we will see in the experimental evaluation
that FS-SSGA removes about 50 percent of the features, meaning that FRPS is
only carried out on half of the data.
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Algorithm 5.2 Outline of the SIM-FRPS-SSGA algorithm
1: Input: A decision system (U,A ∪ {d}), parameters nmaxev , β
2: S ← FRPS(U,A ∪ {d})
3: B ← A
4: Initialize the chromosomes in the population P : random binary strings of

length |A|.
5: Evaluate the individuals in P , nev ← |P |
6: stabilize← false
7: count← 0
8: while nev < nmaxev do
9: if count = 100 AND stabilize = false then

10: count← 0
11: if acc(U,B ∪ {d}) < acc(FRPS(U,B ∪ {d}), B ∪ {d}) then
12: S ← FRPS(U,B ∪ {d})
13: Select two parents p1 and p2 for offspring in P (binary tournament)
14: Apply two-point crossover to p1 and p2, offspring is c1 and c2
15: Apply bit-flip mutation to c1 and c2
16: Evaluate c1 and c2 using S as set of instances
17: nev ← nev + 2
18: count← count + 2
19: if nev > βnmaxev then
20: stabilize← true
21: Replace two worst individuals in P if fitness of c1 and c2 is better
22: B ← best individual in P
23: Output: Prototype subset S and feature subset B
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Table 5.1: Overview of the baselines against which we compare SIM-FRPS-SSGA

Algorithm Summary
FRPS [160] Fuzzy rough algorithm for PS
QR [30] Fuzzy rough algorithm for FS
FS-SSGA Evolutionary approach for FS
PS-SSGA Evolutionary approach for PS
SIM-SSGA [36] Evolutionary approach for simultaneous PS

and FS
SIM-SSGA-QR [36] Simultaneous PS and FS, where QR is used for

the FS part and SSGA for the PS part
FRPS→QR FRPS followed by QR
QR→FRPS QR followed by FRPS
FRPS→FS-SSGA FRPS followed by FS-SSGA
FS-SSGA→FRPS FS-SSGA followed by FRPS
QR→PS-SSGA QR followed by PS-SSGA
PS-SSGA→QR PS-SSGA followed by QR
FS-SSGA→PS-SSGA FS-SSGA followed by PS-SSGA
PS-SSGA→FS-SSGA PS-SSGA followed by FS-SSGA
1NN No preprocessing

5.2 Baselines

In this section we give an overview of the baselines against which we compare
the SIM-FRPS-SSGA algorithm. All baselines are listed in Table 5.1. The first
four algorithms are either separate FS or PS components. FRPS is the algorithm
presented in the previous chapter, QR is a fuzzy rough approach to FS that will
be explained in Section 5.2.1. Note that we denote the SSGA approach to PS
by PS-SSGA to make the distinction between PS-SSGA and FS-SSGA, whereas
we used the notation SSGA for PS-SSGA in the previous chapter. This PS-SSGA
algorithm is recalled in Section 5.2.2. The next two approaches carry out simulta-
neous FS and PS, these algorithms are explained in Section 5.2.3 and 5.2.4. The
last eight approaches are processes where FS and PS are carried out sequentially.
Note that, for a better understanding and overview of the algorithms, the nota-
tions for the algorithms used in this chapter deviate from the notations in their
respective papers.
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5.2.1 QuickReduct

The goal of QR [30] is to find a minimal subset of features B ⊆ A such that the
cardinality of the fuzzy rough positive region corresponding to B is equal to the
cardinality of the fuzzy rough positive region corresponding to the entire set
of features A. More specifically, QR finds a subset B ⊆ A such that |POSB | =
|POSA|. The outline of QR is given in Algorithm 5.3. In each iteration, the
feature that improves the cardinality of the fuzzy rough positive region most
is included in the current subset of features, and this process is repeated until
|POSB | = |POSA|. Note that this algorithm terminates, as the fuzzy rough
positive region is increasing in B, and as the entire subset B = A trivially fulfills
the termination criterion.

Algorithm 5.3 The QR algorithm
1: Input: A decision system (U,A ∪ {d})
2: Calculate |POSA|
3: B ← {}
4: currentPOS ← 0
5: while currentPOS < |POSA| do
6: T ← B
7: bestPOS ← 0
8: for b ∈ A \B do
9: if |POSB∪{b}| > bestPOS then

10: T ← B ∪ {b}
11: bestPOS ← |POSB∪{b}|
12: B ← T
13: Output: Feature subset B

5.2.2 PS-SSGA

The outline of PS-SSGA is given in Algorithm 5.4. The candidate prototype
subsets are represented by binary strings of length |U | where a gene is 1 if the
prototype is included and 0 else. The fitness of an individual i consists of an
accuracy component acci that is obtained when classifying each instance x in U
using the prototype subset S represented by i as pool of candidate neighbors with
a leave-one-out strategy. The second component of the fitness is the reduction
rate redi in terms of instances. These components are balanced using a parameter
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α:
fitnessi = αacci + (1− α)redi. (5.2)

After initialization, subsequent generations are produced until a certain maxi-
mum number of evaluations is carried out. In each step, two parents are selected
using a binary tournament. Two-point crossover is applied to these parents to
produce offspring. After applying mutation to the children, the worst individuals
in the population are replaced if their fitness is improved by the new offspring.

Algorithm 5.4 Outline of the PS-SSGA algorithm
1: Input: A decision system (U,A ∪ {d}), parameters nmaxev , α
2: Initialize the chromosomes in the population P : random binary strings of

length |U |.
3: Evaluate the individuals in P , nev ← |P |
4: while nev < nmaxev do
5: Select two parents p1 and p2 for offspring in P
6: Apply two-point crossover to p1 and p2, offspring is c1 and c2
7: Apply bit-flip mutation to c1 and c2
8: Evaluate c1 and c2 using S as set of instances
9: nev ← nev + 2

10: Replace two worst individuals in P if fitness of c1 and c2 is better
11: Output: The prototype subset corresponding to the fittest individual in P .

5.2.3 SIM-SSGA-QR

In [36], a method for simultaneous PS and FS based on the QR algorithm was
proposed. We refer to this method as SIM-SSGA-QR. This method is symmet-
rical to the SIM-FRPS-SSGA approach, that is, the PS process follows an SSGA
approach, while the FS part is achieved using fuzzy rough set theory.
The outline of SIM-SSGA-QR is given in Algorithm 5.5. We denote by QR(S,A ∪
{d}) the subset of features that is returned when applying QR using only the
instances in S ⊆ U . First, the QR algorithm is applied to the decision system
and returns a feature subset B. If the leave-one-out accuracy using B as feature
subset is higher than when the entire feature subset is used, the initial feature
subset is B, and else the entire feature set A is used. Next, the population is
initialized randomly; the prototype subsets are represented by binary strings of
length |U |.
After this initialization, PS-SSGA is carried out: two parents are chosen using
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a binary tournament, then two-point crossover is applied and produces two
children. Mutation is applied to this offspring, that is, each bit in the correspond-
ing gene is flipped with a certain (low) probability. Next, these children are
evaluated, where the accuracy component in the fitness function is obtained by
applying the 1NN rule with the current set of features B. If the fitness of the
worst two individuals in the population is worse than the fitness of the offspring,
these two individuals are replaced by the offspring. This process is repeated, and
after every 100 evaluations (i.e. 50 generations), the QR algorithm is carried
out. This QR algorithm uses the instances represented by the best individual in
the population. If the leave-one-out accuracy using the new feature subset is
higher than when the previous feature subset is used, the optimal feature subset
is replaced.
When a certain number of evaluations is reached, the FS process is stopped; the
algorithm arrives at a stabilizing phase where only the evolutionary PS part is
carried out.

5.2.4 SIM-SSGA

The SIM-SSGA algorithm uses a SSGA approach to simultaneously improve the
feature subset B and the prototype subset S. The features and instances are
encoded in one chromosome, that is, the individuals are represented by binary
strings of length |U |+ |A|, where the first part represents the prototype subset
and the second part the feature subset. The SSGA procedure follows the usual
SSGA procedure, except for the crossover part: instead of using a single two-
point crossover procedure, a double two-point crossover is needed, that is, the
chromosome is split in the prototype part and the feature part, and the two-point
crossover is applied to each part separately.

5.2.5 Theoretical time complexity of the baselines

Denote by n the number of instances and m the number of features in the
decision system. The time complexity of the FS-SSGA, PS-SSGA and SIM-SSGA
is O(nevn2m), as for each out of the nev evaluations the nearest neighbors of all
instances need to be calculated, requiring O(n2m) operations. The theoretical
time complexity of QR is O(m3n2): in each iteration all features are considered,
and for each feature the positive region of all instances needs to be calculated,
requiring O(n2m) operations. As there are maximally m iterations, the positive
region of all instances needs to be calculated O(m2) times. The time complexity
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Algorithm 5.5 Outline of the SIM-SSGA-QR algorithm
1: Input: A decision system (U,A ∪ {d}), parameters nmaxev , β
2: if acc(U,A ∪ {d}) < acc(U,QR(U,A ∪ {d}) ∪ {d}) then
3: B ← QR(U,A ∪ {d})
4: else
5: B ← A
6: Initialize the chromosomes in the population P : random binary strings of

length |U |.
7: Evaluate the individuals in P , nev ← |P |
8: S ← U
9: stabilize← false

10: count← 0
11: while nev < nmaxev do
12: if count = 100 AND stabilize = false then
13: count← 0
14: if acc(S,A ∪ {d}) < acc(S,QR(S,A ∪ {d}) ∪ {d}) then
15: B = QR(S,A ∪ {d})
16: Select two parents p1 and p2 for offspring in P (binary tournament)
17: Apply two-point crossover to p1 and p2, offspring is c1 and c2
18: Apply bit-flip mutation to c1 and c2
19: Evaluate c1 and c2 using B as set of features
20: nev ← nev + 2
21: count← count + 2
22: if nev > βnmaxev then
23: stabilize← true
24: Replace two worst individuals in P if fitness of c1 and c2 is better
25: S ← best individual in P
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of SIM-SSGA-QR is at least O(nevn2m), and additionally the QR algorithm needs
to be carried out nev/100 times. As a result, the theoretical time complexity of
SIM-SSGA-QR is O(nevn2m3).
We note that when the FS and PS algorithms are carried out simultaneously or
in sequence, the running time is lower as the algorithms are applied to only a
part of the data.

5.3 Experimental Evaluation

In this section we evaluate SIM-FRPS and compare it to the baselines. In Section
5.3.1 we explain the setup of the experimental evaluation, and in Section 5.3.2
we present the results.

5.3.1 Experimental setup

We first discuss the parameters of the algorithms. The QR algorithm depends on
an indiscernibility relation R, which we define as follows for a subset B ⊆ A:

∀x, y ∈ U : RB(x, y) = min
b∈B

Rb(x, y), (5.3)

where Rb is defined as in Equation (3.14) for separate features. The reason why
we use the minimum operator here instead of the average is that the termination
criterion in the QR algorithm is reached faster when using min, resulting in
smaller feature subsets.
The settings for the FRPS algorithm are the ones with which we obtained the
best results in the previous chapter.
All SSGA approaches are carried out with 10000 evaluations, population size
50 and mutation probability 0.005 per bit. The parameter α that balances the
reduction and accuracy in the fitness function is 0.5 for PS and 0.99 for FS. These
parameters were suggested in [21] and [36]. We could tune the parameters
for the SSGA part, but as this can hide the net contribution of our proposal, we
choose to fix these parameters. All SSGA algorithms are repeated five times and
the average results over these runs are reported. The classifier used is 1NN.
We work with a 10 fold cross validation scheme and report the accuracy, Cohen’s
kappa, the reduction in terms of instances, the reduction in terms of features
and the running time that only covers the execution time of the preprocessing
procedure, not the classification afterwards. We apply SIM-FRPS-SSGA and the
baselines to the 40 datasets listed in Table 3.1.
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5.3.2 Results

In Table 5.2 we show the average results over the 40 datasets of our proposal
SIM-FRPS-SSGA and the baselines, ordered according to accuracy.

FS→PS vs. PS→FS The first question we pose is whether PS should be carried
out before FS or the other way around if we use a sequential strategy. In all
cases, first applying FS and then PS results in the best performance, both with
respect to accuracy and Cohen’s kappa. A possible explanation for this could be
that the FS methods perform better when they have more information, i.e. more
instances, and that the PS methods perform better if only the relevant features
are selected. The bad results for PS-SSGA→QR and PS-SSGA→FS-SSGA can be
explained by the fact that PS-SSGA removes about 90 percent of the instances,
and that the FS part happens on a small part of the data.

Simultaneous vs. (sequential) FS and PS Another interesting conclusion is
that simultaneous application of FS and PS performs better than sequential
FS and PS. This confirms our hypothesis that the feature and prototype subset
should be matched carefully. We also note that the simultaneous application
of FS and PS outperforms the separate components. For instance, our proposal
SIM-FRPS-SSGA improves both FS-SSGA and FRPS. This shows that the FS and
PS components are able to enhance each other through simultaneous application.

Reduction The instance reduction rates of the simultaneous and sequential
approaches are more or less in line with the reduction rates of their separate
components. Methods incorporating PS-SSGA remove about 89 percent of the
instances on average, whereas methods based on FRPS remove about 38 percent
of the instances. This does not hold for the feature reduction rates. For instance,
SIM-FRPS-SSGA removes about 39 percent of the features whereas FS-SSGA
removes 52 percent of the features. Methods incorporating QR remove in general
few instances. When QR is applied after a PS method, it removes more features. A
possible explanation could be that when there are fewer instances, the condition
that the cardinality of the positive region w.r.t. the selected features is as large as
the positive region w.r.t. the original feature subset can be fulfilled more easily.
The running times required by the QR and FRPS components are clearly lower
than the components involving an SSGA component.
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Comparing SIM-FRPS-SSGA against the baselines Our proposal SIM-FRPS-
SSGA outperforms the baselines on average, both with respect to accuracy and
Cohen’s kappa. It improves SIM-SSGA-QR, which is a consistent result as the
components of SIM-FRPS-SSGA outperform the components of SIM-SSGA-QR.
The closest competitor of SIM-FRPS-SSGA is SIM-SSGA. Unfortunately, SIM-
FRPS-SSGA removes fewer instances and features and is slower than SIM-SSGA.
To test if the benefits of SIM-FRPS-SSGA compensate for this lower reduction
rate and computational time we test if it significantly outperforms the baselines
with respect to accuracy and Cohen’s kappa.
We first focus on accuracy. The value of the Friedman statistic is 158.17, and
the p-value is smaller than 0.000001, meaning that significant differences are
detected. The Friedman rankings are listed in the second column of Table
5.3, SIM-FRPS-SSGA gets the best ranking. The value of the Friedman statistic
comparing the algorithms with respect to Cohen’s kappa is 131.42, and the
p-value is smaller than 0.000001, so again significant differences are detected
among the methods. In the third column of Table 5.3 we show the Friedman
rankings with respect to Cohen’s kappa, again SIM-FRPS-SSGA gets the best
ranking.
In the last two columns of the same table, we list the adjusted p-values produced
by the Holm post-hoc procedure for accuracy and Cohen’s kappa. All methods
are significantly outperformed by SIM-FRPS-SSGA, except SIM-SSGA, QR→FRPS
and FRPS, but the low p-values suggest that SIM-FRPS-SSGA does improve these
methods.

5.4 Conclusion

The good performance of FRPS in the previous chapter motivated us to use it
in combination with FS. Our proposal, called SIM-FRPS-SSGA, carries out a
genetic FS algorithm, and performs FRPS at certain stages during the course of
the algorithm. As such, we hope that the resulting feature and prototype subsets
cohere better than when the FS and PS algorithms are carried out in sequence.
Our experimental evaluation shows that our approach indeed outperforms its
components, and that the simultaneous approach performs better than the
sequential approach. Moreover, we improve other simultaneous approaches that
solely use genetic approaches, or that use a fuzzy rough based strategy for the
feature selection component. Once again, this demonstrates the benefits of fuzzy
rough set theory in PS over genetic approaches.
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Table 5.2: Average results of SIM-FRPS-SSGA and the baselines over the 40
datasets.

acc κ redi redf Time (s)
SIM-FRPS-SSGA 0.7983 0.6050 0.3604 0.3898 67.3458
SIM-SSGA 0.7820 0.5800 0.9006 0.4959 23.6398
FS-SSGA 0.7790 0.5723 0 0.5248 69.3546
FRPS 0.7771 0.5696 0.3789 0 3.9378
SIM-SSGA-QR 0.7723 0.5615 0.8990 0.1973 32.1605
PS-SSGA 0.7698 0.5602 0.8887 0 56.1133
QR→FRPS 0.7639 0.5515 0.3725 0.0887 5.3630
FS-SSGA→PS-SSGA 0.7584 0.5389 0.8910 0.5223 85.3515
QR→PS-SSGA 0.7556 0.5439 0.8807 0.0887 48.4763
FS-SSGA→FRPS 0.7478 0.5153 0.3473 0.5246 73.5386
FRPS→QR 0.7378 0.5132 0.3789 0.1927 4.6109
QR 0.7300 0.5048 0 0.0887 4.6968
1NN 0.7293 0.4997 0 0 0
FRPS→FS-SSGA 0.7060 0.4592 0.5557 0.5557 38.6447
PS-SSGA→QR 0.6823 0.4340 0.8782 0.3202 45.1226
PS-SSGA→FS-SSGA 0.6478 0.3757 0.8778 0.5794 320.7321

Table 5.3: Statistics of the Friedman test and Holm post-hoc procedure comparing
the baselines with our proposal SIM-FRPS-SSGA

Ranking acc. Ranking κ Adj. p-value acc. Adj. p-value κ
SIM-FRPS-SSGA 4.10 4.33 - -
FRPS 5.69 6.39 0.13591 0.070327
QR→FRPS 6.23 6.74 0.091848 0.070327
SIM-SSGA 6.58 6.65 0.060239 0.070327
PS-SSGA 7.31 7.43 0.010191 0.017959
SIM-SSGA-QR 7.39 7.38 0.010073 0.017959
FS-SSGA 7.88 7.85 0.002347 0.005575
FS-SSGA→FRPS 8.13 8.39 0.001094 0.000949
FS-SSGA→PS-SSGA 8.40 8.70 0.000429 0.000396
FRPS→QR 8.53 8.58 0.000291 0.000589
QR→PS-SSGA 8.65 8.50 0.000192 0.000703
QR 10.25 9.31 ≤ 0.000001 0.000031
FRPS→FS-SSGA 10.84 11.09 ≤ 0.000001 ≤ 0.000001
1NN 11.13 9.81 ≤ 0.000001 0.000003
PS-SSGA→QR 11.15 11.20 ≤ 0.000001 ≤ 0.000001
PS-SSGA→FS-SSGA 13.78 13.68 ≤ 0.000001 ≤ 0.000001



6. Feature and Training Set
Selection for Support Vector

Machines

In the previous chapters we have studied how fuzzy rough and evolutionary PS
and FS can improve 1NN classification. We want to take this research one step
further and verify if these techniques can also improve other classifiers. We focus
on the SVM classifier as this is a widely used and very accurate state-of-the-art
classifier. Recall that we refer to instance selection for SVMs as Training Set
Selection (TSS).
The concept of using TSS and FS for SVM is notably different from PS and FS for
1NN classification. The 1NN classifier is model-free, which means that in order
to classify new instances the train data is used in its original form. Consequently,
if the train data is modified, the classification of new instances is independently
influenced. This is not true for SVM classification, where a classification model is
built on the train data before using it for classification. When changing the train
data, the classification model changes, which in turn can impact the classification
of new data. Remind that the SVM model defines classification borders between
the instances. When TSS is applied to the data, these borders can alter, but it does
not necessarily mean that the classification of new instances drastically changes.
In other words, the classification model acts as a buffer between the application
of TSS and the classification of new instances. As a result, we expect that the
effect of TSS on SVM will be smaller than the effect of PS on KNN. Another
difference is that by using smooth decision boundaries, SVMs are constructed
to cope with noisy data, while 1NN classification is highly susceptible to noise.
For these and other reasons, TSS and FS for SVMs is more challenging, and the
effect on SVM classification will be less clear than for 1NN classification.
In this chapter we try to improve SVM classification in three ways. We first
consider filter TSS techniques, these methods can be used as preprocessing
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techniques for SVM without any adjustments. However, we note that some
of these techniques are based on NN ideas and might be less suited for SVM
classification. We also consider two filter TSS techniques that were specifically
designed for SVM classification.
Secondly, we consider five wrapper PS techniques: three genetic approaches,
RMHC and FRPS. These methods have in common that they use the training
accuracy after 1NN classification to evaluate entire candidate subsets of instances.
We adjust these techniques for SVMs by basing the training accuracy on SVM
classification.
Finally, we study the effect of fuzzy rough and genetic approaches to FS on
SVM. We verify if QR and FS-SSGA can improve SVM classification, where the
fitness function in FS-SSGA is adjusted for SVMs. Additionally, we study if the
simultaneous approaches from the previous chapter also perform well for SVMs
after adapting the training accuracy function for SVMs.
In Section 6.1 we present the different techniques, and in Section 6.2 we evaluate
the approaches.

6.1 Fuzzy Rough and Evolutionary Feature and
Training Set Selection approaches

There are three groups of techniques covered in this chapter. We discuss the
methods below, an overview of all methods is given in Table 6.1.

6.1.1 Filter TSS and FS techniques

The first group are filter TSS and FS techniques. These include 17 filter TSS tech-
niques that were specifically developed to improve 1NN classification. Although
these techniques were designed for 1NN classification we do want to study if
these methods work well for SVMs. We also consider two filter TSS techniques,
SNG and MCIS, that were developed to improve SVM classification. All these
filter TSS techniques are described in Section 2.4 and can be used without any
adjustment for SVM classification. The last technique that we consider is the FS
QuickReduct algorithm, this filter technique is discussed in Section 5.2.1.
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6.1.2 Wrapper TSS techniques

We consider five wrapper TSS techniques: CHC, GGA, SSGA, RMHC as described
in Section 2.4 and the FRPS method proposed in Chapter 4. All these techniques
have in common that they use the training accuracy to assess the quality of
candidate subsets of instances. Consider a decision system (U,A ∪ {d}). When
the wrapper TSS techniques are used for 1NN classification, the training accuracy
corresponding to a subset of instances S ⊆ U is obtained by classifying each train
instance x ∈ U using the 1NN classifier where S is the pool of candidate nearest
neighbors if x /∈ S and S \ {x} else. We adjust the wrapper TSS techniques by
changing this process. In order to obtain the training accuracy corresponding
to S ⊆ U , we build the SVM model based on the decision system (S,A ∪ {d}),
classify each instance x ∈ U using this model and return the corresponding
training accuracy. Note that we do not follow a leave-one-out strategy as for
1NN classification. The reason is that this would require building |S|+ 1 SVM
models, which is computationally too expensive.

6.1.3 Wrapper FS techniques

We only consider one FS wrapper technique, namely FS-SSGA, described in
Section 5.1. This algorithm calculates the training accuracy corresponding
to candidate feature subsets B. As for TSS techniques, FS-SSGA can easily
be adjusted for SVM classification by changing the way in which the training
accuracy is calculated. Consider a decision system (U,A ∪ {d}). In order to
evaluate a candidate feature subset B ⊆ A, the SVM model is built on the
decision system (U,B ∪ {d}), each instance in U is classified using this model
and the training accuracy is returned.

6.1.4 Simultaneous TSS and FS

Recall that we have proposed a technique called SIM-FRPS-SSGA based on fuzzy
rough set theory and evolutionary algorithms for simultaneous FS and PS in
Section 5.1. This technique uses the FRPS algorithm for the PS part and FS-SSGA
for the FS part. Additionally, we discussed two other techniques for simultaneous
FS and PS in Section 5.2. SIM-SSGA carries out simultaneous FS and PS using
evolutionary algorithms, and SIM-SSGA-QR uses fuzzy rough set theory for the
FS part and SSGA for the PS part.
These three methods have in common that they use the training accuracy to
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assess the quality of a candidate subset of instances and features. Given a decision
system (U,A∪ {d}), a subset of instances S ⊆ U and a subset of features B ⊆ A
we want to assess the quality of S and B. We build the SVM model based on
these instances S and features B only, and classify each instance x in U using
this model. The accuracy obtained using this model is then returned as training
accuracy.

6.1.5 Theoretical time complexity of the proposals

We denote the number of instances by n and the number of features by m.
Assuming that training the SVM model requires O(n3m) operations, the CHC,
GGA, SSGA, RMHC, FS-SSGA and SIM-SSGA algorithms require O(nevn3m)
computations, as for each evaluation the SVM model needs to be built on the
train data. The FRPS algorithm requires O(n4m) computations. Note that the
average time is now equal to the worst time. The QR component in SIM-SSGA-
QR requires O(n2m3) operations and is carried out nev/100 times, which means
that the time complexity of SIM-SSGA-QR equals O(nev(n2m3 + n3m)). The
SIM-FRPS-SSGA algorithm trains the SVM model O(nev) times for the FS-SSGA
part and O(n) times for the FRPS part, resulting in a total time complexity of
O((nev + n)n3m).

6.2 Experimental Evaluation

We apply the algorithms to the datasets listed in Table 3.1. We follow a 10
fold cross validation scheme and report the average accuracy, Cohen’s kappa,
reduction in terms of instances and features, and running time of the prepro-
cessing component over the 10 folds. For the filter TSS techniques developed
for 1NN classification we use the parameter settings as proposed in [55]. The
parameters of the MCIS and SNG technique are automatically determined within
the algorithm and the settings for the genetic and fuzzy approaches are the same
as in the previous chapter.
We use the SMO approach to train the SVM, and use Platt’s scaling [126] as
described in Section 2.1.2.5 after building the SVM. We use the RBF kernel with
parameter δ = 0.01 and set the cost parameter C = 1. These parameters could
be tuned, but as we want to study the net effect of TSS, we fix the parameters in
our work. We use the pairwise coupling setting to handle multi-class problems,
except for the MCIS algorithm that can only be used in combination with the
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Table 6.1: Overview of the preprocessing methods for SVMs

Method Description
SNG Filter TSS [27]
MCIS Filter TSS [183]
CPruner Filter PS [187]
IB3 Filter PS [2]
AllKNN Filter PS [154]
MCNN Filter PS [39]
FCNN Filter PS [5]
CNN Filter PS [72]
HMNEI Filter PS [112]
FRIS Filter PS [80]
MSS Filter PS [8]
POP Filter PS [134]
MOCS Filter PS [18]
MENN Filter PS [74]
ICF Filter PS [17]
Reconsistent Filter PS [107]
RNG Filter PS [141]
RNN Filter PS [62]
DROP3 Filter PS [169]
QR Filter FS [30]
FRPS Wrapper TSS technique introduced in Chapter 4

and adjusted for SVMs
GGA Wrapper TSS technique [98, 97] adjusted for SVMs
CHC Wrapper TSS technique [21] adjusted for SVMs
SSGA Wrapper TSS technique [21] adjusted for SVMs
RMHC Wrapper TSS technique [146] adjusted for SVMs
FS-SSGA Wrapper FS technique [36]
SIM-SSGA Wrapper technique [36] for simultaneous FS and

TSS adjusted for SVMs
SIM-SSGA-QR Wrapper technique [36] for simultaneous FS and

TSS adjusted for SVMs
SIM-FRPS-SSGA Wrapper technique for simultaneous FS and TSS

introduced in Section 5.1 ajdusted for SVMs
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one-vs-all strategy.

6.2.1 Filter TSS techniques

In Table 6.3 we show the average results over all datasets. No filter TSS technique
can improve the classification performance of the SVM. In Figure 6.2.1 we show
the accuracy of the TSS methods in function of their instance reduction, and in
Figure 6.2.2 we show Cohen’s kappa in function of the instance reduction.
MSS is the only filter TSS technique that maintains the accuracy and Cohen’s
kappa of the SVM and removes a substantial (about 40 percent on average)
amount of instances. The idea of MSS is to maintain the decision borders and to
remove inner points, which could explain its good performance for SVMs: as the
decision boundaries do not change, the SVM model remains the same.
This result implies that MSS is more suitable for SVMs than the MCIS and SNG
techniques that were specifically designed for SVMs. Recall that the goal of MCIS
and SNG is to remove as many instances as possible to speed up the training of
the SVM. SNG removes fewer instances than MSS and is less accurate than MSS.
MCIS removes 20 percent more instances than MSS but the accuracy of the SVM
is 10 percent worse than without preprocessing. Both SNG and MCIS are faster
than MSS on average but the difference is small. Hence, MSS is a good and fast
technique to reduce the training data and maintain the accuracy of SVMs.
The other filter TSS techniques that preserve the SVM’s accuracy have low
reduction rates, for instance, MOCS has more or less the same accuracy and
Cohen’s kappa value as the SVM without preprocessing, but removes only 11
percent of the instances. This confirms our hypothesis that removing a limited
amount of instances does not change the classification by SVMs drastically: in
Figure 6.2.1 and 6.2.2 we see that when less than 30 percent of the instances is
removed, the classification by the SVM remains the same.

6.2.2 Wrapper TSS techniques

As can be seen from Table 6.3 and in Figure 6.2.1 and 6.2.2, the only techniques
that can substantially improve both the SVM classification accuracy and Cohen’s
kappa are the evolutionary TSS approaches GGA and CHC. These techniques
are in the upper right corner of Figure 6.2.1 and 6.2.2, they remove about 90
percent of the instances and have high accuracy and Cohen’s kappa values. CHC
performs better than GGA with respect to Cohen’s kappa but the opposite holds
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for the accuracy rate. The SSGA technique improves the accuracy rate of the SVM
but has about the same value for Cohen’s kappa. The SSGA algorithm removes
less instances than the other wrapper TSS algorithms, which can be a reason for
its lower performance. The RMHC procedure performs poorly for SVMs. This
can be explained by the fact that adding or removing one instance does not have
an important impact on the SVM model. Hence, the instance subset returned
by RMHC is likely to be very similar to the instance subset that was randomly
generated at the beginning of the execution of the RMHC algorithm: removing
and adding one instance does not change the SVM model much and hence it
is unlikely that the accuracy will change. There is no clear reason why GGA
performs better than CHC. Recall that CHC extends GGA using incest prevention
and re-initialization. Perhaps, the CHC is more limited in optimizing the best
solution than GGA.
The FRPS technique is not able to improve SVM classification. A possible expla-
nation could be that FRPS removes border instances, which are important for
defining the decision borders modeled by the SVM classifier. Moreover, FRPS
only removes about 25 percent of the instances on average, and we remarked
earlier on that removing a small amount of instances does not influence the
accuracy of the SVM to a large extent.
We use the Friedman test and the Holm post-hoc procedure to contrast the
wrapper TSS techniques among each other. The value of the Friedman statistic
is 85.125 for accuracy and 47.36 for Cohen’s kappa. In both cases the p-value
is smaller than 0.000001, meaning that significant differences are detected. In
Table 6.2 we show the Friedman rankings with respect to accuracy and Cohen’s
kappa. In both cases, GGA gets the best ranking. GGA significantly outperforms
the other wrappers with respect to accuracy. It outperforms RMHC significantly
with respect to Cohen’s kappa and the low adjusted p-values for the other com-
parisons suggest that GGA does perform better than the other wrapper TSS
algorithms. The fact that GGA outperforms CHC with respect to Cohen’s kappa
is remarkable given the fact that CHC performs better on average. This is due
to the fact that GGA has a higher value for Cohen’s kappa than CHC for most
datasets, but for a few datasets CHC is much better than GGA.
As the best results are obtained with GGA, we recommend to use GGA as a
preprocessing mechanism for improving SVMs.

6.2.3 Comparison of GGA with filter TSS techniques

The running time required by GGA is much higher than the running time of
the filter TSS techniques. In order to show that this additional running time
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Table 6.2: Values of the statistics of the Friedman test and Holm post-hoc
procedure contrasting the results of the TSS wrappers

Friedman rank (acc.) Friedman rank (κ) Adj. p-value (acc.) Adj. p-value (κ)
GGA 1.65 2 - -
SSGA 2 3 0.043878 0.269058
CHC 3.1 2.65 0.000082 0.269058
FRPS 3 3 0.000078 0.269058
RMHC 4.75 4 ≤ 0.000001 ≤ 0.000001

is justified, we test if GGA outperforms the wrapper TSS techniques and if
GGA significantly improves the SVM. The Friedman statistic that compares all
algorithms among each other is 276.05 for the accuracy and 229.56 for Cohen’s
kappa. In both cases the p-value is smaller than 0.000001, meaning that there are
significant differences between the methods in the comparison. The Friedman
rankings are listed in Table 6.4, GGA gets the best rankings both for accuracy and
Cohen’s kappa. The adjusted p-values calculated by Holm’s post-hoc procedure
can be found in the last two columns of Table 6.4. GGA significantly outperforms
all algorithms with respect to accuracy, but this does not hold for Cohen’s kappa:
there are many methods that are not significantly outperformed by GGA, like
MSS and the SVM without preprocessing.

6.2.4 Combining TSS and FS

The methods that use FS deteriorate the accuracy of the SVM as can be seen
in Table 6.3. As we saw in the previous chapter, QR does not improve the
performance of NN classification, and hence it comes at no surprise that the
SVM’s performance does not improve either after QR. The FS-SSGA method does
not improve the accuracy of the SVM. Note that FS-SSGA for SVMs removes about
60 percent of the features, while FS-SSGA for NN removes only 50 percent of the
features. This might be due to the fact that removing features cannot improve
the train accuracy much. As the fitness function also contains a factor related to
reduction, small feature subsets are preferred. QR performs slightly better than
FS-SSGA, but removes less than 10 percent of the features. If QR is combined
with SSGA, the accuracy is improved: the accuracy rate and Cohen’s kappa for
SIM-SSGA-QR are comparable to the values of the SVM, but unfortunately SIM-
SSGA-QR comes with a high computational cost and removes only 15 percent
of the features. As FS-SSGA performs worse than QR it is to be expected that
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Figure 6.2.1: Accuracy of the TSS methods in function of the instance reduction
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combining it with FRPS does not work well either, which is confirmed by the
results in Table 6.3. SIM-SSGA is one of the worst algorithms, possibly due to
the fact that it removes about 67 percent of the features.

6.3 Conclusion

In this chapter we verified if the success of the techniques proposed in the
previous chapters for NN translates to SVMs. We learned that only TSS techniques
that remove a significant amount of instances can influence the performance of
SVMs, due to the fact that the SVM model acts as a buffer between removing
instances and the final classification. Methods that retain the decision borders
perform well, reflected by the good performance of MSS. The FRPS approach
does not improve SVM classification, probably due to the fact that it removes
only a small part of the data and that it focuses on removing border instances.
The RMHC technique performs poorly as it only interchanges one instance in
each step, which does not affect the accuracy of the SVM to a great extent. The
genetic approaches, SSGA, GGA and CHC improve the SVM’s performance and
the best results are obtained with GGA. Combining TSS with FS does not improve
the results further, as the FS components deteriorate the SVM classification.
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Table 6.4: Statistics of the Friedman test and Holm post-hoc procedure comparing
GGA to the other algorithms.

Rank acc. Rank κ Adj. p-value acc. Adj. p-value κ
GGA 3 6.7 - -
MSS 7 7.075 0.008072 1.322632
SVM 7.25 7.4125 0.008072 1.322632
MOCS 8 7.825 0.002021 1.322632
FRIS 8 8.1125 0.002021 1.322632
POP 8 8.475 0.000967 1.1077
RNG 9 9.6 0.00006 0.2748
AllKNN 10 10.3 0.000004 0.118469
FCNN 11 10.025 0.000001 0.154178
CNN 11 10.5375 ≤ 0.000001 0.090422
Reconsistent 11.3 10.2625 ≤ 0.000001 0.118469
SNG 11.35 15.9875 ≤ 0.000001 ≤ 0.000001
MENN 12 12.2625 ≤ 0.000001 0.00166
HMNEI 12 10.4125 ≤ 0.000001 0.10564
IB3 12.8 11.6375 ≤ 0.000001 0.008073
QR 13 13.5625 ≤ 0.000001 0.000034
ICF 14 12.8125 ≤ 0.000001 0.000358
DROP3 15 14.2875 ≤ 0.000001 0.000003
RNN 16 15.5125 ≤ 0.000001 ≤ 0.000001
MCIS 16.5 16.7375 ≤ 0.000001 ≤ 0.000001
MCNN 17 15.1625 ≤ 0.000001 ≤ 0.000001
Cpruner 18 18.3 ≤ 0.000001 ≤ 0.000001



7. Speeding Up Evolutionary
Prototype Selection using

Ensembles

In Chapter 4 we introduced FRPS, a PS algorithm based on fuzzy rough set theory.
We experimentally demonstrated that it improves evolutionary approaches to
PS both with respect to classification performance as with respect to running
time. This result is rather surprising, as evolutionary techniques are complex
optimization techniques with a high potential to find good solutions. In this
chapter we further elaborate on evolutionary approaches to PS, aiming to fully
exploit their capacities.
A first observation is that in the classical PS and classification setting, only
the fittest solution produced by the evolutionary PS technique is used, while
many interesting suboptimal solutions are encountered during the course of the
algorithm. Secondly, in order to classify instances in a certain region, the optimal
solution might not be the best, and a suboptimal solution can result in better
performances.
These observations and the slow running time of evolutionary PS techniques
motivate us to design a strategy that uses multiple solutions generated by the
evolutionary algorithm. Additionally, in order to classify a new instance, not
all solutions are used but only solutions that perform well in the region of that
instance.
We refer to this technique as an ensemble strategy, as multiple prototype subsets
(which correspond to multiple classifiers) are used to classify new instances.
Ensemble strategies have been used successfully for many aspects of classification,
for instance with decision trees [151], feature selection [137] and bireducts
[147]. Even though an ensemble approach seems to be highly suited for PS, the
use of ensemble strategies for PS is yet unexplored.
The proposed framework can be applied for any evolutionary PS algorithm, but
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we decide to use GGA as it does not use any optimization or re-initialization,
and as we expect it to generate more diverse solutions than SSGA. We refer to
this technique as GGA improved by ensembles (GGA-ENS). We note that this
technique is not a PS technique but a classifier: the model of GGA-ENS consists
of prototype subsets, which are all candidate subsets to classify new instances.
The main goal of GGA-ENS is to achieve the same or better performance rates
than GGA, but at a higher speed.
In Section 7.1 we introduce the framework for GGA-ENS, and in Section 7.2 we
demonstrate that GGA-ENS obtains results at least as good as GGA after a much
smaller number of evaluations.

7.1 GGA improved by ensembles

During the application of GGA many good and diverse prototype subsets are
encountered, but only the fittest one is used for the classification of test instances.
The first idea of GGA-ENS is to use multiple good prototype subsets encountered
during GGA to classify test instances. Even though these prototype subsets are
globally not optimal, they might have good properties and can be useful for
classification. The second idea of GGA-ENS is that prototype subsets can be good
to classify test instances in a particular region of the feature space, but that they
are less suited to classify test instances in other regions. Using a single prototype
subset neglects this idea. When using multiple prototype subsets one can choose
which prototype subsets to use to classify a test instance, depending on which
prototype subsets perform well in the region of that test instance.
The GGA-ENS framework encapsulates both ideas. The main steps of GGA-ENS
are summarized below. Before the classification of test instances takes place, the
following steps are carried out:

1. Determine best Execute GGA and store the nbest prototype subsets with
the highest fitness values in best.

2. Determine div Select the ndiv most diverse prototype subsets among best
and store them in div,

where nbest and ndiv are two user-defined parameters. Once these two steps are
carried out, the classification of test instances can start. In order to classify the
test instance t, the following steps are performed:

3. Determine weights Assign a weight W (S) to each prototype subset S in
div that expresses to what extent S is suited for classification of instances
in the neighborhood of size nk of t.
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4. Weighted voting Classify t using all the prototype subsets in div and use a
weighted voting strategy to determine the final classification label of t,

where nk is a user-defined parameter.
Below, we discuss the separate steps in more detail.

Determine best The evolutionary algorithm GGA is carried out as usual, except
that all prototype subsets encountered are stored in an array T during the
execution. After each generation, the prototype subsets in the current population
are added to T , making sure that T does not contain duplicates. When GGA
completes, the nbest prototype subsets with the highest fitness value are stored
in best. The parameter nbest should be an integer between 1 and between the
number of prototype subsets encountered during the execution of GGA.

Determine div The prototype subsets in best can contain many similar proto-
type subsets. Therefore, it is important to select a diverse subset of prototype
subsets among best. As the prototype subsets are used for classification, we
want to ensure that the classification using the different prototype subsets is
diverse. In [96], an experimental study was carried out to compare measures of
diversity in classifier ensembles. This study showed that the Qav function, which
measures the similarity between two classifiers S1 and S2, achieves good results,
and therefore we will use 1−Qav(S1, S2) in this work to measure the diversity
between two classifiers S1 and S2. The similarity measure Qav is given by

n00n11 − n01n10
n00n11 + n01n10

, (7.1)

where n00 is the number of instances incorrectly classified by both classifiers, n11
the number of instances correctly classified by both classifiers, n01 the number
of instances incorrectly classified by S1 but correctly classified by S2 and n10
the number of instances correctly classified by S1 and incorrectly classified by
S2. Note that if S1 and S2 return exactly the same classification, the value of
Qav(S1, S2) equals one.
The procedure to measure the diversity between two prototype subsets is given
in Algorithm 7.1. In line 4 to 9, the train instances are classified using a leave-
one-out procedure with S1 as pool of candidate nearest neighbors, and in line
10 to 15 the test instances are classified using S2 as pool of candidate nearest
neighbors. After the classification takes place, the Qav measure is calculated in
line 16 to 30.
In order to obtain the most diverse prototype subsets among a set of prototype
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subsets, the procedure in Algorithm 7.2 is used. The set of most diverse prototype
subsets div is initialized with the subset for which the fitness function is highest
in line 2. This is the prototype subset that would be used in the traditional PS
setting. From line 5 to 21, other prototype subsets are added until div obtains
the desired size ndiv. The diversity between a prototype subset S and a set
of prototype subsets L is defined as the sum of the diversities between S and
the prototype subsets contained in L. In each iteration of the while loop, the
prototype subset S for which the diversity between S and div is maximal is added
to div. In line 10 and 11 the diversity between S and div is calculated, and if this
diversity is the highest diversity obtained so far the set S is stored in Sbest. In
line 18 this subset Sbest that adds most to the diversity is removed from the set
of prototype subsets and added to div.

Determine weights Once the set div consisting of good and diverse prototype
subsets is established, the classification of test instances can begin. When
classifying a test instance t, we want to use prototype subsets in div that are good
at classifying instances in the region of t. We assume that a prototype subset is
good in the region of t if it classifies its nearest neighbors correctly. The outline
of the process that assigns weights to the prototype subsets is listed in Algorithm
7.3. In line 2, the nk nearest neighbors of t are determined within X. These
neighbors are classified in line 4 to 13 using a leave-one-out procedure with S
as pool of candidate nearest neighbors, and each time one of the neighbors is
classified correctly, the weight of the prototype subset S is raised by one minus
the normalized distance dnorm between the nearest neighbor and the instance
t in line 10 and 11. Using this approach, prototype subsets that are suited as
training data to classify instances near t are associated with high weights.

Weighted voting The weights assigned to the prototype subsets are used in a
weighted voting procedure. The procedure is outlined in Algorithm 7.4. The
scores of all class labels are initialized 0 at the beginning of the weighted voting
process. Next, the test instance t is classified using each of the prototype subsets
as pool of nearest neighbors in line 5 to 7. The score of the predicted class is
augmented by the weight of the corresponding prototype subset. This implies
that the classifications based on prototype subsets that are well suited to classify
instances in the region of t are taken more into account. In line 9 to 16 the class
label with the highest score is determined, and this label is returned as the final
class label of t.
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The time complexity of GGA-ENS depends on the number of test instances
l, the number of train instances n, the number of features m and the parameters
nk, ndiv and nbest.
Executing the GGA algorithm requires O(nevn2m) calculations. In the tradi-
tional setting, the l test instances are classified using the KNN classifier, requiring
O(lnm) operations. In the GGA-ENS setting, first the ndiv most diverse prototype
subsets need to be selected. Calculating the diversity between two prototype
subsets requires O(n2m) operations, as all instances need to be classified using
the two prototype subsets as pool candidate nearest neighbors. Each time one of
the ndiv prototype subsets is selected, the diversity between the previously added
prototype subsets and the candidate prototype subsets needs to be calculated.
As a result, there are O(ndiv2nbestn2m) calculations needed for this procedure.
Next, in order to classify one out of the l test instances, the nk nearest neighbors
of the test instance need to be calculated, requiring O(lnknm) operations. These
nearest neighbors need to be classified using the ndiv most diverse prototype
subsets, resulting in O(lnkndivnm) calculations. Finally, the test instance needs
to be classified using the ndiv prototype subsets, which has time complexity
O(lndivnm). In total, there are O(lnkndivnm) calculations needed to classify all
test instances. Summarized, applying GGA and KNN requires O(nm(l + nevn))
operations, whereas GGA-ENS requires O(nm(nevn + nnbestndiv2 + lnkndiv)
calculations. At first sight, the time complexity of GGA-ENS seems to be much
larger than the time complexity of GGA, but when low values are choosen for nk,
ndiv, and nbest, the time complexities of both strategies are the same.

7.2 Experimental Evaluation

In this section we study the performance of GGA-ENS. We present the experimen-
tal set-up in Section 7.2.1, analyze the influence of the parameters in Section
7.2.2 and compare GGA-ENS against GGA in Section 7.2.3.

7.2.1 Experimental set-up

We apply GGA-ENS and GGA in combination with the 1NN classifier to the
datasets described in Table 3.1. We use a 10 fold cross validation scheme
and report the average accuracy, Cohen’s kappa and running time over each
fold. As opposed to other chapters, the running time of GGA now includes the
1NN classification process, as we compare it against GGA-ENS which is not a
preprocessing method but a classifier. The parameters of the GGA algorithm and
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Algorithm 7.1 Procedure to measure the diversity between two prototype subsets
1: Input: Decision system (X,A ∪ {d}), prototype subsets S1 and S2

2: n00 ← 0, n01 ← 0, n10 ← 0, n11 ← 0
3: for all x ∈ X do
4: if x ∈ S1 then
5: Determine the nearest neighbor y of x in S1 \ {x}
6: else
7: Determine the nearest neighbor y of x in S1

8: Class(x, S1)← d(y)
9: if x ∈ S2 then

10: Determine the nearest neighbor y of x in S2 \ {x}
11: else
12: Determine the nearest neighbor y of x in S2

13: Class(x, S2)← d(y)
14: if d(x) = Class(x, S1) then
15: if d(x) = Class(x, S2) then
16: n11 ← n11 + 1
17: else
18: n10 ← n01 + 1
19: else
20: if d(x) = Class(x, S2) then
21: n01 ← n01 + 1
22: else
23: n00 ← n00 + 1
24: Qav(S1, S2)← n00n11−n01n10

n00n11+n01n10

25: Output: 1−Qav(S1, S2)
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Algorithm 7.2 Procedure to select the most diverse prototype subsets among a
set of prototype subsets

1: Input: A set of prototype subsets stored in T , parameter ndiv
2: div← S, with S prototype subset in T with highest value E(S)
3: T ← T \ S
4: ndiv ← ndiv − 1
5: while ndiv > 0 do
6: diversitymax ← 0
7: Sbest ← null
8: for all S ∈ T do
9: divcurrent ← 0

10: for all P ∈ div do
11: diversitycurrent ← diversitycurrent + diversity(S, P )
12: if diversitycurrent > diversitymax then
13: diversitymax ← diversitycurrent
14: Sbest ← S
15: T ← T \ Sbest
16: div← div ∪ Sbest
17: ndiv ← ndiv − 1
18: Output: div

Algorithm 7.3 Procedure to assign weights to a prototype subset based on how
well it classifies instances in the region of a test instance

1: Input: Decision system (X,A∪ {d}), prototype subset S ⊆ X, test instance
t, parameter nk

2: N ← nk nearest neighbors of t in X
3: W (S)← 0
4: for all x ∈ N do
5: if x ∈ S then
6: Determine the nearest neighbor y of x in S \ x
7: else
8: Determine the nearest neighbor y of x in S
9: if d(y) = d(x) then

10: W (S)←W (S) + dnorm(x, y)
11: Output: W (S)
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Algorithm 7.4 Weighted voting strategy used to classify test instances
1: Input: Decision system (X,A∪{d}), class labels C, set of prototype subsets

div, weight W (S) associated to each prototype subset S in div, test instance t
2: for all c ∈ C do
3: score(c)← 0
4: for all Prototype subsets S in div do
5: Determine the nearest neighbor y of t in S
6: score(d(y))← score(d(y)) +W (S)
7: scorebest ← −1
8: cbest ← null
9: for all c ∈ C do

10: if score(d(y)) > scorebest then
11: scorebest ← score(d(y))
12: cbest ← c
13: Output: Class label cbest

the GGA part in GGA-ENS are fixed: the size of the population is 100, the α
parameter that balances the accuracy and reduction in the fitness function is 0.5,
the mutation probability is 0.01 and the crossover probability 0.5. We vary the
number of evaluations from 1000 to 10000 in steps of 1000.

7.2.2 Analysis of the influence of the parameters

Recall that there are three user-defined parameters in the GGA-ENS algorithm:
• nk: the number of nearest neighbors of the test instance that is used to

determine the weights of the prototype subsets. We use nk= 3, 5, 10.

• nbest: the number of fittest prototype subsets selected among all en-
countered prototype subsets during the course of GGA. We use nbest=
50, 100, 500, 1000.

• ndiv: the number of most diverse prototype subsets selected among the
nbest prototype subsets. We set ndiv equal to 5%, 10%, 50% and 100%
of the nbest parameter. For instance, if nbest is 1000, we consider ndiv=
50, 100, 500, 1000.

We first analyze the influence of the nk parameter on the performance of GGA-
ENS. In Figure 7.2.1 and Figure 7.2.2 we compare the performance of GGA-ENS
for nk equal to 3, 5 and 10 for all possible settings of nbest and ndiv. For all
settings nk= 3 leads to the best performance, both with respect to accuracy



7.2 Experimental Evaluation 119

5 10 50 100

0.764

0.766

0.768

ndiv (% of nbest)

A
cc

ur
ac

y

nk=3
nk=5
nk=10

(a) nbest=50

5 10 50 100
0.755

0.76

0.765

ndiv (% of nbest)

A
cc

ur
ac

y

nk=3
nk=5

nk=10

(b) nbest=100

5 10 50 100

0.754

0.756

0.758

0.76

0.762

0.764

ndiv (% of nbest)

A
cc

ur
ac

y

nk=3
nk=5
nk=10

(c) nbest=500

5 10 50 100

0.754

0.756

0.758

0.76

0.762

0.764

ndiv (% of nbest)

A
cc

ur
ac

y

nk=3
nk=5
nk=10

(d) nbest=1000

Figure 7.2.1: Influence of the nk parameter on the classification accuracy of
GGA-ENS

and Cohen’s kappa. This means that, in order to determine which prototype
subsets should be used to classify a test instance, one should evaluate the
prototype subsets in the close neighborhood of the test instance. This also
implies that our strategy, where different prototype subsets are used to classify
instances in different regions, is valuable. Indeed, we see that a more general
neighborhood and general decision on which prototype subsets to use results in
lower performance rates.

We fix nk to 3 and verify which combination of ndiv and nbest results in the
best performance. In Figure 7.2.3 we compare the different settings with respect
to accuracy and Cohen’s kappa. For both evaluation measures we observe a
downwards trend for higher values of nbest: GGA-ENS performs better when
nbest is lower, independent from the value of ndiv, except when ndiv is 5% of
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Figure 7.2.2: Influence of the nk parameter on Cohen’s kappa of GGA-ENS
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Figure 7.2.3: Influence of the nbest and ndiv parameter on the performance of
GGA-ENS

nbest. This exception may be due to the fact that if ndiv is 5% and nbest 50, only
two prototype subsets are used for classification. In general, we can conclude
that selecting only the best prototype subsets is the most valuable strategy. When
prototype subsets of lower quality are used to classify the test instance, the
performance rates are lower.
The influence of the parameter ndiv is less clear: the results highly depend on the
parameter nbest. A general trend is that for nbest larger than 100 it holds that
GGA-ENS is more accurate for lower values of ndiv. This implies that it is indeed
necessary to select the most diverse prototype subsets. However, this conclusion
does not hold for nbest equal to 50. This can again be explained by the fact that
in those cases, there is a very low number of prototype subsets selected.
There are three settings that perform equally well both with respect to accuracy
and Cohen’s kappa, namely nbest= 50 and ndiv 50% or 100% of nbest, and
nbest= 100 and ndiv 50% of nbest. As using nbest= 50 and ndiv 50% requires
the least computations, we suggest to use this parameter setting for GGA-ENS
and use it in the comparison of GGA-ENS with GGA in the next subsection.

7.2.3 Comparison of GGA-ENS against GGA

In Figure 7.2.4 we compare GGA with GGA-ENS for different numbers of evalua-
tions (nev). GGA-ENS outperforms GGA on average for all values of nev, both
with respect to accuracy and Cohen’s kappa. This improvement comes with only
a small increase in computational complexity. Moreover, GGA-ENS achieves high
accuracy rates and high values for Cohen’s kappa even when nev is low. For
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instance, the accuracy obtained by GGA-ENS after 1000 evaluations is slightly
higher than the accuracy rate obtained by GGA after 10000 evaluations, and this
high accuracy rate is obtained in about 10 seconds on average while GGA with
10000 evaluations requires about 70 seconds on average.
To test if GGA-ENS significantly outperforms GGA we carry out the Wilcoxon test.
In Table 7.1 we show the values of the statistics of the Wilcoxon test comparing
GGA-ENS with GGA for different values of nev with respect to accuracy and
in Table 7.2 with respect to Cohen’s kappa. It follows that GGA-ENS always
significantly outperforms GGA when they use the same number of evaluations
and additionally, GGA-ENS does never perform worse than GGA for less evalua-
tions: for each comparison the R+ values are higher than R−. Moreover, using
GGA-ENS with 7000 evaluations significantly outperforms GGA for all considered
values of nev and the low p-values suggest that GGA-ENS with 5000 evaluations
outperforms GGA for all considered values of nev.

7.3 Conclusion

In the traditional setting of PS techniques, the capacities of evolutionary algo-
rithms are not fully used. During the course of their execution, evolutionary
PS algorithms generate many solutions, of which only the fittest one is used to
classify new instances. Motivated by this observation, we designed a strategy in
which multiple prototype subsets encountered during the course of an evolution-
ary algorithm are used to classify new instances. In this ensemble strategy, we
only use the fittest prototype subsets and select the most diverse among them.
Additionally, in order to classify a test instance, we aim to only use prototype
subsets that are well suited for classification of instances in the neighborhood of
that test instance.
This strategy can be applied for any evolutionary PS algorithm, in this chapter
we focused on GGA. Our strategy, called GGA-ENS, outperforms the traditional
setting where PS is followed by NN classification. Moreover, we observed that
GGA-ENS needs less evaluations than GGA followed by NN in order to obtain sim-
ilar and even better performance rates. This demonstrates the use of ensemble
techniques for evolutionary PS.
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Figure 7.2.4: Comparison of GGA with GGA-ENS with respect to accuracy,
Cohen’s kappa and running time.



124 Speeding Up Evolutionary Prototype Selection using Ensembles
Table

7.1:
Values

of
the

statistics
of

the
W

ilcoxon
test

com
paring

the
G

G
A

-EN
S

m
ethod

against
G

G
A

w
ith

respect
to

accuracy
for

a
range

ofnum
ber

ofevaluations

G
G

A
-EN

S
G

G
A

-EN
S

G
G

A
-EN

S
G

G
A

-EN
S

G
G

A
-EN

S
G

G
A

-EN
S

G
G

A
-EN

S
G

G
A

-EN
S

G
G

A
-EN

S
G

G
A

-EN
S

nev=
1000

nev=
2000

nev=
3000

nev=
4000

nev=
5000

nev=
6000

nev=
7000

nev=
8000

nev=
9000

nev=
10000

G
G

A
R

+
634.0

677.0
715.0

717.0
686.0

681.0
730.5

739.0
694.5

739.0
nev=

1000
R

-
146.0

103.0
105.0

103.0
134.0

99.0
89.5

81.0
85.5

81.0
P-value

0.000645
0.00006

0.00004
0.000036

0.000202
0.000047

0.000045
0.000009

0.00002
0.000009

G
G

A
R

+
590.0

677.0
737.0

766.0
752.0

734.0
747.0

726.0
736.0

744.0
nev=

2000
R

-
230.0

143.0
83.0

54.0
68.0

86.0
73.0

54.0
44.0

76.0
P-value

0.01526
0.000316

0.000011
0.000002

0.000004
0.000013

0.000006
0.000003

0.000001
0.000007

G
G

A
R

+
482.0

490.0
594.0

594.0
580.0

623.0
655.5

658.0
646.0

652.0
nev=

3000
R

-
338.0

290.0
226.0

186.0
200.0

197.0
164.5

122.0
134.0

168.0
P-value

0.329811
0.160773

0.013141
0.00432

0.007851
0.004108

0.000926
0.000179

0.000344
0.001116

G
G

A
R

+
504.0

561.0
634.0

654.0
743.0

695.0
744.0

751.5
736.0

724.0
nev=

4000
R

-
276.0

259.0
186.0

126.0
77.0

85.0
76.0

68.5
84.0

96.0
P-value

0.110077
0.041715

0.002548
0.000223

0.000007
0.00002

0.000007
0.000011

0.000011
0.000024

G
G

A
R

+
511.0

533.0
577.0

586.0
647.0

698.5
757.0

731.0
675.0

678.0
nev=

5000
R

-
309.0

287.0
243.0

194.0
133.0

121.5
63.0

89.0
108.0

102.0
P-value

0.172476
0.096914

0.024359
0.006104

0.000326
0.000297

0.000003
0.000013

0.000232
0.000055

G
G

A
R

+
508.0

492.0
611.0

640.0
660.0

702.5
744.0

735.0
739.0

703.0
nev=

6000
R

-
312.0

328.0
209.0

140.0
120.0

117.5
36.0

45.0
81.0

117.0
P-value

0.185514
0.26747

0.00676
0.000473

0.00016
0.000237

0.000001
0.000001

0.000009
0.00008

G
G

A
R

+
485.0

504.0
590.0

625.0
628.5

661.5
712.0

771.5
736.0

695.0
nev=

7000
R

-
295.0

316.0
230.0

195.0
191.5

158.5
68.0

48.5
84.0

85.0
P-value

0.18263
0.204012

0.01526
0.003714

0.003192
0.000692

0.000007
0.000003

0.000011
0.00002

G
G

A
R

+
432.0

485.5
550.0

550.0
595.0

602.0
655.0

752.0
741.0

657.0
nev=

8000
R

-
348.0

334.5
270.0

230.0
185.0

178.0
125.0

68.0
79.0

123.0
P-value

0.553123
0.306186

0.058534
0.025105

0.004134
0.003023

0.000211
0.000004

0.000008
0.000189

G
G

A
R

+
422.0

397.0
532.5

581.5
553.5

608.5
642.0

707.5
692.0

668.0
nev=

9000
R

-
358.0

423.0
287.5

238.5
266.5

211.5
138.0

112.5
128.0

152.0
P-value

0.650162
1

0.225918
0.054224

0.129649
0.007377

0.000426
0.000178

0.000146
0.000512

G
G

A
R

+
425.0

399.0
479.0

512.0
514.0

551.0
634.5

616.0
599.0

617.0
nev=

10000
R

-
395.0

381.0
301.0

268.0
266.0

269.0
185.5

164.0
181.0

163.0
P-value

0.834963
0.894531

0.211675
0.087361

0.081783
0.057179

0.007142
0.001573

0.00346
0.0015



7.3 Conclusion 125
Ta

bl
e

7.
2:

Va
lu

es
of

th
e

st
at

is
ti

cs
of

th
e

W
ilc

ox
on

te
st

co
m

pa
ri

ng
th

e
G

G
A

-E
N

S
m

et
ho

d
ag

ai
ns

t
G

G
A

w
it

h
re

sp
ec

t
to

C
oh

en
’s

ka
pp

a
fo

r
a

ra
ng

e
of

nu
m

be
r

of
ev

al
ua

ti
on

s

G
G

A
-E

N
S

G
G

A
-E

N
S

G
G

A
-E

N
S

G
G

A
-E

N
S

G
G

A
-E

N
S

G
G

A
-E

N
S

G
G

A
-E

N
S

G
G

A
-E

N
S

G
G

A
-E

N
S

G
G

A
-E

N
S

ne
v=

10
00

ne
v=

20
00

ne
v=

30
00

ne
v=

40
00

ne
v=

50
00

ne
v=

60
00

ne
v=

70
00

ne
v=

80
00

ne
v=

90
00

ne
v=

10
00

0

G
G

A
R

+
62

1.
0

66
7.

0
69

2.
0

69
5.

0
67

2.
0

66
4.

0
70

4.
0

72
3.

0
69

2.
0

69
5.

0
ne

v=
10

00
R

-
15

9.
0

15
3.

0
12

8.
0

12
5.

0
14

8.
0

11
6.

0
11

6.
0

97
.0

12
8.

0
12

5.
0

P-
va

lu
e

0.
00

12
35

0.
00

05
38

0.
00

01
46

0.
00

01
24

0.
00

04
18

0.
00

01
28

0.
00

00
75

0.
00

00
25

0.
00

01
46

0.
00

01
24

G
G

A
R

+
57

4.
0

62
4.

0
72

1.
0

74
8.

0
71

8.
0

71
7.

0
73

3.
0

76
4.

0
70

6.
0

69
0.

0
ne

v=
20

00
R

-
24

6.
0

19
6.

0
99

.0
72

.0
10

2.
0

10
3.

0
87

.0
56

.0
74

.0
13

0.
0

P-
va

lu
e

0.
02

70
29

0.
00

39
37

0.
00

00
28

0.
00

00
05

0.
00

00
34

0.
00

00
36

0.
00

00
14

0.
00

00
02

0.
00

00
1

0.
00

01
63

G
G

A
R

+
44

6.
0

47
1.

0
58

5.
0

57
7.

0
56

7.
0

60
1.

0
63

8.
0

69
3.

0
61

7.
0

60
1.

0
ne

v=
30

00
R

-
37

4.
0

34
9.

0
23

5.
0

24
3.

0
25

3.
0

21
9.

0
18

2.
0

12
7.

0
16

3.
0

21
9.

0
P-

va
lu

e
0.

62
37

04
0.

40
84

41
0.

01
83

27
0.

02
43

59
0.

03
42

59
0.

01
00

53
0.

00
21

31
0.

00
01

39
0.

00
15

0.
01

00
53

G
G

A
R

+
49

0.
0

53
7.

0
60

0.
0

64
8.

0
67

0.
0

66
9.

0
69

4.
0

71
2.

0
70

0.
0

64
3.

0
ne

v=
40

00
R

-
29

0.
0

28
3.

0
22

0.
0

17
2.

0
15

0.
0

11
1.

0
12

6.
0

10
8.

0
12

0.
0

17
7.

0
P-

va
lu

e
0.

16
07

73
0.

08
65

72
0.

01
04

5
0.

00
13

47
0.

00
04

63
0.

00
00

96
0.

00
01

31
0.

00
00

48
0.

00
00

94
0.

00
16

98
G

G
A

R
+

48
9.

0
48

1.
0

55
7.

0
56

0.
0

57
3.

0
63

7.
0

69
5.

0
68

0.
0

63
6.

0
60

9.
0

ne
v=

50
00

R
-

33
1.

0
33

9.
0

26
3.

0
22

0.
0

20
7.

0
14

3.
0

12
5.

0
14

0.
0

14
4.

0
17

1.
0

P-
va

lu
e

0.
28

52
58

0.
33

65
26

0.
04

74
13

0.
01

73
44

0.
01

03
11

0.
00

05
53

0.
00

01
24

0.
00

02
77

0.
00

05
82

0.
00

21
9

G
G

A
R

+
48

9.
0

44
4.

0
58

6.
0

59
7.

0
62

8.
0

65
1.

0
74

5.
0

75
1.

0
68

0.
0

62
7.

0
ne

v=
60

00
R

-
33

1.
0

37
6.

0
23

4.
0

22
3.

0
19

2.
0

16
9.

0
75

.0
69

.0
14

0.
0

19
3.

0
P-

va
lu

e
0.

28
52

58
0.

64
28

45
0.

01
76

73
0.

01
17

27
0.

00
33

15
0.

00
11

7
0.

00
00

06
0.

00
00

04
0.

00
02

77
0.

00
34

61
G

G
A

R
+

52
5.

0
51

2.
0

60
6.

0
59

4.
0

60
9.

0
65

1.
0

73
0.

0
77

2.
0

73
8.

0
70

9.
0

ne
v=

70
00

R
-

29
5.

0
30

8.
0

21
4.

0
22

6.
0

21
1.

0
16

9.
0

90
.0

48
.0

82
.0

11
1.

0
P-

va
lu

e
0.

12
05

5
0.

16
82

86
0.

00
82

61
0.

01
31

41
0.

00
73

28
0.

00
11

7
0.

00
00

16
0.

00
00

01
0.

00
00

1
0.

00
00

57
G

G
A

R
+

43
1.

0
43

9.
0

53
4.

0
52

2.
0

56
1.

0
55

0.
0

65
5.

0
73

3.
0

70
7.

0
63

8.
0

ne
v=

80
00

R
-

34
9.

0
38

1.
0

28
6.

0
29

8.
0

25
9.

0
23

0.
0

16
5.

0
87

.0
11

3.
0

18
2.

0
P-

va
lu

e
0.

56
25

0.
69

17
23

0.
09

42
4

0.
13

04
97

0.
04

17
15

0.
02

51
05

0.
00

09
67

0.
00

00
14

0.
00

00
64

0.
00

21
31

G
G

A
R

+
44

7.
0

38
9.

0
50

4.
0

50
5.

0
52

2.
0

58
2.

0
62

6.
0

66
3.

0
66

9.
0

63
7.

0
ne

v=
90

00
R

-
37

3.
0

39
1.

0
27

6.
0

27
5.

0
25

8.
0

23
8.

0
15

4.
0

11
7.

0
15

1.
0

18
3.

0
P-

va
lu

e
0.

61
42

27
1

0.
11

00
77

0.
10

70
05

0.
06

44
52

0.
02

04
15

0.
00

09
66

0.
00

01
35

0.
00

04
87

0.
00

22
29

G
G

A
R

+
41

9.
0

44
6.

0
53

0.
0

50
0.

0
52

6.
0

53
3.

0
60

2.
0

63
9.

0
57

3.
0

58
6.

0
ne

v=
10

00
0

R
-

40
1.

0
37

4.
0

29
0.

0
32

0.
0

29
4.

0
28

7.
0

21
8.

0
18

1.
0

20
7.

0
23

4.
0

P-
va

lu
e

0.
89

83
92

0.
62

37
04

0.
10

53
02

0.
22

38
18

0.
11

73
69

0.
09

69
14

0.
00

96
69

0.
00

20
37

0.
01

04
45

0.
01

76
73





8. Fuzzy Rough Prototype
Selection for Imbalanced

Classification

Imbalanced classification, i.e. classification of data where at least one class is
underrepresented, is an important and often occurring problem in data mining.
There are many examples of real-world imbalanced problems like fraud detection
[48], oil spill detection [94], medical problems [114] and many more.
Blindly applying traditional data mining techniques to imbalanced problems can
cause problems, as the interest of most data mining techniques is to improve
the general classification accuracy of the data. As a result, it can happen that
no instance in the minority class is classified correctly. However, the minority
class is often the class of most interest. Consider for instance a medical diagnosis
problem. The main interest of researchers is to detect patients with the disease,
and falsely diagnosing patients with a disease is not as weighty as failing to
recognize that a patient has this disease.
This definitely holds for PS techniques. When applying traditional PS techniques
to imbalanced problems, it is very likely that many minority instances are re-
moved and that primarily majority instances are retained. The FRPS algorithm
works very well for classical classification problems, but when applying FRPS to
an imbalanced problem, we expect that many minority instances will be classified
incorrectly. Indeed, candidate prototype subsets with few minority instances will
be associated with high train accuracies, as these prototype subsets classify most
instances as majority. Consider for instance a problem with 10 minority instances
and 90 majority instances. Any prototype subset with only majority instances is
associated with a train accuracy of 90 percent, as all majority instances in the
train data are classified correctly.
The goal of this chapter is twofold. On the one hand, we want to improve FRPS
such that it can handle imbalanced data. We propose a fuzzy rough PS tech-
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nique for imbalanced data, called Fuzzy Rough Imbalanced Prototype Selection
(FRIPS). FRIPS proceeds like FRPS, except that candidate prototype subsets
are evaluated based on the Adjusted Area Under the Curve (AAUC, see Section
2.1.3.2) rather than on accuracy, and as a result both classes are taken equally
into account when evaluating candidate subsets.
Secondly, we want to study if FRPS can be used for imbalanced classification
in combination with the Synthetic Minority Oversampling TEchnique (SMOTE,
[23]). SMOTE is a very successful and widely used technique to preprocess im-
balanced data that introduces artificial minority instances to enlarge the minority
class. This research path is motivated by the good performance of state-of-the-art
preprocessing techniques were editing is applied after balancing the data using
SMOTE.
We first discuss the state-of-the-art in preprocessing techniques for imbalanced
data in Section 8.1. Then, we present FRIPS in Section 8.2 and we evaluate our
proposals in Section 8.3.

8.1 State-of-the-art in imbalanced classification:
SMOTE and its improvements

As multi-class problems can easily be decomposed into two-class problems using
e.g. pairwise coupling [52, 73, 123], we assume that we are given a two-class
dataset consisting of the minority or positive class and the majority or negative
class.
Many techniques handle imbalanced classification by preprocessing the imbal-
anced data rather than focusing on the classification directly. Examples of
such techniques are undersampling techniques [8, 57, 95, 101, 155, 179, 180]
that remove majority instances to balance the data, while oversampling tech-
niques [9, 11, 19, 23, 69] balance the data by adding artificial or duplicating
existing minority instances. Hybrid techniques [131, 148] first balance the
data and then apply some editing technique to the new balanced dataset. In
the following we only list the most accurate and widely used preprocessing
techniques for preprocessing imbalanced data. We also note that besides pre-
processing, there are many other techniques to handle imbalanced data, like
cost-sensitive learning [70, 113, 150, 152, 158, 164] and boosting algorithms
[24, 53, 58, 135, 143, 165].
• SMOTE

An important technique is the SMOTE oversampling technique. SMOTE
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has been widely used in research on imbalanced datasets, and is considered
as the de facto method in oversampling techniques. As SMOTE generates
new instances rather than duplicating existing ones, it is particularly useful
in combination with 1NN classification.
The outline of SMOTE is given in Algorithm 8.1. We present a specific
version of SMOTE that ensures that the data is balanced after applying
SMOTE, the more general SMOTE algorithm that we do not present here
allows the user to choose how many artificial instances are generated.
In line 3 the K nearest neighbors of all minority instances are calculated
and stored for further use. These nearest neighbors can be majority or
minority instances. The number of instances to be generated is G, this
number is initialized in line 5 such that after G positive instances are
generated, the dataset is balanced. In line 7 to 18 the instances are
generated. Creating one positive instance depends on one original minority
instance xi. The index i iterates over these instances such that each
minority instance is used an equal amount of times. In step 8 one among
the K nearest neighbors of xi is chosen randomly, we call this neighbor y.
In line 9 to 12 the new instance is generated, by constructing the attribute
values individually. The new value of attribute a lies between a(xi) and
a(y) and is determined by a random number r between 0 and 1. If r is
1, the attribute value of the new instance x equals a(y) and if r is 0, a(x)
equals a(xi). Each new instance is stored in S and this set is added to the
decision system.

Many preprocessing techniques are based on SMOTE. SMOTE-Edited Nearest
Neighbors (SMOTE-ENN, [11]), SMOTE-Tomek Links (SMOTE-TL, [11]) and
SMOTE-Fuzzy Rough Set Theory (SMOTE-FRST, [132]) are three techniques that
first apply SMOTE and subsequently carry out a cleaning phase where instances
are removed from the balanced data:
• SMOTE-ENN

First, SMOTE is applied to balance the data. Next, ENN is applied to the
new dataset, that is, instances x that are classified incorrectly using the
other instances as pool of candidate nearest neighbors are marked for
removal and all marked instances are removed at the end.

• SMOTE-TL
A Tomek-link is a pair of instances x and y that belong to different classes,
and for which there is no element z such that the distance between x and y
is larger than the distance between x and z or the distance between y and z,
in other words, x and y are closer to each other than to any other instance.



130 Fuzzy Rough Prototype Selection for Imbalanced Classification

Algorithm 8.1 The SMOTE algorithm
1: Input: Decision system (U,A ∪ {d}) with p positive instances P =
{x1, . . . , xp} ⊆ U and attributes A = {a1, . . . , am}, parameter K

2: for all i = 1, . . . , p do
3: nni ← K nearest neighbors of xi
4: i← 1
5: G← |U | − 2p
6: S ← {}
7: while G > 0 do
8: Select random nearest neighbor y in nni
9: for all i = 1, . . . ,m do

10: r ← random number between 0 and 1
11: vi ← ai(xi) + r(ai(y)− ai(xi))
12: Create new positive instance x with attribute values 〈v1, . . . , vm〉
13: S ← S ∪ {x}
14: if i < p then
15: i← i+ 1
16: else
17: i = 1
18: G← G− 1
19: Output: Decision system (U ∪ S,A ∪ {d})
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The SMOTE-TL algorithm first applies SMOTE to balance the data, and
then identifies all Tomek-links in the new data. For each Tomek-link the
negative instance is removed.

• SMOTE-FRST
SMOTE-FRST is a technique where SMOTE and cleaning are repeated until
a certain number of iterations is reached, or until the dataset is balanced.
Each time SMOTE is applied, the membership values of the instances to the
fuzzy rough positive region are calculated. Majority instances or artificial
minority instances generated by SMOTE for which this membership value
exceeds a certain threshold γ are retained in the instance set, others are
removed.

The SMOTE-Border Line technique (SMOTE-BL, [69]), SMOTE-Safe-Level tech-
nique (SMOTE-SL, [11]) and Majority Weighted Minority Oversampling TEch-
nique (MWMOTE, [9]) improve the way in which the artificial minority instances
are generated:
• SMOTE-BL

The goal of SMOTE-BL is to generate artificial minority instances near the
borders between the two classes. There are two versions of the algorithm.
SMOTE-BL1 defines a minority instance in danger as a minority instance
for which the majority of its nearest neighbors belongs to the negative
class, and for which at least one nearest neighbor belongs to the positive
class. These minority instances in danger are supposed to be on the border
between the positive and negative class, hence these instances are used to
generate instances. Moreover, new instances are only introduced between
these minority instances in danger and their nearest neighbors from the
positive class.
SMOTE-BL2 introduces new instances between the minority instances
in danger and all nearest neighbors, independent from their class. An
additional modification of SMOTE-BL2 is that the random factor r for
interpolation is 0.5, and as a result the introduced instances are closer to
the minority instances.

• SMOTE-SL
SMOTE-SL defines the safe-level sl of a positive instance as the ratio
of nearest neighbors of the positive class and the nearest neighbors of
the negative class. If the safe-level is larger than 1, i.e., there are more
neighbors of the positive class, the random number r is chosen between 0
and 1/sl, that is, the new instance is placed close to the original positive
instance. If the safe-level is smaller than 1, r is chosen between 1− sl and
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1, which means that the instance is placed closer to the neighbor. If sl is
one, r is chosen between 0 and 1 as usual. Apart from this modification,
SMOTE-SL proceeds like SMOTE.

• MWMOTE
The MWMOTE technique is based on clustering. First, the minority class is
clustered using K-means, where the number of clusters is determined such
that the minimum difference between two clusters does not exceed a certain
threshold τ . This threshold is the average distance between all instances
multiplied with a parameter Cp. Then, the filtered minority instance set is
calculated, it contains minority instances that have no minority instances
among their K1 nearest neighbors. The borderline majority set is the set
of majority instances that are included in the K2 nearest neighbors of
any instance in the filtered minority instance set. Finally, the informative
minority set Simin is defined, it contains the minority instances that are
included in the K3 nearest neighbor set of a borderline majority instance.
For each instance x ∈ Simin, a weight is calculated that expresses how
important x is. This weight is based on the distance between x and the
nearest majority instances, the underlying idea is that instances close to
the decision boundaries, minority instances in a sparse cluster and minority
instances near a dense majority cluster should get higher weights. These
weights are transformed into probabilities, and for each new instance
that needs to be generated, a minority instance x is picked among Simin
according to that probability. Next, it is determined in which cluster x lies,
and an artificial instance is generated on the line between x and a random
other instance in that cluster.

Finally, the Selective Preprocessing technique (SPIDER, [148]) does not make
use of any SMOTE component:

• SPIDER
SPIDER labels instances as safe if they are classified correctly using the
3NN classifier with the remaining instances as pool of candidate nearest
neighbors. Minority instances that are unsafe are duplicated m times,
where m is the number of instances among the 3 nearest neighbors that
are safe and belong to the majority class. Additionally, SPIDER removes
unsafe majority instances.
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8.2 Fuzzy Rough Imbalanced Prototype Selection

In this section we present our PS method for imbalanced data. The idea of FRIPS
is that instances are ordered according to a fuzzy rough quality measure, and
that a threshold τ , that says if an instance should be removed or retained, is
automatically determined.
FRIPS proceeds like FRPS, except that candidate subsets of prototypes are not
evaluated using the leave-one-out-training accuracy but by the leave-one-out
training AAUC. Recall that, given the confusion matrix C, the AAUC is calculated
as follows:

AAUC(C) =
1 + C11

C11+C12
− C21

C21+C22

2
. (8.1)

We use the AAUC measure as this is a discrete translation of the widely used
AUC measure for probabilistic classifiers. If we would want to use the FRIPS
procedure for probabilistic classifiers like for instance SVMS, the AAUC measure
can be replaced by the traditional AUC measure. In order to attain a high AAUC
value, one needs a balance between a high number of correctly classified minority
instance and not too many instances falsely classified as minority. Note that if
all instances are classified to one class (either the majority class or either the
minority class), the value for AAUC is 0.5. If all instances are classified correctly,
the value of AAUC is 1 and if no instance is classified correctly, the value of AAUC
is 0.
This AAUC function is used in the FRIPS algorithm, listed in Algorithm 8.2.
In line 2, the quality measure Q is applied to each instance x ∈ U and these
thresholds are ordered in line 3. We use the quality measure that was optimal for
the FRPS algoritm in Chapter 4. In line 4 to 9 the AAUC that corresponds to the
first threshold τ1 (i.e. that corresponds to the entire training set) is calculated.
This is done by constructing the confusion matrix and then using the formula
for AAUC in Equation (8.1). Next, all remaining thresholds are considered in
line 10 to 21. In line 11 the instances for which the quality is lower than the
current threshold are removed, and in line 12 to 16 the new confusion matrix is
calculated. Note that only the nearest neighbors of instances that were removed
in the last step are updated in this process. In line 17 to 21 the best AAUC
found so far is updated, and finally in line 22, the median among the optimal
thresholds is chosen and the subset that corresponds to this threshold is returned
in line 23.

The FRIPS algorithm can be applied directly to the imbalanced data but it
might also be interesting to use FRIPS in combination with an oversampling



134 Fuzzy Rough Prototype Selection for Imbalanced Classification

Algorithm 8.2 The FRIPS algorithm
1: Input: Decision system (U,A ∪ {d})
2: T ← {Q(x)|x ∈ U}
3: Order thresholds: T = {τ1, τ2, . . . , τt} such that τ1 < τ2 < . . . < τt

4: Initialize confusion matrix C =

(
0 0
0 0

)
5: for all x ∈ X do
6: NN(x) = nearest neighbor of x in U \ {x}
7: C(d(x), d(NN))← C(d(x), d(NN)) + 1
8: bestAAUC ← AAUC(C)
9: bestτ = {τ1}

10: for all i = 2, . . . , t do
11: S = {x ∈ U |Q(x) ≥ τi}

12: Initialize confusion matrix C =

(
0 0
0 0

)
13: for all x ∈ X do
14: if Q(NN(x)) = τi−1 then
15: NN(x) = nearest neighbor of x in S \ {x}
16: C(d(x), d(NN))← C(d(x), d(NN)) + 1
17: if bestAAUC = AAUC(C) then
18: bestτ = bestτ ∪ {τi}
19: else if bestAAUC < AAUC(C) then
20: bestτ = {τi}
21: bestAAUC ← AAUC(C)
22: τ = median(bestτ )
23: Return S = {x ∈ U |Q(x) ≥ τ}
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technique. Moreover, the original FRPS technique can also be used to improve
SMOTE. The idea of combining SMOTE with FRIPS or FRPS relies on two ideas.
The first idea is that the original train data can be noisy, and that the instances
generated by SMOTE rely on this noisy data and can hence be of low quality.
By cleaning the data using FRIPS before applying SMOTE this problem can be
avoided. The second motivation is that SMOTE can generate artificial minority
instances that can be of low quality, and using FRPS to clean the data after
applying SMOTE can handle this shortcoming.
Summarized, we consider the following settings:
• FRIPS: apply the FRIPS algorithm to the original imbalanced data

• FRIPS-SMOTE: first clean the data using the FRIPS algorithm and then
apply the SMOTE algorithm to balance the data

• FRIPS-SMOTE-FRPS: After balancing the cleaned data, the FRPS algorithm
is applied to clean the balanced data

• SMOTE-FRPS: first balance the data using SMOTE and then clean the data
using the FRPS algorithm

8.2.1 Theoretical time complexity of the proposals

Denote by n the number of instances and m the number of features. The time
complexity of FRIPS is the same as the time complexity of FRPS, as calculating
the training AAUC instead of calculating the training accuracy does not require
any significant additional calculations. That is, the average time complexity is
O(n2log(n)m) and the worst time complexity is O(n3m).
Applying SMOTE requires O(n2m) operations, the dominant cost is related to
calculating the nearest neighbors of all minority instances. When applying FRPS
after SMOTE, the theoretical time complexity is the same as FRPS, but one
should take into account that in practice the FRPS procedure might take longer
as the data can have doubled in size.

8.3 Experimental Evaluation

In this Section we study which of our proposals performs best and if our proposals
outperform the state-of-the-art methods described in Section 8.1. In Section
8.3.1 we explain the set-up of our experiments, in Section 8.3.2 we compare our
proposals against each other and in Section 8.3.3 we compare our best proposal
against the state-of-the-art.
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8.3.1 Experimental Set-up

We consider 50 imbalanced datasets that were retrieved from the KEEL dataset
repository. The properties of those datasets are listed in Table 8.1. The Imbalance
Ratio (IR), defined as the size of the majority class divided by the size of the
minority class, expresses how imbalanced the data is. As we are working with
imbalanced data, we choose to use a 5 fold cross validation procedure. Using
10 fold cross validation would cause problems as some folds can contain almost
none or no minority instances. All algorithms that are based on the SMOTE
algorithm are repeated 5 times as SMOTE has a random component.
The parameters of SMOTE are fixed as follows: we use K = 5 and follow the
procedure in Algorithm 8.1, which means that after applying SMOTE the data is
balanced. The algorithms that are based on SMOTE like SMOTE-TL, SMOTE-BL,
SMOTE-ENN, SMOTE-SL and our proposals all use the same parameters for the
SMOTE part. SMOTE-ENN requires an additional parameter for the number of
nearest neighbors in the ENN part, we fix this number to 3. The parameter γ in
the SMOTE-FRST is fixed to 0.8 and the maximal number of iterations is 10. The
parameters of the MWMOTE algorithm are chosen as proposed by the authors:
Cp is 3, K1 = 5, K2 = 3 and K3 is half of the size of the minority class. The
number of instances generated is twice the size of the minority class.
For each method and dataset we calculate the average AAUC over all folds
and the average running time. As usual, the running time only covers the
preprocessing part and not the classification part.

8.3.2 Proposal Selection

The first question we study in this experimental evaluation is if FRIPS performs
better than the original FRPS approach. In Figure 8.3.1 we compare FRIPS
against FRPS. We consider 5 groups of 10 datasets with different ranges of IR
and show the average AAUC for each group. The average AAUC of FRIPS is
better than the AAUC of FRPS for each group. The differences are larger for
datasets with average IR, which shows that the imbalance ratio of the data has
indeed an important influence on the performance of FRPS, and that FRIPS is
able to alleviate the imbalance problem.
Next, we study which of the proposed settings performs best. In Figure 8.3.2 we

compare the proposals against each other, with 1NN and SMOTE as baselines.
It is clear that SMOTE improves 1NN classification for all IR ranges. The FRIPS
algorithm improves 1NN classification except for datasets with a very high IR.
The reason for this can be that when there are very few minority instances, they
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Figure 8.3.1: Comparison of the AAUC of FRIPS and FRPS for different IR ranges.
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have the lowest values for the quality measure defined by FRIPS. As a result,
most of the candidate subsets mainly contain majority instances and it is likely
that such a prototype subset is returned by FRIPS. When FRIPS is applied before
using SMOTE, the AAUC is lower than the AAUC of SMOTE, except when the
IR is in [5.46,9.18]. It seems that FRIPS removes instances that are useful for
SMOTE oversampling. This also explains why FRIPS-SMOTE-FRPS does not
perform well for the higher IR ranges.
However, when we first apply SMOTE and then clean the data using FRPS, the
result is much better: the AAUC is higher than when only SMOTE is applied. The
differences are larger for the intermediate IR ranges, the result is less clear for
very low and very high IR rates. This means that FRPS is able to select the best
instances from the balanced dataset. In the remainder of this section we will
compare our proposal, SMOTE-FRPS, against the state-of-the-art.

8.3.3 Comparison against the baselines

In Table 8.2 we compare our proposal SMOTE-FRPS against the baselines with
respect to AAUC and running time. SMOTE-FRPS is the most accurate method
on average, the closest competitors are SMOTE-ENN and SMOTE-TL. Note that
these techniques both apply SMOTE, followed by a cleaning phase. This means
that FRPS is more suited to clean the dataset after applying SMOTE than ENN
or Tomek Links. The good performance of SMOTE-FRPS unfortunately comes
with a higher computational cost. Note that after applying SMOTE, the dataset is
much larger than the original dataset, and as a result the running time required
for FRPS is remarkably longer than the reported running time of FRPS in Chapter
4, even though the datasets used in Chapter 4 are bigger.
In Figure 8.3.3 we compare SMOTE-FRPS with its closest comptetitors. Again,
we make a distinction between the different IR ranges. SMOTE-FRPS always
outperforms SMOTE-TL, but the differences are smaller for highly imbalanced
datasets. Recall that SMOTE-TL only removes majority instances, which is
apparently good for highly imbalanced datasets. SMOTE-FRPS outperforms
SMOTE-ENN except when the IR is rather low.
To test if SMOTE-FRPS significantly outperforms SMOTE, SMOTE-ENN and
SMOTE-TL, we carry out the Friedman test. The value of the Friedman statistic
is 14.742 and the associated p-value is 0.002051, which means that significant
differences are detected amongst these four methods. In Table 8.3 we show the
Friedman rankings in the second column. SMOTE-FRPS gets the best ranking,
followed by SMOTE-TL, SMOTE-ENN and SMOTE respectively. The adjusted
p-values returned by Holm’s post-hoc procedure are listed in the last column, the
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Figure 8.3.2: Comparison of the AAUC of our proposals for different IR ranges.
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Table 8.2: Average AAUC and running time of our proposal SMOTE-FRPS and
the baselines over the 50 datasets.

1NN SMOTE SMOTE-FRST SMOTE-ENN MWMOTE SPIDER
AAUC 0.8031 0.8492 0.7904 0.8530 0.8249 0.8165
Time (in s.) 0 4.74 240.93 3.09 3.33 0.34

SMOTE-SL SMOTE-BL1 SMOTE-BL2 SMOTE-TL SMOTE-FRPS
AAUC 0.8031 0.8259 0.8245 0.8552 0.8630
Time (in s.) 2.88 4.38 3.14 2.74 39.06

Table 8.3: Friedman ranks comparing SMOTE-FRPS and the baselines among
each other and adjusted p-values obtained by the Holm post-hoc procedure
comparing SMOTE-FRPS against the baselines

Friedman rank Adj. P-value
SMOTE-FRPS 2.01 -
SMOTE-TL 2.47 0.096486
SMOTE-ENN 2.52 0.096486
SMOTE 3 0.000378

low adjusted p-values suggest that SMOTE-FRPS outperforms all other methods.

8.4 Conclusion

Motivated by the good performance of FRPS for classical datasets, we studied
in this chapter to what extent FRPS can be used to enhance imbalanced classifi-
cation. On the one hand, we propose FRIPS, a PS method for imbalanced data
which improves FRPS. On the other hand, we study the effect of using FRIPS and
FRPS in combination with SMOTE, an oversampling technique for imbalanced
data. We conclude that FRIPS improves FRPS for imbalanced data, showing that
FRPS does indeed suffer from the imbalance in data. Secondly, we see that using
SMOTE to balance the data and subsequently applying FRPS to clean the data
improves the state-of-the-art preprocessing methods for imbalanced data. This
shows that SMOTE introduces low-quality instances in the data, and that fuzzy
rough set theory is a good tool to clean the data after applying SMOTE.
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9. Improving Nearest Neighbor
Classification with Fuzzy Rough

Sets

In previous chapters we have used fuzzy rough set theory to preprocess the
data. Through instance selection, we improved the quality of the data such that
classifiers performed better. In this chapter we want to tackle the classification
problem directly, more specifically, we want to improve KNN classification using
fuzzy rough set theory.
We start from the Fuzzy Nearest Neighbor (FNN, [87]) classifier proposed by
Keller et al.. An important drawback of the KNN algorithm is that is that it
considers each of the K neighbors equally important during the classification of a
target instance t, independent of the neighbor’s distance to t. To overcome this
problem, Keller et al. suggested to introduce fuzzy set theory into the classical
KNN decision rule. By means of an indiscernibility relation, instances can now
partially belong to the set of nearest neighbors and are weighted accordingly.
There have been several attempts in the literature to improve FNN by means
of fuzzy rough set theory. In [142], the author aims to improve FNN using a
so-called fuzzy rough ownership function. However, it was noted in [79] that
the main ideas of fuzzy rough set theory, the lower and upper approximation,
are not used in this work.
Later on, two other techniques that aim to improve FNN by means of fuzzy
rough set theory were introduced. The first method, called Fuzzy Rough Nearest
Neighbor (FRNN, [79, 81]) measures the extent to which the nearest neighbors
belong to the fuzzy lower and upper approximation of a certain class to predict
the class of the target instance t. The Vaguely Quantified Nearest Neighbor
(VQNN, [79, 81]) method takes the FRNN approach one step further by using
vaguely quantified fuzzy rough sets instead of traditional fuzzy rough sets. These
methods are recalled in Section 9.1.
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Although the idea of using fuzzy rough set theory to improve FNN is very valuable,
neither FRNN nor VQNN are very useful methods. We will show in Section 9.1.2
that FRNN only takes into account one instance, and in Section 9.1.3 that VQNN
coincides with FNN if the same indiscernibility relation is used. In Section 9.2.1
we propose a new method, called Fuzzy Rough Positive Region based Nearest
Neighbor (POSNN, [161]) that aims to improve FNN by using the membership to
the fuzzy positive region of instances to measure to what extent they are typical
for their class. This method is extended in Section 9.2.2, where three aspects of
the nearest neighbors are taken into account: the quality, based on fuzzy rough
set theory, the frequency with which its class is occurring among the nearest
neighbors, and the indiscernibility to the target instance. The QFSNN algorithm
tunes the weights associated to each of these aspects. Finally, in Section 9.3, we
compare our proposals against each other and FNN.

9.1 State-of-the-art: Presentation and Analysis

In this section we first recall Keller et al.’s FNN method and experimentally show
that it outperforms KNN. Next, we present two attempts to improve FNN by
means of fuzzy rough set theory and prove that their application potential is
limited.

9.1.1 Fuzzy Nearest Neighbor (FNN)

In [87], Keller et al. noted that a major drawback of KNN is that each of the
selected nearest neighbors (we denote the set of K nearest neighbors by NN)
is considered equally important when assigning a class to the target instance t.
This makes KNN highly dependent on the parameter K. Consider the example in
Figure 9.1.1. The target instance is represented by a star and the classification
problem is whether this instance should be classified to the circle class or to the
diamond class. WhenK = 10, there are 4 nearest neighbors of the target instance
that belong to the circle class and 6 that belong to the diamond class. This means
that the target instance will be classified to the diamond class, although it is clear
from the figure that the circle class should be preferred. When K is lowered, the
classification changes. For instance, when K = 7, there are 4 nearest neighbors
belonging to the circle class and 3 belonging to the diamond class, which means
that the target instance is classified to the circle class. This shows that KNN
highly relies on K.
The fact that we intuitively prefer the circle class above the diamond class comes
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from the fact that the nearest neighbors of the circle class are closer to the target
instance. In [87], Keller et al. took this fact into account by incorporating the
indiscernibility R(x, t) between the target instance t and the nearest neighbors
x ∈ NN , defined as follows:

R(x, t) =
1

deucl(x, t)
2

m−1

, (9.1)

where deucl is the Euclidean distance. The parameter m determines to what
extent the distance is weighted when calculating each neighbor’s contribution.
We use m = 2 as suggested in [87]. When a nearest neighbor x ∈ NN is close
to the target instance t, the value R(x, t) will be high. In the example in Figure
9.1.1, the circle instances will have a higher value than the diamond instances.
Before introducing Keller et al.’s FNN algorithm, we also need the notion of
class membership function. For each class C, the class membership function
membC reflects for each x ∈ NN the extent membC(x) to which x belongs to
that class. We use two definitions of membC . The crisp membership function
membcrispC (x) is 1 if the instance x belongs to class C and 0 otherwise. A more
involved approach was proposed by Keller et al. in [87]. They defined the
membership function membgradualC , where

membgradualC (x) =

{
0.51 + 0.49nc

K if x is in class C
0.49nc

K else (9.2)

for each x ∈ NN and class C. Here, nC is the number of instances in NN that
belong to class C. Using this definition, the class membership membgradualC (x)
will be more than 0.51 if x belongs to class C and higher if many of the elements
in NN belong to C. On the other hand, membgradualC (x) is smaller than 0.49 if
x does not belong to class C and is smaller if fewer instances belong to class C.
The class membership function membC and the indiscernibility relation R are
the key ingredients of the FNN algorithm. For each class C, the following value
is calculated: ∑

x∈NN
R(x, t)membC(x)∑
x∈NN

R(x, t)
(9.3)

and the class with the highest value is returned as the class of the target instance
t. This means that a target instance t will be classified to class C if there are
many nearest neighbors of that class ánd if these neighbors are similar to the
target instance.
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Figure 9.1.1: KNN with K = 10 assigns the target instance (represented by a
star) to the diamond class although it is clear that it should be assigned to the
circle class.

To show that FNN outperforms KNN, we evaluate both algorithms on the 40
datasets described in Table 3.1. We use a 10 fold cross validation strategy. The
average test accuracy over all datasets is plotted in Figure 9.1.2 for several values
of K.
From Figure 9.1.2 it is clear that FNN improves KNN for all values of K. The
higher K, the clearer the difference. For higher values of K, the crisp class
membership function performs clearly better than the gradual one. In the
remainder of this chapter we will only use the crisp class membership function,
therefore from now on we shortly denote membcrispC (x) by C(x).

9.1.2 Fuzzy Rough Nearest Neighbor (FRNN)

As fuzzy rough set theory was proven to be successful to model uncertain and
inconsistent data, the authors in [79, 81] tried to incorporate fuzzy rough set
theory in the FNN technique. The FRNN algorithm first looks up the K nearest
neighbors (NN) of the target instance t and then classifies the target instance to
the class C for which the sum

(R ↓ C)(t) + (R ↑ C)(t) (9.4)
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is maximal, with R a fuzzy indiscernibility function. The upper and lower
approximations only take into account the instances of NN:

(R ↓ C)(t) = min
x∈NN

I(R(x, t), C(x)) (9.5)

(R ↑ C)(t) = max
x∈NN

T (R(x, t), C(x)). (9.6)

The idea behind this algorithm is that the lower and the upper approximation of
a class C, calculated by means of the NN of the target instance, provide good
clues to predict the membership of the target instance to that class. In particular,
if (R ↓ C)(t) is high, it reflects that many of t’s neighbors belong to C, while a
high value of (R ↑ C)(t) means that there exist neighbors that belong to C.
Unfortunately, when we look in more detail at this method, we see that only one
instance influences the classification of the target instance, as proven in the next
theorem:

Theorem 9.1.1. FRNN assigns a target instance t to the class of the instance
x ∈ NN for which R(x, t) is maximal.

Proof. First we note that the theorem obviously holds if all instances belong to
the same class. In the remainder of the proof we assume that there are at least
two classes. We first rewrite the lower approximation of the target instance t:

(R ↓ C)(t) = min
x∈NN

I(R(x, t), C(x))
= min
x∈NN,C(x)=0

I(R(x, t), 0).

The upper approximation can be written as follows:

(R ↑ C)(t) = max
x∈NN

T (R(x, t), C(x))
= max
x∈NN,C(x)=1

T (R(x, t), 1)

= max
x∈NN,C(x)=1

R(x, t).

The target instance t is assigned to the class C for which the following expression
is maximal:

min
x∈NN,C(x)=0

I(R(x, t), 0) + max
x∈NN,C(x)=1

R(x, t).

Now suppose that x ∈ NN is an instance that maximizes R(x, t), and denote the
class of x by D, that is, D(x) = 1. Then for each other class C,

max
x∈NN,C(x)=1

R(x, t) ≤ max
x∈NN,D(x)=1

R(x, t).
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At the same time,

min
x∈NN,C(x)=0

I(R(x, t), 0) ≤ min
x∈NN,D(x)=0

I(R(x, t), 0),

which means that the target instance t is assigned to class D, which is by
definition the class of the instance x ∈ NN for which R(x, t) is maximal.

This theorem shows that FRNN can be reduced to a very simple algorithm
that does not take into account fuzzy rough concepts. It also means that if
the indiscernibility relation R is the complement of the distance d, applying
FRNN is the same as applying the KNN algorithm with K = 1. For instance, if
d is normalized such that for each x, y ∈ U it holds that d(x, y) ∈ [0, 1], and if
R(x, y) = 1−d(x, y) for all instances, the instance y for which R(x, t) is maximal
will be included in the NN set, and the class of y will be assigned to the target
instance t. When applying KNN with K = 1, the nearest neighbor of t is y, which
means the class of y will be assigned to t.
We note that this only holds for classification problems, and that FRNN is a
useful method for regression problems, as showed in [81] where also regression
problems are considered.

9.1.3 Vaguely Quantified Nearest Neighbor (VQNN)

In [79, 81], the authors suggested to improve the FRNN approach using the
VQRS model instead of the traditional fuzzy rough set model. Again, after
determining the K nearest neighbor set NN, the target instance t is assigned to
the class C for which

(R ↓Qu C)(t) + (R ↑Ql
C)(t) (9.7)

is maximal. Only the instances in NN are considered for calculating the VQRS
lower and upper approximations:

(R ↓Qu
C)(t) = Qu(

∑
x∈NN

min(R(x, t), C(x))∑
x∈NN

R(x, t)
) (9.8)

(R ↑Ql
C)(t) = Ql(

∑
x∈NN

min(R(x, t), C(x))∑
x∈NN

R(x, t)
), (9.9)
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with Qu and Ql two fuzzy quantifiers that represent most and some respectively.
The rationale behind using the VQRS model is that noise should be handled
better. However, the next theorem shows that VQNN is the same classifier as
FNN provided they use the same indiscernibility measure.

Theorem 9.1.2. Assume VQNN and FNN use the same indiscernibility relation.
Then FNN and VQNN classify each target instance to the same class.

Proof. Consider a target instance t. As the fuzzy quantifiers Qu and Ql are
increasing, VQNN maximizes the following sum (the denominators in the argu-
ments of Qu and Ql are equal):∑

x∈NN
min(R(x, t), C(x)).

As C(x) only takes values in {0, 1}, this sum can be rewritten as:∑
x∈NN

R(x, t)C(x),

which is exactly the sum FNN is maximizing over.

9.2 Improving FNN using fuzzy rough set theory

In this section we introduce our two proposals, POSNN and QFSNN, that aim to
improve FNN using fuzzy rough set theory. Next, we calculate the theoretical
time complexity of POSNN and QFSNN and compare it against the theoretical
time complexity of KNN and FNN.

9.2.1 Fuzzy Rough Positive Region based
Nearest Neighbor Classification (POSNN)

Motivated by the fact that neither FRNN nor VQNN are able to meaningfully
improve FNN by incorporating fuzzy rough set theory, we present a new fuzzy
rough nearest neighbor algorithm in this section. The strength of the FNN
algorithm is that it takes the frequency of the classes among the nearest neighbors
into account on the one hand and the indiscernibility between these nearest
neighbors and the target instance on the other hand. We build upon this idea
and consider an additional property of the neighbors, namely their quality or
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typicality. Our original POSNN proposal in [161] bases the quality of instances
on the traditional fuzzy rough positive region, but as the fuzzy rough positive
region based on the OWA model resulted in better accuracies in Chapter 4, we
use the same quality measure here.
The POSNN algorithm proceeds as follows to classify the target instance t. First,
the K nearest neighbors NN are calculated. Then, the target instance t is
classified to the class C for which∑

x∈NN
R(x, t)C(x)POS(x)∑
x∈NN

R(x, t)
(9.10)

is maximal. The quality of a neighbor x is expressed by means of its membership
value to the OWA fuzzy rough positive region, where inverse additive weights
are used and where the indiscernibilities with respect to individual attributes are
aggregated using the average. This quality measure was shown to be optimal
for the FRPS algorithm and we expect it to work well for POSNN as well. The
POSNN algorithm is similar to FNN, the difference is that high-quality instances
will be taken more into account.

9.2.2 Quality, Frequency and Similarity based Fuzzy Nearest
Neighbor Classification (QFSNN)

The POSNN algorithm takes three aspects of the nearest neighbors into account:
the distance to the target instance, its quality and indirectly it also takes into
account how many times its class occurs. These aspects are aggregated by
multiplying them. The QFSNN algorithm takes a different approach to combine
these three aspects. We first summarize the three properties of the nearest
neighbors x ∈ NN that are taken into account :
• The frequency F (x) of the class x among the instances in NN. That is, if the

class of x is C and there are c instances in NN with class C, the frequency
F (x) is given by c

|NN | . Note that this aspect is not explicitly used in the
POSNN algorithm, but it is clear that when F (x) is higher, there are more
non-zero arguments in the sum in Equation (9.10) and the class of x has a
higher probability of being chosen.

• The indiscernibility S(x) = R(x, t) between x and t, using the indiscerni-
bility measure proposed by Keller in [87].

• The quality Q(x) of x , determined as for POSNN and the FRPS algorithm.
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These three aspects of the nearest neighbors are all important for the classifica-
tion. The POSNN algorithm combines these measures by multiplying them. An
alternative approach is to combine the different aspects in a weighted evaluation
measure E as follows:

∀x ∈ X : E(x) = wQQ(x) + wFF (x) + wSS(x). (9.11)

To classify a target instance t, the QFSNN algorithm calculates the nearest neigh-
bors NN of t and returns the class of the nearest neighbor x ∈ NN for which
E(x) is maximal.
An important question is which weights wQ, wF and wS to use. The QFSNN al-
gorithm automatically tunes these weights: many weight triplets are considered,
and the QFSNN procedure is carried out with each of these weight triplets on
the training data. The triplet corresponding to the highest training accuracy is
used to classify the test data.
The detailed outline of the algorithm is given in Algorithm 9.1. The algorithm
consists of two main parts: in the first part (line 4 to 18), the weights are tuned,
while in line 19 to 25, the target instance t is classified based on these tuned
weights. The parameter r is a natural number that determines how fine the
weights are tuned. When r is larger, more weight combinations are tried. The
weight triplets considered in line 4 are all possible combinations of natural num-
bers between 1 and r. For each of these weight triplets, all train instances x are
classified in line 6 to 19 and the training accuracy is calculated. This classification
is carried out by looking up the nearest neighbors of the training instance at
hand in the training data, where x itself is of course excluded. In line 8 to 15,
the neighbor Nmax for which the evaluation measure E is maximal is searched.
The instance x is classified to the class of Nmax, so if this class corresponds with
the actual class of the training instance, the accuracy is raised by one. In line
20 to 23, the QFSNN algorithm keeps track of the triplet of weights Wopt for
which the training accuracy is maximal. Once the optimal weights are found,
the classification of the target instance can start. First the K nearest neighbors
NN are looked up, and then the neighbor x ∈ NN for which the value E(x) is
maximal is determined. The class returned for t is the class of this particular
neighbor.

9.2.3 Theoretical time complexity of our proposals

Denote by n the number of train instances, by l the number of test instances and
by m the number of features. In order to classify all test instances, both KNN
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Algorithm 9.1 The QFSNN algorithm
1: Input: Train data X, target instance t, parameter K, parameter r
2: Wopt = 〈woptQ , woptF , woptS 〉 ← 〈0, 0, 0〉
3: Accopt ← −1
4: for all 〈wQ, wF , wS〉 ∈ {(i, j, k)|i, j, k ∈ {1, . . . , r}} do
5: Acc← 0
6: for all x ∈ X do
7: NN ← K nearest neighbors of x in X \ {x}
8: Emax ← 0
9: Nmax ← null

10: for all y ∈ NN do
11: if E(y) = wQQ(y) + wFF (y) + wSS(y) ≥ Emax then
12: Emax ← E(y)
13: Nmax ← y
14: if C(x) = C(Nmax) then
15: Acc← Acc+ 1
16: if Acc ≥ Accopt then
17: Accopt ← Acc
18: Wopt ← 〈wQ, wF , wS〉
19: NN ← K nearest neighbors of t in X
20: Emax ← 0
21: Nmax ← null
22: for all x ∈ NN do
23: if E(x) = woptQ Q(x) + woptF F (x) + woptS S(x) ≥ Emax then
24: Emax ← E(x)
25: Nmax ← x
26: Output: C(Nmax)
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and FNN require O(Klmn) calculations: for each test instance the K nearest
neighbors need to be calculated. POSNN first calculates the nearest neighbors
of a test instance, and then calculates the OWA fuzzy rough positive region of
all nearest neighbors and the distance to the nearest neighbors. This accounts
for O(lKn(m+ log(n))) operations. The QFSNN algorithm first goes through a
training phase, requiring O(r3n2m) operations. Then, in order to classify all test
instances, O(lKn(m+ log(n))) operations are needed.

9.3 Experimental Evaluation

In this section we verify if POSNN or QFSNN can improve FNN classification. We
apply the algorithms to the datasets described in Table 3.1 and use a 10 fold
cross validation scheme. We report the average accuracy, Cohen’s kappa and
running time over the 10 folds. We vary the parameter K between 1 and 10. The
parameter m in the FNN algorithm is set to m = 2 as suggested in [87], and we
use the crisp class membership function as this resulted in the best performance
in Section 9.1.1. The quality measure used in the POSNN algorithm is the quality
measure that leads to the best performance of the FRPS algorithm. That is,
we use the OWA fuzzy rough positive region to model the quality and use the
indiscernibility function that uses the average to aggregate the indiscernibility
with respect to individual attributes. The OWA weights are the inverse additive
weights. The same quality measure is used in the QFSNN algorithm. We evaluate
the QFSNN algorithm with range r equal to 10 until 100 in steps of 10.
Before we compare POSNN and QFSNN against FNN, we study the effect of the
range r on the performance of the QFSNN algorithm. In Table 9.1 we show the
average accuracy of QFSNN over the 40 datasets, and in Table 9.2 the average
Cohen’s kappa. For each value of K we indicate the best result in bold. A general
trend is that for lower values of K, the optimal range is lower. When K is larger
than 5, the optimal range is higher, and higher values for r would probably
result in an even better performance. This might be due to the fact that for
low values of K, tuning the weights has less influence as fewer neighbors are
considered. The optimal combination of weights is reached fast for low values
of K and overfitting occurs when the weights are tuned in too much detail. For
higher values of K, the weights have more influence and there is more space to
tune them.
However, if r is too large, the QFSNN algorithm would require too much time
and therefore we do not consider higher values of r than 100. As the results
for high K are of more interest (note that for lower values of K the algorithms
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tend more to the KNN algorithm), we consider r = 100 in the remainder of the
analysis.
In Figure 9.3.1 we show the average results over all datasets for K ranging from
2 to 10. We do not show the results for K = 1 in the plots as all algorithms equal
KNN for K = 1. Both QFSNN and POSNN perform better than FNN on average
with respect to accuracy and Cohen’s kappa, for all considered values of K. The
differences between QFSNN and POSNN are small for accuracy, but QFSNN
outperforms POSNN with respect to Cohen’s kappa for all values of K. The
differences are small however, and QFSNN is computationally more demanding
than POSNN.
To test if POSNN or QFSNN outperforms FNN significantly, we carry out the
Wilcoxon test. The results of this test are shown in Table 9.3 for accuracy and
in Table 9.4 for Cohen’s kappa. It is clear that QFSNN does not improve FNN
significantly, neither with respect to accuracy, nor with respect to Cohen’s kappa.
POSNN does not improve FNN significantly with respect to accuracy, but it does
improve FNN significantly with respect to Cohen’s kappa for most values of K,
except for K = 3, K = 5 and K = 7. These results are remarkable, as QFSNN
performs better on average with respect to Cohen’s kappa. It seems that for
some datasets, QFSNN improves FNN much more than POSNN, but that POSNN
improves FNN for more datasets than QFSNN.
We conclude that the extra computational cost that QFSNN requires is not
reconcilable with its performance. On the other hand, the POSNN method
is computationally less demanding and outperforms the FNN algorithm with
respect to Cohen’s kappa for the majority of values of K. The reason why QFSNN
is less suited can be due to overfitting, another reason why we are not able
to significantly improve upon FNN can be that we reach some limit to what is
possible when tackling the KNN problem directly. That is, when none of the K
nearest neighbors of a test instance have the same class as the test instance, we
cannot classify it correctly, no matter what weighting strategy is used to improve
the classification.

9.4 Conclusion

In the previous chapters we improved classifiers by preprocessing the train data
that they use. In the traditional instance selection followed by classification
setting, a yes/no decision needs to be made about each train instance. In
this chapter, we take a different approach and associate quality weights to the
instances based on fuzzy rough set theory. We propose two classifiers, POSNN
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Table 9.1: Average accuracy of QFSNN over the 40 datasets for different values
of r and K.

K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
r = 10 0.7762 0.7870 0.7899 0.7917 0.7913 0.7921 0.7893 0.7918 0.7908
r = 20 0.7757 0.7866 0.7897 0.7910 0.7903 0.7927 0.7900 0.7914 0.7912
r = 30 0.7752 0.7848 0.7897 0.7910 0.7914 0.7935 0.7910 0.7917 0.7923
r = 40 0.7756 0.7849 0.7890 0.7913 0.7907 0.7928 0.7900 0.7908 0.7927
r = 50 0.7753 0.7859 0.7880 0.7911 0.7901 0.7933 0.7901 0.7907 0.7920
r = 60 0.7757 0.7857 0.7883 0.7914 0.7913 0.7933 0.7911 0.7917 0.7922
r = 70 0.7752 0.7859 0.7885 0.7905 0.7911 0.7935 0.7908 0.7914 0.7927
r = 80 0.7754 0.7858 0.7865 0.7907 0.7911 0.7943 0.7916 0.7909 0.7925
r = 90 0.7756 0.7862 0.7883 0.7906 0.7912 0.7936 0.7915 0.7923 0.7923
r = 100 0.7757 0.7860 0.7881 0.7907 0.7905 0.7944 0.7912 0.7928 0.7924

Table 9.2: Average Cohen’s kappa of QFSNN over the 40 datasets for different
values of r and K.

K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
r = 10 0.5745 0.5936 0.5981 0.5973 0.5986 0.5988 0.5945 0.5992 0.5963
r = 20 0.5736 0.5933 0.5974 0.5972 0.5965 0.5994 0.5954 0.5968 0.5978
r = 30 0.5724 0.5933 0.5978 0.5968 0.5990 0.6018 0.5975 0.5966 0.5980
r = 40 0.5732 0.5936 0.5972 0.5975 0.5977 0.6007 0.5952 0.5951 0.5990
r = 50 0.5726 0.5951 0.5952 0.5989 0.5965 0.6017 0.5951 0.5949 0.5991
r = 60 0.5731 0.5948 0.5953 0.5994 0.5987 0.6017 0.5969 0.5973 0.6001
r = 70 0.5717 0.5950 0.5957 0.5979 0.5982 0.6018 0.5962 0.5964 0.6015
r = 80 0.5728 0.5953 0.5974 0.5980 0.5985 0.6034 0.5979 0.5954 0.6004
r = 90 0.5731 0.5962 0.5960 0.5981 0.5987 0.6022 0.5993 0.6003 0.5997
r = 100 0.5733 0.5957 0.5960 0.5980 0.5970 0.6050 0.5989 0.6015 0.6000

Table 9.3: Values of the statistics of the Wilcoxon test comparing QFSNN and
POSNN against FNN with respect to accuracy

QFSNN vs. FNN POSNN vs. FNN
R+ R- p-value R+ R- p-value

K=2 420 400 0.887764 417 403 0.919702
K=3 400 420 1 406 414 1
K=4 402 418 1 409 411 1
K=5 399 421 1 381 399 1
K=6 396 424 1 394 426 1
K=7 394 426 1 398 422 1
K=8 407 413 1 416 404 0.930379
K=9 401 419 1 408 412 1
K=10 403 417 1 401 379 0.872501
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Figure 9.3.1: Average accuracy, Cohen’s kappa and running time over the 40
datasets.
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Table 9.4: Values of the statistics of the Wilcoxon test comparing QFSNN and
POSNN against FNN with respect to Cohen’s kappa

QFSNN vs. FNN POSNN vs. FNN
R+ R- p-value R+ R- p-value

K=2 421 399 0.877156 361 149 0.000751
K=3 415 405 0.941068 561 259 0.918087
K=4 413 407 0.962478 601.5 218.5 0.026718
K=5 391 429 1 489 331 1
K=6 400 420 1 584.5 200.5 0.059619
K=7 410 410 0.994683 536 251 0.591934
K=8 408 412 1 699.5 120.5 0.00028
K=9 401 419 1 601.5 183.5 0.030615
K=10 400 420 1 590.5 192.5 0.015917

and QFSNN, that aim to improve FNN, an extension of KNN that takes into
account the distances between the test instance and its nearest neighbors.
Our proposals are able to improve FNN, meaning that fuzzy rough set theory can
be used to tackle the classification problem directly, but the differences are not
significant. The latter may be due to the fact that there is a limit to what can be
done using a KNN approach: if none of the nearest neighbors of a test instance
has the same class as this test instance, our proposals cannot predict the class of
the test instance correctly.



10. Conclusion and Future
Research Directions

In this dissertation we explore the use of fuzzy rough set theory and evolutionary
algorithms for instance selection. Our main goal is to improve the accuracy of
classifiers by means of techniques related to instance selection.
We start off in Chapter 3 by introducing a new robust fuzzy rough set model, mo-
tivated by the fact that the minimum and maximum operations in the traditional
fuzzy rough set model cause small changes in the data to be drastically reflected
in the values of the fuzzy rough lower and upper approximations. Moreover,
existing robust fuzzy rough set models are not able to preserve the fuzzy rough
concept or violate its theoretical properties. The OWA fuzzy rough set model
introduced in this thesis partially alleviates these problems. The philosophy of
fuzzy rough set theory is maintained in this new model, an experimental study
shows that this model is indeed more robust than the traditional fuzzy rough set
model and important theoretical properties like set monotonicity are maintained.
However, this model can still be improved. For instance, set inclusion, the prop-
erty that states that the lower approximation is included in the set approximated
and that this set is in turn included in the upper approximation, does not hold
for the OWA fuzzy rough set model. An additional challenge is the selection of
the weight weight vector used in the OWA operations. For now, these weights
are selected by the user restricted by the orness and andness constraints, but
it would be more appropriate to select these weights based on the data and
application at hand.
Even though there are still some weaknesses related to the current OWA fuzzy
rough set model, we show in this thesis that it is highly valuable. A good example
is given in Chapter 4, where we propose a new PS method, called FRPS. This
method assesses the quality of instances using the OWA fuzzy rough set model
and automatically finds a good threshold to determine which instances to retain
and which instances to remove from the data. Our experimental evaluation
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shows that FRPS performs very well: it significantly improves all state-of-the-art
methods, and moreover, FRPS is faster than the other most accurate PS tech-
niques. This result is due to the combination of two factors: on the one hand, the
OWA fuzzy rough set model seems to be an excellent tool to model the quality
of instances, while on the other hand, using the train accuracy to determine
a good threshold further improves the results. The fact that FRPS improves
genetic approaches to PS shows that fuzzy rough set theory is indeed valuable
to model the quality of instances in PS, and that the fuzzy rough component
in the search strategy benefits the performance. In order to further improve
FRPS, one could automatically tune the weights used in the OWA fuzzy rough
set model, or use different thresholds for different classes within the training
data. Another interesting future research path is to develop a condensation PS
technique based on fuzzy rough set theory. FRPS focuses on removing instances
in order to improve the classification, independent of the reduction. One could
develop a technique that aims to remove inner points from the data in order
to reduce the storage requirements and to speed up the classification applied
afterward. This could be achieved by using the fuzzy rough upper approximation
values, as these values express how close instances from the same class are. This
technique could be applied in combination with FRPS in order to obtain a hybrid
approach.
In Chapter 5 we study the combination of FRPS with FS. Motivated by the fact
that FS-SSGA, a genetic approach to FS, has obtained good results in earlier
studies, we decide to combine FRPS with FS-SSGA. We do not use fuzzy rough
set theory for the FS part, as the existing approaches to FS using fuzzy rough
set theory focus on maintaining the predictive power of training data rather
than improving it. We develop a simultaneous approach to PS and FS, called
SIM-FRPS-SSGA, that carries out FS-SSGA and applies FRPS at certain stages in
the algorithm. An experimental evaluation shows that this approach performs
better than FRPS or FS-SSGA, meaning that the PS and FS components enhance
each other. Moreover, SIM-FRPS-SSGA achieves better results than the sequential
application of FRPS and FS-SSGA, showing that the simultaneous approach pays
off. Our new approach also outperforms SIM-SSGA-QR, a simultaneous approach
that uses fuzzy rough set theory for the FS component and a genetic approach for
the PS component. This result could have been expected as the components of
SIM-SSGA-QR perform worse than the components of SIM-FRPS-SSGA. In order
to further improve SIM-FRPS-SSGA, one could improve the components it is
built on or further elaborate on how these components are merged together. For
instance, one could optimize the points at which the FRPS algorithm is carried
out. One should also elaborate on speeding up the algorithm as it is rather slow
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now.
Using PS for KNN classification is well-studied in the literature and many tech-
niques have been proposed. On the other hand, using TSS for SVMs is almost
unexplored. The reason why researchers mostly apply PS for KNN is that PS
directly affects KNN, whereas the classification model of SVM buffers between
TSS and the classification of new instances. Additionally, as SVMs allow training
instances to fall on the wrong sides of the decision margins, SVMs are not largely
affected by noisy instances. As a result, it is harder to see the effect of TSS on
SVMs. In Chapter 6, we adjust the successful genetic PS techniques and FRPS for
SVMs by calculating the training accuracy using SVMs instead of KNN. Addition-
ally, we study the effect of using genetic and fuzzy rough FS approaches on SVMs,
both as stand-alone techniques and in combination with TSS. The experimental
evaluations learns us that FRPS does not perform well for SVMs. The reason
is probably that FRPS removes boundary instances that are crucial to build a
good SVM model. The genetic TSS approaches do perform well and are able to
significantly improve the performance of SVMs, but when combining them with
FS the performance reduces. Using TSS for SVMs has potential, proven by the
good performance of genetic TSS algorithms, that should be further explored
in the future. For instance, the capabilities of fuzzy rough set theory for TSS
should be investigated again, focusing on retaining the boundary instances but
removing noisy instances. Additionally, one should study if other classifiers can
also benefit from instance selection.
In Chapter 7, we further elaborate on genetic approaches to PS and propose an
ensemble strategy that uses the information generated by genetic PS algorithms
more efficiently. Genetic approaches to PS generate many good candidate proto-
type subsets, but only use one solution to classify new instances. Many of these
generated prototype subsets might not be globally optimal, but can be optimal in
certain regions of the feature space. Our framework starts from these ideas and
keeps track of all prototype subsets generated during the course of the genetic
PS algorithm. Then, it selects the fittest prototype subsets among them, and
subsequently selects the most diverse among them. In order to classify a new
instance, it is determined which among this group of diverse prototype subsets
is most suited to classify instances in the neighborhood of that new instance,
based on the performance of these prototype subsets for neighboring instances.
We apply this approach to GGA, one of the most accurate PS algorithms. The
experimental evaluation shows that our strategy, called GGA-ENS, achieves high
accuracy rates, even when the GGA part only uses a limited number of evalua-
tions in its execution. Moreover, GGA-ENS does significantly outperform GGA.
This ensemble approach should be applied to other genetic PS algorithms in the
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future, and could possibly be extended to genetic FS approaches or for SVM
classification. Additionally, some ideas of this approach could be used for other
classifiers. The good performance of random forests suggests that selecting good
decision trees in the neighborhood of a certain test instance might be worthwhile.
When applying traditional classification and preprocessing techniques to imbal-
anced data, the minority class is generally neglected. This especially applies
to FRPS, as this PS technique aims to find a prototype subset that has a good
global classification accuracy, independent from the amount of minority instances
correctly classified. In Chapter 8 we first adjust FRPS for imbalanced classifica-
tion by changing the evaluation function. The experimental evaluation shows
that this technique, called FRIPS, does indeed improve FRPS for imbalanced
data. Additionally, we study the use of FRIPS and FRPS in combination with the
oversampling technique SMOTE. We consider different settings where the data
is cleaned using FRIPS before balancing the data using SMOTE, or where the
data is cleaned using FRPS after applying SMOTE. We conclude that SMOTE
followed by FRPS leads to the best results and moreover improves the state-of-
the-art preprocessing techniques for imbalanced data. Possible further research
on preprocessing imbalanced data could focus on a simultaneous execution of
oversampling and cleaning techniques. Another option could be to elaborate on
adjusting the fuzzy rough measures for imbalanced data. For instance, the OWA
weights could be adjusted such that minority instances are weighted more when
calculating the fuzzy rough lower and upper approximation membership values.
In the traditional setting of PS, an instance is either removed or retained in the
prototype subset. In Chapter 9, we take a different approach where the instances
are weighted according to their quality, based on the OWA fuzzy rough set model.
We propose two classifiers, POSNN, which extends the FNN algorithm by taking
the quality of instances into account, and the QFSNN classifier that extends
POSNN by tuning the different weights associated to the aspects of the nearest
neighbors. An experimental evaluation shows that POSNN significantly outper-
forms FNN, but that the improvement by QFSNN is not significant. This research
shows the potential of directly tackling the classification problem using fuzzy
rough set theory, but on the other hand we are also faced with its limitations,
being that the removal of some instances is necessary to obtain good results. A
possible future challenge could be to combine POSNN with FRPS, where FRPS
only removes instances of very low quality, such that instances about which
doubt exists are taken care of by POSNN.
A question that raises is which among all these proposed techniques perform
best. Therefore, we give an overview in Table 10.1 of the proposed techniques in
all chapters except Chapter 8 that uses different data and evaluation techniques.
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Table 10.1: Average accuracy Cohen’s kappa and running time over the 40
datasets in Table 3.1 for the techniques proposed in this dissertation

Acc. κ Running time (s)
1NN 0.7293 0.4997 0.6769
SVM 0.7596 0.5557 1.3500
FRPS (1NN) 0.7771 0.5696 3.9383
SIM-FRPS-SSGA (1NN) 0.7983 0.6050 67.3458
GGA (SVM) 0.8068 0.5880 3384.74
GGA (1NN) 0.7591 0.5434 63.5139
GGA-ENS (1NN) 0.7682 0.5539 73.5188
POSNN (10NN) 0.7960 0.5985 9.7567
QFSNN (10NN) 0.7924 0.6000 19.1143
10NN 0.7614 0.5419 0.7020
FNN (10NN) 0.7915 0.5869 0.8174

In Table 10.1, we list the average results over the 40 datasets described in Table
3.1.
Among the techniques that aim to improve 1NN classification, SIM-FRPS-SSGA
performs best, followed by FRPS and GGA-ENS respectively. As the computa-
tional cost of SIM-FRPS-SSGA is high, FRPS is more suited if time constraints are
imposed. Both POSNN and QFSNN improve 10NN classification, but recall that
POSNN is faster than QFSNN and should therefore be preferred. As we showed
in Chapter 5, GGA improves SVM classification. SVM classification enhanced
with GGA TSS clearly performs best among all methods with respect to accuracy.
However, the computational time required by this method is very high, therefore
other techniques may be preferred. When we compare the methods with respect
to Cohen’s kappa, QFSNN, POSNN and SIM-FRPS-SSGA perform well, POSNN
is faster than SIM-FRPS-SSGA and QFSNN but is slightly less accurate. We
conclude that there is no clear answer to the question which technique should
be preferred for an application, and the user should base the selection based on
which performance measure is most important for him.
Besides further enhancing the techniques proposed in this thesis, there are many

new research directions that could be explored.
One important research topic is instance selection for regression. On the one
hand, this requires improved fuzzy rough set based quality measures, and on
the other hand one should carefully select and study regression techniques that
can benefit from instance selection. One option could be to consider SVMs for
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regression, and to study if genetic approaches to instance selection for these
SVMs perform as well as for classification problems. An additional challenge in
this topic is to find a good measure to assess the fitness of candidate instance
subsets, as the training accuracy used for classification problems does not apply.
A promising research path is Prototype Generation (PG, [156]), a technique that
removes instances from the data like PS but also generates new instances. As
such, regions in the feature space without representative examples can be filled.
The use of fuzzy rough set theory in this field is yet unexplored, but seems to lend
itself very well to the problem. Indeed, fuzzy rough set theory is an excellent
tool to assess the quality of instances, and candidate artificial instances can be
easily evaluated using the fuzzy rough set model.
Another important challenge is instance selection techniques for big data. The
datasets used in this thesis contain up to 2000 instances, which is a low number
in this era of big data. There are several options to adjust instance selection
techniques to big data. One could plug in instance selection techniques into
existing frameworks for big data [33, 34, 60, 61] that approximate the behavior
of the instance selection technique. A simple example is to divide the data
into strata, apply the instance selection technique to each stratus and merge
the resulting instance subsets. Another option is to try to perfectly mimic the
instance selection techniques using big data software platforms.
To conclude, we mention that for certain research topics considered in this thesis,
improvements in accuracy were hard to obtain. We believe that in some cases
we attained some limit to what can be done for generic datasets. Keeping this in
mind, future research should maybe focus on tailor-made solutions to specific
problems.
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Samenvatting

Eén van de belangrijkste onderzoeksgebieden in data ontginning is classificatie.
Classificatietechnieken proberen de klassen van nieuwe datapunten waarvoor
enkel de beschrijvende attributen gegeven zijn te voorspellen aan de hand van
trainingsdata bestaande uit datapunten waarvoor zowel de beschrijvende at-
tributen als de klassen gekend zijn.
In veel situaties wordt de data niet direct gebruikt voor classificatie maar is
het aangewezen om deze eerst te bewerken. Een veel bestudeerde techniek is
attribuutselectie, waarbij overbodige en misleidende attributen worden verwij-
derd. In deze thesis focussen we op datapuntselectie, de duale techniek van
attribuutselectie (Feature Selection, FS). Datapuntselectie bewerkt de data door
een deelverzameling van de datapunten als trainingsdata te selecteren. Enerzijds
kan de nauwkeurigheid van de classificatietechniek die achteraf wordt toegepast
worden verbeterd door datapunten met ruis te verwijderen, terwijl anderzijds
de computationele vereisten van het leer- en classificatieproces kunnen worden
verkleind.
In deze thesis focussen we op datapuntselectie voor twee classificatietechnieken:
K Nearest Neighbors (KNN) en Support Vector Machines (SVMs). Als datapuntse-
lectie wordt gebruikt in de context van KNN spreken we over Prototype Selectie
(PS), in de context van SVM gebruiken we de term Training Set Selectie (TSS).
De technieken voor datapuntselectie die we in deze thesis bespreken zijn geba-
seerd op twee modellen, evolutionaire algoritmen en de vaagruwverzamelingen-
leer. Het gebruik van evolutionaire algoritmen voor datapuntselectie is grondig
bestudeerd in de literatuur. Veel methoden zijn ontwikkeld en experimentele
studies hebben aangetoond dat deze technieken de meest nauwkeurige data-
puntselectietechnieken zijn [55]. Anderzijds is slechts weinig onderzoek gedaan
over datapuntselectie gebaseerd op vaagruwverzamelingentheorie. Er is slechts



170 SAMENVATTING

één methode voorgesteld [80] maar deze is niet zo nauwkeurig als andere data-
puntselectietechnieken.
Gemotiveerd door de hoge nauwkeurigheid van evolutionaire algoritmen voor
datapuntselectie en door het feit dat vaagruwverzamelingen hun nut bewezen
hebben in veel andere aspecten van data onginning, focussen we in deze thesis
op deze modellen en hun onderlinge combinatie.
Vaagruwverzamelingen [29, 45, 46] combineren ruwverzamelingen [124] en
vaagverzamelingen [181]. Ze benaderen concepten door middel van de onder-
en bovenbenadering. De traditionele definitie van vaagruwverzamelingen is
gebaseerd op de strikte minimum en maximum bewerkingen, wat robuustheids-
problemen veroorzaakt: kleine veranderingen in de data kunnen drastische
gevolgen hebben voor de waarden van de boven- en onderbenadering. Dit ge-
brek aan robuustheid is vooral een probleem als men met reële datasets werkt,
aangezien deze ruis of verkeerd gelabelde datapunten kunnen bevatten. In
Hoofdstuk 2 behandelen we dit probleem door een nieuw robuust model voor
vaagruwverzamelingen in te voeren, Ordered Weighted Average (OWA, [176])
vaagruwverzamelingen. Door de strikte minimum en maximum bewerkingen
te vervangen door hun minder strikte OWA uitbreidingen bekomen we vaag-
ruwverzamelingen die robuust zijn tegen ruis zowel in de klassen als in de
voorwaardelijke attributen.
Alle technieken in deze thesis die gebaseerd zijn op de vaagruwverzamelingen-
leer maken gebruik van dit nieuwe robuuste OWA vaagruwverzamelingenmodel.
In Hoofdstuk 3 voeren we Fuzzy Rough Prototype Selection (FRPS) in, een
nieuwe PS techniek gebaseerd op vaagruwverzamelingen. Het belangrijkste idee
achter FRPS is dat de datapunten die een hoge lidmaatschapsgraad hebben tot
de boven- en onderbenadering van hun eigen klasse het meest bruikbaar zijn
voor classificatie. Deze datapunten liggen dicht bij datapunten van hun eigen
klasse en ver van datapunten van andere klassen. Een experimentele evaluatie
toont aan dat het gebruik van het OWA vaagruwverzamelingenmodel voor de
onderbenadering het meest geschikt is om de kwaliteit van datapunten te meten.
FRPS ordent de datapunten volgens deze kwaliteitsmaat en bepaalt vervolgens
automatisch een drempelwaarde om te beslissen welke datapunten moeten ver-
wijderd worden, gebaseerd op de 1NN trainingsnauwkeurigheid van kandidaat
drempelwaarden en hun corresponderende prototype deelverzamelingen. Een
experimentele studie toont aan dat FRPS significant nauwkeuriger is dan andere
PS technieken.
In Hoofdstuk 4 gaan we na of FRPS nog verbeterd kan worden door gebruik te
maken van FS. Het na elkaar uitvoeren van FRPS en FS kan problemen veroorza-
ken aangezien FRPS datapunten kan verwijderen die belangrijk zijn voor het
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FS proces, terwijl FS belangrijke attributen kan verwijderen die noodzakelijk
zijn voor het FRPS algoritme. We stellen een techniek voor die simultaan FRPS
en FS uitvoert, SIM-FRPS-SSGA. Deze techniek voert een Steady State Genetic
FS Algoritme uit (FS-SSGA) en past FRPS toe op bepaalde punten in het FS
proces. We tonen aan dat SIM-FRPS-SSGA significant beter werkt dan elk van
zijn componenten FRPS en FS-SSGA, wat betekent dat FRPS en FS-SSGA elkaar
versterken. We concluderen ook dat SIM-FRPS-SSGA beter werkt dan het na
elkaar uitvoeren van FS en PS.
In Hoofdstuk 3 en 4 ontwikkelen we technieken die 1NN classificatie verbeteren,
in Hoofdstuk 5 breiden we dit uit naar SVM classificatie. We passen de evo-
lutionaire PS technieken en FRPS aan voor SVMs door de evaluatiefunctie in
de algoritmen te vervangen. Het FRPS algoritme bepaalt de kwaliteit van een
kandidaat deelverzameling van prototypes door de corresponderende trainings-
nauwkeurigheid te berekenen, gebruik makend van de 1NN classificatietechniek.
We passen FRPS aan voor SVMs door de 1NN classificatie te vervangen door
SVM. Dezelfde strategie passen we toe voor de evolutionaire algoritmen: de
trainingsnauwkeurigheid in de fitness functie wordt berekend door SVM toe te
passen. Dit principe kan ook worden gebruikt voor de technieken uit Hoofdstuk
4 die FS en PS combineren. Een experimentele evaluatie toont aan dat evolution-
aire TSS technieken goed scoren en de classificatie van SVMs significant kunnen
verbeteren. Het combineren van TSS met FS kan de prestatie van SVMs niet
verbeteren doordat FS de nauwkeurigheid van SVMs slecht bëınvloedt.
Het grootste nadeel van evolutionaire PS technieken is dat deze veel tijd vergen.
Enkel door het evalueren en verbeteren van vele generaties van kandidaat proto-
type deelverzamelingen kunnen goede prestaties worden bereikt. In Hoofdstuk 6
stellen we een nieuwe classificatietechniek voor, Generational Genetic Algorithm-
Ensemble (GGA-ENS), die gebaseerd is op een evolutionaire PS methode maar
die minder evaluaties nodig heeft om nauwkeurige resultaten te bereiken. We
vertrekken van het idee dat tijdens het verloop van een evolutionair PS algoritme
veel goede kandidaat prototype deelverzamelingen worden gegenereerd. GGA-
ENS gebruikt meer dan één van deze deelverzamelingen voor de uiteindelijke
classificatie van nieuwe datapunten. Het Generational Genetic PS Algoritme
(GGA) wordt uitgevoerd, de beste prototype deelverzamelingen die tijdens het
verloop van het algoritme worden gegenereerd worden opgeslagen en op het
einde worden de meest diverse deelverzamelingen geselecteerd. Om een nieuw
datapunt te classificeren worden zijn dichtste trainingsdatapunten (dichtste
buren) geclassificeerd gebruik makend van alle prototype deelverzamelingen.
Elke deelverzameling krijgt een gewicht afhankelijk van zijn classificatie: een
deelverzameling die veel van de dichtste buren van het nieuwe datapunt cor-
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rect classificeert krijgt een hoog gewicht. Vervolgens worden de prototype
deelverzamelingen gebruikt in een gewogen stemproces om het nieuwe datapunt
te classificeren. Een experimentele evaluatie toont aan dat GGA-ENS significant
beter presteert dan GGA en bovendien nauwkeurigere resultaten behaalt voor
minder evaluaties van het genetisch algoritme.
In Hoofdstuk 7 evalueren we FRPS op ongebalanceerde datasets, waarbij één
of meerdere klassen beduidend minder datapunten bevatten dan de andere
klassen. We tonen aan dat FRPS verbeterd kan worden voor ongebalanceerde
datasets door de trainingsnauwkeurigheid te vervangen door de Adjusted Area
Under the Curve (AAUC) maat, een evaluatiemaat specifiek bedoeld voor onge-
balanceerde data. We noemen deze methode Fuzzy Rough Imbalanced Prototype
Selection (FRIPS). We gaan na hoe FRIPS en FRPS presteren in combinatie met
de Synthetic Minority Over Sampling Technique (SMOTE, [23]), een methode
die artificiële datapunten toevoegt aan de data om deze te balanceren. We
beschouwen verschillende opstellingen waarbij FRIPS kan worden gebruikt om
de data te verbeteren vooraleer SMOTE wordt toegepast, of waarbij FRPS kan
worden gebruikt om de data te verbeteren nadat SMOTE nieuwe datapunten
heeft toegevoegd aan de data. Een experimentele evaluatie toont aan dat de
laatste opstelling de beste resultaten behaalt en dat deze de huidige technieken
voor ongebalanceerde data significant verbetert.
FRPS maakt gebruik van vaagruwverzamelingen om de kwaliteit van datapunten
te meten en verwijdert datapunten die een lage waarde hebben voor deze maat.
In Hoofdstuk 8 benaderen we het probleem op een andere manier: in plaats van
datapunten te verwijderen die een lage waarde hebben voor de kwaliteitsmaat
brengen we ze minder in rekening tijdens de classificatie. We gebruiken de
Fuzzy Nearest Neighbor (FNN, [87]) methode als uitgangspunt. FNN verbetert
KNN classificatie door de afstand tussen de nieuwe datapunten en hun dicht-
ste buren in rekening te brengen. We stellen een nieuwe classificatietechniek
voor, Fuzzy Rough Positive Nearest Neighbor (POSNN) die FNN uitbreidt door
ook de kwaliteit van de datapunten in rekening te brengen. We breiden deze
methode verder uit naar de Quality Frequency and Similarity (QFSNN) classi-
ficatietechniek die de mate waarin de verschillende componenten in rekening
worden gebracht tijdens de classificatie automatisch bepaalt. Een experimentele
evaluatie toont aan dat POSNN FNN significant verbetert, de verbetering door
QFSNN is niet significant.



Summary

One of the most important fields of data mining is classification. Given train
data consisting of instances for which conditional feature values and class labels
are known, classification techniques aim to predict the class labels of new test
instances for which only the conditional feature values are known.
In many real-world situations, the data obtained is not used directly for clas-
sification of new instances but is first subjected to a preprocessing step. One
preprocessing technique that has been studied extensively is Feature Selection
(FS), where redundant and misleading features are removed. In this dissertation
we focus on instance selection, the complimentary technique of FS. Instance
selection preprocesses the data by selecting a subset of instances as train data.
The goal of instance selection is twofold: on the one hand the performance of
the classifier applied afterwards can be improved by removing noisy instances,
while on the other hand the computational time required for the training and
classification process can be reduced.
In this dissertation we focus on instance selection for two classifiers: K Nearest
Neighbors (KNN) and Support Vector Machines (SVM). When instance selection
is used in the context of KNN, we refer to it as Prototype Selection (PS), in the
context of SVMs we refer to instance selection as Training Set Selection (TSS).
The techniques for instance selection that we study in this dissertation rely on
two models, evolutionary algorithms and fuzzy rough set theory. Using evolu-
tionary algorithms to approach instance selection has been studied extensively in
the literature. Many methods have been proposed and experimental studies have
shown that these techniques are the most accurate among the state-of-the-art
[55]. On the other hand, instance selection based on fuzzy rough set theory is
yet unexplored. Only one method has been proposed [80]but it does not perform
as well as the best state-of-the-art techniques.
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Motivated by the good performance of evolutionary algorithms for instance
selection and by the fact that fuzzy rough set theory has proven to be useful in
other data mining fields, we focus on these models and their hybridization in
this dissertation.
Fuzzy rough set theory [29, 45, 46] is the hybridization of rough set theory
[124] and fuzzy set theory [181] and approximates concepts by means of the
lower and upper approximation. The traditional definition of fuzzy rough sets is
based on the strict minimum and maximum operators, which causes robustness
problems: small changes in the data can result in large changes in the lower and
upper approximation membership values. This lack of robustness is particularly
inconvenient when working with real-world data sets, as they may contain noisy
or mislabeled instances. In Chapter 2 we deal with this problem by introducing
a new robust fuzzy rough set model, called Ordered Weighted Average (OWA,
[176]) fuzzy rough sets. By replacing the minimum and maximum operators by
their more general OWA counterparts, we obtain a fuzzy rough set model that is
robust against both class and attribute noise.
All fuzzy rough set theory based techniques proposed in this dissertation are
based on the OWA fuzzy rough set model. In Chapter 3 we introduce a new fuzzy
rough PS technique, called Fuzzy Rough Prototype Selection (FRPS). The main
idea of FRPS is that instances that have a high membership degree to the lower
and upper approximation of their own class are most useful for classification.
These instances are close to instances from their own class and distant from
instances from different classes. An experimental evaluation shows that using
the OWA fuzzy rough lower approximation is most suited to model the quality of
instances. The FRPS algorithm orders the instances according to this quality mea-
sure and automatically determines a good threshold to decide which instances to
remove from the data, based on the 1NN train accuracy of candidate thresholds
and their corresponding prototype subsets. An experimental evaluation shows
that the FRPS algorithm significantly outperforms the state-of-the-art in PS, and
moreover, FRPS is faster than the best state-of-the-art PS techniques.
In Chapter 4 we study if FRPS can be further enhanced using FS. Applying FRPS
and FS subsequently can cause problems as FRPS might remove instances that
are relevant for the FS process, or as FS might remove features that are important
for the FRPS algorithm. Therefore, we propose a technique that carries out FRPS
and FS simultaneously, called SIM-FRPS-SSGA. This technique carries out a
Steady State Genetic FS Algorithm (FS-SSGA), and applies FRPS at certain stages
of this FS process. We experimentally demonstrate that SIM-FRPS-SSGA signif-
icantly outperforms its components FRPS and FS-SSGA, that is, the FRPS and
FS-SSGA algorithm reinforce each other. We also conclude that SIM-FRPS-SSGA
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performs better than applying subsequent FS and PS.
In Chapter 3 and Chapter 4 we focus on improving 1NN classification, in Chapter
5 we extend this to SVM classification. We adjust the evolutionary PS techniques
and FRPS for SVMs by replacing the evaluation function in the respective algo-
rithms. The FRPS algorithm assesses the quality of candidate prototype subsets
by calculating the train accuracy using the 1NN classifier, the FRPS algorithm
for SVM replaces this 1NN classifier by SVM. The same strategy is applied to the
evolutionary algorithms: the train accuracy component in the fitness function is
now calculated using the SVM classifier. This process can also be applied to the
techniques that combine FS with PS, proposed in Chapter 4. An experimental
evaluation shows that evolutionary TSS performs well and can improve SVM
classification significantly. Combining TSS with FS does not improve the perfor-
mance of SVMs, due to the fact that FS deteriorates the SVM classification.
The main drawback of evolutionary PS techniques are their high computational
requirements. Only by evaluating and improving many generations of candidate
prototype subsets, good accuracy rates are achieved. In Chapter 6 we focus
on this problem and propose a classifier called Generational Genetic Algorithm
Ensemble (GGA-ENS) based on evolutionary PS that requires less evaluations
to achieve higher accuracy rates. We start from the idea that during the course
of evolutionary PS algorithms, many good candidate prototype subsets are en-
countered. The GGA-ENS classifier exploits this idea by using more than one
prototype subset for the final classification. The Generational Genetic Algorithm
(GGA) for PS is carried out, the best prototype subsets are kept track of and the
most diverse among them are selected. In order to classify a new instance, its
neighbors are classified using these prototype subsets. Each prototype subset
gets a weight according to this classification. Prototype subsets that can clas-
sify the nearest neighbors of the test instances well get a high weight. Then,
the prototype subsets are used in a weighted voting process to classify the test
instance. An experimental evaluation shows that GGA-ENS outperforms GGA,
and moreover, it achieves high accuracy rates for less evaluations of the genetic
algorithm.
In Chapter 7 we evaluate FRPS on imbalanced datasets, these are datasets where
at least one class is substantially outnumbered by the other classes. We show that
FRPS can be enhanced for imbalanced datasets by replacing the train accuracy
measure by the Adjusted Area Under the Curve (AAUC) measure, an evaluation
measure developed for imbalanced data. We call this method Fuzzy Rough Im-
balanced Prototype Selection (FRIPS). We study the behavior of FRIPS and FRPS
in combination with the Synthetic Minority Over Sampling TEchnique (SMOTE,
[23]), a preprocessing technique for imbalanced datasets that introduces artificial
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minority instances in order to balance the dataset. We consider different settings
where FRIPS is used to clean the data before applying SMOTE and where FRPS is
used to clean the data after applying SMOTE. An experimental evaluation shows
that applying SMOTE and FRPS subsequently outperforms the state-of-the-art in
SMOTE-based preprocessing techniques for imbalanced data.
The FRPS technique uses fuzzy rough set theory to assess the quality of instances,
and removes instances of low quality. In Chapter 8 we take a different approach:
instead of removing low-quality instances, we give them a lower weight. We use
the Fuzzy Nearest Neighbor (FNN, [87]) method as starting point. This method
improves KNN classification by taking the distance between the target test in-
stance and its nearest neighbors into account. We propose a classifier called
Fuzzy Rough Positive Region based Nearest Neighbor (POSNN) that extends
FNN by additionally taking the quality of instances into account, using the FRPS
quality measure. We further enhance this method to the Quality, Frequency
and Similarity (QFSNN) classifier, that tunes the extent to which the separate
components are taken into account. An experimental evaluation shows that
POSNN significantly outperforms FNN, while for QFSNN the improvement is not
significant.
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[3] ALCALÁ, J., FERNANDEZ, A., LUENGO, J., DERRAC, J., GARCÍA, S.,
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