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Samenvatting

Datamining en patroonherkenning zijn wetenschappelijke domeinen die patronen herkennen in

grote datasets. Toepassingen hiervan zijn bijvoorbeeld symptomen associëren met bepaalde ziektes

in de medische wetenschappen en consumentengedrag in de sociale wetenschappen. Grote datasets

zijn echter onhandig om mee te werken. We willen deze informatie beperken, maar zodanig dat de

resultaten hetzelfde zijn. Gegevensreductie zoekt naar goede algoritmen om dit te doen. We willen

een minimale verzameling van relevante attributen verkrijgen. Vaagruwverzamelingen kunnen

helpen in het ontwerpen van deze algoritmen.

In ruwverzamelingenleer (Pawlak [50], 1982) benaderen we een onvolledig gekend con-

cept: de onderbenadering bevat deze objecten die zeker aan het concept voldoen, terwijl de

bovenbenadering de objecten bevat die mogelijk aan het concept voldoen. Daarnaast is vaagverza-

melingenleer (Zadeh [67], 1965) een uitbreiding van de klassieke verzamelingenleer, in die zin

dat een object in een zekere mate aan een concept voldoet. Meestal wordt dit beschreven door een

getal tussen 0 en 1.

Dubois en Prade ([19, 20], 1990) combineerde als eerste deze twee theorieën. Door de

mogelijkheden die vaagruwverzamelingen bieden aan gegevensreductie, winnen ze aan interesse

bij onderzoekers. Eén van de uitdagingen is om robuuste modellen te ontwerpen, sinds de data

waarmee we werken vaak ruis bevatten.

In deze thesis geven we een overzicht van de verschillende modellen in de literatuur die

gebaseerd zijn op vaagruwverzamelingen. We onderzoeken hun eigenschappen en illustreren hoe

we ze kunnen gebruiken in gegevensreductie.

In Hoofdstuk 2 bespreken we het model van Pawlak voor een equivalentierelatie en voor

een algemene binaire relatie. We bestuderen het variable precision rough set model van Ziarko

en de vaagverzamelingenleer van Zadeh. Verder bespreken we vaaglogische operatoren en hun

eigenschappen en we vermelden enkele resultaten in verband met vaagrelaties.

In Hoofdstuk 3 geven we een overzicht van de bestaande vaagruwmodellen in de literatuur.

We beginnen met het model van Dubois en Prade en geven de werkwijzen van Yao ([65]) en Wu et

al. ([62, 63]) die ons meer inzicht geven in het model van Dubois en Prade. Daarna introduceren

we een algemeen vaagruwmodel gebaseerd op een implicator en een conjunctor:

Definitie 1. Veronderstel dat A een vaagverzameling is in (U , R), met R een algemene vaagrelatie.
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Stel I een implicator en C een conjunctor. De (I ,C )-vaagruwbenadering van A is het paar van

vaagverzamelingen (R↓IA, R↑CA) zodat voor x ∈ U:

(R↓IA)(x) = inf
y∈U
I (R(y, x), A(y)),

(R↑CA)(x) = sup
y∈U
C (R(y, x), A(y)).

Dit model veralgemeent het model van Dubois en Prade en omvat veel vaagruwmodellen uit

de literatuur. Vervolgens bestuderen we verfijningen van het algemene vaagruwmodel. Tenslotte

bespreken we zes vaagruwmodellen die robust zijn ten opzichte van ruis in de data.

In Hoofdstuk 4 bespreken we de eigenschappen van de modellen uit Hoofdstuk 3. We vragen

ons af of de eigenschappen van het scherpe model van Pawlak nog steeds gelden. We willen

vooral weten of een model monotoon is wanneer we verschillende relaties beschouwen en of de

onderbenadering bevat is in de verzameling zelf. Deze twee eigenschappen zijn belangrijk als we

vaagruwmodellen willen gebruiken in gegevensreductie.

In het volgende hoofdstuk bespreken we de benaderingsoperatoren op een axiomatische

manier. De operatoren voldoen aan een zeker axioma als en slechts als de relatie waarmee ze

gedefinieerd zijn reflexief, symmetrisch of transitief is. Vervolgens bestuderen we duale paren voor

een involutive negator en T -gekoppelde paren voor een linkscontinue t-norm. We eindigen met

een overzicht van axiomatische werkwijzen in de literatuur.

In Hoofdstuk 6 passen we vaagruwverzamelingenleer toe in gegevensreductie. We bespreken

eerst the concepten van gegevensreductie voor modellen gebaseerd op ruwverzamelingenleer,

waaronder de algoritmen ‘QuickReduct’ en ‘ReverseReduct’. Daarna breiden we deze concepten

uit tot vaagruwverzamelingenleer. We bespreken hoe we positieve gebieden, randgebieden en

onderscheidbaarheidsfuncties kunnen gebruiken om beslissingsreducten te vinden. Vervolgens be-

spreken we twee reductiealgoritmen: één gebaseerd op het model van Dubois en Prade, het andere

gebaseerd op het algemene vaagruwmodel met een linkscontinue t-norm en zijn R-implicator. We

vermelden ook enkele interessante relaties tussen verschillende reducten. We sluiten dit hoofd-

stuk af met een kort overzicht uit de literatuur over het gebruik van vaagruwverzamelingen in

gegevensreductie.

Conclusies en open problemen worden besproken in Hoofdstuk 7.



Resume

Data mining and pattern recognition are domains in science that want to discover patterns in

large datasets. Applications can be found in, for instance, medical science (e.g., what symptoms

describe a certain disease) and social sciences (e.g., behaviour of consumers). Large datasets are

difficult to work with, we want to reduce the information in such a way that the results are still

the same. Feature selection searches for good algorithms to reduce the datasets, i.e., we want to

find a minimal set of relevant attributes. Fuzzy rough set theory can help to find such algorithms.

Rough set theory (Pawlak [50], 1982) characterises a concept A by means of a lower and upper

approximation. The lower approximation contains those objects that certainly fulfil A, while the

upper approximation contains the objects that possibly fulfil A. On the other hand, fuzzy set theory

(Zadeh [67], 1965) extends classical set theory in the sense that objects fulfil a concept in a certain

degree.

Dubois and Prade ([19, 20], 1990) were the first to combine these two theories and many

followed. Due to the potential of fuzzy rough set theory in machine learning and, in particular,

feature selection, fuzzy rough set theory gains more and more interest. A big challenge is to find

robust fuzzy rough set models that can deal with noise in the data.

In this thesis we give an overview of different fuzzy rough set models in the literature and their

properties and we illustrate how we can use them in feature selection.

In the second chapter we recall the rough set model designed by Pawlak for an equivalence

relation and a general binary relation. We discuss the variable precision rough set model of Ziarko

and fuzzy set theory introduced by Zadeh. Further, we discuss fuzzy logical operators and their

properties and we recall some notions about fuzzy relations.

In Chapter 3, we give an overview of existing fuzzy rough set models in the literature. We

start with the model designed by Dubois and Prade. The approaches of Yao ([65]) and Wu et al.

([62, 63]) give us more insight in Dubois and Prade’s model. Next, we introduce a general fuzzy

rough set model based on an implicator and a conjunctor:

Definition 1. Let A be a fuzzy set in a fuzzy approximation space (U , R), with R a general fuzzy

relation. Let I be an implicator and C a conjunctor. The (I ,C )-fuzzy rough approximation of A is

v
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the pair of fuzzy sets (R↓IA, R↑CA) such that for x ∈ U:

(R↓IA)(x) = inf
y∈U
I (R(y, x), A(y)),

(R↑CA)(x) = sup
y∈U
C (R(y, x), A(y)).

This model extends the model of Dubois and Prade and covers a lot of fuzzy rough set models

studied in the literature. We continue with tight and loose approximation operators. They refine

the general fuzzy rough set model. To end we discuss six fuzzy rough set models that are designed

to deal with noisy data.

In Chapter 4, we discuss the properties of the general fuzzy rough set model, the tight and

loose approximation operators and the robust fuzzy rough set models. We study if the properties of

Pawlak’s rough set model still hold. Among other things, we want to know if a model is monotone

with respect to fuzzy relations and if the lower approximation of a set is included in the set

itself. These two properties will be important if we want to use fuzzy rough set models in feature

selection.

In the next chapter, we characterise an upper and lower approximation operator with axioms.

The approximation operators fulfil a certain axiom if and only if a fuzzy relation is reflexive,

symmetric or transitive. Next, we study dual pairs with respect to an involutive negator N and

T -coupled pairs with respect to a left-continuous t-norm T . We end with an overview of axiomatic

approaches in the literature.

In Chapter 6, we apply fuzzy rough set theory to feature selection. We first recall the concepts

of feature selection in crisp rough set analysis. We discuss the QuickReduct and ReverseReduct

algorithm. We continue with extending the concepts of feature selection in rough set analysis

to fuzzy rough set analysis. We discuss how we can use positive regions, boundary regions and

discernibility functions to find decision reducts. Next, we discuss two reduction algorithms based

on the model of Dubois and Prade and the general fuzzy rough set model with a t-norm and its

R-implicator. We state some interesting relations between different reducts. To end, we give a brief

overview of fuzzy rough feature selection in the literature.

We conclude and outline future work in Chapter 7.
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Chapter 1

Introduction

Nowadays, information is everywhere. Due to internet and smartphones, we can search for

anything, everywhere. But is all this information relevant?

Not only in everyday life our information pool becomes bigger and bigger, databases in science

and technology research also grow. Not only in the rows, i.e., the amount of objects observed, but

also in the columns, i.e., the attributes we use to describe the objects. Not all these attributes are

relevant. Big datasets are difficult to store and to understand. Feature selection is an important

domain in research. The goal is to find good algorithms to select a minimal set of relevant attributes.

We want maximal information content and minimal data storage.

Fuzzy rough set theory turns out to be a good technique to develop such algorithms. Since the

late 80’s, a lot of research on hybridisation of rough sets and fuzzy sets has been carried out.

Rough set theory (Pawlak [50], 1982) is a mathematical theory in which we want to approxi-

mate an uncertain concept. The lower approximation of a concept A contains those objects that

certainly fulfil the concept, while the upper approximation of A contains the objects that possibly

fulfil the concept. We divide the objects by their indiscernibility towards each other. Rough set the-

ory is a common theory used in feature selection. We want to determine one or all decision reducts.

A decision reduct is a minimal subset B of attributes such that objects that belong to different

decision classes and that are discernible by all the attributes are still discernible by the attributes in

B. We discover decision reducts by keeping the positive region of the data invariant or by reducing

the discernibility function. To construct the positive region, we use the lower approximation of the

decision classes with respect to the B-indiscernibility relation, i.e., an equivalence relation based

on the attributes in B.

Problems arise when we have to deal with real-valued or quantitative attributes. Discretising

data can lead to information loss. A possible solution is to introduce fuzzy set theory into feature

selection.

Fuzzy set theory (Zadeh [67], 1965) is an extension of classical set theory. We use it when we

deal with vague infomation. In classical set theory, an object fulfils a concept or it does not fulfil

1



CHAPTER 1. INTRODUCTION 2

the concept. It is ‘yes’ or ‘no’, ‘1’ or ‘0’. However, in everyday life, nothing is binair. For example,

when do you decide a person is old? Or tall? Or beautiful? Fuzzy set theory gives us the possibility

to grade objects, i.e., an object belongs to a concept in a certain degree.

Combining these two theories leads to very interesting results that we can use in feature

selection. Dubois and Prade ([19, 20], 1990) were the first to construct a fuzzy rough set model

and after them, many followed. Since we sometimes deal with data that contains errors, robust

models can be very useful. Robust fuzzy rough set models ensure that small changes in the data do

not result in big changes in the output. The need for robust crisp rough set models was already

stated by Ziarko ([71], 1993).

Feature selection is an important application of this hybrid theory. As in rough set feature

selection, we use fuzzy rough set models to construct positive regions and dependency degrees to

find one reduct or discernibility functions that gives us all reducts. With these techniques, we can

omit irrelevant information and obtain a more workable dataset.

The goal of this thesis is to give an overview of different fuzzy rough set models in the

literature and how we can use them for feature selection. We start with some preliminary notions

in Chapter 2. In Chapter 3 we give an overview of different fuzzy rough set models and we study

their properties in Chapter 4. In Chapter 5, we approach fuzzy rough sets in an axiomatic way.

This will give us more insight. In Chapter 6 we illustrate how we can apply some of the models of

Chapter 3 in feature selection. Conclusions and future work are stated in Chapter 7.



Chapter 2

Preliminaries

In this chapter we present the two keystones of this work. We start with the study of rough sets

proposed by Zdzisław Pawlak, followed by the study of fuzzy sets proposed by Lotfi Zadeh. We also

discuss the variable precision rough set model of Ziarko. Further, we study fuzzy logical operators

and their properties and fuzzy relations.

2.1 Rough sets

We begin with rough sets introduced by Zdzisław Pawlak (Pawlak [50], 1982). We use them when

we deal with insufficient and incomplete information. The basic idea is to construct a lower and an

upper approximation of a given subset A of the universe U given an indiscernibility relation R on U .

We assume the universe U to be non-empty and finite. If U is infinite, we will explicitly mention it.

We want to study if an element x in U is discernible from the elements in A (see e.g. [13]).

This decision is based on the type of indiscernibility relation R on the universe U (R ⊆ U × U).

The definitions of the lower and upper approximation of the set A depend on the relation R. The

pair (U , R) is called an approximation space. Pawlak studied approximations under an equivalence

relation. However, his theory can easily be generalised for general binary relations.

Ziarko designed a rough set model that is more robust than the model of Pawlak. As we will

see, the model of Pawlak is a special case of the variable precision rough set model of Ziarko.

We begin with the rough set theory of Pawlak.

2.1.1 Pawlak approximation space

When the relation R is an equivalence relation, we call the pair (U , R) a Pawlak approximation

space.

Definition 2.1.1. An equivalence relation R on a universe U is a subset of U × U such that the

following properties are fulfilled:

3
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1. reflexivity, i.e., for all x in U it holds that (x , x) ∈ R,

2. symmetry, i.e., for all x and y in U it holds that (x , y) ∈ R⇔ (y, x) ∈ R,

3. transitivity, i.e., for all x , y and z in U it holds that if (x , y) ∈ R and (y, z) ∈ R, then

(x , z) ∈ R.

With x in U , the subset [x]R = {y ∈ U | (x , y) ∈ R} of U is called the equivalence class of x

with respect to R.

Next, we define the lower and upper approximation of a set A in a Pawlak approximation

space (U , R) ([50]).

Definition 2.1.2. Let A be a subset in U , R an equivalence relation on U and x ∈ U . We define the

lower approximation R↓A of A as

x ∈ R↓A⇔ [x]R ⊆ A

⇔ (∀y ∈ U)
�

(x , y) ∈ R⇒ y ∈ A
�

and the upper approximation R↑A of A as

x ∈ R↑A⇔ [x]R ∩ A 6= ;

⇔ (∃y ∈ U)
�

(x , y) ∈ R∧ y ∈ A
�

.

The lower approximation of A contains x if and only if its equivalence class [x]R is included

in A. The upper approximation of A contains x if and only if its equivalence class [x]R has a

non-empty intersection with A. This means that the lower approximation is the set of elements

which necessarily satisfy the concept A (strong membership) and the upper approximation is the

set of elements which possibly satisfy the concept A (weak membership) (see e.g. [13]). Both the

lower approximation and the upper approximation of A are subsets of U .

We give a graphical example. Consider the universe U depicted in Figure 2.1 and a subset A⊆ U .

We have a partition of the universe by equivalence classes determined by the equivalence relation R.

These equivalence classes are represented by the squares in the grid. The lower approximation is

represented by the light grey squares, the upper approximation is the area inside the thick black

line.
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upper approximation of A boundary region

set A

lower approximation of A

U

Figure 2.1: The lower and upper approximation of a set A

We now list some properties of rough sets. Every time we consider a new model, we will study

which properties still hold in that model, or which assumptions we have to make to fulfil a given

property (see Chapter 4).

Proposition 2.1.3. Let A and B be subsets in U and R an equivalence relation on U . Table 2.1

shows which properties are fulfilled.

We see that even in a Pawlak approximation space R↑(A∩ B) = R↑A∩ R↑B and R↓(A∪ B) =
R↓A∪ R↓B do not hold. We illustrate this with a graphical example in Figures 2.2 and 2.3. In

Figure 2.2, we see that R↑(A∩ B) is empty, while R↑A∩ R↑B is given by the grey area.

set A

set B

U

Figure 2.2: R↑(A∩ B)( R↑A∩ R↑B

In Figure 2.3, the grey area is included in R↓(A∪ B), but not in R↓A∪ R↓B.
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Name Property

Duality R↓A= (R↑Ac)c

R↑A= (R↓Ac)c

Inclusion R↓A⊆ A

A⊆ R↑A

Monotonicity of sets A⊆ B⇒ R↓A⊆ R↓B
A⊆ B⇒ R↑A⊆ R↑B

Monotonicity of relations R1 ⊆ R2⇒ R2↓A⊆ R1↓A
R1 ⊆ R2⇒ R1↑A⊆ R2↑A

Intersection R↓(A∩ B) = R↓A∩ R↓B
R↑(A∩ B)⊆ R↑A∩ R↑B

Union R↓(A∪ B)⊇ R↓A∪ R↓B
R↑(A∪ B) = R↑A∪ R↑B

Idempotence R↓(R↓A) = R↓A
R↑(R↑A) = R↑A

; and U R↓;= ;= R↑;
R↓U = U = R↑U

Table 2.1: Properties in a Pawlak approximation space

set A

set B

U

Figure 2.3: R↓(A∪ B)) R↓A∪ R↓B

2.1.2 Generalised approximation space

Pawlak approximation spaces have been generalised, since in many applications we only have

a binary relation R on U (R ⊆ U × U), which has fewer properties. When we deal with general

binary relations, we do not speak about equivalence classes, but about R-foresets and R-aftersets.
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The R-foreset of an element y in U is the subset

Ry = {x ∈ U | (x , y) ∈ R} ⊆ U (2.1)

and the R-afterset of an element x in U is the subset

xR= {y ∈ U | (x , y) ∈ R} ⊆ U . (2.2)

An equivalence relation on the universe U induces a partition of U . This means that two

equivalence classes either coincide or are disjoint. If R is not an equivalence relation, it can occur

that the R-foresets overlap. Furthermore, it is clear that if R is an equivalence relation, it holds

that Rx = [x]R = xR for all x in U .

We consider some special binary relations besides an equivalence relation: a binary relation R

that has the property of being reflexive, is called a reflexive relation and a relation R that is both

reflexive and symmetric is called a tolerance relation.

When R is an arbitrary binary relation, we work in a generalised approximation space (U , R)
instead of a Pawlak approximation space. Below, we give the definition of the lower and upper

approximation of a subset A in a generalised approximation space (U , R). The lower and upper

approximation of A are again subsets of U .

Definition 2.1.4. Let A be a subset in U and R a binary relation on U . An element x ∈ U belongs

to the lower approximation R↓A of A if and only if Rx is a subset of A, i.e.,

x ∈ R↓A⇔ Rx ⊆ A

⇔ (∀y ∈ U)((y, x) ∈ R⇒ y ∈ A)

and x belongs to the upper approximation R↑A of A if and only if Rx intersects A, i.e.,

x ∈ R↑A⇔ Rx ∩ A 6= ;

⇔ (∃y ∈ U)((y, x) ∈ R∧ y ∈ A).

It is clear that when R is an equivalence relation, this definition coincides with Definition 2.1.2.

We study the properties of the lower and upper approximation in a generalised approximation

space.

Proposition 2.1.5. Let A and B be subsets in U and R a binary relation on U . The properties of

duality, monotonicity of sets, monotonicity of relations, intersection, union, ; and U still hold

(see Table 2.1). However, the inclusion property only holds if R is reflexive. For the property of

idempotence, we have that R↓(R↓A) = R↓A and R↑(R↑A) = R↑A if R is reflexive and transitive.

To conclude, we list definitions that are applicable in both a Pawlak and a generalised approxi-

mation space. We also give a formal definition of a rough set.
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Definition 2.1.6. We call a pair (A1, A2) in an approximation space (U , R) a rough set, if there is a

subset A of U such that R↓A= A1 and R↑A= A2.

If we have the lower and upper approximation of a set A, we can also obtain the boundary

region of A. It contains the elements of U for which we cannot say with certainty if they belong to

A or to its complement Ac.

Definition 2.1.7. We call the set R↑A\ R↓A the boundary region of a set A in (U , R).

The boundary region is marked by the dark grey squares in Figure 2.1. If the boundary region

of a set A is empty, we call A a definable set.

Definition 2.1.8. When the lower and upper approximation of a set A in an approximation space

(U , R) are the same, i.e., R↓A= R↑A, we call the set A definable.

We continue with the variable precision rough set model of Ziarko.

2.1.3 Variable precision rough sets

The original model designed by Pawlak has strict definitions, it does not allow misclassification.

Changing one element can lead to drastic changes in the lower and upper approximation. The

variable precision rough set model proposed by Ziarko (Ziarko [71], 1993) is designed to include

tolerance to noisy data. In this model, we allow some misclassification. To do this, we generalise

the standard set inclusion.

Let A and B be non-empty subsets of the universe U . In the classical definition of set inclusion,

there is no room for misclassification, i.e., A is only included in B (A⊆ B) if all elements of A belong

to B. There is no distinction between sets that are more included in B than others. We introduce

the measure to evaluate the relative degree of misclassification of a set A with respect to a set B.

Definition 2.1.9. Let A and B be subsets of U . The measure c(A, B) of the relative degree of

misclassification of the set A with respect to the set B is defined by

c(A, B) =







1− |A∩B|
|A| if A 6= ;,

0 if A= ;,

where |A| denotes the cardinality of the set A.

We also call c(A, B) the relative classification error and c(A, B) · |A| the absolute classification

error. The more elements A and B have in common, the lower the relative degree of misclassification.

So, if A is included in B according to the classical definition of inclusion, then c(A, B) = 0. Based on

the measure c(A, B), we can characterise the classical inclusion of A in B without explicitly using a

quantifier:

A⊆ B if and only if c(A, B) = 0.

We can extend this in a natural way to the majority inclusion relation ([71]).
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Definition 2.1.10. Given 0 ≤ β < 0.5 and A, B ⊆ U . We define the majority inclusion relation

between A and B as

A
β

⊆ B if and only if c(A, B)≤ β .

We obtain the standard set inclusion (or total inclusion) for β = 0. We also have the notion of

the rough membership function.

Definition 2.1.11. Let R be a binary relation on U . For A ⊆ U and x ∈ U we define the rough

membership function RA of A as

RA(x) = 1− c(Rx , A) =







|Rx∩A|
|Rx | Rx 6= ;

1 Rx = ;.

The rough membership RA(x) quantifies the degree of inclusion of Rx into A and can be

interpreted as the conditional probability that x belongs to A, given its foreset Rx .

Ziarko worked in a Pawlak approximation space, but we can also introduce the model in a

generalised approximation space. We work with asymmetric boundaries as proposed by Katzberg

and Ziarko ([38]).

Definition 2.1.12. Let A be a subset in U , R a binary relation on U and x ∈ U . With 0≤ l < u≤ 1

we define the lower approximation R↓uA of A as

x ∈ R↓uA⇔ RA(x)≥ u

and the upper approximation R↑lA of A as

x ∈ R↑lA⇔ RA(x)> l.

When u = 1− l, we speak of a symmetric variable precision rough set model (VPRS). The

original VPRS model proposed by Ziarko was based on an equivalence relation R and assumed

0 ≤ l < 0.5 and u = 1− l. With u = 1 and l = 0, we obtain the original rough set model of

Definition 2.1.4.

Let us illustrate Ziarko’s model ([71]).

Example 2.1.13. Let U = {y1, . . . , y20} and let R be an equivalence relation on U such that

[y1]R = {y1, y2, y3, y4, y5},

[y6]R = {y6, y7, y8},

[y9]R = {y9, y10, y11, y12},

[y13]R = {y13, y14},

[y15]R = {y15, y16, y17, y18},

[y19]R = {y19, y20}.
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Let A be the crisp set {y4, y5, y8, y14, y16, y17, y18, y19, y20}. We compute the lower approximation

of A for u= 1 and u= 0.75.

Take x ∈ U . If u= 1, then x ∈ R↓1A if and only if [x]R ⊆ A. This only holds for [y19]R, so we

derive that

R↓1A= [y19]R = {y19, y20}.

On the other hand, if u= 0.75, then x ∈ R↓0.75A if and only if

|[x]R ∩ A|
|[x]R|

≥ 0.75.

Of course this holds for [y19]R. Let us check this condition for the other equivalence classes:

|[y1]R ∩ A|
|[y1]R|

=
2

5
< 0.75,

|[y6]R ∩ A|
|[y6]R|

=
1

3
< 0.75,

|[y9]R ∩ A|
|[y9]R|

=
0

4
< 0.75,

|[y13]R ∩ A|
|[y13]R|

=
1

2
< 0.75,

|[y15]R ∩ A|
|[y15]R|

=
3

4
≥ 0.75.

We see that the condition also holds for [y15]R. Hence,

R↓0.75A= [y15]R ∪ [y19]R = {y15, y16, y17, y18, y19, y20}.

This lower approximation contains more elements of A than R↓1A.

As previous example already showed, the lower approximation is not necessarily included in A.

Next proposition gives the properties that hold in the asymmetric VPRS model.

Proposition 2.1.14. Let A and B be subsets in U and R a binary relation on U . In the model

defined in Definition 2.1.12, the monotonicity of sets holds, i.e., if A⊆ B, then

R↓uA⊆ R↓uB,

R↑lA⊆ R↑l B.

Furthermore, it holds that
R↓u(A∩ B)⊆ R↓uA∩ R↓uB,

R↑l(A∩ B)⊆ R↑lA∩ R↑l B,

R↓u(A∪ B)⊇ R↓uA∪ R↓uB,

R↑l(A∪ B)⊇ R↑lA∪ R↑l B.
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For the empty set and the universe, the following results hold:

R↓u;= ;= R↑l;,

R↓uU = U = R↑l U .

The other properties of Table 2.1 do not hold in general.

In the special case of Ziarko’s original model, some extra properties hold.

Proposition 2.1.15. Let A be a subset in U and R a binary relation on U and assume l = 1− u,

0≤ l < 0.5. Besides the properties from Proposition 2.1.14, we have the following equalities:

R↓uA= (R↑lA
c)c,

R↑lA= (R↓uAc)c,

i.e., the duality property holds. We also have the following inclusions:

R↓uA
l
⊆ A,

R↓uA⊆ R↑lA.

The inclusion A
u
⊆ R↑lA does not hold in general.

Example 2.1.16. Let U = {y1, . . . , y20} and let R be an equivalence relation on U such that

[y1]R = {y1, y2, y3, y4, y5},

[y6]R = {y6, y7, y8, y9, y10},

[y11]R = {y11, y12, y13, y14, y15},

[y16]R = {y16, y17, y18, y19, y20}.

Let A be the crisp set {y4, y5, y7, y8, y14, y16, y17, y18} and let l = 0.4, u = 0.6. We compute the

upper approximation R↑0.4A. Since

|[y1]R ∩ A|
|[y1]R|

=
2

5
≤ 0.4,

|[y6]R ∩ A|
|[y6]R|

=
2

5
≤ 0.4,

|[y11]R ∩ A|
|[y11]R|

=
1

5
≤ 0.4,

|[y16]R ∩ A|
|[y16]R|

=
3

5
> 0.4,

the upper approximation of A is R↑0.4A= [y16]R. We have that A
0.6
⊆ R↑0.4A if and only if

1−
|A∩ R↑0.4A|
|A|

≤ 0.6.
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Now, because |A∩R↑0.4A|
|A| = 3

8
= 0.375, we have that 1− 0.375 = 0.625, which is greater than 0.6.

Hence, A
0.6
* R↑0.4A.

We continue with fuzzy set theory by Zadeh.

2.2 Fuzzy sets

In this section we recall some notions about fuzzy set theory, developed to model imprecise

information and vagueness. Next, we discuss fuzzy logical operators and we end with some notions

about fuzzy relations.

2.2.1 Fuzzy sets

Set theory is the basis of (classical) logic. If we work in a universe U , and we have a property A,

we may decide for every element x in U whether it satisfies property A or not. For instance, we

can say about a piece of fruit if it is an apple or not. Formally, we can denote the property A as a

function χA from the universe U to the set {0,1}:

χA : U → {0,1}.

We call A a crisp set or an ordinary set. The function χA is called the characteristic function of A,

where χA(x) = 1 if x belongs to A (x satisfies property A) and χA(x) = 0 otherwise. A concept A

can be considered as a subset of the universe U (A⊆ U). The set of all subsets of U is denoted by

P (U).
In reality however, not everything can be decided in terms of black or white. For instance,

consider the linguistic terms which we use to describe the height of a human being. There is no

strict way to tell if somebody is tall or not. A man of height 1m80 is taller than a man of height

1m65, but he is not as tall as a man of height 1m95. In general, it is not possible to fix a threshold

height for being tall. We cannot describe the property ‘tall’ with classical set theory.

In 1965, Lotfi Zadeh proposed a solution for this problem: he introduced fuzzy sets (Zadeh

[67], 1965).

Definition 2.2.1. A fuzzy set A in U is a mapping µA : U → [0,1], which we call the membership

function of A. The set of fuzzy sets in U is denoted by F (U). If x is an element of U , we call µA(x)
the membership degree of x in A.

Note that if A is a crisp set in U (i.e., A∈ P (U)), then µA is equal to the characteristic function

χA of A. The set of fuzzy sets F (U) is therefore a superset of the set of subsets P (U):

P (U)⊆F (U).
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Remark 2.2.2. In this work, as in many others, we denote the membership function µA by A. We

also denote [0, 1] by I .

Let α ∈ I . With α̂ we denote the constant (fuzzy) set such that α̂(x) = α for all x ∈ U .

When we work with fuzzy sets, we need to provide generalised definitions of the concepts

given in classical set theory. For example, we define the cardinality of a fuzzy set A by

|A|=
∑

x∈U

A(x).

When A is a crisp set, we obtain the same definition as in classical set theory.

For every fuzzy set, we have the concept of support and kernel. The support of a fuzzy set A is

the crisp set

supp(A) = {x ∈ U | A(x)> 0}.

The kernel of a fuzzy set A is the crisp set

ker(A) = {x ∈ U | A(x) = 1}.

We now extend concepts like empty set, union, intersection, . . . to fuzzy set theory. We study

the extensions proposed by Zadeh.

A fuzzy set A is said to be empty if none of the elements of U belong to it, i.e., A(x) = 0 for

every x ∈ U . We denote the empty set by ;.
When we have two fuzzy sets A and B, we can define their union and intersection. We use the

classical maximum and minimum operator.

Definition 2.2.3. The membership function of the union of two fuzzy sets A and B (denoted by

A∪ B) is given by

∀x ∈ U : (A∪ B)(x) =max{A(x), B(x)}

with max the classical maximum operator.

Definition 2.2.4. The membership function of the intersection of two fuzzy sets A and B (denoted

by A∩ B) is given by

∀x ∈ U : (A∩ B)(x) =min{A(x), B(x)}

with min the classical minimum operator.

When A and B are crisp sets, we obtain the classical union and intersection: for all x in U it

holds that (A∪ B)(x) = 1 if and only if A(x) = 1 or B(x) = 1 (which means that x ∈ A or x ∈ B)

and that (A∩ B)(x) = 1 if and only if A(x) = 1 and B(x) = 1 (which means that x ∈ A and x ∈ B).

The notion of a subset in fuzzy set theory is an extension of the classical definition.
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Definition 2.2.5. We say that a fuzzy set A is contained in a fuzzy set B (or A is a subset of B, or A

is smaller than or equal to B) if and only if A≤ B, i.e.,

∀x ∈ U : A(x)≤ B(x).

We denote this by A⊆ B.

In fuzzy set theory, the complement of A is defined by means of a decreasing function of the

membership function of A. The definition proposed by Zadeh is:

Definition 2.2.6. The complement of a fuzzy set A is the fuzzy set Ac with membership function

defined by

∀x ∈ U : Ac(x) = 1− A(x).

In the crisp case it holds that the union of A and Ac is the entire universe U and the intersection

of A and Ac is the empty set ;. In general, this is not true in fuzzy set theory.

Every fuzzy set A can be associated with two families of crisp sets in U , namely the weak and

strong α-level sets.

Definition 2.2.7. Given α ∈ I , the (weak) α-cut or (weak) α-level set of a fuzzy set A is the crisp

set Aα in U defined by

Aα = {x ∈ U | A(x)≥ α}.

Definition 2.2.8. Given α ∈ I , the strong α-cut or strong α-level set of a fuzzy set A is the crisp set

Aα+ in U defined by

Aα+ = {x ∈ U | A(x)> α}.

Note that the support of A is equal to the strong 0-level set A0+ and that the kernel of A is the

weak 1-level set A1.

When we have a family of weak α-level sets, we can construct the fuzzy set A by

A(x) = sup{α | x ∈ Aα} (2.3)

for all x ∈ U .

We speak about a family of nested subsets (Aα)α, α ∈ I , if

α1 ≤ α2⇒ Aα2
⊆ Aα1

.

We prove the following property of a family of nested subsets.

Proposition 2.2.9. Let {αn | n ∈ N} be a non-decreasing sequence in I (i.e., αi ≤ α j for i ≤ j ∈ N)

such that lim
n→+∞

αn = α, then
∞
⋂

n=1
Aαn
= Aα.
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Proof. Let x ∈ Aα, then for all n ∈ N it holds that A(x) ≥ α ≥ αn. So, x ∈
∞
⋂

n=1
Aαn

. Now, let

x ∈
∞
⋂

n=1
Aαn

. Then we have

∀n ∈ N: x ∈ Aαn

⇒∀n ∈ N: A(x)≥ αn

⇒A(x)≥ sup{αn | n ∈ N}

⇒A(x)≥ α

⇒x ∈ Aα.

This proves the property.

Next, we discuss fuzzy logical operators.

2.2.2 Fuzzy logical operators

In classical logic, the semantics of the conjunction ∧, disjunction ∨, negation ¬, implication →
and coimplication8 are given by well-known truth-functions on the binary truth-value set {0, 1}.
When we work with truth values in [0,1], we need fuzzy logical operators that extend these

logical operators. We introduce in this section conjunctors and triangular norms, disjunctors and

triangular conorms, negators, implicators and coimplicators (see e.g. [13, 53]).

Conjunctors and t-norms, disjunctors and t-conorms

The first fuzzy logical operator we discuss, is the conjunctor, an extension of the conjunction.

Definition 2.2.10. A conjunctor is a mappingC : I2→ I which is non-decreasing in both arguments

and which satisfies the boundary conditions

C (0,0) =C (0, 1) =C (1, 0) = 0 and C (1,1) = 1.

A commutative, associative conjunctor which satisfies C (1, a) = a for all a ∈ I is called a

t-norm and is denoted by T .

Definition 2.2.11. A triangular norm, or t-norm, is a non-decreasing, associative and commutative

mapping T : I2→ I that satisfies the boundary condition

∀a ∈ I : T (a, 1) = a.

It holds that T (0, 0) = T (0, 1) = T (1, 0) = 0 and T (1, 1) = 1 which proves that a t-norm is a

conjunctor.
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Example 2.2.12. We give some examples of t-norms (a, b ∈ I):

• The standard minimum operator TM (a, b) =min{a, b}. This is the largest t-norm.

• The product operator TP(a, b) = a · b.

• The bold intersection or Łukasiewicz t-norm TL(a, b) =max{0, a+ b− 1}.

• The cosine t-norm Tcos(a, b) =max
n

0, ab−
p

(1− a2)(1− b2)
o

.

• The drastic t-norm TD, which is the smallest t-norm and is defined by

TD(a, b) =











b if a = 1

a if b = 1

0 otherwise.

• The nilpotent minimal t-norm TnM :

TnM (a, b) =







min{a, b} if a+ b > 1

0 otherwise.

For every t-norm T we have

∀a, b ∈ I : TM (a, b)≥ T (a, b)≥ TD(a, b).

Because a t-norm is associative, the extension of a t-norm to the n-dimensional case is straight-

forward. We now introduce the notion of a β-precision quasi-t-norm ([56, 57]).

Definition 2.2.13. Let T be a t-norm and β ∈ I . The corresponding β-precision quasi-t-norm Tβ
is a mapping Tβ : In→ I such that for all a= (a1, . . . , an) in In it holds that

Tβ(a) = T (b1, . . . , bn−m)

where bi = a j if a j is the ith greatest element of a and

m=max







i ∈ {0, . . . , n} | i ≤ (1− β)
n
∑

j=1

a j







.

We see that with β = 1 and m= 0 we get the original t-norm T .

When using conjunctors, we can define the C -intersection of two fuzzy sets A and B.

Definition 2.2.14. The C -intersection of two fuzzy sets A and B in U is defined by

∀x ∈ U : (A∩C B)(x) =C (A(x), B(x)).
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We see that the definition of Zadeh is a special case of a C -intersection. He used the t-norm

TM =min.

Secondly, we give the definition of a disjunctor, an extension of the disjunction.

Definition 2.2.15. A disjunctor is a mapping D : I2→ I which is non-decreasing in both arguments

and which satisfies the boundary conditions

D(1,1) = D(0, 1) = D(1,0) = 1 and D(0,0) = 0.

A commutative, associative disjunctor which satisfies D(a, 0) = a for all a ∈ I is called a

t-conorm and is denoted by S .

Definition 2.2.16. A triangular conorm, or t-conorm, is a non-decreasing, associative and commu-

tative mapping S : I2→ I that satisfies the boundary condition

∀a ∈ I : S (a, 0) = a.

Since S (0, 0) = 0 and S (0, 1) = S (1, 0) = S (1, 1) = 1, we see that a t-conorm is a disjunctor.

Example 2.2.17. We give some examples of t-conorms (a, b ∈ I):

• The standard maximum operator SM (a, b) =max{a, b}. This is the smallest t-conorm.

• The probabilistic sum SP(a, b) = a+ b− a · b.

• The bounded sum or Łukasiewicz t-conorm SL(a, b) =min{1, a+ b}.

• The cosine t-conorm Scos(a, b) =min
n

1, a+ b− ab+
p

(2a− a2)(2b− 2b2)
o

.

• The drastic t-conorm SD, which is the greatest t-conorm and is defined by

SD(a, b) =











b if a = 0

a if b = 0

1 otherwise.

For every t-conorm S we have

∀a, b ∈ I : SM (a, b)≤ S (a, b)≤ SD(a, b).

As in the case of t-norms, we can extend t-conorms to the n-dimensional case and define

β-precision quasi-t-conorms.
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Definition 2.2.18. Let S be a t-conorm and β ∈ I . The corresponding β-precision quasi-t-

conorm Sβ is a mapping Sβ : In→ I such that for all a= (a1, . . . , an) in In it holds that

Sβ(a) = S (b1, . . . , bn−m)

where bi = a j if a j is the ith smallest element of a and

m=max







i ∈ {0, . . . , n} | i ≤ (1− β)
n
∑

j=1

(1− a j)







.

With β = 1, m= 0 and we obtain the original t-conorm S .

When using disjunctors, we can define the D-union of two fuzzy sets A and B.

Definition 2.2.19. The D-union of two fuzzy sets A and B in U is defined by

∀x ∈ U : (A∪D B)(x) = D(A(x), B(x)).

Again, Zadeh’s definition of the union is a special case, he used the t-conorm SM =max.

We continue with negators.

Negators

We now consider an extension of the negation.

Definition 2.2.20. A negator N is a non-increasing mapping N : I → I satisfying

N (0) = 1 and N (1) = 0.

We give two examples of negators.

Example 2.2.21. The negator NS(a) = 1− a with a in I is called the standard negator. Another

negator is the Gödel negator

NG(a) =







1 a = 0

0 a ∈ ]0, 1] .

Definition 2.2.22. A negator N is called involutive if and only if for every a ∈ I :

N (N (a)) = a.

It can be proven that every involutive negator is continuous (see e.g. [53]).

Given a negator N , we can define the N -complement of a fuzzy set A.
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Definition 2.2.23. Let A be a fuzzy set of U and N a negator. We define the N -complement coN
of A by

∀x ∈ U : coN (A)(x) =N (A(x)).

The definition given by Zadeh is a special case of the N -complement, he used N =NS .

There are some connections between t-norms, t-conorms and negators. First, in classical logic,

we have De Morgan’s laws. For all a, b in {0,1}:

¬(a ∧ b) = ¬a ∨¬b,

¬(a ∨ b) = ¬a ∧¬b.

The extension of these laws leads us to a special connection between t-norms and t-conorms.

This explains why we can talk about dual t-norms and t-conorms.

Definition 2.2.24. Given a negator N , we call a t-norm T and a t-conorm S dual with respect to

N if and only if De Morgan’s laws are satisfied, i.e., for all a, b in I :

N (T (a, b)) = S (N (a),N (b)),

N (S (a, b)) = T (N (a),N (b)).

Secondly, many classical logical equivalences can be extended to fuzzy logic. For example

∀a, b ∈ I : a ∧ b↔¬(¬a ∨¬b)

is the analogue of the following proposition.

Proposition 2.2.25. Given an involutive negator N and a t-conorm S . Define

∀a, b ∈ I : TS ,N (a, b) =N (S (N (a),N (b))) ,

then TS ,N is a t-norm such that TS ,N and S are dual with respect to N .

We now study implicators and coimplicators.

Implicators and coimplicators

We continue with fuzzy logical operators that extend the implication and coimplication.

Definition 2.2.26. An implicator I is a mapping I : I2→ I satisfying

I (1, 0) = 0,

I (1, 1) = I (0,1) = I (0, 0) = 1

and that is non-increasing in the first and non-decreasing in the second argument.
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By definition, this is a conservative extension of the implication. Note that for every a ∈ I we

have I (0, a) = 1, since

1= I (0, 0)≤ I (0, a).

We will now introduce some special implicators and their relations with the other fuzzy logical

operators.

First, there is a relation between negators and implicators.

Proposition 2.2.27. If I is a implicator, then the operator NI defined by NI (a) = I (a, 0) for

a ∈ I is a negator, called the negator induced by I .

We illustrate this.

Example 2.2.28. The Łukasiewicz implicator IL(a, b) =min(1,1− a+ b), a, b ∈ I , induces the

standard negator NS:

∀a ∈ I : NIL
(a) = IL(a, 0) =min(1,1− a+ 0) = 1− a =NS(a).

Below, we list some properties for implicators ([45]).

Definition 2.2.29. If an implicator I satisfies the neutrality principle (NP):

∀a ∈ I : I (1, a) = a,

we call I a border implicator.

Definition 2.2.30. If an implicator I satisfies the exchange principle (EP):

∀a, b, c ∈ I : I (a,I (b, c)) = I (b,I (a, c)),

we call I an EP implicator.

Definition 2.2.31. If an implicator I satisfies the confinement principle (CP):

∀a, b ∈ I : a ≤ b⇔I (a, b) = 1,

we call I an CP implicator.

Definition 2.2.32. Let N be a negator. If I satisfies

∀a, b ∈ I : I (N (b),N (a)) = I (a, b),

we call I contrapositive with respect to N .

We distinguish two important classes of implicators: S-implicators and R-implicators.

Let T , S and N be a t-norm, t-conorm and negator respectively. The classical equivalence

a→ b↔ (¬a)∨ b with a and b in {0,1} leads to the concept of S-implicators.
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Definition 2.2.33. The S-implicator IS ,N based on the t-conorm S and the negatorN is defined

by

∀a, b ∈ I : IS ,N (a, b) = S (N (a), b).

The definition of an R-implicator is given as follows:

Definition 2.2.34. The residual implicator or R-implicator IT based on the t-norm T is defined by

∀a, b ∈ I : IT (a, b) = sup{λ ∈ I | T (a,λ)≤ b}.

Note that if a ≤ b, then IT (a, b) = 1.

Proposition 2.2.35. The operators defined in Definitions 2.2.33 and 2.2.34 are border implicators

that fulfil the exchange principle.

There is a important connection between a left-continuous1 t-norm T and its residual implicator

IT ([45]).

Proposition 2.2.36. Let T be a t-norm and IT the R-implicator based on T . The pair (T ,IT )
fulfils the residual principle, i.e.,

∀a, b, c ∈ I : T (a, c)≤ b⇔IT (a, b)≥ c,

if and only if T is left-continuous.

This property is sometimes called Galois correspondance or adjunction property. If T is left-

continuous, then the pair (T ,IT ) has some useful properties ([54]).

Proposition 2.2.37. Let T be a left-continuous t-norm and IT its R-implicator. Let N be the

induced negator by IT . For a, b, c, a j , b j ∈ I , j ∈ J , it holds that

T (a,IT (a, b))≤ b,

b ≤ IT (a,T (a, b)),

inf
j∈J
IT (a j , b) = IT (sup

j∈J
a j , b),

inf
j∈J
IT (a, b j) = IT (a, inf

j∈J
b j),

IT (a,IT (b, c)) = IT (T (a, b), c),

IT (a,N (b)) =N (T (a, b)),

IT (a, b)≤ IT (N (b),N (a)).

1A formal definition of left-continuity is given in Definition 2.2.50.
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A special group of R-implicators are IMTL-implicators ([21, 24]).

Definition 2.2.38. An involutive monoidal t-norm based logic-implicator or IMTL-implicator is an

R-implicator based on a left-continuous t-norm T that has an involutive induced negator.

IMTL-implicators are contrapositive w.r.t. there induced negator, since

I (x , y)≤ I (NI (y),NI (x))≤ I (NI (NI (x)),NI (NI (y))) = I (x , y)

when I is an R-implicator based on a left-continuous t-norm and NI is involutive ([54]).
We give some examples of S-, R- and IMTL-implicators (see [53]).

Example 2.2.39. For a, b ∈ I , three S-implicators are:

• The Kleene-Dienes implicator IKD(a, b) =max{1− a, b}, based on the standard maximum

operator SM and the standard negator NS .

• The Kleene-Dienes-Łukasiewicz implicator IKDL(a, b) = 1−a+a·b, based on the probabilistic

sum SP and the standard negator NS .

• The Łukasiewicz implicator IL(a, b) =min{1, 1− a+ b}, based on the Łukasiewicz t-conorm

SL and the standard negator NS .

Example 2.2.40. For a, b ∈ I , four R-implicators are:

• The Gödel implicator denoted by IG and based on the standard minimum operator TM :

IG(a, b) =







1 if a ≤ b

b if a > b.

• The Gaines implicator denoted by IGA and based on the product operator TP :

IGA(a, b) =







1 if a ≤ b
b
a

if a > b.

• The Łukasiewicz implicator IL(a, b) =min{1, 1− a+ b}, based on the Łukasiewicz t-norm

TL .

• The cosine implicator denoted by Icos based on the cosine t-norm Tcos:

Icos(a, b) =







1 if a ≤ b

ab+
p

(1− a2)(1− b2) if a > b.
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Example 2.2.41. An example of an IMTL-implicator is the R-implicator InM based on the nilpotent

minimum t-norm TnM :

∀a, b ∈ I : InM (a, b) =







1 if a ≤ b

max{1− a, b} if a > b.

Just like C -intersections and D-unions, we can define I -implications.

Definition 2.2.42. Let I be an implicator and A and B fuzzy sets in U . The I -implication of A

and B is denoted by⇒I (A, B) and is defined by

∀x ∈ U : (A⇒I B)(x) = I (A(x), B(x)).

Apart from implicators, we also need coimplicators (see e.g. [1]). While implicators are an

extension of the implication, coimplicators are an extension of the coimplication8, where p8 q

means ‘p is not necessary for q’, i.e., p8 q only holds if p is false and q is true. We first define a

general coimplicator.

Definition 2.2.43. A coimplicator J is a mapping J : I2→ I satisfying

J (0,1) = 1,

J (1,1) = J (1,0) = J (0,0) = 0

and that is non-increasing in the first and non-decreasing in the second argument.

We mostly work with residual coimplicators, based on a t-conorm S .

Definition 2.2.44. Let S be a t-conorm. We define the residual coimplicator JS based on S by

∀a, b ∈ I : JS (a, b) = inf{λ ∈ I | S (a,λ)≥ b}.

We see that a residual coimplicator is non-increasing in the first and non-decreasing in the

second argument and that it satisfies the boundary conditions JS (0,1) = 1 and JS (1,1) =
JS (1,0) = JS (0,0) = 0. Note also that if a ≥ b, then JS (a, b) = 0.

Coimplicators are dual operators of implicators in the same way t-conorms are dual operators

of t-norms. If S is the dual t-conorm of T with respect to a negator N , JS is dual to IT with

respect to N , i.e.,

∀a, b ∈ I : N (JS (a, b)) = IT (N (a),N (b)).

We give some examples of residual coimplicators.

Example 2.2.45. For a, b ∈ I , we have the following residual coimplicators:
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• With SM the standard maximum operator, we derive the coimplicator JM that is defined by

JM (a, b) =







0 if a ≥ b

b if a < b.

• With SP the probabilistic sum, we derive the coimplicator JP that is defined by

JP(a, b) =







0 if a ≥ b
b−a
1−a

if a < b.

• With SL the Łukasiewicz t-conorm, we derive the coimplicator JL that is defined by

JL(a, b) =max{0, b− a}.

• With Scos the cosine t-conorm, we derive the coimplicator Jcos that is defined by

Jcos(a, b) =







0 if a ≥ b

a+ b− ab−
p

(2a− a2)(2b− b2) if a < b.

We now connect the notions of coimplicators and conjunctors.

Proposition 2.2.46. Let N be an involutive negator and J a coimplicator. The map C : I2→ I

defined by

∀a, b ∈ I : C (a, b) = J (N (a), b)

is a conjunctor, but not necessarily a t-norm.

With the four coimplicators defined above and the standard negatorNS , we obtain the following

conjunctors:

• The conjunctor based on JM and NS is

∀a, b ∈ I : C (a, b) =







0 if 1− a ≥ b

b if 1− a < b.

• The conjunctor based on JP and NS is

∀a, b ∈ I : C (a, b) =







0 if 1− a ≥ b
a+b−1

a
if 1− a < b.
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• The conjunctor based on JL and NS is

∀a, b ∈ I : C (a, b) =max{0, a+ b− 1}.

• The conjunctor based on Jcos and NS is

∀a, b ∈ I : C (a, b) =







0 if 1− a ≥ b

1− a+ ab−
p

(1− a2)(2b− b2) if 1− a < b.

The first, second and last conjunctor are not commutative, so they are not a t-norm. The third one

is the Łukasiewicz t-norm.

We end this section of fuzzy logical operators by recalling some basic notions of continuity.

Continuity

We recall some definitions about continuity that are used in this dissertation. We first start with

the following useful characterisation ([45]).

Proposition 2.2.47. Consider a mapping F : I2→ I that is monotonic with respect to one variable.

It holds that F is continuous if and only if F is continuous in both variables.

Since all fuzzy logical operators are monotone in both variables, it is enough to define continuity

for functions in one variable. We give the definitions of being continuous, lower semicontinuous

and left-continuous.

Definition 2.2.48. A function f : I → I is continuous in a point a ∈ I if

(∀ε > 0)(∃δ > 0)(∀x ∈ I) : (|x − a|< δ⇒ | f (x)− f (a)|< ε).

A function f : I → I is continuous if it is continuous in every point of I .

Definition 2.2.49. A function f : I → I is lower semicontinuous in a point a ∈ I if

(∀ε > 0)(∃δ > 0)(∀x ∈ I) : (|x − a|< δ⇒ f (x)≥ f (a)− ε).

A function f : I → I is lower semicontinuous if it is lower semicontinuous in every point of I .

Definition 2.2.50. A function f : I → I is left-continuous in a point a ∈ I if

(∀ε > 0)(∃δ > 0)(∀x ∈ I) : (a−δ < x < a⇒ | f (x)− f (a)|< ε).

A function f : I → I is left-continuous if it is left-continuous in every point of I .

We have a useful connection for t-norms that are left-continuous and that are complete-

distributive w.r.t. the supremum.
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Definition 2.2.51. A t-norm T is complete-distributive w.r.t. the supremum if for every family

(a j) j∈J in I and for every b ∈ I it holds that

T
�

sup
j∈J

a j , b

�

= sup
j∈J
T (a j , b).

The next property will be useful in proofs ([45]).

Proposition 2.2.52. A t-norm T is complete-distributive w.r.t. the supremum if and only if T is

left-continuous.

The residual principle holds for left-continuous t-norms. But sometimes it is enough to have

lower semicontinuity, due to the following property and to the fact that a t-norm is non-decreasing

in both variables and commutative (see [23]).

Proposition 2.2.53. A t-norm T is lower semicontinuous if and only if T is left-continuous in its

first component.

To end this chapter, we study fuzzy relations.

2.2.3 Fuzzy relations

In the crisp case, a relation R is a subset of U ×U . We now study fuzzy relations that are fuzzy sets

in U × U .

Consider a fuzzy relation R ∈ F (U × U). We can extend the concept of an R-foreset and

R-afterset (see Equations (2.1) and (2.2)): the R-foreset of an element y of U is the fuzzy set

Ry : U → I defined by

∀x ∈ U : Ry(x) = R(x , y)

and the R-afterset of an element x of U is the fuzzy set xR: U → I defined by

∀y ∈ U : xR(y) = R(x , y).

We recall two special types of fuzzy relations.

Definition 2.2.54. A relation R is called a fuzzy tolerance relation if it satisfies the following

properties:

1. reflexivity, i.e., for all x in U it holds that R(x , x) = 1,

2. symmetry, i.e., for all x and y in U it holds that R(x , y) = R(y, x).
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Definition 2.2.55. Let T be a t-norm. If a fuzzy tolerance relation R fulfils the property of being

T -transitive, i.e., for all x , y and z in U:

T (R(x , y), R(y, z))≤ R(x , z),

we call R a fuzzy T -similarity relation, fuzzy T -equivalence relation or fuzzy T -indistinguishability

relation (see e.g. [66]).

Mostly, we omit the word ‘fuzzy’. When T =min, we shortly speak about a similarity relation.

Because the minimum operator is the largest t-norm, we have for every t-norm T that

T (R(x , y), R(y, z))≤min{R(x , y), R(y, z)},

which means that if a relation R is min-transitive, it is T -transitive for every t-norm T and thus, a

similarity relation is a T -similarity relation for every t-norm T .

When we have a fuzzy T -similarity relation R, the R-foreset and the R-afterset of x are the same.

We call it the fuzzy similarity class of x and it will be denoted by Rx , xR or [x]R. The definition of

a fuzzy T -similarity relation is a conservative extension of the definition of an equivalence relation

in a crisp setting.

If a relation is not T -transitive, one can determine its transitive closure. To do this, we first

introduce the round composition of two fuzzy relations ([11]).

Definition 2.2.56. Let T be a t-norm. The round composition of two fuzzy relations R1 and R2 in

U is the fuzzy relation R1 ◦ R2 in U defined by

∀x , z ∈ U : (R1 ◦ R2)(x , z) = sup
y∈U
T (R(x , y), R(y, z)).

We denote R1 = R and Rn = R ◦ Rn−1 for a fuzzy relation R and n ∈ N \ {0}. If R is T -transitive,

then R ◦ R = R. Now, if R is not T -transitive and if U is finite and |U | ≥ 2, then the T -transitive

closure of R is given by R|U |−1. This means that R ◦ R|U |−1 = R|U |−1.

When we have a t-norm T , we can define T -partitions on the universe U ([2]). Let IT be the

R-implicator associated with T , then we have the following fuzzy operator ET defined by:

∀a, b ∈ I : ET (a, b) =min{IT (a, b),IT (b, a)}= IT (max{a, b},min{a, b}).

With this operator, we can define a T -semipartition.

Definition 2.2.57. Let T be a t-norm. A collection P of fuzzy sets in U is called a T -semipartition

if and only if for every A, B ∈ P it holds that

sup
x∈U
T (A(x), B(x))≤ inf

x∈U
ET (A(x), B(x)).

If moreover the kernels of the fuzzy sets in P forms a crisp partition of U , we speak about a

T -partition.
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Definition 2.2.58. Let T be a t-norm. A collection P of fuzzy sets in U is called a T -partition if

and only if it is a T -semipartition and if

k(P ) = {ker(A) | A∈A}

forms a partition of U .

We have a one-to-one correspondance between T -partitions and fuzzy T -similarity relations

([2]).

Proposition 2.2.59. Let T be a t-norm, then P is a T -partition of U if and only if there exists a

fuzzy T -similarity relation R on U such that

P = {[x]R | x ∈ U}.

When we speak about properties of a fuzzy relation R, we mostly refer to reflexivity, symmetry

and transitivity. There are also other properties a fuzzy relation can have.

Definition 2.2.60. A fuzzy relation R is serial if for every x ∈ U it holds that sup
y∈U

R(x , y) = 1.

In an obvious way, we have the property of being inverse serial.

Definition 2.2.61. A fuzzy relation R is inverse serial if for every x ∈ U it holds that sup
y∈U

R(y, x) = 1.

To end this section, we study some special fuzzy relations based on kernel functions ([28, 30]).
We first define a kernel function.

Definition 2.2.62. A real-valued function

k : Rn×Rn→ R

is said to be a kernel function if it is symmetric and positive semidefinite, i.e., for all x = (x1, . . . , xn),
y= (y1, . . . , yn) ∈ Rn and for all complex numbers ρ1, . . . ,ρn it holds that

n
∑

i, j=1

k(x i − y j) ·ρi · ρ̄ j ≥ 0

where ρ̄ j is the complex conjugate of ρ j , i.e., if ρ j = a+ bi, then ρ̄ j = a− bi.

We can see kernel functions as fuzzy relations, if the image of the kernel function is in I , i.e.,

k : Rn×Rn→ I .

Let us assume that U ⊆ Rn. A reflexive kernel function has the following property ([30]):

Proposition 2.2.63. Any kernel function k : U×U → I with k(x,x) = 1 is (at least) Tcos-transitive.
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Some kernel functions are reflexive, symmetric and Tcos-transitive, thus the relations computed

with these kernel functions are fuzzy Tcos-similarity relations.

Recall that the Euclidean distance for x,y ∈ Rn is given by

||x− y||=

s

n
∑

i=1

(x i − yi)2

for x= (x1, . . . , xn),y= (y1, . . . , yn) ∈ Rn.

We give some examples of kernel functions ([28]).

Example 2.2.64. Let x and y be elements of U . Every kernel function has a parameter δ > 0 that

determines the geometrical structure of the mapped samples in the kernel function space.

1. The Gaussian kernel function: kG(x,y) = exp
�

− ||x−y||2

δ

�

.

2. The exponential kernel function: kE(x,y) = exp
�

− ||x−y||
δ

�

.

3. The rational quadratic kernel function: kR(x,y) = 1− ||x−y||2

||x−y||2+δ .

4. The circular kernel function:

kC(x,y) =
2

π
arccos

� ||x− y||
δ

�

−
2

π

||x− y||
δ

È

1−
� ||x− y||

δ

�2

if ||x− y||< δ, and kC(x,y) = 0 otherwise.

5. The spherical kernel function:

kS(x,y) = 1−
3

2

||x− y||
δ

+
1

2

� ||x− y||
δ

�3

if ||x− y||< δ, and kS(x,y) = 0 otherwise.



Chapter 3

Fuzzy rough sets

In the previous chapter, we studied rough sets and fuzzy sets. We can combine these two essentially

different concepts in various ways. Since the first proposal by Dubois and Prade, it was clear that

the two theories worked complementary, and not competitive. Using them together, leads to very

good models for dealing with uncertain, incomplete and noisy data.

In this chapter, we study constructive approaches, i.e., we start with a fuzzy set A and a fuzzy

relation R and we define the lower and upper approximation operators based on this data. In

Chapter 5, we will study an axiomatic approach to describe fuzzy rough sets.

In Section 3.1, we recall the approach of Dubois and Prade, who constructed the basis of fuzzy

rough set theory. In Section 3.2, we generalise the model of Dubois and Prade by using arbitrary

implicators and conjunctors. We also give an overview of special cases of this implicator-conjunctor-

based fuzzy rough set model. Next, in Section 3.3, we recall a possible way to refine the model

introduced in Section 3.2. To end, we study fuzzy rough models designed to deal with noisy data

in Section 3.4.

3.1 Hybridisation of rough and fuzzy sets

Hybridisation theory can lead to a rough fuzzy set or a fuzzy rough set. We first recall both concepts.

In Section 3.1.3 we explain the difference mathematically.

3.1.1 Rough fuzzy sets and fuzzy rough sets

A rough fuzzy set is the pair of the lower and upper approximation of a fuzzy set A in a Pawlak

or generalised approximation space (U , R). A fuzzy rough set is the pair of the lower and upper

approximation of a crisp or fuzzy set A in a fuzzy approximation space (U , R), where a fuzzy

approximation space is a pair (U , R) with U a universe and R a fuzzy relation.

In most applications, we deal with both a fuzzy set A and a fuzzy relation R. Because a crisp

relation is a special type of a fuzzy relation, rough fuzzy sets can be seen as a special case of fuzzy

30
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rough sets. The study of fuzzy rough sets is immediately applicable to rough fuzzy sets.

We continue with discussing the fuzzy rough set model of Dubois and Prade.

3.1.2 Fuzzy rough sets by Dubois and Prade

Dubois and Prade laid the foundation of the concept of fuzzy rough sets ([19, 20]). They worked

in a universe U with a fuzzy similarity relation R on U . They define a fuzzy rough set as follows:

Definition 3.1.1. Let A be a fuzzy set in a fuzzy approximation space (U , R), where R is a fuzzy

similarity relation on U . A fuzzy rough set in (U , R) is a pair (R↓A, R↑A) of fuzzy sets in U that for

every x in U are defined by

(R↓A)(x) = inf
y∈U
{max{1− R(y, x), A(y)}},

(R↑A)(x) = sup
y∈U
{min{R(y, x), A(y)}}.

Assume now that A is a crisp set in U and R is a crisp equivalence relation on U . For x in U we

have that
(R↓A)(x) = 1⇔ inf

y∈U
{max{1− R(y, x), A(y)}}= 1

⇔∀y ∈ U : 1− R(y, x) = 1∨ A(y) = 1

⇔∀y ∈ U : (y, x) ∈ R⇒ y ∈ A

⇔ [x]R ⊆ A,

(R↑A)(x) = 1⇔ sup
y∈U
{min{R(y, x), A(y)}}= 1

⇔∃y ∈ U : R(y, x) = 1∧ A(y) = 1

⇔∃y ∈ U : (y, x) ∈ R∧ y ∈ A

⇔ [x]R ∩ A 6= ;.

This shows that Definition 3.1.1 is a conservative extension of Definition 2.1.2.

The definition given by Dubois and Prade is the starting point for research for fuzzy rough

sets. They derived these definitions invoking notions of C-calculus and possibility theory which fall

outside the scope of this dissertation. In the next section, we provide an alternative justification

involving α-level sets proposed by Yao ([65]).
We illustrate Definition 3.1.1 with an example.

Example 3.1.2. Let U = {y1, y2}, A a fuzzy set with A(y1) = 0.2, A(y2) = 0.8 and R a fuzzy

similarity relation with R(y1, y2) = 0.5. We compute the lower and upper approximation of the
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fuzzy set A:

(R↓A)(y1) = inf{max{1− 1,0.2},max{1− 0.5,0.8}}= inf{0.2, 0.8}= 0.2,

(R↓A)(y2) = inf{max{1− 0.5,0.2},max{1− 1,0.8}}= inf{0.5, 0.8}= 0.5,

(R↑A)(y1) = sup{min{1, 0.2}, min{0.5,0.8}}= sup{0.2, 0.5}= 0.5,

(R↑A)(y2) = sup{min{0.5, 0.2},min{1, 0.8}}= sup{0.2, 0.8}= 0.8.

We see that the membership degree of the element y1 in the lower approximation of A is 0.2 and

in the upper approximation of A is 0.5. This means that y1 necessarily satisfies the concept A with

degree 0.2 and possibly satisfies the concept A with degree 0.5.

We now study an approach that has the model of Dubois and Prade as result.

3.1.3 Fuzzy rough sets by Yao

We present the fuzzy rough hybridisation approach as designed by Yao ([65]). It is a constructive

approach. A similar approach is due to Liu et al. ([42]). Yao’s appraoch is based on the α-level

sets introduced in the previous chapter (see Definitions 2.2.7 and 2.2.8). A fuzzy set determines a

family of nested subsets of the universe U through weak or strong α-level sets, but here we work

only with the weak α-level sets. Wu et al. ([62, 63]) combined both weak and strong α-level sets,

their approach will be discussed in the next section.

We first consider a family of α-level sets of a fuzzy set A, together with an equivalence relation

R. Next, we consider a crisp set A, together with a family of equivalence relations (Rβ)β∈I . Finally,

we use this result to give conclusions for a fuzzy set A and a fuzzy relation R.

A fuzzy set and an equivalence relation

We start with the approximation of a fuzzy set A in a Pawlak approximation space (U , R). We have

a family of α-level sets (Aα)α∈I . We can approximate every Aα: by Definition 2.1.2, we have a

rough set (R↓Aα, R↑Aα) for each α ∈ I . This means that we have a family of lower approximations

and one of upper approximations: (R↓Aα)α∈I and (R↑Aα)α∈I . The question is now whether they

correspond with two fuzzy sets. To find this out, we use the representation theorem of Negoita and

Ralescu ([49]).

Proposition 3.1.3. Let (Aα)α∈I be a family of crisp subsets of U . The necessary and sufficient

conditions for the existence of a fuzzy set B such that Bα = Aα for all α in I , are:

(i) if α1 ≤ α2 ∈ I , then Aα2
⊆ Aα1

,

(ii) let {αn | n ∈ N} be a non-decreasing sequence in I (i.e., αi ≤ α j for i ≤ j ∈ N) such that

lim
n→+∞

αn = α, then
∞
⋂

n=1
Aαn
= Aα.
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We need to prove that the family of lower approximations (R↓Aα)α∈I and the family of upper

approximations (R↑Aα)α∈I fulfil conditions (i) and (ii). Since the family (Aα)α∈I is constructed

from the fuzzy set A and because of the monotonicity of lower and upper approximation, condition

(i) holds, i.e., if α1 ≤ α2, then Aα2
⊆ Aα1

and thus

R↓Aα2
⊆ R↓Aα1

,

R↑Aα2
⊆ R↑Aα1

.

Both families are also nested and they fulfil condition (ii), because the α-level sets of the fuzzy set

A satisfy condition (ii) (see Proposition 2.2.9). So, by Proposition 3.1.3, there are fuzzy sets B1

and B2 such that for each α in I it holds that

(B1)α = R↓Aα,

(B2)α = R↑Aα.
(3.1)

We know how these fuzzy sets are defined (see Equation (2.3)): for all x ∈ U it holds that

B1(x) = sup{α | x ∈ (B1)α}

= sup{α | x ∈ R↓Aα}

= sup{α | [x]R ⊆ Aα}

= sup{α | ∀y ∈ [x]R : A(y)≥ α}

= inf{A(y) | y ∈ [x]R}

= inf{A(y) | (y, x) ∈ R}

= inf{max{1− R(y, x), A(y)} | y ∈ U}

= (R↓A)(x),

B2(x) = sup{α | x ∈ (B2)α}

= sup{α | x ∈ R↑Aα}

= sup{α | [x]R ∩ Aα 6= ;}

= sup{α | ∃y ∈ U : y ∈ [x]R ∧ A(y)≥ α}

= sup{A(y) | y ∈ [x]R}

= sup{A(y) | (y, x) ∈ R}

= sup{min{R(y, x), A(y)} | y ∈ U}

= (R↑A)(x),

where we use Definition 3.1.1 in the last steps.

This means that (R↓A)α = R↓Aα and (R↑A)α = R↑Aα. We conclude that a rough fuzzy set is

characterised by a fuzzy set A and a pair of fuzzy sets (R↓A, R↑A) determined by a crisp relation R.
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An α-level set of a rough fuzzy set is a rough set:

(R↓A, R↑A)α = (R↓Aα, R↑Aα)

= ((R↓A)α, (R↑A)α).

Next, we consider a crisp set A and a fuzzy similarity relation R.

A crisp set and a fuzzy similarity relation

We now work in a fuzzy approximation space (U , R), with R a similarity relation. As R is a fuzzy

set, R can be described with β-level sets: R= (Rβ)β∈I . Each Rβ is a crisp equivalence relation on

U , so we have a family of Pawlak approximation spaces (U , Rβ)β∈I .

Let A be a crisp subset of U . For each β ∈ I , we have a rough set

(Rβ↓A, Rβ↑A).

With respect to the fuzzy approximation space (U , R), we have a family of rough sets

(Rβ↓A, Rβ↑A)β∈I .

We need an adapted theorem of Negoita and Ralescu ([55]).

Proposition 3.1.4. Let ϕ : I → I be a given function and (Aα)α∈I be a family of subsets of U . The

necessary and sufficient conditions for the existence of a fuzzy set B such that Bϕ(α) = Aα for all α

in I , are:

(i′) if α1,α2 ∈ I such that ϕ(α1)≤ ϕ(α2), then Aα2
⊆ Aα1

,

(ii′) let {ϕ(αn) | n ∈ N} be a non-decreasing sequence in I (i.e., ϕ(αi) ≤ ϕ(α j) for i ≤ j ∈ N)

such that lim
n→+∞

ϕ(αn) = ϕ(α), then
∞
⋂

n=1
Aαn
= Aα.

If β2 ≤ β1, then Rβ1
⊆ Rβ2

, i.e., Rβ1
is a refinement of Rβ2

:

∀x ∈ U : [x]Rβ1
⊆ [x]Rβ2

.

We need to prove that the families (Rβ↓A)β∈I and (Rβ↑A)β∈I fulfil conditions (i′) and (ii′). Let

ϕ1(β) = 1− β in Proposition 3.1.4. If ϕ1(β1) ≤ ϕ1(β2), then β2 ≤ β1 and it holds that Rβ2
↓A⊆

Rβ1
↓A. We need to prove that the family fulfils condition (ii′), i.e., we have to prove that if

{ϕ1(βn) | n ∈ N} is a non-decreasing sequence in I and ϕ1(β) is its supremum, then

∞
⋂

n=1

Rβn
↓A= Rβ↓A
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holds. This follows from the fact that for all n ∈ N, ϕ1(βn)≤ ϕ1(β) or β ≤ βn, which means that

for all n ∈ N and all x ∈ U it holds that

[x]Rβn
⊆ [x]Rβ .

We obtain that Rβ↓A⊆ Rβn
↓A, for all n ∈ N and

x ∈
∞
⋂

n=1

Rβn
↓A⇔∀n ∈ N: x ∈ Rβn

↓A

⇔∀n ∈ N: [x]Rβn
⊆ A

⇔
∞
⋃

n=1

[x]Rβn
⊆ A

(3.2)

Now take y ∈ [x]Rβ , i.e., R(x , y)≥ β , this means, there is an n ∈ N such that R(x , y)≥ βn, which

means that y ∈ [x]Rβn
and thus y ∈ A. This proves that x ∈ Rβ↓A. Thus, the family of lower

approximations (Rβ↓A)β∈I fulfils conditions (i′) and (ii′).
In a similar way, with ϕ2(β) = β , we can derive that the family of upper approximations

(Rβ↑A)β∈I fulfils conditions (i′) and (ii′).
So, there are fuzzy sets B1 and B2 such that for each β ∈ I it holds that:

(B1)ϕ1(β) = Rβ↓A,

(B2)ϕ2(β) = Rβ↑A.
(3.3)

We derive an explicit expression for both fuzzy sets. Let x be an element of U , then

B1(x) = sup{ϕ1(β) | x ∈ (B1)ϕ1(β)}

= sup{1− β | x ∈ Rβ↓A}

= sup{1− β | [x]Rβ ⊆ A}

= sup{1− β | ∀y ∈ U : R(y, x)≥ β ⇒ y ∈ A}

= sup{1− β | ∀y ∈ U : y /∈ A⇒ R(y, x)< β}

= inf{1− R(y, x) | y ∈ U ∧ y /∈ A}

= inf{max{1− R(y, x), A(y)} | y ∈ U}

= (R↓A)(x),

B2(x) = sup{β | x ∈ (B2)ϕ2(β)}

= sup{β | x ∈ Rβ↑A}

= sup{β | [x]Rβ ∩ A 6= ;}

= sup{β | ∃y ∈ U : R(y, x)≥ β ∧ y ∈ A}

= sup{R(y, x) | y ∈ A}

= sup{min{R(y, x), A(y)} | y ∈ U}

= (R↑A)(x),
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where we use Definition 3.1.1 in the last steps.

The pair of fuzzy sets (R↓A, R↑A) is a fuzzy rough set with reference set the crisp set A deter-

mined by a fuzzy relation R. A β -level set of a fuzzy rough set is a rough set in the approximation

space (U , Rβ):
(R↓A, R↑A)β = (Rβ↓A, Rβ↑A)

= ((R↓A)1−β , (R↑A)β).

We now have the tools for the approach with a fuzzy set and a fuzzy similarity relation.

A fuzzy set and a fuzzy similarity relation

We continue working in the fuzzy approximation space (U , R) with R a fuzzy similarity relation,

but now we consider a fuzzy set A instead of a crisp one. We have two families: one of α-level sets

representing A and another one of β-level sets representing R (see also [42]).
For a fixed pair (α,β) in I × I , consider the couple consisting of the crisp set Aα and the

equivalence relation Rβ : this results in a rough set (Rβ↓Aα, Rβ↑Aα). For a fixed β in I , we consider

the couple consisting of the fuzzy set A= ((Aα)α∈I ) and the equivalence relation Rβ : this results in

a rough fuzzy set (Rβ↓A, Rβ↑A). Finally, with a fixed α in I , we obtain the couple consisting of the

crisp set Aα and the fuzzy relation (Rβ)β∈I , which results in a fuzzy rough set (R↓Aα, R↑Aα). In a

generalised model, α and β are not fixed.

From Equations 3.1 and 3.3 we derive the following conclusion: for every set A, whether it

is crisp or fuzzy, and for every fuzzy similarity relation R, we can describe the lower and upper

approximation of A under R as

(R↓A)(x) = inf
y∈U
{max{1− R(y, x), A(y)}},

(R↑A)(x) = sup
y∈U
{min{R(y, x), A(y)}},

with x in U . This scheme is used by Dubois and Prade to define a fuzzy rough set. Note that we

can do this whole approach for general fuzzy relations R and R-foresets.

The following approach we study, is the approach of Wu et al., which is based on the approach

of Yao.

3.1.4 Fuzzy rough sets by Wu et al.

Another constructive approach to derive fuzzy rough sets is designed by Wu et al. ([62, 63]) and

is based on the work of Yao ([65]). The fuzzy rough set they obtain is similar to the one of Dubois

and Prade, but their approach is quite different. They work with a general fuzzy relation R from

U to W , which we shall restrict in this dissertation to a binary fuzzy relation in U . They consider

both weak and strong α-level sets to describe R and a fuzzy set A in (U , R), but the fuzzy rough set

they derive is the same for each combination of weak and strong α-level sets, so we only give the



CHAPTER 3. FUZZY ROUGH SETS 37

approach based on weak α-level sets. The main difference with other approaches is that they work

with R-aftersets instead of R-foresets.

We start by defining the lower and upper approximation of a crisp set under a crisp binary

relation based on aftersets. Next, we use these approximation operators to define the lower

and upper approximation of a fuzzy set in a fuzzy approximation space. We also give a useful

characterisation. Finally, we study the approach of Wu et al. with foresets. This will give us Dubois

and Prade’s model.

We have two families of α-level sets: one that describes a fuzzy set A, i.e., (Aα)α∈I , and one

that describes a fuzzy relation R, i.e., (Rβ)β∈I . We also consider the β -level sets of the R-afterset of

an element x ∈ U:

(xR)β = {y ∈ U | R(x , y)≥ β}.

We know that for all β ∈ I , Rβ is a crisp relation. We have a new lower and upper approximation

of Aα in the generalised approximation space (U , Rβ) for (α,β) ∈ I × I :

x ∈ Rβ↓∗Aα⇔ (xR)β ⊆ Aα

⇔ (∀y ∈ U)(R(x , y)≥ β ⇒ A(y)≥ α),

x ∈ Rβ↑∗Aα⇔ (xR)β ∩ Aα 6= ;

⇔ (∃y ∈ U)(R(x , y)≥ β ∧ A(y)≥ α).

We now define the lower and upper approximation of A in (U , R) in this setting.

Definition 3.1.5. Let A be a fuzzy set in a fuzzy approximation space (U , R) and x ∈ U . We define

the lower approximation R↓∗A of A by

(R↓∗A)(x) = sup
γ∈I
{min{γ, (R1−γ↓∗Aγ)(x)}}

and the upper approximation R↑∗A of A by

(R↑∗A)(x) = sup
γ∈I
{min{γ, (Rγ↑∗Aγ)(x)}}.

We can simplify these expressions.

Proposition 3.1.6. Let A be a fuzzy set in a fuzzy approximation space (U , R). With R↓∗A and R↑∗A
as defined above it holds for all x in U that

(R↓∗A)(x) = inf
y∈U
{max{1− R(x , y), A(y)}},

(R↑∗A)(x) = sup
y∈U
{min{R(x , y), A(y)}}.
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Proof. Let A be a fuzzy set of (U , R) and x an element of U . We first observe that R1−γ↓∗Aγ and

Rγ↑∗Aγ are crisp sets. We have

(R↓∗A)(x) = sup{min{γ, (R1−γ↓∗Aγ)(x)} | γ ∈ I}

= sup{γ ∈ I | (R1−γ↓∗Aγ)(x) = 1}

= sup{γ ∈ I | x ∈ R1−γ↓∗Aγ}

= sup{γ ∈ I | (xR)1−γ ⊆ Aγ}

= sup{γ ∈ I | ∀y ∈ U : R(x , y)≥ 1− γ⇒ A(y)≥ γ}

= sup{γ ∈ I | ∀y ∈ U : max{1− R(x , y), A(y)} ≥ γ}

= sup{γ ∈ I | inf
y∈U

max{1− R(x , y), A(y)} ≥ γ}

= inf
y∈U

max{1− R(x , y), A(y)}.

In a similar way, we derive the other equation:

(R↑∗A)(x) = sup{min{γ, (Rγ↑∗Aγ)(x)} | γ ∈ I}

= sup{γ ∈ I | (Rγ↑∗Aγ)(x) = 1}

= sup{γ ∈ I | x ∈ Rγ↑∗Aγ}

= sup{γ ∈ I | (xR)γ ∩ Aγ 6= ;}

= sup{γ ∈ I | ∃y ∈ U : R(x , y)≥ γ∧ A(y)≥ γ}

= sup{γ ∈ I | ∃y ∈ U : min{R(x , y), A(y)} ≥ γ}

= sup{γ ∈ I | sup
y∈U

min{R(x , y), A(y)} ≥ γ}

= sup
y∈U

min{R(x , y), A(y)}.

We study what happens if we perform this approach with R-foresets, i.e., we change xR by Rx .

We obtain that
x ∈ Rβ↓∗∗Aα⇔ (Rx)β ⊆ Aα,

x ∈ Rβ↑∗∗Aα⇔ (Rx)β ∩ Aα 6= ;,
(3.4)

for all x in U . This is the same as the lower and upper approximation of the set Aα with respect to

the binary relation Rβ defined in Definition 2.1.4. We define R↓∗∗A and R↑∗∗A in the same way as

in Definition 3.1.5, but now with the operators given in Equation (3.4). We can compute that with

these operators, we obtain that

(R↓∗∗A)(x) = inf
y∈U
{max{1− R(y, x), A(y)}},

(R↑∗∗A)(x) = sup
y∈U
{min{R(y, x), A(y)}},
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which is the same as the operators defined in Definition 3.1.1. We see that when R is not symmetric,

the choice of working with R-foresets or R-aftersets is very important, because it can lead to

different approximations. We illustrate this with an example.

Example 3.1.7. Let U = {y1, y2}, A a fuzzy set such that A(y1) = 0.4 and A(y2) = 0.6. We have

the fuzzy relation R defined by

R(y1, y1) = R(y2, y2) = 0.5, R(y1, y2) = 0.8, R(y2, y1) = 0.2.

It is clear that R is not symmetric. Let us compute the upper approximation of A in y1 for both

approaches:
(R↑∗A)(y1) = sup

z∈U
{min{R(y1, z), A(z)}}= sup{0.4, 0.6}= 0.6,

(R↑∗∗A)(y1) = sup
z∈U
{min{R(z, y1), A(z)}}= sup{0.4, 0.2}= 0.4.

This shows that we obtain different approximations when we work with R-foresets or R-aftersets.

Next, we introduce a general implicator-conjunctor-based fuzzy rough set model.

3.2 General fuzzy rough set model

In this section, we study some types of generalisations of Dubois and Prade’s fuzzy rough sets

as seen in Definition 3.1.1. We start with introducing a general model, followed by special cases

studied in the literature.

When we consider Definition 2.1.2, we see that the definition of the lower approximation

contains an implication and the one of the upper approximation contains a conjunction. The

extension of these logical operators in a fuzzy setting are implicators and conjunctors. We also

consider a general fuzzy relation instead of a similarity relation. With these changes in mind, we

introduce a general definition for the lower and upper approximation of a fuzzy set A.

Definition 3.2.1. Let A be a fuzzy set in a fuzzy approximation space (U , R), with R a general

fuzzy relation. Let I be an implicator and C a conjunctor. The (I ,C )-fuzzy rough approximation

of A is the pair of fuzzy sets (R↓IA, R↑CA) such that for x ∈ U:

(R↓IA)(x) = inf
y∈U
I (R(y, x), A(y)),

(R↑CA)(x) = sup
y∈U
C (R(y, x), A(y)).

We can now define a general (I ,C )-fuzzy rough set.

Definition 3.2.2. Let (U , R) be a fuzzy approximation space and I and C an implicator and a

conjunctor, respectively. A pair (A1, A2) of fuzzy sets in U is called a (I ,C )-fuzzy rough set in (U , R)
if there is a fuzzy set A in U such that A1 = R↓IA and A2 = R↑CA as given in Definition 3.2.1.
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We can derive the definition given by Dubois and Prade, when we take for R a similarity

relation, for I the Kleene-Dienes implicator IKD and for C the minimum t-norm TM .

In Table 3.1 we give a chronological overview of special cases of the general model studied in

the past.

Wu et al. were the first to consider general fuzzy relations. Mi and Zhang were the first to use

conjunctors instead of t-norms. We see that the models of Mi and Zhang, Yeung et al. and Hu et

al. are quite similar. In the models of Hu et al., kernels are used as fuzzy relations. The model of

Mi and Zhang coincides with the second model of Yeung et al., as we restrict ourselves to fuzzy

relations in U × U . In the model of Mi and Zhang, the standard negator is considered, while in the

models of Yeung et al., one assumes N to be involutive. The model of Pei and the model of Liu

use the same conjunctor and implicator as Dubois and Prade, but now R is a general fuzzy relation

instead of a fuzzy similarity relation.

Remark 3.2.3. We see that most authors assume the considered t-norm to be lower semicontinuous

to let the residual principle hold for (T ,IT ). Due to Proposition 2.2.53, this is the same as using a

left-continuous t-norm T .
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We illustrate Definition 3.2.1 with two examples: first with a fuzzy similarity relation and then

with a general fuzzy relation.

Example 3.2.4. Let us take the same U , A and R of Example 3.1.2:U = {y1, y2}, A(y1) = 0.2,

A(y2) = 0.8 and R a fuzzy similarity relation with R(y1, y2) = 0.5. Take the Łukasiewicz implicator

and t-norm instead of the Kleene-Dienes implicator and the minimum t-norm. We see that we get

other results for the lower and upper approximations of A than in Example 3.1.2:

(R↓IL
A)(y1) = inf{0.2, 1}= 0.2,

(R↓IL
A)(y2) = inf{0.7, 0.8}= 0.7,

(R↑TL
A)(y1) = sup{0.2,0.3}= 0.3,

(R↑TL
A)(y2) = sup{0,0.8}= 0.8.

Example 3.2.5. Assume U = {y1, y2} and A a fuzzy set in U such that A(y1) = 0.2 and A(y2) = 0.8,

and take the general fuzzy relation R defined by

R(y1, y1) = R(y2, y2) = 0.7, R(y1, y2) = 0 and R(y2, y1) = 0.3.

We see that R is not reflexive and not symmetric, but R is min-transitive. We take for (I ,C ) again

the couple (IL ,TL). We obtain

(R↓IL
A)(y1) = inf{0.5, 1}= 0.5,

(R↓IL
A)(y2) = inf{1, 1}= 1,

(R↑TL
A)(y1) = sup{0,0.1}= 0.1,

(R↑TL
A)(y2) = sup{0,0.5}= 0.5.

Notice that in this case we have R↑TL
A⊆ A⊆ R↓IL

A, which is rather counterintuitive. We will take

up this setting again when we illustrate the other models of this chapter.

We continue with tight and loose approximations.

3.3 Tight and loose approximations

Some authors define the lower and upper approximation of a set A with R-foresets, instead of with

elements of U . For example, when A is a crisp subset of U , they define the rough set (R↓A, R↑A) in

a generalised approximation space (U , R) as

R↓A=
⋃

{Rx | Rx ⊆ A},

R↑A=
⋃

{Rx | Rx ∩ A 6= ;}.
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The sets Rx are often called (information) granules. Articles that work with information granules

include [28, 66, 68]. For crisp sets, the approximations based on R-foresets coincide with the ones

from Chapter 2. In the following section, we ask ourselves what could happen if an element x is

contained in more than one granule.

We first consider a crisp subset A in a generalised approximation space (U , R). We assess the

inclusion of an R-foreset into A and the overlap of an R-foreset with A. In this way, we are going to

‘refine’ our generalised model. This idea was first explored by Pomykala ([52]) and further studied

by De Cock et al. ([11]) and Cornelis et al. ([13]), who took fuzzy sets and fuzzy relations into

account. We give a list of candidate definitions for the lower and upper approximation of a set A in

(U , R):

1. The element x ∈ U belongs to the lower approximation of A if and only if

(a) all R-foresets containing x are included in A,

(b) at least one R-foreset containing x is included in A,

(c) the R-foreset of x is included in A.

2. The element x ∈ U belongs to the upper approximation of A if and only if

(a) all R-foresets containing x have a non-empty intersection with A,

(b) at least one R-foreset containing x has a non-empty intersection with A,

(c) the R-foreset of x has a non-empty intersection with A.

These candidates result in what is called the tight, loose and (usual) lower and upper approximation

of the set A determined by the relation R ([11, 13]). We explain this terminology as follows: ‘tight’

refers to the fact that we take all R-foresets which contain x into account, while the ‘loose’

approximation only looks at the ‘best’ R-foreset. We now paraphrase these expressions. In a

generalised approximation space (U , R), we obtain the following definitions.

Definition 3.3.1. Let A be a crisp subset in a generalised approximation space (U , R) and x ∈ U .

We define the tight lower approximation R↓↓A of A as

x ∈ R↓↓A⇔ (∀y ∈ U)(x ∈ Ry ⇒ Ry ⊆ A)

and the loose lower approximation R↑↓A of A as

x ∈ R↑↓A⇔ (∃y ∈ U)(x ∈ Ry ∧ Ry ⊆ A).

We define the tight upper approximation R↓↑A of A as

x ∈ R↓↑A⇔ (∀y ∈ U)(x ∈ Ry ⇒ Ry ∩ A 6= ;)

and the loose upper approximation R↑↑A of A as

x ∈ R↑↑A⇔ (∃y ∈ U)(x ∈ Ry ∧ Ry ∩ A 6= ;).
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The usual lower and upper approximation of A, which correspond to option (c) in the list of

candidate definitions, are the same as those defined in Definition 2.1.4. All the approximations

are crisp subsets of U . It is clear by the definitions that R↓↓A⊆ R↑↓A and that R↓↑A⊆ R↑↑A. When

R is an equivalence relation, the definitions of the tight and loose approximations coincide with

the definition of the usual approximations of A. This is not the case when R is an arbitrary binary

relation, we show this with an example.

Example 3.3.2. Let U = {y1, y2, y3, y4, y5}, A= {y1, y3} and

R= {(y1, y1), (y1, y3), (y1, y5), (y2, y1), (y2, y2), (y2, y4), (y3, y1),

(y3, y3), (y3, y5), (y4, y4), (y4, y5), (y5, y2), (y5, y5)}.

We see that R is not symmetric (for example (y1, y5) ∈ R, but (y5, y1) /∈ R), so R is not an

equivalence relation. We compute the R-foresets:

Ry1 = {y1, y2, y3},

Ry2 = {y2, y5},

Ry3 = {y1, y3},

Ry4 = {y2, y4},

Ry5 = {y1, y3, y4, y5}.

We can now compute all the approximations of A:

R↓↓A= ;,

R↓A= {y3},

R↑↓A= {y1, y3},

R↓↑A= {y1, y3},

R↑A= {y1, y3, y5},

R↑↑A= U .

We see that the tight and loose approximations do not coincide with the usual ones. In this case

we have that

R↓↓A⊆ R↓A⊆ R↑↓A⊆ A⊆ R↓↑A⊆ R↑A⊆ R↑↑A.

We now study what happens with a fuzzy set A in a fuzzy approximation space (U , R). When we

replace the implications and conjunctions by implicators and conjunctors, we can form a natural

generalisation1.

1In [11] and [13] a t-norm was used as conjunctor.
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Definition 3.3.3. Let I be an implicator and C a conjunctor. Let A be a fuzzy set in a fuzzy

approximation space (U , R) and x ∈ U . The tight lower approximation of A is the fuzzy set R↓I ↓IA

defined by

(R↓I ↓IA)(x) = inf
y∈U
I (R(x , y), inf

z∈U
I (R(z, y), A(z)))

and the loose lower approximation of A is the fuzzy set R↑C ↓IA defined by

(R↑C ↓IA)(x) = sup
y∈U
C (R(x , y), inf

z∈U
I (R(z, y), A(z))).

The tight upper approximation of A is the fuzzy set R↓I ↑CA defined by

(R↓I ↑CA)(x) = inf
y∈U
I (R(x , y), sup

z∈U
C (R(z, y), A(z)))

and the loose upper approximation of A is the fuzzy set R↑C ↑CA defined by

(R↑C ↑CA)(x) = sup
y∈U
C (R(x , y), sup

z∈U
C (R(z, y), A(z))).

The usual lower and upper approximation of A are the same as in Definition 3.2.1. The relations

between the different approximations will be studied in Chapter 4.

We again illustrate the model by an example.

Example 3.3.4. Let U , A and R be as in Example 3.2.5: U = {y1, y2}, A(y1) = 0.2, A(y2) = 0.8,

and R such that

R(y1, y1) = R(y2, y2) = 0.7, R(y1, y2) = 0 and R(y2, y1) = 0.3.

Take (I ,C ) = (IL ,TL). We first compute

inf
z∈U
IL(R(z, y), A(z)) = inf

z∈U
min{1,1− R(z, y) + A(z)}

for y ∈ U . We obtain
inf
z∈U
IL(R(z, y1), A(z)) = inf{0.5,1}= 0.5,

inf
z∈U
IL(R(z, y2), A(z)) = inf{1,1}= 1.

Similarly, with

sup
z∈U
TL(R(z, y), A(z)) = sup

z∈U
max{0, R(z, y) + A(z)− 1}

we obtain
sup
z∈U
TL(R(z, y1), A(z)) = sup{0,0.1}= 0.1,

sup
z∈U
TL(R(z, y2), A(z)) = sup{0,0.5}= 0.5.
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We can now compute the four approximations of A in y1 and y2:

(R↓IL
↓IL

A)(y1) = inf{0.8, 1}= 0.8,

(R↓IL
↓IL

A)(y2) = inf{1, 1}= 1,

(R↑TL
↓IL

A)(y1) = sup{0.2,0}= 0.2,

(R↑TL
↓IL

A)(y2) = sup{0,0.7}= 0.7,

(R↓IL
↑TL

A)(y1) = inf{0.4,1}= 0.4,

(R↓IL
↑TL

A)(y2) = inf{0.8,0.8}= 0.8,

(R↑TL
↑TL

A)(y1) = sup{0, 0}= 0,

(R↑TL
↑TL

A)(y2) = sup{0, 0.2}= 0.2.

Together with the result of Example 3.2.5 we obtain that

R↑TL
↑TL

A⊆ R↑TL
A⊆ R↑TL

↓IL
A⊆ A⊆ R↓IL

↑TL
A⊆ R↓IL

A⊆ R↓I ↓I LA.

In this case, the loose approximations are not included in the tight approximations.

We continue with discussing some robust fuzzy rough set models.

3.4 Fuzzy rough set models designed to deal with noisy data

In applications, most classification tasks are described by fuzzy information, which can be noisy.

Noise can be come from different sources, e.g., attribute noise and class noise ([70]). Attribute

noise are errors introduced in attribute values, e.g., wrong values, missing values, incomplete

values, . . . This can happen when we acquire data. Class noise is generated by sample mislabelling.

It can come from contradictory objects in the sample, i.e., the same object appears more than once

and is labeled with different classifications, or misclassifications, i.e., an object is labeled wrong.

Noise is the reason why we want robust fuzzy rough set models, models such that the output

does not change drastically if the input changes a little bit. The evolution of these models starts

with the variable precision rough set model of Ziarko. An overview of some models is given in

[29].
The first model we discuss is the β-precision fuzzy rough set model.

3.4.1 β-precision fuzzy rough sets

We start with the β -precision fuzzy rough set model. This was introduced by Fernández Salido and

Murakami to work with numerical attributes, something that is not possible with Ziarko’s VPRS

model. This model is robust to class noise ([29]).



CHAPTER 3. FUZZY ROUGH SETS 47

Fernández Salido and Murakami extended the model designed by Dubois and Prade by

extending t-norms and t-conorms to β-precision quasi-t-norms and β-precision quasi-t-conorms

([56, 57]). Although Fernández Salido and Murakami worked with the extension of the maximum

and minimum operators SM and TM , Hu et al. ([29]) give a more general β -precision fuzzy rough

set model (β-PFRS) that we discuss here:

Definition 3.4.1. Let N be an involutive negator and β ∈ I . Let Tβ and Sβ be a quasi-t-norm and

a quasi-t-conorm based on a t-norm T and its dual t-conorm S with respect to N . Let I be an

implicator and C a conjunctor. We define the β-precision fuzzy rough set model as follows: for a

fuzzy set A in a fuzzy approximation space (U , R) with R a general fuzzy relation and x ∈ U , we

define the lower approximation R↓I ,TβA of A as

(R↓I ,TβA)(x) = Tβ
y∈U
I (R(y, x), A(y)),

and the upper approximation R↑C ,SβA of A as

(R↑C ,SβA)(x) = Sβ
y∈U
C (R(y, x), A(y)).

Hu et al. used for the pair (I ,C ) an S-implicator I based on a t-conorm S and a t-norm T
which is dual with S or an R-implicator I based on a t-norm T and its dual coimplicator J .

We already know that when β = 1, we get the original t-norm and t-conorm. In the case

studied by Fernández Salido and Murakami this is the infimum and supremum and in this way, we

get the general fuzzy rough set model defined in Definition 3.2.1. According to [56, 57], the value

of β depends on the application and will typically be high, e.g., 0.95 or 0.99. This means that

when computing the lower approximation, we will omit the smallest values and when computing

the upper approximation, we will omit the largest values. Outliers will have less impact on the

result, which should make the model more robust. Fernández Salido and Murakami called β the

precision of the approximations, in a sense that the higher β is, the more elements are taken into

account in the computation.

Let us take a look at an example.

Example 3.4.2. We consider the same U , A and R as in Example 3.2.5: U = {y1, y2}, A(y1) = 0.2

and A(y2) = 0.8, and R such that

R(y1, y1) = R(y2, y2) = 0.7, R(y1, y2) = 0 and R(y2, y1) = 0.3.

We take (I ,C ) = (IL ,TL), (T ,S ) = (min,max) and β = 0.8. We obtain for the lower approxima-

tion
(R↓IL ,min0.8

A)(y1) =min
0.8
{0.5, 1}= 0.5,

(R↓IL ,min0.8
A)(y2) =min

0.8
{1, 1}= 1,
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because (1− 0.8)(0.5+ 1) = 0.3 and (1− 0.8)(1+ 1) = 0.4 and thus we omit nothing. For the

upper approximation, we derive

(R↑TL ,max0.8
A)(y1) =max

0.8
{0, 0.1}= 0.1,

(R↑TL ,max0.8
A)(y2) =max

0.8
{0, 0.5}= 0.5,

because (1− 0.8)(1− 0+ 1− 0.1) = 0.38 and (1− 0.8)(1− 0+ 1− 0.5) = 0.3.

This model is more robust than the general fuzzy rough set model. Let us illustrate this with an

example.

Example 3.4.3. Let U = {y1, . . . , y100, x}, A a fuzzy set in U such that A(yi) =
i

100
for all i ∈

{1, . . . , 100} and A(x) = 1. Let R be a fuzzy relation with R(yi , x) = i
100

for all i ∈ {1, . . . , 100} and

R(x , x) = 1. We compute the lower approximation in x with the general fuzzy rough set model

with I = IL:
(R↓IL

A)(x) = inf
z∈U
IL(R(z, x), A(z))

=min
�

100
inf
i=1
IL

�

i

100
,

i

100

�

,IL(1,1)
�

= 1.

Now, if A(y100) = 0, i.e., A is different in one point, then

(R↓IL
A)(x) =min

�

100
inf
i=1
IL

�

i

100
, A(yi)

�

,IL(1,1)
�

=min
�

99
inf
i=1

min
�

1,1−
i

100
+

i

100

�

, min
�

1, 1−
100

100
+ 0
�

, 1
�

=min{1, 0,1}

= 0.

The difference is very large compared to the small change in A. We study what happens in the

β-precision fuzzy rough set. Take T =min, I = IL and β = 0.95. If A(y100) = 1, we have again

that IL(R(z, x), A(z)) = 1 for all z ∈ U and it holds that

5≤ (99 · 1+ 1 · 1+ 1 · 1) · 0.05= 5.05,

which means we omit the five least values of IL(R(z, x), A(z)), which are all one. We obtain

(R↓IL ,min0.95
A)(x) =min

0.95
{1, . . . , 1}= 1.

Now, if A(y100) = 0, then

5≤ (99 · 1+ 1 · 0+ 1 · 1) · 0.05= 5,

and we again omit the five smallest values of IL(R(z, x), A(z)), which means we omit

IL(R(y100, x), A(y100)) = 0.
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We obtain again that

(R↓IL ,min0.95
A)(x) =min

0.95
{1, . . . , 1}= 1.

So, a small change in A does not change the lower approximation in x .

Next, we discuss the variable precision fuzzy rough set model.

3.4.2 Variable precision fuzzy rough sets

Mieszkowicz-Rolka and Rolka ([46, 47]) introduced another fuzzy rough set model to deal with

class noise. Their motivation was that the fuzzy rough approximations of Dubois and Prade had

the same disadvantages as the original rough set model: just a relatively small inclusion error of a

fuzzy similarity class can result in the rejection of that class from the lower approximation, and a

small inclusion degree can lead to an excessive increase of the upper approximation. To solve this,

they combine the model designed by Dubois and Prade with the model designed by Ziarko to the

variable precision fuzzy rough set model (VPFRS) with asymmetric bounds. We study their second

model ([47]), since the upper approximation in their first model did not generalise the model of

Dubois and Prade.

Before we study their model, we extend the notion of inclusion degree to fuzzy sets. The

extension can be done in different ways. Mieszkowicz-Rolka and Rolka use the implication-based

inclusion set for the lower approximation and the t-norm-based inclusion set for the upper

approximation. We need two different definitions, in order to maintain the compatibility between

the VPFRS model and the model designed by Dubois and Prade. We give both concepts.

Definition 3.4.4. Let A and B be fuzzy sets in U and I an implicator. The implication-based

inclusion set Incl(A, B) of A in B is defined by

∀x ∈ U : Incl(A, B)(x) = I (A(x), B(x)).

We need to choose a suitable implicator, because we want that the degree of inclusion with

respect to x is 1 if A(x)≤ B(x)2. Not all implicators satisfy this condition, for example if we take

I = IKD, the condition does not hold. It does hold for R-implicators.

We continue with the t-norm-based inclusion set.

Definition 3.4.5. Let A and B be fuzzy sets in U and T a t-norm. The t-norm-based inclusion set

Incl′(A, B) of A in B is defined by

∀x ∈ U : Incl′(A, B)(x) = T (A(x), B(x)).

As in the model of Ziarko, we need measures for the amount of misclassification we allow,

when determining the lower and upper approximation of a fuzzy set. In [47], two inclusion errors

based on α-level sets were introduced. The first one is the lower α-inclusion error.
2In [47], Incl(A, B)(x) = 0 if A(x) = 0, but then the condition does not hold.
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Definition 3.4.6. Let α ∈ I and A and B fuzzy sets in U . The lower α-inclusion error el,α of A in B

is defined by

el,α(A, B) = 1−
|A∩ (Incl(A, B))α|

|A|
.

The second inclusion error is the upper α-inclusion error.

Definition 3.4.7. Let α ∈ I and A and B fuzzy sets in U and NS the standard negator. The upper

α-inclusion error eu,α of A in B is defined by

eu,α(A, B) = 1−
|A∩ (coNS

(Incl′(A, B)))α|
|A|

.

With 0 ≤ l < u ≤ 1, we can define the lower and upper approximation of a fuzzy set A.

Although Mieszkowicz-Rolka and Rolka worked with fuzzy partitions, we give the definition for

R-foresets based on a general fuzzy relation R.

Definition 3.4.8. Let A be a fuzzy set in a fuzzy approximation space (U , R) with R a general fuzzy

relation and x an element of U . Let Incl and Incl′ be the inclusion sets based on a implicator I
and a t-norm T respectively, such that I fulfils the condition

∀B1, B2 ∈ F (U),∀x ∈ U : B1(x)≤ B2(x)⇒I (B1, B2)(x) = 1.

Let N be the standard negator. With 0≤ l < u≤ 1 we define the u-lower approximation R↓I ,uA of

A as

(R↓I ,uA)(x) = inf
y∈Sx ,u

(Incl(Rx , A))(y)

and the l-upper approximation R↑T ,lA of A as

(R↑T ,lA)(x) = sup
y∈Sx ,l

(Incl′(Rx , A))(y)

with
αx ,u = sup{α ∈ I | el,α(Rx , A)≤ 1− u}

= sup
�

α ∈ I |
|Rx ∩ (Incl(Rx , A))α|

|Rx |
≥ u
�

,

Sx ,u = supp(Rx)∩ supp
�

Incl(Rx , A))αx ,u

�

= {y ∈ U | R(y, x)> 0 and (Incl(Rx , A))(y)≥ αx ,u},

αx ,l = sup{α ∈ I | eu,α(Rx , A)≤ l}

= sup

¨

α ∈ I |
|Rx ∩ (coN (Incl′(Rx , A)))α|

|Rx |
≥ 1− l

«

,

Sx ,l = supp(Rx)∩ supp
�

(coN (Incl′(Rx , A)))αx ,l

�

= {y ∈ U | R(y, x)> 0 and (Incl′(Rx , A))(y)≤ 1−αx ,l}.
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With u= 1 and l = 0, we derive the fuzzy rough set model of Dubois and Prade. This was not

the case in the first model from Mieszkowicz-Rolka and Rolka. Note that this holds, although the

Kleene-Dienes implicator does not fulfil the condition for Incl.

Proposition 3.4.9. Let u = 1 and l = 0 and take I = IKD and T = min to determine Incl and

Incl′. With R a fuzzy similarity relation, we obtain the model designed by Dubois and Prade.

Proof. Let A be a fuzzy set in U and x ∈ U . First, we compute the value of αx ,1:

αx ,1 = sup
�

α ∈ I |
|Rx ∩ Incl(Rx , A)α|

|Rx |
≥ 1
�

= sup{α ∈ I | |Rx ∩ Incl(Rx , A)α|= |Rx |}

= sup{α ∈ I | ∀y ∈ U : R(y, x)> 0⇒max{1− R(y, x), A(y)} ≥ α}.

Now, since max{1− R(y, x), A(y)} is also 1 if R(y, x) = 0, we obtain that

αx ,1 = inf
y∈I
IKD(R(y, x), A(y))

= inf
y∈U
(Incl(Rx , A))(y).

We continue with Sx ,1:

Sx ,1 = supp(Rx)∩ supp
�

(Incl(Rx , A))αx ,1

�

=
§

y ∈ U | R(y, x)> 0 and (Incl(Rx , A))(y)≥ inf
z∈U
(Incl(Rx , A))(z)

ª

= supp(Rx).

We can now determine the lower approximation:

(R↓IKD ,1A)(x) = inf
y∈Sx ,1

(Incl(Rx , A))(y)

= inf
y∈supp(Rx)

max{1− R(y, x), A(y)}

= inf
y∈U

max{1− R(y, x), A(y)}

= (R↓A)(x)

because, if R(y, x) = 0, then max{1− R(y, x), A(y)} = 1 and we take the infimum, so these values

have no influence. For the upper approximation, we can do something similar. We first start with

αx ,0. Recall that we take the standard negator for N .

αx ,0 = sup

¨

α ∈ I |
|Rx ∩ (coN (Incl′(Rx , A)))α|

|Rx |
≥ 1

«

= sup{α ∈ I | |Rx ∩ (coN (Incl′(Rx , A)))α|= |Rx |}

= sup{α ∈ I | ∀y ∈ U : R(y, x)> 0⇒ 1−min{R(y, x), A(y)} ≥ α}.
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Since 1−min{R(y, x), A(y)} is also 1 if R(y, x) = 0, we obtain

αx ,0 = inf
y∈U
{1−min{R(y, x), A(y)}}

= 1− sup
y∈U
(Incl′(Rx , A))(y).

With this αx ,0, we get for Sx ,0 the following:

Sx ,0 = supp(Rx)∩ supp
�

(coN (Incl′(Rx , A)))αx ,0

�

=
�

y ∈ U | R(y, x)> 0 and 1− (Incl′(Rx , A))(y)≥ 1− sup
z∈U
(Incl′(Rx , A))(z)

�

= supp(Rx).

For the upper approximation we derive that

(R↑TM ,0A)(x) = sup
y∈Sx ,0

(Incl′(Rx , A))(y)

= sup
y∈supp(Rx)

min{R(y, x), A(y)}

= sup
y∈U

min{R(y, x), A(y)}

= (R↑A)(x)

because, if R(y, x) = 0, then min{R(y, x), A(y)} = 0 and this does not influence the supremum.

Just as the model of Dubois and Prade, Ziarko’s VPRS model is a special case of the VPFRS

model, i.e., when A and R are crisp, the VPFRS model reduces to Ziarko’s model with asymmetric

bounds (see Definition 2.1.12).

Proposition 3.4.10. If A is a crisp set in a generalised approximation space (U , R), then the

variable precision fuzzy rough set model is exactly the variable precision rough set model with

asymmetric bound.

Proof. Take 0 ≤ l < u ≤ 1 and I an implicator and T a t-norm. Let N be the standard negator.

Because we work with crisp sets, αx ,u and αx ,l are either 1 or 0.

We start by determining when αx ,u is 1. Now, for every x , y ∈ U we have by the definition of

an implicator that

y ∈ (Rx ∩ Incl(Rx , A))⇔ R(y, x) = 1 and A(y) = 1⇔ y ∈ (Rx ∩ A).

This leads us to:

αx ,u = 1⇔
|Rx ∩ (Incl(Rx , A))1|

|Rx |
≥ u

⇔
|Rx ∩ A|
|Rx |

≥ u

⇔ (R↓uA)(x) = 1.



CHAPTER 3. FUZZY ROUGH SETS 53

If αx ,u = 1, then Sx ,u = Rx ∩ A and

(R↓I ,uA)(x) = inf
y∈Sx ,u

(Incl(Rx , A))(y)

= inf
y∈Sx ,u

I (R(y, x), A(y))

= inf
y∈Sx ,u

1

= 1

= (R↓uA)(x).

If αx ,u = 0, then |Rx∩A|
|Rx | < u≤ 1, which means that there is a y ∈ U such that y ∈ Rx and y /∈ A.

For this y , we have I (R(y, x), A(x)) = 0. If αx ,0 = 0, then Sx ,u = Rx and we obtain

(R↓I ,uA)(x) = inf
y∈Sx ,u

(Incl(Rx , A))(y)

= inf
y∈Sx ,u

I (R(y, x), A(y))

= 0

= (R↓uA)(x).

For both values of αx ,u we have (R↓I ,uA)(x) = (R↓uA)(x).
We do the same thing for the upper approximation. For the t-norm-based inclusion set, we

derive for x , y ∈ U that

(coN (Incl′(Rx , A)))(y)≥ 1⇔T (R(y, x), A(y)) = 0⇔ y ∈ ((Rx)c ∪ Ac),

and thus

αx ,l = 1⇔
|Rx ∩ (coN (Incl′(Rx , A)))1|

|Rx |
≥ 1− l

⇔
|Rx ∩ (Rxc ∪ Ac)|

|Rx |
≥ 1− l

⇔
|Rx ∩ Ac|
|Rx |

≥ 1− l

⇔ 1−
|Rx ∩ A|
|Rx |

≥ 1− l

⇔
|Rx ∩ A|
|Rx |

≤ l

⇔ (R↑lA)(x) = 0.
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If αx ,l = 1, then Sx ,l = Rx ∩ Ac and thus

(R↑T ,lA)(x) = sup
y∈Sx ,l

(Incl′(Rx , A))(y)

= sup
y∈Sx ,l

T (R(y, x), A(y))

= sup
y∈Sx ,l

0

= 0

= (R↑lA)(x).

On the other hand, if αx ,l = 0, then Sx ,l = Rx ∩U = Rx and (R↑lA)(x) = 1, which means that there

is an y ∈ U such that y ∈ (Rx ∩ A) and thus T (R(y, x), A(y)) = 1. We obtain that

(R↑T ,lA)(x) = sup
y∈Sx ,l

(Incl′(Rx , A))(y)

= sup
y∈Sx ,l

T (R(y, x), A(y))

= 1

= (R↑lA)(x).

In both cases we have that (R↑T ,lA)(x) = (R↑lA)(x).

Since Ziarko’s model is a special case of the VPFRS model, the properties of this model are very

limited. Furher study of this model is required.

We illustrate the model and its robustness.

Example 3.4.11. We consider the same U , A and R as in Example 3.2.5: U = {y1, y2}, A(y1) = 0.2,

A(y2) = 0.8 and R such that

R(y1, y1) = R(y2, y2) = 0.7, R(y1, y2) = 0 and R(y2, y1) = 0.3.

We take (I ,T ) = (IL ,TL) and l = 0.1, u= 0.6. We derive the following results:

αy1,0.6 = 0.5,

Sy1,0.6 = U ,

(R↓IL ,0.6A)(y1) = inf{0.5, 1}= 0.5,

αy2,0.6 = 1,

Sy2,0.6 = {y2},

(R↓IL ,0.6A)(y2) = inf{1}= 1,
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αy1,0.4 = 0.9,

Sy1,0.4 = U ,

(R↑TL ,0.4A)(y1) = sup{0, 0.1}= 0.1,

αy2,0.4 = 0.5,

Sy2,0.4 = U ,

(R↑TL ,0.4A)(y2) = sup{0, 0.5}= 0.5.

In this case, we have the same results in Example 3.2.5.

To illustrate robustness, we take the same example as in the previous section.

Example 3.4.12. Like in Example 3.4.3, we take U = {y1, . . . , y100, x}, A a fuzzy set in U such

that A(yi) =
i

100
for all i ∈ {1, . . . , 100} and A(x) = 1. Let R be a fuzzy relation with R(yi , x) = i

100

for all i ∈ {1, . . . , 100} and R(x , x) = 1. Recall that in the general fuzzy rough set model with

I = IL we had (R↓IL
A)(x) = 1, and we had (R↓IL

A)(x) = 0 if A(y100) = 0.

We study what happens in the VPFRS model with I = IL and u = 0.8. Since (Incl(Rx , A))(z) =
1 for every z ∈ U , we have that αx ,0.8 = 1 and Sx ,0.8 = U . Hence, (R↓IL ,0.8A)(x) = 1, as in

the general fuzzy rough set model. Now, when A(y100) = 0, we still have αx ,0.8 = 1, but now

Sx ,0.8 = U \ {y100}. Since IL(R(y100, x), A(y100)) = 0 is omitted, we again have (R↓IL ,0.8A)(x) = 1,

and thus, this model is more robust than the general fuzzy rough set model.

We continue with the vaguely quantified fuzzy rough set model.

3.4.3 Vaguely quantified fuzzy rough sets

In 2007, Cornelis et al. ([12]) introduced vague quantifiers into the existing models. For example,

‘most’ and ‘some’ are vague quantifiers. Quantifiers soften the definitions of the lower and upper

approximations in the VPRS and the β -PFRS model. The intuition is that an element x belongs to

the lower approximation of A if most of the elements related to x are included in A and it belongs

to the upper approximation of A if some of the elements related to x are included in A.

We first define the notion of a quantifier.

Definition 3.4.13. A quantifier is a mapping Q : I → I . We call a quantifier Q regularly increasing

if it increases and if it satisfies the boundary conditions Q(0) = 0 and Q(1) = 1.

We give some examples of regularly increasing quantifiers.

Example 3.4.14. Let a be in I and 0≤ l < u≤ 1.
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1. The existential quantifier:

Q∃(a) =







0 a = 0

1 a > 0

2. The universal quantifier:

Q∀(a) =







0 a < 1

1 a = 1

3. Quantifier with boundary l:

Q>l(a) =







0 a ≤ l

1 a > l

4. Quantifier with boundary u:

Q≥u(a) =







0 a < u

1 a ≥ u

The examples above are all crisp quantifiers, but there also exist fuzzy quantifiers.

Example 3.4.15. Let a be in I and 0≤ α < β ≤ 1, we define the quantifier Q(α,β) as

Q(α,β)(a) =























0 a ≤ α
2(a−α)2

(β−α)2 α≤ a ≤ α+β
2

1− 2(a−β)2

(β−α)2
α+β

2
≤ a ≤ β

1 β ≤ a.

We can use Qs =Q(0.1,0.6) and Qm =Q(0.2,1) to reflect the vague quantifiers ‘some’ and ‘most’

([12]).
Given fuzzy sets A1 and A2 in U and a fuzzy quantifier Q, we can compute the truth value of

the statement “ ‘Q’ A1’s are also in A2” by the formula

Q
� |A1 ∩ A2|
|A1|

�

.

Recall that in the fuzzy case (A1 ∩ A2)(x) =min{A1(x), A2(x)} and |A|=
∑

x∈U
A(x).

Once we have fixed a couple (Qu,Q l) of fuzzy quantifiers, we can formally define the vaguely

quantified fuzzy rough set model (VQFRS).
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Definition 3.4.16. Let A be a fuzzy set in a fuzzy approximation space (U , R) and x ∈ U . For the

couple (Qu,Q l) of fuzzy quantifiers we can define the Qu-lower approximation R↓Qu
A of A as

(R↓Qu
A)(x) =







Qu

�

|Rx∩A|
|Rx |

�

Rx 6= ;

Qu(1) Rx = ;

and the Q l -upper approximation R↑Q l
A of A as

(R↑Q l
A)(x) =







Q l

�

|Rx∩A|
|Rx |

�

Rx 6= ;

Q l(1) Rx = ;.

It is easy to verify that with (Q∀,Q∃) we derive Definition 2.1.4 and with (Q≥u,Q>l) we derive

Definition 2.1.12. When A and R are crisp, we call this model the vaguely quantified rough set

model (VQRS). We see that in the VQFRS model, we do not use conjunctors and implicators.

Remark 3.4.17. There are other possible cardinalities besides |A| which can be used to define

fuzzy rough sets such as done in Fan et al. ([22]).

We give an example of the VQFRS model.

Example 3.4.18. We take U , A and R as in Example 3.2.5: U = {y1, y2}, A(y1) = 0.2, A(y2) = 0.8

and R such that

R(y1, y1) = R(y2, y2) = 0.7, R(y1, y2) = 0 and R(y2, y1) = 0.3.

We take (Qu,Q l) = (Qm,Qs). We compute that |Ry1∩A|
|Ry1|

= 1
2

and that |Ry2∩A|
|Ry2|

= 1. With these values,

we can compute the lower and upper approximation of A:

(R↓Qm
A)(y1) =Qm

�

1

2

�

= 0.28125,

(R↓Qm
A)(y2) =Qm(1) = 1,

(R↑Qs
A)(y1) =Qs

�

1

2

�

= 0.92,

(R↑Qs
A)(y2) =Qs(1) = 1.

These results are different from the results in Example 3.2.5.

We illustrate the robustness of the VQFRS model.
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Example 3.4.19. We consider the same U , A and R as in Example 3.4.3: U = {y1, . . . , y100, x},
A a fuzzy set in U such that A(yi) =

i
100

for all i ∈ {1, . . . , 100} and A(x) = 1 and R a fuzzy

relation with R(yi , x) = i
100

for all i ∈ {1, . . . , 100} and R(x , x) = 1. We have seen that with

A(y100) = 1 we have (R↓IL
A)(x) = 1 and with A(y100) = 0 we have (R↓IL

A)(x) = 0. Let us

compute the lower appromation in the VQFRS model with Qu = Qm = Q(0.2,1). We have for all

z ∈ U that Rx(z) = R(z, x) = 1, which means that |Rx | = 101. With A(y100) = 1, we derive that
|Rx∩A|
|Rx | =

99+1+1
101

= 1 and thus that (R↓Qm
A)(x) = 1, as Qm(1) = 1. Now, let A(y100) = 0, then

|Rx∩A|
|Rx | (x) =

99+0+1
101

= 100
101

and because Qm

�

100
101

�

= 0.9997, we have that (R↓Qm
A)(x) = 0.9997,

which is only a small change from 1.

We continue with the fuzzy variable precision rough set model.

3.4.4 Fuzzy variable precision rough sets

In this model designed by Zhao et al. ([68]), we again work with fuzzy logical operators and a

general fuzzy relation R. It will be effective if we just consider attribute noise ([29]).
In the fuzzy variable precision rough set model (FVPRS), we define a fuzzy lower and upper

approximation with variable precision α, with α ∈ [0, 1[. For computing the lower approximation,

we only take into account the values A(y) which are greater than α, for the upper approximation

we only consider the values A(y) which are smaller than N (α) for a certain negator N . This

means that we omit values which are too small, respectively too big.

Definition 3.4.20. Let N be a negator, I an implicator and C a conjunctor. Let A be a fuzzy set

in a fuzzy approximation space (U , R) with R a general fuzzy relation and x ∈ U . Let α ∈ [0,1[.
The lower approximation with variable precision α of A, R↓I ,αA, is defined by

(R↓I ,αA)(x) = inf
y∈U
I (R(y, x), max{α, A(y)}),

and the upper approximation with variable precision α of A, R↑C ,αA, is defined by

(R↑C ,αA)(x) = sup
y∈U
C (R(y, x), min{N (α), A(y)}).

With α= 0, we obtain the general fuzzy rough set model of Definition 3.2.1. In most cases, α

will be small. When we have a big α (i.e., close to 1), the values of the lower approximation of A

in the different elements of U will be close to 1, and the values of the upper approximation of A

will be close to 0. Note also that we always have the following connection between this model and

the general fuzzy rough set model:

R↓I ,αA= R↓I (A∪ α̂),

R↑C ,αA= R↑C (A∩×1−α),
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for every fuzzy set A and every α ∈ I .

If A is a crisp set and x ∈ U , Definition 3.4.20 becomes the following:

(R↓I ,αA)(x) = inf
A(y)=0

I ((R(y, x)),α),

(R↑C ,αA)(x) = sup
A(y)=1

C (R(y, x),N (α)).

We again apply this model to our standard setting.

Example 3.4.21. Let U , A and R be as in Example 3.2.5: U = {y1, y2}, A(y1) = 0.2, A(y2) = 0.8

and R such that

R(y1, y1) = R(y2, y2) = 0.7, R(y1, y2) = 0 and R(y2, y1) = 0.3.

Let (I ,C ) = (IL ,TL) and α= 0.3. We obtain with this model:

(R↓IL ,0.3A)(y1) = inf{0.6,1}= 0.6,

(R↓IL ,0.3A)(y2) = inf{1,1}= 1,

(R↑TL ,0.3A)(y1) = sup{0, 0}= 0,

(R↑TL ,0.3A)(y2) = sup{0, 0.4}= 0.4.

The values for the lower approximation are slightly larger than the values obtained by the general

fuzzy rough set model. On the other hand, the values for the upper approximation are slightly

smaller in this case.

The following example shows that the fuzzy variable precision rough set model is a robust

model.

Example 3.4.22. We again consider the setting of Example 3.4.3. Let U = {y1, . . . , y100, x}, A a

fuzzy set in U such that A(yi) =
i

100
for all i ∈ {1, . . . , 100} and A(x) = 1. Let R be a fuzzy relation

with R(yi , x) = i
100

for all i ∈ {1, . . . , 100} and R(x , x) = 1. Let us take I = IL and α= 0.2, then

we have that

IL(R(yi , x), max{0.2, A(yi)}) =min
�

1, 1−
i

100
+ 0.2

�

= 1

if i ≤ 20, and for 20< i, we have

IL(R(yi , x), max{0.2, A(yi)}) =min
�

1, 1−
i

100
+

i

100

�

= 1.

We obtain that the lower approximation of A in x is

(R↓IL ,0.2A)(x) = inf
z∈U
IL(R(z, x),max{0.2, A(z)})

= 1.
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If A(y100) = 0, then we obtain that

(R↓IL ,0.2A)(x) = IL(1, 0.2) = 0.2,

which means that the lower approximation in the FVPRS model changes less than the lower

approximation in the general fuzzy rough set model. However, the change is very large compared

to other robust models.

The next model we discuss, is the soft fuzzy rough set model.

3.4.5 Soft fuzzy rough sets

Another robust fuzzy rough set model was introduced by Hu et al. ([26], [27]). As they use a

soft threshold to compute the lower and upper approximation, it is called the soft fuzzy rough set

model. We will show that this model is not well-defined.

We start with defining the soft distance between an element and a set.

Definition 3.4.23. Let A be a crisp set in U and x ∈ U . The soft distance between x and A is

defined by

SD(x , A) = argd(x ,y) sup
y∈A
{d(x , y)− βmx ,y}

where d is a distance function, β > 0 is a penalty factor and

mx ,y = |{yi ∈ U | d(x , yi)< d(x , y)}|.

We already encounter a problem in this definition due to the use of the function argd(x ,y). When

U is infinite, the value of the supremum may not be reached for any y. A more serious problem

occurs when the value of the supremum is reached for different values of y . Let us illustrate this

with an example.

Example 3.4.24. Let U = {x , y1, y2, y3}, A= {y1, y2, y3}, β = 0.1 and

d(x , y1) = 0.2, d(x , y2) = 0.3, d(x , y3) = 0.4.

Because d(x , y1)−βmx ,y1
= d(x , y2)−βmx ,y2

= d(x , y3)−βmx ,y3
= 0.2, SD(x , A) could be either

0.2, 0.3 or 0.4.

Based on this soft distance, Hu et al. define the soft fuzzy rough set model with distance

function d(x , y) = 1− R(y, x) for all x , y ∈ U .

Definition 3.4.25. Let A be a fuzzy set in a fuzzy approximation space (U , R) with R a general

fuzzy relation. With x ∈ U , define the soft fuzzy lower approximation R↓SA of A as

(R↓SA)(x) = 1− R

 

x , argy sup
A(y)≤A(yL)

{1− R(y, x)− βmyL
x ,y}

!

,
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and the soft fuzzy upper approximation R↑SA of A as

(R↑SA)(x) = R
�

x , argy inf
A(y)≥A(yU )

{R(y, x) + βnyU
x ,y}
�

,

where
yL = argy inf

y∈U
max{1− R(y, x), A(y)},

myL
x ,y = |{yi ∈ U | A(yi)≤ A(yL)∧ R(yi , x)> R(y, x)}|,

yU = argy sup
y∈U

min{R(y, x), A(y)},

nyU
x ,y = |{yi ∈ U | A(yi)≥ A(yU)∧ R(yi , x)> R(y, x)}|.

and β > 0 a penalty factor.

We illustrate that this model is not well-defined.

Example 3.4.26. Let U = {x , y1, y2}, A(y1) = 0.1, A(y2) = 0, A(x) = 0.5, R(y1, x) = 0.95,

R(y2, x) = 0.9, R(x , x) = 1, β = 0.06.

In this case, yL could be equal to either y1 or y2, because for both of these values of y,

max(1− R(y, x), A(y)) = 0.1.

If yL = y1, then (R↓SA)(x) = 0.05, because myL
x ,y1
= 0 and myL

x ,y2
= 1, and 1 − R(y1, x) −

βmyL
x ,y1
= 0.05> 1− R(x , y2)− βmyL

x ,y2
= 0.04.

On the other hand, if yL = y2, then (R↓SA)(x) = 0.1. This gives us two different values for the

soft lower approximation of A in x .

As this model is not well-defined, we will not study the properties of this model in Chapter 4.

The last model we study, is the ordered weighted average-based fuzzy rough set model.

3.4.6 Ordered weighted average-based fuzzy rough sets

We continue with the model based on ordered weighted average (OWA) operators (Cornelis et

al. [16]). Traditionally, the lower and upper approximation of a set A in U are determined by the

worst, respectively best performing object. As we have seen, this leads to approximations which

are sensitive to noisy data. OWA-based fuzzy rough sets are a possible solution for this problem.

The approximations are computed by an aggregation process, which is similar to the vaguely

quantified fuzzy rough set approach, but the OWA-based approach has some advantages. First, it is

monotonous with regard to the fuzzy relation R, as we will show in the next chapter. Secondly, the

traditional fuzzy rough approximations can be recovered by choosing a particular OWA-operator.

Finally, we can maintain the VQFRS rationale by introducing vague quantifiers into the OWA

model.

Let us start with defining an OWA-operator.
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Definition 3.4.27. Given a sequence D of n scalar values and a weight vector W = 〈w1, . . . , wn〉

of length n, such that wi ∈ I for all i ∈ {1, . . . , n}, and
n
∑

i=1
wi = 1. Let σ be the permutation on

{1, . . . , n} such that dσ(i) is the ith largest value of D. The OWA-operator acting on D gives the

value:

OWAW (D) =
n
∑

i=1

widσ(i).

The main strength of the OWA-operator is its flexibility. We can model a wide range of

aggregation strategies, such as the maximum, the minimum and the average.

Example 3.4.28. 1. When we take Wmax = 〈wi〉 with w1 = 1 and wi = 0, i 6= 1, we have

OWAWmax
(D) =

n
max
i=1
{di}.

2. When we take Wmin = 〈wi〉 with wn = 1, wi = 0, i 6= n, we have OWAWmin
(D) =

n
min
i=1
{di}.

3. When we take Wavg = 〈wi〉 with wi =
1
n
,∀i ∈ {1, . . . , n}, we have OWAWavg

(D) = 1
n

n
∑

i=1
di .

There are several measures to analyse the OWA-operator, we give two of them: the orness- and

the andness-degree. These measures compute how similar the OWA-operator is to the classical

max-operator, respectively min-operator.

Definition 3.4.29. Let W be a weight vector of length n. The orness- and andness-degree of W

are defined by

orness(W ) =
1

n− 1

n
∑

i=1

((n− i) ·wi),

andness(W ) = 1− orness(W ).

As orness(Wmax) = 1 and andness(Wmin) = 1, we see that these measures indeed compute the

similarity with the classical max-operator, respectively min-operator.

Now we can define the OWA-based lower and upper approximation of a fuzzy set A in a fuzzy

approximation space (U , R).

Definition 3.4.30. Let A be a fuzzy set in a fuzzy approximation space (U , R), with U = {y1, . . . , yn}
and R a general fuzzy relation. Given an implicator I and a conjunctor C 3, and weight vectors W1

and W2 of length n, the OWA-based lower and upper approximation R↓I ,W1
A and R↑C ,W2

A of A are

defined by
(R↓I ,W1

A)(x) = OWAW1
y∈U

〈I (R(y, x), A(y))〉,

(R↑C ,W2
A)(x) = OWAW2

y∈U
〈C (R(y, x), A(y))〉.

for all x ∈ U .
3In [16], t-norms instead of conjunctors were used.
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To distinguish the behaviour of the lower and upper approximation, we enforce the conditions

andness(W1)> 0.5 and orness(W2)> 0.5. When we take W1 =Wmin and W2 =Wmax, we retrieve

the traditional lower and upper approximation as in Definition 3.2.1.

Another possible pair of weight vectors (W1, W2) that fulfils the conditions andness(W1)> 0.5

and orness(W2)> 0.5 is given by

(W1)n+1−i =







2m−i

2m−1
i = 1, . . . , m

0 i = m+ 1, . . . , n

(W2)i =







2m−i

2m−1
i = 1, . . . , m

0 i = m+ 1, . . . , n

with m≤ n.

Let us study an example.

Example 3.4.31. Let U , A and R be as in Example 3.2.5: U = {y1, y2}, A(y1) = 0.2, A(y2) = 0.8

and R such that

R(y1, y1) = R(y2, y2) = 0.7, R(y1, y2) = 0 and R(y2, y1) = 0.3.

Let (I ,C ) = (IL ,TL) and take W1 = 〈
1
3
, 2

3
〉 and W2 = 〈

2
3
, 1

3
〉, then andness(W1) > 0.5 and

orness(W2)> 0.5. We obtain

(R↓IL ,W1
A)(y1) =

1

3
· 1+

2

3
· 0.5=

2

3
,

(R↓IL ,W1
A)(y2) =

1

3
· 1+

2

3
· 1= 1

(R↑TL ,W2
A)(y1) =

2

3
· 0.1+

1

3
· 0=

1

15
,

(R↑TL ,W2
A)(y2) =

2

3
· 0.5+

1

3
· 0=

1

3
.

We illustrate that the OWA-based FRS model is more robust then the general fuzzy rough set

model.

Example 3.4.32. Take U , A and R as in Example 3.4.3. Let U = {y1, . . . , y100, x}, i.e., n = 101, A a

fuzzy set in U such that A(yi) =
i

100
for all i ∈ {1, . . . , 100} and A(x) = 1. Let R be a fuzzy relation

with R(yi , x) = i
100

for all i ∈ {1, . . . , 100} and R(x , x) = 1. When A(y100) = 0 instead of 1, the

lower approximation of A in x changes drastically from 1 to 0, if we apply the general fuzzy rough

set model. Now, take I = Il and W1 the weight vector

W1 =
�

1

102
, . . . ,

1

102
,

1

102
,

2

102

�

,
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then we have that andness(W1) = 0.505> 0.5. If A(y100) = 1, then we have for all z ∈ U that

IL(R(z, x), A(z)) = 1,

and so we have that

(R↓IL ,W1
A)(x) = 100 ·

1

102
· 1+

2

102
· 1= 1.

If A(y100) = 0, then

(R↓IL ,W1
A)(x) = 100 ·

1

102
· 1+

2

102
· 0=

100

102
,

which illustrates that the OWA-based FRS model is more robust than the general fuzzy rough set

model.

By defining a weight vector W based on a quantifier Q, we maintain the VQFRS rationale.

Yager ([64]) gave a lot of connections between weight vectors W and quantifiers Q. For example,

with Qu and Q l regularly increasing fuzzy quantifiers, we can define weight vectors W1 for the

lower approximation and W2 for the upper approximation as

(W1)i =Qu

�

i

n

�

−Qu

�

i− 1

n

�

,

(W2)i =Q l

�

i

n

�

−Q l

�

i− 1

n

�

,

for all i ∈ {1, . . . , n}. For example, with (Qu,Q l) = (Q∀,Q∃) we obtain the weight vectors Wmin and

Wmax. Recall that not every quantifier is suitable, since the weight vectors W1 and W2 have to fulfil

the conditions andness(W1)> 0.5 and orness(W2)> 0.5.

To end, we show that fuzzy rough sets based on robust nearest neighbour are a special case of

OWA-based fuzzy rough sets.

Fuzzy rough sets based on robust nearest neighbour

Hu et al. ([29]) do not only give an overview of different fuzzy rough set models, they also

introduce a new fuzzy rough set model based on the robust nearest neighbour. Because they focus

on classification tasks, they only consider crisp subsets of U . They work with a kernel function R.

However, their model turns out to be a special case of the OWA-model, where they use the weight

vectors W = 〈w1, . . . , wn〉 which are shown in Table 3.2. The first three weight vectors are used

to define a lower approximation of a subset A, the last three for an upper approximation. For the

pair (I ,C ) they used the pairs (IL ,TM ) and (Icos,Ccos) with Ccos(a, b) = Jcos(1− a, b), for all

a, b ∈ I .

When we use their models, we expect to reduce the variation of approximations due to outliers,

which means that the models are robust.

In the next chapter, we will study the properties of some of the models that we have discussed

in this chapter.



CHAPTER 3. FUZZY ROUGH SETS 65

OWA weight vector

k-trimmed minimum wi =

(

1 if i = k+ 1

0 otherwise

k-mean minimum wi =

(

1
k

if i < k+ 1

0 otherwise

k-median minimum wi =







1 if k odd, i = k+1
2

1
2

if k even, i = k
2

or i = k
2
− 1

0 otherwise

k-trimmed maximum wi =

(

1 if i = n− k− 1

0 otherwise

k-mean maximum wi =

(

1
k

if i > n− k− 1

0 otherwise

k-median maximum wi =







1 if k odd, i = n− k+1
2

1
2

if k even, i = n− k
2

or i = n− k
2
+ 1

0 otherwise

Table 3.2: Correspondence between robust nearest neighbour fuzzy rough sets and OWA fuzzy

rough sets



Chapter 4

Properties of fuzzy rough sets

In this chapter we study the different properties given in Table 2.1 for some of the models discussed

in Chapter 3. In this chapter, we consider all the constant sets α̂ for α ∈ I and not only for 0 and

1. Given a model, a fuzzy relation R and a finite universe U , we study which properties hold and

which do not hold.

We start with the general fuzzy rough set model. Next, we discuss the properties of the tight

and loose approximations. Further, we study the properties of the β-precision fuzzy rough set

model, the vaguely quatified fuzzy rough set model, the fuzzy variable fuzzy rough set model and

finally, the OWA-based fuzzy rough set model.

4.1 The general fuzzy rough set model

We start with the general model given in Definition 3.2.1. We first examine which properties hold

when R is a general fuzzy relation and then which properties hold when R is a fuzzy similarity

relation. We end this section with a brief overview of the properties of the original model of Dubois

and Prade.

General fuzzy relation

The first property we study is the duality property. We show that this property holds for an

implicator and a conjunctor based on its dual coimplicator and for an S-implicator based on a

t-conorm and its dual t-norm. The duality property holds for an R-implicator based on a t-norm

and this t-norm under extra conditions. We also show that the choice of negator is important: the

negator has to be involutive and the implicator and conjunctor have to be dual with respect to this

negator.

Proposition 4.1.1. Let N be an involutive negator and A a fuzzy set in a fuzzy approximation

space (U , R) with R a general fuzzy relation. If the pair (I ,C ) consists of an implicator I and a

66
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conjunctor C defined by the dual coimplicator J of I w.r.t. N , then the duality property holds,

i.e.,
R↓IA= coN (R↑C (coN (A))),

R↑CA= coN (R↓I (coN (A))).

Proof. Let N be an involutive negator and R a general fuzzy relation. Let us assume that (I ,C ) is

such a pair, i.e., I is an implicator and C is a conjunctor based on the dual coimplicator J of I
w.r.t N , then by definition of having a dual implicator and coimplicator we have that

∀a, b ∈ I : N (C (a,N (b))) =N (J (N (a),N (b))) = I (a, b)

and on the other hand, we have

∀a, b ∈ I : N (I (a,N (b))) = J (N (a), b)) =C (a, b).

Now, let A∈ F (U), x ∈ U . We obtain

(coN (R↑C (coN A)))(x) =N
�

sup
y∈U
C (R(y, x),N (A(y)))

�

= inf
y∈U
N
�

C (R(y, x),N (A(y)))
�

= inf
y∈U
I (R(y, x), A(y))

= (R↓IA)(x).

In a similar way, we obtain

(coN (R↓I (coN A)))(x) =N
�

inf
y∈U
I (R(y, x),N (A(y)))

�

= sup
y∈U
N
�

I (R(y, x),N (A(y)))
�

= sup
y∈U
C (R(y, x), A(y))

= (R↑CA)(x).

This property also holds for an S-implicator I based on a t-conorm S and a t-norm T dual to

S w.r.t. an involutive negator N , as shown in the next corollary.

Corollary 4.1.2. Let N be an involutive negator and T and S a dual t-norm and t-conorm with

respect to N . Let A be a fuzzy set in a fuzzy approximation space (U , R) with R a general fuzzy

relation. If the pair (I ,C ) consists of the S-implicator based on S and the t-norm T , then the

duality principle holds, i.e.,
R↓IA= coN (R↑C (coN (A))),

R↑CA= coN (R↓I (coN (A))).
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It also holds for a left-continuous t-norm T and its R-implicator IT , but only when the

involutive negator is the negator induced by IT (see [54]).

Corollary 4.1.3. Let N be an involutive negator and T a left-continuous t-norm. Let IT be

the R-implicator based on T . Let A be a fuzzy set in a fuzzy approximation space (U , R) with

R a general fuzzy relation. If the pair (I ,C ) consists of the R-implicator based on T and the

left-continuous t-norm T and the negator N is the negator induced by IT , then the duality

principle holds, i.e.,
R↓IA= coN (R↑C (coN (A))),

R↑CA= coN (R↓I (coN (A))).

The duality property does not necessarily holds for other choices of fuzzy logical operators. Let

us illustrate this with a counterexample.

Example 4.1.4. Let N be a negator defined by

N (a) =











1− a 0≤ a ≤ 1
3

1
3

1
3
< a ≤ 2

3

1− a 2
3
≤ a ≤ 1.

We see that N is not involutive, since N
�

N
�

1
2

��

=N
�

1
3

�

= 2
3
. Let us define a t-norm T by

T (a, b) =







0 a ≤N (b)

min{a, b} N (b)< a

for all a, b ∈ I , then T is left-continuous. The R-implicator based on T is given by

I (a, b) =







1 a ≤ b

max{N (a), b} b < a

for all a, b ∈ I . The negator induced by this I is the negator defined above, i.e., for all a ∈ I we

have that N (a) = I (a, 0). We compute N
�

T
�

2
3
,N
�

1
2

���

and I
�

2
3
, 1

2

�

:

N
�

T
�

2

3
,N
�

1

2

���

=N
�

T
�

2

3
,
2

3

��

=N
�

2

3

�

=
1

3
,

I
�

2

3
,
1

2

�

=max
�

N
�

2

3

�

,
1

2

�

=max
�

1

3
,
1

2

�

=
1

2
,

which is not the same. This means that we have found an a and b in I such that

N (T (a,N (b))) 6= I (a, b).
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This means that

coN (R↑C (coN (A))) = R↓IA

not necessarily holds for this choice of N , I and C . For example for U = {x , y}, A such that

A(x) = 1 and A(y) = 1
2

and R such that R(y, x) = R(x , y) = 2
3

and R(x , x) = R(y, y) = 1.

It is not only important that the negator is involutive, it is also important that the negator is

equal to the negator induced by I , which is the same as assuming that I and C are dual with

respect to that specific negator.

Example 4.1.5. Let N be the standard negator NS, I the Gödel implicator IG and C the

minimum t-norm TM . The negator induced by I is the Gödel negator NG and thus not NS . It also

holds that IG and TM are not dual with respect to NS , since

NS(TM (0.5,NS(0.5))) = 1−min{0.5, 1− 0.5}= 1− 0.5= 0.5,

and IG(0.5, 0.5) = 1. For this triple (NS ,IG ,TM ) the duality property will not hold, although NS

is involutive.

We continue with the monotonicity properties. We show that the monotonicity of sets and

the monotonicity of relations hold in this model. Especially the monotonicity of relations will be

important to have when dealing with feature selection, an important application of fuzzy rough

sets. Note that the monotonicity properties do not depend on properties of the fuzzy relation.

Proposition 4.1.6. Let A and B be fuzzy sets in (U , R) with R a general fuzzy relation. Let I be

an implicator and C a conjunctor. If A⊆ B, then we have that

R↓IA⊆ R↓I B,

R↑CA⊆ R↑C B.

Proof. This follows from that fact that both an implicator and a conjunctor are non-decreasing in

the second argument.

Proposition 4.1.7. Let R1 and R2 be fuzzy relations on U and A a fuzzy set in U . Let I be an

implicator and C a conjunctor. If R1 ⊆ R2, then we have that

R2↓IA⊆ R1↓IA,

R1↑CA⊆ R2↑CA.

Proof. This follows from the fact that an implicator is non-increasing and a conjunctor is non-

decreasing in the first argument.

When we look at the minimum and maximum operator, the properties of ‘Intersection’ and

‘Union’ still hold.
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Proposition 4.1.8. Let A and B be fuzzy sets in (U , R) with R a general fuzzy relation. Let I be

an implicator and C a conjunctor. We have that

R↓I (A∩ B) = R↓IA∩ R↓I B,

R↑C (A∩ B)⊆ R↑CA∩ R↑C B,

R↓I (A∪ B)⊇ R↓IA∪ R↓I B,

R↑C (A∪ B) = R↑CA∪ R↑C B.

Proof. Let A and B be fuzzy sets in U . Based on the monotonicity properties proved in Proposi-

tion 4.1.6 and

A∩ B ⊆ A, B ⊆ A∪ B,

the second and third property are fulfilled. With x ∈ U , we have that

(R↓IA∩ R↓I B)(x)

=min{R↓IA(x), R↓I B(x)}

=min
n

inf
y∈U
I (R(y, x), A(y)), inf

y∈U
I (R(y, x), B(y))

o

=min
n

inf
y∈U
I (R(y, x), min{A(y), B(y)}),

inf
y∈U
I (R(y, x), max{A(y), B(y)})

o

= inf
y∈U
I (R(y, x),min{A(y), B(y)})

= R↓I (A∩ B)(x).

The third step holds, since

inf
y∈U
I (R(y, x), A(y))

=min
�

inf
y∈U

A(y)≤B(y)

I (R(y, x),min{A(y), B(y)}),

inf
y∈U

B(y)≤A(y)

I (R(y, x),max{A(y), B(y)})
�

and
inf
y∈U
I (R(y, x), B(y))

=min
�

inf
y∈U

B(y)≤A(y)

I (R(y, x),min{A(y), B(y)}),

inf
y∈U

A(y)≤B(y)

I (R(y, x),max{A(y), B(y)})
�
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and hence

min
�

inf
y∈U
I (R(y, x), A(y)), inf

y∈U
I (R(y, x), B(y))

�

=min

¨

min
�

inf
y∈U

A(y)≤B(y)

I (R(y, x),min{A(y), B(y)}),

inf
y∈U

B(y)≤A(y)

I (R(y, x), max{A(y), B(y)})
�

,

min
�

inf
y∈U

B(y)≤A(y)

I (R(y, x),min{A(y), B(y)}),

inf
y∈U

A(y)≤B(y)

I (R(y, x), max{A(y), B(y)})
�

«

=min
�

inf
y∈U
I (R(y, x),min{A(y), B(y)}),

inf
y∈U
I (R(y, x), max{A(y), B(y)})

�

.

We prove the last property.

(R↑CA∪ R↑C B)(x)

=max
�

R↑CA(x), R↑C B(x)
�

=max
�

sup
y∈U
C (R(y, x), A(y)), sup

y∈U
C (R(y, x), B(y))

�

=max
�

sup
y∈U
C (R(y, x),min{A(y), B(y)}),

sup
y∈U
C (R(y, x), max{A(y), B(y)})

�

= sup
y∈U
C (R(y, x), max{A(y), B(y)})

= R↑C (A∪ B)(x).

We also always have that R↑C ;= ; and R↓I U = U , because for all conjunctor C it holds that

C (a, 0)≤C (1,0) = 0, for all a ∈ I , and for all implicators I it holds that I (a, 1)≥ I (1, 1) = 1,

for all a ∈ I . The other properties do not hold for general fuzzy relations. For example, the

inclusion property only holds when the relation R is reflexive, as we will show in Chapter 5 and

now illustrate with an example.

Example 4.1.9. Consider the universe U = {y1, y2}, A a fuzzy set such that A(y1) = 0.5 and

A(y2) = 1 and R the general fuzzy relation such that R(x , z) = 0.5, for all x , z ∈ U . Let us take the
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Łukasiewicz implicator and t-norm (IL ,TL). Then we have that

(R↓IL
A)(y1) = inf

z∈U
min{1, 1− R(z, y1) + A(z)}

= inf
z∈U

min{1, 1/2+ A(z)}

=min{1, 1}

> A(y1)

and thus we have that R↓IL
A* A. Similarly, we obtain

(R↑TL
A)(y2) = sup

z∈U
max{0, R(z, y2) + A(z)− 1}

= sup
z∈U

max{0, A(z)− 0.5}

=max{0,0.5}

< A(y2)

and thus A* R↑TL
A.

We study now which properties hold when R is a fuzzy similarity relation.

Fuzzy similarity relation

Recall that if R is a fuzzy similarity relation, then it is a fuzzy T -similarity relation for every

t-norm T . We start with the inclusion property, i.e., we prove that the lower approximation of A is

contained in A and that A is contained in the upper approximation of A.

Proposition 4.1.10. Let A be a fuzzy set in a fuzzy approximation space (U , R) with R a fuzzy

similarity relation. If I is a border implicator and if C is a conjunctor that satisfies the condition

C (1, a) = a for all a ∈ I , then we have

R↓IA⊆ A,

A⊆ R↑CA.

Proof. Let I be a border implicator, C a conjunctor such that C (1, a) = a for all a ∈ I and R a

fuzzy similarity relation. Let A be a fuzzy set in U and x ∈ U , then it holds that

(R↓IA)(x) = inf
y∈U
I (R(y, x), A(y))

≤ I (R(x , x), A(x))

= I (1, A(x))

= A(x),
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and it holds that
(R↑CA)(x) = sup

y∈U
C (R(y, x), A(y))

≥C (R(x , x), A(x))

=C (1, A(x))

= A(x).

Note that when C is a t-norm, the condition for C is satisfied. The inclusion property also holds

for relations that are only reflexive. If the inclusion property holds, then we have that R↓I ;= ;
and R↑CU = U .

When we work with fuzzy sets, we can generalise the property R↓I ; = ; = R↑C ; to all constant

sets.

Proposition 4.1.11. Let (U , R) be a fuzzy approximation space with R a fuzzy similarity relation.

Let α̂ be the constant α-set, with α ∈ I . If I is a border implicator and if C a conjunctor that

satisfies the condition C (1, a) = a for all a ∈ I , then we have

R↓I α̂= α̂,

R↑C α̂= α̂.

Proof. Let R be a fuzzy similarity relation and α ∈ I . Let I be a border implicator and C a

conjunctor that satisfies the condition C (1, a) = a for all a ∈ I . Since the inclusion property holds,

we have that R↓I α̂⊆ α̂ and α̂⊆ R↑C α̂. Take x ∈ U . Due to the monotonicity of an implicator, we

have for all y ∈ U that

α= I (1,α)≤ I (R(y, x),α),

which means that

(R↓I α̂)(x) = inf
y∈U
I (R(y, x),α)≥ α= α̂(x).

We obtain that R↓I α̂= α̂. Similarly, because for all y ∈ U it holds that

C (R(y, x),α)≤C (1,α) = α,

and thus

(R↑C α̂)(x) = sup
y∈U
C (R(y, x),α)≤ α= α̂(x),

we obtain that R↑C α̂= α̂.

Note that this property holds for all reflexive relations R, but not if R is a general fuzzy relation.

We give a counterexample.
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Example 4.1.12. Let R(x , y) = 0.5, for all x , y in U . R is not reflexive, and thus no similarity

relation. We take the Łukasiewicz implicator and t-norm as implicator and conjunctor of the model.

Consider the fuzzy set α̂(x) = 0.5, for all x ∈ U . For x ∈ U we have

(R↓IL
α̂)(x) = inf

y∈U
min{1, 1− R(y, x) + 0.5}= inf

y∈U
min{1, 1}= 1

which is greater than 0.5. We also have that

(R↑TL
α̂)(x) = sup

y∈U
max{0, R(y, x) + 1− 0.5}= sup

y∈U
max{0,1}= 1

which is greater than 0.5. This proves that Proposition 4.1.11 does not hold in general.

We end with the idempotence property, i.e., doing the same approximation twice gives the

same result as doing the approximation only once.

Proposition 4.1.13. Let C be a left-continuous t-norm T and IT the R-implicator based on T .

Let A be a fuzzy set in a fuzzy approximation space (U , R) with R a fuzzy T -similarity relation,

then we have that
R↓IT (R↓IT A) = R↓IT A,

R↑T (R↑T A) = R↑T A.

Proof. Since a t-norm fulfils the equation T (1, a) = a for all a ∈ I and since an R-implicator is a

border implicator (see Proposition 2.2.35), the inclusion property holds. This means that

R↓IT (R↓IT A)⊆ R↓IT A,

R↑T A⊆ R↑T (R↑T A),

for all A∈ F (U). Since T is left-continuous and R is T -transitive, we have for x ∈ U that

(R↑T (R↑T A))(x) = sup
y∈U
T
�

R(y, x), sup
z∈U
T (R(z, y), A(z))

�

= sup
y∈U

sup
z∈U
T (R(y, x),T (R(z, y), A(z)))

= sup
z∈U

sup
y∈U
T (T (R(z, y), R(y, x)), A(z)))

= sup
z∈U
T (sup

y∈U
T (R(z, y), R(y, x)), A(z)))

≤ sup
z∈U
T (R(z, x), A(z))

= (R↑T A)(x),

and thus R↑T (R↑T A) = R↑T A. For the other equality, recall the following properties for IT and T
(see [54]):

IT (sup
j∈J

b j , a) = inf
j∈J
IT (b j , a),

IT (a, inf
j∈J

b j) = inf
j∈J
IT (a, b j),

IT (a,IT (b, c)) = IT (T (a, b), c),
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for a, b j , b, c ∈ I and J a set of indices. Since R is T -transitive we obtain for x ∈ U that

(R↓IT A)(x) = inf
y∈U
IT (R(y, x), A(y))

≤ inf
y∈U
IT

�

sup
z∈U
T (R(y, z), R(z, x)), A(y)

�

= inf
y∈U

inf
z∈U
IT (T (R(z, x), R(y, z)), A(y))

= inf
y∈U

inf
z∈U
IT (R(z, x),IT (R(y, z), A(y))

= inf
z∈U
IT (R(z, x), inf

y∈U
IT (R(y, z), A(y))

= inf
z∈U
IT (R(z, x), (R↓IT A)(z))

= (R↓IT (R↓IT A))(x).

This completes the proof.

This property also holds for relations that are reflexive and T -transitive. It is important that I
is the R-implicator of T . We illustrate this with an example.

Example 4.1.14. Take the implicator I (a, b) =max{1−a, b2}, a, b ∈ I . This is not an R-implicator.

Let us look at the universe U with one element {y}, the fuzzy set A such that A(y) = 0.2 and the

relation R(y, y) = 1. Then (R↓IA)(y) = I (1,0.2) = 0.04 and (R↓I (R↓IA))(y) = I (1,0.04) =
0.0016. The idempotence property does not hold.

We can conclude that, under certain conditions, all the properties that hold in a Pawlak

approximation space, still hold for the general fuzzy rough set model.

Next, we study the properties of the model of Dubois and Prade.

Dubois and Prade’s model

We briefly discuss which properties hold in the model designed by Dubois and Prade, i.e., R is

a fuzzy min-similarity relation, I is the Kleene-Dienes implicator IKD and C is the minimum

t-norm TM .

It is obvious that the inclusion property and the monotonicity properties hold. The duality

property with N =NS also holds, since IKD is the S-implicator based on SM , the t-conorm dual

to TM with respect to NS . The intersection property and union property hold for the intersection

and union defined by Zadeh. We also have that

R↓IKD
α̂= α̂= R↑TM

α̂

holds for all α ∈ I and thus also for ; and U . Less obvious is the idempotence property. The

Kleene-Dienes implicator is an S-implicator, but not an R-implicator. We prove that the property

holds for Dubois and Prade’s model.



CHAPTER 4. PROPERTIES OF FUZZY ROUGH SETS 76

Proposition 4.1.15. The idempotence property holds for the model designed by Dubois and Prade.

Proof. Let A be a fuzzy set in (U , R) with R a fuzzy similarity relation. As the inclusion property

holds, we have that R↓IKD
(R↓IKD

A) ⊆ R↓IKD
A and R↑TM

(R↑TM
A) ⊇ R↑TM

A. We know that the

minimum operator is left-continuous and thus complete-distributive w.r.t. the supremum. We also

know that the minimum t-norm is associative and that R is min-transitive. Now let x be an element

of U , we have:

(R↑TM
(R↑TM

A))(x) = sup
y∈U

min
�

R(y, x), sup
z∈U

min{R(z, y), A(z)}
�

= sup
y∈U

sup
z∈U

min
�

R(y, x), min{R(z, y), A(z)}
	

= sup
z∈U

min

¨

sup
y∈U

min{R(z, y), R(y, x)}, A(z)

«

≤ sup
z∈U

min{R(z, x), A(z)}

= (R↑TM
A)(x).

So we have that R↑TM
(R↑TM

A) = R↑TM
A. Since the duality property holds with N =NS , we have

that
R↓IKD

A= coNS
(R↑TM

(coNS
(A)))

= coNS
(R↑TM

(R↑TM
coNS

(A)))

= R↓IKD
(coNS

(R↑TM
(coNS

(A))))

= R↓IKD
(R↓IKD

(coNS
(coNS

(A))))

= R↓IKD
(R↓IKD

A)

and thus R↓IKD
(R↓IKD

A) = R↓IKD
A. This completes the proof.

In the next section, we discuss the properties of tight and loose approximations.

4.2 Tight and loose approximations

We continue with the properties of the model defined in Definition 3.3.3. We again start with

considering a general fuzzy relation. A lot of properties were studied in [11, 13]. As the traditional

lower and upper approximation were already discussed in the previous section, we only focus on

the tight and loose approximations in this section.

General fuzzy relation

We start again with the duality propery. This holds for the same combinations of I and C as we

saw before.
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Proposition 4.2.1. Let N be an involutive negator and A a fuzzy set in a fuzzy approximation

space (U , R) with R a general fuzzy relation. If the pair (I ,C ) consists of an implicator I and a

conjunctor C defined by the dual coimplicator J of I w.r.t. N , then the duality property holds,

i.e.,
R↓I ↓IA= coN (R↑C ↑C (coN (A))),

R↑C ↑CA= coN (R↓I ↓I (coN (A))),

R↑C ↓IA= coN (R↓I ↑C (coN (A))),

R↓I ↑CA= coN (R↑C ↓I (coN (A))).

Proof. The proof of the proposition is similar to the one of the general fuzzy rough set model (see

Proposition 4.1.1).

Again, this also holds for an S-implicator I based on a t-conorm S and its dual t-norm T with

respect to an involutive negator N and for a left-continuous t-norm T and its R-implicator IT if

N =NIT is involutive.

The monotonicity of sets still holds.

Proposition 4.2.2. Let A and B be fuzzy sets in (U , R) with R a general fuzzy relation. Let I be

an implicator and C a conjunctor. If A⊆ B, then we have that

R↓I ↓IA⊆ R↓I ↓I B,

R↑C ↓IA⊆ R↑C ↓I B,

R↓I ↑CA⊆ R↓I ↑C B,

R↑C ↑CA⊆ R↑C ↑C B.

Proof. This follows from that fact that both an implicator and a conjunctor are non-decreasing in

the second argument.

The property of monotonicity of relations holds for the tight lower approximation and the

loose upper approximation.

Proposition 4.2.3. Let R1 and R2 be fuzzy relations on U and A a fuzzy set in U . Let I be an

implicator and C a conjunctor. If R1 ⊆ R2, then we have that

R2↓I ↓IA⊆ R1↓I ↓IA,

R1↑C ↑CA⊆ R2↑C ↑CA.

Proof. This follows from the fact that an implicator is non-increasing and a conjunctor is non-

decreasing in the first argument.
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We cannot give such a property for the loose lower approximation and the tight upper approxi-

mation. We illustrate this with an example.

Example 4.2.4. Let us take U = {y1, y2}, R1 a general fuzzy relation such that

R1(y1, y1) = 1, R1(y1, y2) = R1(y2, y1) = 0.3, R1(y2, y2) = 0.5,

and R2 a general fuzzy relation such that

R2(y1, y1) = 1, R2(y1, y2) = R2(y2, y1) = 0.7, R2(y2, y2) = 1.

This means that R1 ⊆ R2. Let A be a fuzzy set such that A(y1) = 0.2 and A(y2) = 0.8. Let I be the

Gödel implicator and C the minimum t-norm. We obtain for R1 that

(R1↓IG
↑TM

A)(y1) =min
n

IG(1, max{min(1,0.2),min(0.3,0.8)},

IG(0.3, max{min(0.3, 0.2), min(0.5, 0.8)})
o

=min{IG(1,0.3),IG(0.3,0.5)}

=min{0.3,1}

= 0.3,

(R1↓IG
↑TM

A)(y2) =min
n

IG(0.3, max{min(1, 0.2),min(0.3,0.8)},

IG(0.5, max{min(0.3, 0.2), min(0.5, 0.8)})
o

=min{IG(0.3,0.3),IG(0.5, 0.5)}

=min{1,1}

= 1.

On the other hand, for R2, we have that

(R2↓IG
↑TM

A)(y1) =min
n

IG(1, max{min(1, 0.2),min(0.7,0.8)},

IG(0.7,max{min(0.7,0.2), min(1, 0.8)})
o

=min{IG(1,0.7),IG(0.7,0.8)}

=min{0.7,1}

= 0.7,

(R2↓IG
↑TM

A)(y2) =min
n

IG(0.7, max{min(1, 0.2),min(0.7,0.8)},

IG(1,max{min(0.7, 0.2), min(1, 0.8)}))
o

=min{IG(0.7, 0.7),IG(1, 0.8)}

=min{1,0.8}

= 0.8.



CHAPTER 4. PROPERTIES OF FUZZY ROUGH SETS 79

This means that
(R1↓IG

↑TM
A)(y1)≤ (R2↓IG

↑TM
A)(y1),

(R2↓IG
↑TM

A)(y2)≤ (R1↓IG
↑TM

A)(y2).

A similar counterexample can be constructed for the loose lower approximation.

We now study the tight and loose approximations of the intersection and the union.

Proposition 4.2.5. Let A and B be fuzzy sets in (U , R) with R a general fuzzy relation and I an

implicator and C a conjunctor. Then it holds that

R↓I ↓I (A∩ B) = R↓I ↓IA∩ R↓I ↓I B,

R↑C ↓I (A∩ B)⊆ R↑C ↓IA∩ R↑C ↓I B,

R↓I ↑C (A∩ B)⊆ R↓I ↑CA∩ R↓I ↑C B,

R↑C ↑C (A∩ B)⊆ R↑C ↑CA∩ R↑C ↑C B,

R↓I ↓I (A∪ B)⊇ R↓I ↓IA∪ R↓I ↓I B,

R↑C ↓I (A∪ B)⊇ R↑C ↓IA∪ R↑C ↓I B,

R↓I ↑C (A∪ B)⊇ R↓I ↑CA∪ R↓I ↑C B,

R↑C ↑C (A∪ B) = R↑C ↑CA∪ R↑C ↑C B.

Proof. Let A, B be fuzzy sets in (U , R). Since Proposition 4.2.2 holds and

A∩ B ⊆ A, B,⊆ A∪ B

the equations holds except for the first and the last one. To prove the first and the last equation,

note that for x ∈ U it holds that

(R↓I ↓IA)(x) = inf
y∈U
I (R(x , y), inf

z∈U
I (R(z, y), A(z)))

= inf
y∈U
I (R(x , y), (R↓A)(y)),

and
(R↑C ↑CA)(x) = sup

y∈U
C (R(x , y), sup

z∈U
C (R(z, y), A(z)))

= sup
y∈U
C (R(x , y), (R↑A)(y)).

The rest of the prove is similar to the proof of Proposition 4.1.8, but with R↓A and R↓B and R↑A
and R↑B instead of A and B.

Since the other properties do not hold for the usual lower and upper approximation and a

general fuzzy relation, they also do not hold for the tight and loose lower and upper approximations.

We now study which properties hold when we consider a fuzzy similarity relation R.
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Fuzzy similarity relation

We have a useful property when R is a fuzzy similarity relation.

Proposition 4.2.6. Let A be a fuzzy set in a fuzzy approximation space (U , R) with R a fuzzy

similarity relation. Let I be an implicator and C a conjunctor. We have that

R↓I ↓IA= R↓I (R↓IA),

R↑C ↓IA= R↑C (R↓IA),

R↓I ↑CA= R↓I (R↑CA),

R↑C ↑CA= R↑C (R↑CA).

Proof. This follows immediately from Definitions 3.2.1 and 3.3.3 and by the fact that R is symmetric.

This characterisation leads to very easy proofs, as we can just apply the properties studied

in Section 4.1. For example, the inclusion property for tight and loose approximations follows

immediately from Proposition 4.1.10.

Proposition 4.2.7. Let A be a fuzzy set in a fuzzy approximation space (U , R) with R a fuzzy

similary relation. If I is a border implicator and C a conjunctor such that C (1, a) = a, for all a in

I , then we have that
R↓I ↓IA⊆ R↓IA⊆ A⊆ R↑CA⊆ R↑C ↑CA,

R↓IA⊆ R↑C ↓IA⊆ R↑CA,

R↓IA⊆ R↓I ↑CA⊆ R↑CA.

Proof. This follows immediately from Propositions 4.2.6 and 4.1.10.

The idempotence property holds.

Proposition 4.2.8. Let C be a left-continuous t-norm T and IT its R-implicator. Let A be a fuzzy

set in a fuzzy approximation space (U , R) with R a fuzzy T -similartiy relation. Then it holds that

R↓IT ↓IT (R↓IT ↓IT A) = R↓IT ↓IT A,

R↑T ↓IT (R↑T ↓IT A) = R↑T ↓IT A,

R↓IT ↑T (R↓IT ↑T A) = R↓IT ↑T A,

R↑T ↑T (R↑T ↑T A) = R↑T ↑T A.

The following property for constant sets can easily be derived from Proposition 4.2.6 and

Proposition 4.1.11.
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Proposition 4.2.9. Let (U , R) be a fuzzy approximation space with R a fuzzy similarity relation.

Let I be a border implicator and C be a conjunctor such that C (1, a) = a for all a ∈ I . Let α̂ be

the constant α-set for α ∈ I . Then it holds that

R↓I ↓I α̂= α̂,

R↑C ↓I α̂= α̂,

R↓I ↑C α̂= α̂,

R↑C ↑C α̂= α̂.

And this holds of course for ;= 0̂ and U = 1̂.

We have some extra properties that hold for this model. For example, if we have an extra

connection between I and C , we can say the following:

Proposition 4.2.10. Let T be a left-continuous t-norm and IT its R-implicator. Let A be a fuzzy

set in a fuzzy approximation space (U , R) with R a T -fuzzy similarity relation, then we have that

R↑T ↓IT A⊆ R↓IT A,

R↑T A⊆ R↓IT ↑T A.

Proof. Let A be a fuzzy set, R a fuzzy T -similarity relation and IT an R-implicator based on a

left-continuous t-norm T . Recall that for IT and T it holds that

∀a, b, c ∈ I : IT (a,IT (b, c)) = IT (T (a, b), c)

and that for every index set J

∀a ∈ I , b j ∈ I , j ∈ J : inf
j∈J
IT (a, b j) = IT (a, inf

j∈J
b j).

It also holds for all a, b ∈ I that

T (a,IT (a, b))≤ b and b ≤ IT (a,T (a, b)).

We base our proof on the proof of proposition 12 in [54]. For all x , y ∈ U , we have that

(R↓IT A)(y) = inf
z∈U
IT (R(z, y), A(z))

≤ inf
z∈U
IT (T (R(z, x), R(x , y)), A(z))

= inf
z∈U
IT (T (R(x , y), R(z, x)), A(z))

= inf
z∈U
IT (R(x , y),IT (R(z, x), A(z)))

= IT (R(x , y), inf
z∈U
IT (R(z, x), A(z)))

= IT (R(x , y), (R↓IT A)(x)).
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Then it holds that

(R↑T ↓IT A)(x) = sup
y∈U
T (R(y, x), (R↓IT A)(y))

≤ sup
y∈U
T (R(x , y),IT (R(x , y), (R↓IT A)(x)))

≤ (R↓IT A)(x).

In a similar way, we can obtain the second equation.

In general, this property does not hold for other combinations for (I ,C ).

Example 4.2.11. Let U = {y1, y2}, R a fuzzy similarity relation with R(y1, y2) = 0.3 and A a fuzzy

set such that A(y1) = 1 and A(y2) = 0.7. Take the minimum t-norm and the implicator based on the

maximum t-conorm IKD(a, b) =max{1− a, b} for all a, b ∈ I . Then we have that (R↑TM
A)(y1) = 1

and (R↑TM
A)(y2) = 0.7 and thus that

(R↓IKD↑TM
A)(y1) = (R↓IKD

(R↑TM
A))(y1)

=min
y∈U

max{1− R(y1, y), R↑TM
A(y)}

=min{max{0, 1}, max{0.7, 0.7}}

= 0.7

< (R↑TM
A)(y1).

Due to Proposition 4.2.10, we have the following for a left-continuous t-norm T and its

R-implicator:

Proposition 4.2.12. Let A be a fuzzy set in a fuzzy approximation space (U , R) with R a fuzzy

similarity relation. Let C be a left-continuous t-norm T and I the R-implicator based on T . We

have that

R↓I ↓IA= R↓IA= R↑T ↓IA⊆ A⊆ R↓I ↑T A= R↑T A= R↑T ↑T A.

Proof. This follows from Propositions 4.1.13, 4.2.6, 4.2.7 and 4.2.10.

Again we see that under certain conditions, all properties of Table 2.1 hold for the tight and

loose approximation operators, except for the monotonicity of relations. This property only holds

for the tight lower and the loose upper approximation operator.

We continue to examine models that deal with noisy data and that were discussed in Chapter 3.
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4.3 Fuzzy rough set models designed to deal with noisy data

We shall not discuss all the robust models from Section 3.4. As the soft fuzzy rough set model

is ill-defined, we do not discuss its properties. The fuzzy rough set model based on the robust

nearest neighbor is a special case of the OWA-based fuzzy rough set model and is not discussed

separately. The variable precision fuzzy rough set model will also not be discussed. Further studies

are necessary to fully understand this model.

We begin with the β-precision fuzzy rough set model.

4.3.1 β-precision fuzzy rough sets

We study the β-precision fuzzy rough set model, given in Definition 3.4.1. We again make the

distinction between general fuzzy relations and fuzzy similarity relations.

General fuzzy relation

We start by studying which properties hold when R is a general fuzzy relation. The duality property

holds, if Tβ and Sβ are dual w.r.t. the standard negator NS and if I and C are dual w.r.t. NS .

Proposition 4.3.1. Let NS be the standard negator and A a fuzzy set in a fuzzy approximation

space (U , R) with R a general fuzzy relation. Let T be a t-norm and S its dual t-conorm w.r.t. NS

and β ∈ I . If the pair (I ,C ) consists of an implicator I and a conjunctor C defined by the dual

coimplicator J of I w.r.t. NS , then the duality property holds, i.e.,

R↓I ,TβA= coNS
(R↑C ,Sβ (coNS

(A))),

R↑C ,SβA= coNS
(R↓I ,Tβ (coNS

(A))).

Proof. We only need to prove that Tβ and Sβ are also dual w.r.t.NS , because if this holds, then the

rest of the proof is completely similar to the proof of Proposition 4.1.1. Let us take (a1, . . . an) ∈ In

and σ the permutation on {1, . . . , n} such that aσ(i) is the i th biggest element of (a1, . . . an). Let

m ∈ N be such that

m=max

(

j ∈ {0, . . . , n} | j ≤ (1− β) ·
n
∑

i=1

ai

)

.

Now, since

j ≤ (1− β) ·
n
∑

i=1

ai ⇔ j ≤ (1− β) ·
n
∑

i=1

1− (1− ai),

we omit m values to calculate Tβ and we omit m values to calculate Sβ . Hence,

NS(Tβ(a1, . . . , an)) =NS

�

T (aσ(1), . . . , aσ(n−m))
�

= S (1− aσ(1), . . . , 1− aσ(n−m))

= Sβ(1− a1, . . . , 1− an)

= Sβ(NS(a1), . . . ,NS(an)).
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In a similar way we obtain that

NS(Sβ(a1, . . . , an)) = Tβ(NS(a1), . . . ,NS(an)).

Proposition 4.3.1 also holds for an S-implactor I based on S and the dual t-norm T w.r.t. the

standard negator NS and for a left-continuous t-norm T and its R-implicator IT if NIT = NS.

This latter holds, for example, for the couple (TnM ,InM ).

Remark 4.3.2. This property only holds if N is the standard negator, otherwise it does not hold

that Tβ and Sβ are dual to each other, since we do not necessarily omit the same amount of values.

The monotonicity properties hold due to the monotonicity properties of implicators and

conjunctors.

Proposition 4.3.3. Let A and B be fuzzy sets in (U , R) with R a general fuzzy relation. Let T be a

t-norm, S a t-conorm, I an implicator, C a conjunctor and β ∈ I . If A⊆ B, then we have that

R↓I ,TβA⊆ R↓I ,TβB,

R↑C ,SβA⊆ R↑C ,TβB.

Proof. This follows from that fact that both an implicator and a conjunctor are non-decreasing in

the second argument and from the fact that if we have a,b ∈ In such that a≤ b, i.e.,

∀i ∈ {1, . . . , n}: ai ≤ bi

then for the permutation σ on {1, . . . , n} such that aσ(i) is the i th biggest element of a we have

∀i ∈ {1, . . . , n}: aσ(i) ≤ bσ(i).

Note also that if a≤ b, then

max

(

∀ j ∈ {0, . . . , n} | j ≤ (1− β) ·
n
∑

i=1

ai

)

≤max

(

∀ j ∈ {0, . . . , n} | j ≤ (1− β) ·
n
∑

i=1

bi

)

.

Proposition 4.3.4. Let R1 and R2 be fuzzy relations on U , and A a fuzzy set in U . Let T be a

t-norm, S a t-conorm, I an implicator, C a conjunctor and β ∈ I . If R1 ⊆ R2, then we have that

R2↓I ,TβA⊆ R1↓I ,TβA,

R1↑C ,SβA⊆ R2↑C ,SβA.
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Proof. This follows from the fact that an implicator is non-increasing and a conjunctor is non-

decreasing in the first argument and from the facts we stated in the proof of Proposition 4.3.3.

For the intersection and the union property we have the inclusions that follow from the

monotonicity of sets, but we do not have equalities.

Proposition 4.3.5. Let A and B be fuzzy sets in (U , R) with R a general fuzzy relation. Let T be a

t-norm, S a t-conorm, I an implicator, C a conjunctor and β ∈ I . We have that

R↓I ,Tβ (A∩ B)⊆ R↓I ,TβA∩ R↓I ,TβB,

R↑C ,Sβ (A∩ B)⊆ R↑C ,SβA∩ R↑C ,SβB,

R↓I ,Tβ (A∪ B)⊇ R↓I ,TβA∪ R↓I ,TβB,

R↑C ,Sβ (A∪ B)⊇ R↑C ,SβA∪ R↑C ,SβB.

We give a counterexample which illustrates that the first and last equation are not necessarily

equalities.

Example 4.3.6. Let U = {y0, . . . , y10} and R a fuzzy similarity relation such that R(x , z) = 1 for

all x , z ∈ U . Let T be the minimum t-norm and let β be 0.8. Let I be a border implicator. Let us

consider the following fuzzy sets A and B:

A(y0) = 1, B(y0) = 0,

A(yi) = 1, B(yi) =
i

10
, for i even, i 6= 0,

A(yi) =
i

10
, B(yi) = 1, for i odd, i 6= 0.

Then for all i ∈ {0, . . . , 10} we have that (A∩ B)(yi) =
i

10
. We have for x ∈ U that

(R↓I ,min0.8
A)(x) =min

0.8
y∈U

I (1, A(y))

=min
0.8
{1, 1,1, 1,1, 1,0.9, 0.7,0.5, 0.3,0.1}

= 0.3,

since (1− 0.8) ·
10
∑

i=0
A(yi) = 0.2 · 8.5= 1.7. For B we have that

(R↓I ,min0.8
B)(x) =min

0.8
y∈U

I (1, B(y))

=min
0.8
{1,1, 1,1, 1,1, 0.8,0.6, 0.4,0.2, 0}

= 0.2,
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since (1− 0.8) ·
10
∑

i=0
B(yi) = 0.2 · 8= 1.6. On the other hand, we have that

(R↓I ,min0.8
(A∩ B))(x) =min

0.8
y∈U

I (1, (A∩ B)(y))

=min
0.8
{1,0.9, 0.8,0.7, 0.6,0.5, 0.4,0.3, 0.2,0.1, 0}

= 0.1,

since (1− 0.8) ·
10
∑

i=0

i
10
= 0.2 · 5.5= 1.1. This means that for all x ∈ U

(R↓I ,min0.8
(A∩ B))(x)< (R↓I ,min0.8

A)(x)∩ (R↓I ,min0.8
B)(x).

A similar counterexample can be constructed to prove that

(R↑C ,Sβ (A∪ B))⊆ (R↑C ,SβA)∪ (R↑C ,SβB)

not always holds.

The other properties do not hold for general fuzzy relations. We study which properties require

a fuzzy similarity relation.

Fuzzy similarity relation

In contrast to the previous two models, the inclusion does not hold, even when R is a fuzzy

similarity relation.

Example 4.3.7. Let I be a border implicator and C a conjunctor such that C (1, a) = a for all

a ∈ I . Let U = {y0, . . . , y10}, A a fuzzy set such that A(yi) =
i

10
for all i ∈ {0, . . . , 10} and R a fuzzy

similarity relation with R(yi , y j) = 1 for all i, j ∈ {0, . . . , 10}. Let (Tβ ,Sβ) be (minβ , maxβ) and

β = 0.8.

As R(yi , y j) = 1, we have that I (R(z, x), A(z)) = A(z) = C (R(z, x), A(z)) for all x , z ∈ U . We

also have that
10
∑

i=0
A(yi) = 5.5. As β = 0.8, 1≤ 5.5 · 0.2= 1.1, so in the lower approximation the

lowest value will be omited. We obtain for the lower approximation of A in x ∈ U that

min
0.8
y∈U

I (R(y, x), A(y)) =min
0.8
y∈U

A(y)

=min
0.8
{1,0.9, . . . , 0.1, 0}

= 0.1,
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which means that (R↓I ,min0.8
A)(y0)> A(y0). Since 1≤ (11− 5.5) · 0.2= 1.1, we obtain for x ∈ U

that
max

0.8
y∈U

C (R(y, x), A(y)) =max
0.8
y∈U

A(y)

=max
0.8
{0,0.1, . . . , 0.9, 1}

= 0.9,

and so (R↑C ,max0.8
A)(y10)< A(y10).

The constant α-set property does also not hold.

Example 4.3.8. Let U = {y1, . . . , y100} and R a fuzzy similarity relation such that R(x , x) = 1 and

R(x , z) = 0.5 for x 6= z ∈ U . Let I be the Łukasiewicz implicator IL and let β be 0.95. Let T be

the minimum t-norm For x ∈ U we obtain that

(R↓IL ,min0.95
;)(x) =min

0.95
y∈U

IL(R(y, x), 0)

= 0.5

> 0,

since 0.05 · (99 · 0.5+ 1 · 0) = 0.05 · 49.5= 2.475, which means we omit one 0 and one 0.5 in the

second step. This means that (R↓I ,Tβ 0̂) 6= 0̂. Now, let C be any t-norm T and S the maximum

operator. For x ∈ U we obtain that

(R↑T ,max0.95
U)(x) =max

0.95
y∈U

T (R(y, x), 1)

= 0.5

< 1,

since 0.05 · (99 · 0.5+ 1 · 1) = 0.05 · 50.5= 2.525, which means we omit one 1 and one 0.5 in the

second step. This means that (R↑C ,Sβ 1̂) 6= 1̂.

Note that we always have R↑C ,Sβ; = ; and R↓I ,TβU = U . The last property we study is the

idempotence property: this property does not hold in general.

Example 4.3.9. If we take the same setting as in the previous example, we have obtained for

every x ∈ U that (R↓IL ,min0.95
;)(x) = 0.5. Note that the R we use is a fuzzy similiarty relation and

IL is the R-implicator of TL . We now compute (R↓IL ,min0.95
(R↓IL ,min0.95

;))(x):

(R↓IL ,min0.95
(R↓IL ,min0.95

;))(x) =min
0.95
y∈U

IL(R(y, x), (R↓IL ,min0.95
;)(y))

=min
0.95
y∈U

min{1,1− R(y, x) + 0.5}.
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Since 0.05 · (99 · 1+ 1 · 0.5) = 4.975, we omit one 0.5 and three 1’s. This means that for every

x ∈ U: (R↓IL ,min0.95
(R↓IL ,min0.95

;))(x) = 1 and thus

∀x ∈ U : (R↓IL ,min0.95
(R↓IL ,min0.95

;))(x)> (R↓IL ,min0.95
;)(x).

We also derived that for every t-norm T , the upper approximation of U based on T and maxβ
was 0.5. Now take T the product t-norm TP and x ∈ U . We obtain

(R↑TP ,max0.95
(R↑TP ,max0.95

U))(x) =max
0.95
y∈U

TP(R(y, x), (R↑TP ,max0.95
U)(y))

=max
0.95
y∈U

R(y, x) · 0.5.

Because 0.05 · (99 · 0.25+ 1 · 0.5) = 1.2625, we omit the 0.5 and so

(R↑TP ,max0.95
(R↑TP ,max0.95

U))(x) = 0.25,

which is strictly smaller than (R↑TP ,max0.95
U)(x).

In contrast to the previous to models, some properties no longer holds. This is a price we have

to pay for having a more robust model. We continue with the vaguely quantified fuzzy rough set

model.

4.3.2 Vaguely quantified fuzzy rough sets

We study the model given in Definition 3.4.16. We saw earlier that the asymmetric VPRS model

(Definition 2.1.12) can be derived from the VQFRS model. So, if a property does not hold in the

asymmetric VPRS model, it will not hold in the VQFRS model, because a counterexample for the

VPRS model is also a counterexample for the more general VQFRS model. This immediately gives

us that the properties of ‘Duality’, ‘Inclusion’, ‘Monotonicity of relations’ and ‘Idempotence’ do not

hold in the VQFRS model. We study the other properties.

The monotonicity of sets holds for a general fuzzy relation R.

Proposition 4.3.10. Let A and B be fuzzy sets in a fuzzy approximation space (U , R) with R a

general fuzzy relation and Qu and Q l regularly increasing quantifiers. If A⊆ B, then it holds that

R↓Qu
A⊆ R↓Qu

B,

R↑Q l
A⊆ R↑Q l

B.

Proof. If A⊆ B, then for all x ∈ U it holds that

|Rx ∩ A|
|Rx |

≤
|Rx ∩ B|
|Rx |

,
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if Rx is not empty. The property follows from the fact that Qu and Q l are increasing. If Rx is empty,

then we have that

R↓Qu
A= R↓Qu

B = 1

and

R↑Q l
A= R↑Q l

B = 1.

Because this property holds, we have the following for the ‘Intersection’ and ‘Union’ property.

Proposition 4.3.11. Let A and B be fuzzy sets in a fuzzy approximation space (U , R) with R a

general fuzzy relation and Qu and Q l regularly increasing quantifiers. It holds that

R↓Qu
(A∩ B)⊆ R↓Qu

A∩ R↓Qu
B,

R↑Q l
(A∩ B)⊆ R↑Q l

A∩ R↑Q l
B,

R↓Qu
(A∪ B)⊇ R↓Qu

A∪ R↓Qu
B,

R↑Q l
(A∪ B)⊇ R↑Q l

A∪ R↑Q l
B.

Other inclusions do not hold, since they also do not hold in the VPRS model.

For a fuzzy similarity relation R, we have that the constant set property holds for ; and U , but

not for other α’s.

Proposition 4.3.12. Let R be a fuzzy similarity relation and Qu and Q l regularly increasing

quantifiers. We have that
R↓Qu

;= ;= R↑Q l
;,

R↓Qu
U = U = R↑Q l

U .

Proof. Since x ∈ Rx , we have for all x ∈ U that

|Rx ∩ ;|
|Rx |

= 0

and
|Rx ∩ U |
|Rx |

= 1.

The property follows from the fact that Qu and Q l are regularly increasing quantifiers, and this

means that Qu(0) =Q l(0) = 0 and Qu(1) =Q l(1) = 1.

The property for U also holds for general fuzzy relation R and it holds for ; if the relation R is

serial. We illustrate that it not necessarily holds for α ∈]0,1[.
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Example 4.3.13. Let U = {y1, y2, y3} and let R be a fuzzy similarity relation such that R(yi , y j) = 1

for i, j ∈ {1,2,3}. Take for the couple (Qu,Q l) the quantifiers for ‘Most’ and ‘Some’ as defined in

Section 3.4.3, i.e., (Qm,Qs) = (Q(0.2,1),Q(0.1,0.6)) and take α= 0.1. We derive that

(R↓Qm
α̂)(y1) =Qm

� |Ry1 ∩ α̂|
|Ry1|

�

=Qm

�

0.1+ 0.1+ 0.1

3

�

=Qm(0.1)

= 0

which is strictly smaller than α= 0.1. Similarly, we derive that

R↑Qs
α̂(y1) =Qs(0.1) = 0.

Again, not all the properties hold. Due to the fact that the monotonicity of relations not hold,

this model will not be interesting to use in feature selection. The following model we study is the

fuzzy variable precision rough set model.

4.3.3 Fuzzy variable precision rough sets

The FVPRS model, given in Definition 3.4.20, is similar to the general fuzzy rough set model, only

the second argument of the implicator and conjunctor are different. Recall that

R↓I ,αA= R↓I (A∪ α̂),

R↑C ,αA= R↑C (A∩×1−α),

for every fuzzy set A, every α ∈ I and every choice of the pair (I ,C ). We shall see that most

properties hold in this model and the proofs are similar to the ones in Section 4.1.

General fuzzy relation

We start with the properties that hold for a general fuzzy relation R. We begin with the duality

property.

Proposition 4.3.14. Let N be an involutive negator and A a fuzzy set in a fuzzy approximation

space (U , R) with R a general fuzzy relation. If the pair (I ,C ) consists of an implicator I and a

conjunctor C defined by the dual coimplicator J of I w.r.t. N , then the duality property holds,

i.e., for every α ∈ I it holds that

R↓I ,αA= coN (R↑C ,α(coN (A))),

R↑C ,αA= coN (R↓I ,α(coN (A))).
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Proof. This is completely similar to the proof of Proposition 4.1.1, as we have that

N (min{N (α),N (A(y))}) =max{α, A(y)}

and

N (max{α,N (A(y))}) =min{N (α), A(y)}

for all involutive negators N , all α ∈ I and all A∈ F (U).

This property also holds if we have an S-implicator I based on a t-conorm S and a t-norm

T which is dual to S with respect to the involutive negator N and if we have a left-continuous

t-norm T and its R-implicator IT such that N =NIT is involutive.

Completely similar with the general fuzzy rough set model, the monotonicity properties hold,

just as the properties ‘Intersection’ and ‘Union’.

Proposition 4.3.15. Let A and B be fuzzy sets in (U , R) with R a general fuzzy relation and α ∈ I .

If A⊆ B, then we have that
R↓I ,αA⊆ R↓I ,αB,

R↑C ,αA⊆ R↑C ,αB.

Proposition 4.3.16. Let R1 and R2 be fuzzy relations on U , A a fuzzy set in U and α ∈ I . If R1 ⊆ R2,

then we have that
R2↓I ,αA⊆ R1↓I ,αA,

R1↑C ,αA⊆ R2↑C ,αA.

Proposition 4.3.17. Let A and B be fuzzy sets in (U , R) with R a general fuzzy relation and α ∈ I .

We have that
R↓I ,α(A∩ B) = R↓I ,αA∩ R↓I ,αB,

R↑C ,α(A∩ B)⊆ R↑C ,αA∩ R↑C ,αB,

R↓I ,α(A∪ B)⊇ R↓I ,αA∪ R↓I ,αB,

R↑C ,α(A∪ B) = R↑C ,αA∪ R↑C ,αB.

The other properties do not hold for general fuzzy relations.

Fuzzy similarity relation

When R is a fuzzy T -similarity relation based on a left-continuous t-norm T , we also have the

‘Idempotence’ property.

Proposition 4.3.18. If C is a left-continuous t-norm T , IT its R-implicator and R a fuzzy T -

similarity relation, then we have for A a fuzzy set in a fuzzy approximation space (U , R) and for all

α ∈ I that
R↓IT ,α(R↓IT ,αA) = R↓IT ,αA,

R↑T ,α(R↑T ,αA) = R↑T ,αA.
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Proof. Again, this proof is similar to that of proposition 4.1.13.

This property holds for relations which are reflexive and T -transitive. The inclusion property

and the relation

R↓I ,αβ̂ = β̂ = R↑C ,αβ̂ ,

for all α,β ∈ I , do not hold, not even when R is a similarity relation. We illustrate this

Example 4.3.19. Let U = {y1, y2, y3} and let R be a fuzzy similarity relation such that R(yi , y j) = 1

for i, j ∈ {1, 2, 3}. Let β̂ be a fuzzy set with β = 0.6 and let α= 0.7. We take the standard negator

NS , the Łukasiewicz implicator IL and the Łukasiewicz t-norm TL . We obtain for x ∈ U that

(R↓IL ,0.7β̂)(x) = inf
y∈U
IL(R(y, x),max{α, β̂(y)})

= inf
y∈U

min{1,1− 1+max{0.7, 0.6}}

= 0.7

> β̂(x),

(R↑TL ,0.7β̂)(x) = sup
y∈U
TL(R(y, x), min{1−α, β̂(y)})

= sup
y∈U

max{0, 1+min{0.3, 0.6} − 1}

= 0.3

< β̂(x).

This gives a counterexample for the both the inclusion property and the constant α-set property.

Note that these properties do also not hold for ; and U .

Remark 4.3.20. We can prove that R↓I ,αβ̂ = β̂ holds if α ≤ β and that R↑C ,αβ̂ = β̂ holds if

β ≤ 1−α.

We see that indeed a lot of properties hold. Still, the fact that the inclusion property does not

hold is a problem, since lower approximations can be bigger than the set itself. The last model we

study, is the OWA-based fuzzy rough set model.

4.3.4 OWA-based fuzzy rough sets

The last model we study is the OWA-based fuzzy rough set model, given in Definition 3.4.30. As in

the VQFRS model, not all properties will hold, but the main advantage of this model compared to

the VQFRS model is that monotonicity of relations does hold.

We start with the monotonicity properties.
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Proposition 4.3.21. Let A and B be fuzzy sets in (U , R) with R a general fuzzy relation. Let I be

an implicator, C a conjunctor and W1 and W2 weightvectors such that there length is equal to |U |,
then we have that

R↓I ,W1
A⊆ R↓I ,W1

B,

R↑C ,W2
A⊆ R↑C ,W2

B.

Proof. Let U have n elements. If we have a,b ∈ In such that a≤ b, i.e.,

∀i ∈ {1, . . . , n}: ai ≤ bi ,

then for the permutation σ on {1, . . . , n} such that aσ(i) is the i th biggest element of a we have

that

∀i ∈ {1, . . . , n}: aσ(i) ≤ bσ(i)

and thus also that
n
∑

i=1

aσ(i) ·wi ≤
n
∑

i=1

bσ(i) ·wi ,

since wi > 0 for all i. The property follows from that fact that both an implicator and a conjunctor

are non-decreasing in the second argument.

Proposition 4.3.22. Let R1 and R2 be fuzzy relations on U , and A a fuzzy set in U . Let I be an

implicator, C a conjunctor and W1 and W2 weightvectors such that there length is equal to |U |. If

R1 ⊆ R2, then we have that
R2↓I ,W1

A⊆ R1↓I ,W1
A,

R1↑C ,W2
A⊆ R2↑C ,W2

A.

Proof. This follows from that fact that an implicator is non-increasing and a conjunctor is non-

decreasing in the first argument and from the facts we stated in the proof of Proposition 4.3.21.

Since the monotonicity of sets holds, we have the following inclusions.

Proposition 4.3.23. Let A and B be fuzzy sets in (U , R) with R a general fuzzy relation. Let I be

an implicator, C a conjunctor and W1 and W2 weightvectors such that there length is equal to |U |.
We have that

R↓I ,W1
(A∩ B)⊆ R↓I ,W1

A∩ R↓I ,W1
B,

R↑C ,W2
(A∩ B)⊆ R↑C ,W2

A∩ R↑C ,W2
B,

R↓I ,W1
(A∪ B)⊇ R↓I ,W1

A∪ R↓I ,W1
B,

R↑C ,W2
(A∪ B)⊇ R↑C ,W2

A∪ R↑C ,W2
B.

In the next example, we show that the other inclusions do not hold.
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Example 4.3.24. Let U = {y0, . . . , y10} and R a fuzzy similarity relation such that R(x , z) = 1 for

all x , z ∈ U . Let us consider the following fuzzy sets A and B:

A(y0) = 1, B(y0) = 0,

A(yi) = 1, B(yi) =
i

10
, for i even, i 6= 0,

A(yi) =
i

10
, B(yi) = 1, for i odd, i 6= 0,

then (A∩ B)(yi) =
i

10
and (A∪ B)(yi) = 1 for all i ∈ {0, . . . , 10}. Take I = IL and

W1 =
�

10

100
,

9

100
,

8

100
,

7

100
,

6

100
,

5

100
,

4

100
,

3

100
,

2

100
,

1

100
,

45

100

�

.

Note that andness(W1) = 0.615 > 0.5. We compute R↓I ,W1
(A∩ B), R↓I ,W1

A and R↓I ,W1
B. We

obtain for x ∈ U that

(R↓I ,W1
(A∩ B))(x) = OWAW1

�

0

10
,

1

10
,

2

10
,

3

10
,

4

10
,

5

10
,

6

10
,

7

10
,

8

10
,

9

10
,
10

10

�

= 0.385,

(R↓I ,W1
A)(x) = OWAW1

�

1,
1

10
, 1,

3

10
, 1,

5

10
,1,

7

10
, 1,

9

10
, 1
�

= 0.565,

(R↓I ,W1
B)(x) = OWAW1

�

0

10
,1,

2

10
, 1,

4

10
,1,

6

10
,1,

8

10
, 1,

10

10

�

= 0.51,

which means that for every x ∈ U

(R↓I ,W1
(A∩ B))(x)< (R↓I ,W1

A)(x)∩ (R↓I ,W1
B)(x).

Now, with

W2 =
�

45

100
,

10

100
,

9

100
,

8

100
,

7

100
,

6

100
,

5

100
,

4

100
,

3

100
,

2

100
,

1

100

�

we obtain for every x ∈ U that

1= (R↑C ,W2
(A∪ B))(x)> (R↑C ,W2

A)(x)∪ (R↑C ,W2
B)(x) =max{0.945,0.93}.

The other properties do not hold in this model. For example, we give a counterexample for the

duality property.

Example 4.3.25. Let U = {y1, y2}, A a fuzzy set such that A(y1) = 0.2 and A(y2) = 0.2, R a fuzzy

similarity relation with R(x , z) = 0.5 and R(x , x) = 1 for x 6= z ∈ U . Let I = IL , C = TL ,N =NS ,

W1 = 〈
1
3
, 2

3
〉 and W2 = 〈

3
4
, 1

4
〉, then andness(W1)> 0.5 and orness(W2)> 0.5. We have for y1 ∈ U

that

(R↓IL ,W1
A)(y1) =

1

3
· 0.7+

2

3
· 0.2=

11

30
.



CHAPTER 4. PROPERTIES OF FUZZY ROUGH SETS 95

On the other hand we have that

(coNS
(R↑TL ,W2

(coNS
A)))(y1) = 1−OWAW2

〈max{0, R(y, y1) + 1− A(y)− 1}〉

= 1−OWAW2
〈0.8, 0.3〉

= 1− (0.75 · 0.8+ 0.25 · 0.3)

=
13

40

which is not the same. The other equality also does not hold, since (R↑TL ,W2
A)(y1) = 0.15 and

(coNS
(R↓IL ,W1

(coNS
A)))(y1) = 1−

�

1

3
· 0.7+

2

3
· 0.2

�

=
19

30
.

Also, the inclusion property and constant α-set property do not hold.

Example 4.3.26. Let U = {y1, y2}, A= ; and R a similarity relation such that

R(y1, y1) = R(y2, y2) = 1,

R(y1, y2) = R(y2, y1) = 0.5.

We take the weight vector W1 = 〈
1
3
, 2

3
〉. The andness of W1 is 2

3
, which is larger than 0.5. Take

I = IL . We compute the lower approximation of A in x ∈ U:

(R↓IL ,W1
;)(x) = (W1)1 · IL(0.5, 0) + (W1)2 · IL(1,0)

=
1

3
·

1

2

=
1

6
> ;(x).

This means that the lower approximation of a fuzzy set not necessarily is included in the set.

Let us now take the same U and R, but A= U and C a t-norm T . We take the weight vector

W2 = 〈
2
3
, 1

3
〉, then the orness of W2 is 2

3
. We obtain for the upper approximation of A in x ∈ U that

(R↑T ,W2
U)(x) = (W2)1 · T (1,1) + (W2)2 · T (0.5,1)

=
2

3
· 1+

1

3
·

1

2

=
5

6
< U(x).

So a fuzzy set is not always included in its upper approximation.

Note that we do always have that R↑C ,W2
; = ; and R↓I ,W1

U = U . To end this section, we

illustrate that the idempotence property does not hold.
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Example 4.3.27. Consider the same setting as in the previous example. Note that R is a fuzzy

similarity relation. We have

(R↓IL ,W1
(R↓IL ,W1

;))(x) = (W1)1 · IL

�

1

2
,
1

6

�

+ (W1)2 · IL

�

1,
1

6

�

=
1

3
·

2

3
+

2

3
·

1

6

=
1

3
> (R↓IL ,W1

;)(x)

and

(R↑T ,W2
(R↑T ,W2

U))(x) = (W2)1 · T
�

1,
5

6

�

+ (W2)2 · T
�

0.5,
5

6

�

=
2

3
·

5

6
+

1

3
·

1

3

=
4

6
< (R↑T ,W2

U)(x).

We see that we have to give in properties for having more robust models. Finding a robust

model that is monotone w.r.t. relations and has the inclusion property is an open problem.

In the next chapter, we study axiomatic approaches for fuzzy rough sets. We will see why some

properties only hold under certain conditions for the fuzzy relation R.



Chapter 5

Axiomatic approach of fuzzy rough sets

In the previous two chapters, we studied constructive approaches to design fuzzy rough set models.

We recalled the definitions of some fuzzy rough set models and studied their properties. In this

chapter, we do the opposite. We start with unary operators and some axioms to obtain a fuzzy

relation R such that the operators work as approximation operators with respect to R. Axiomatic

approaches are not used in applications, but are rather used to get more insight in the logical

structure of fuzzy rough sets. Note that in this chapter, we can work with infinite universes.

We study the axiomatic approach developed by Wu et al. ([61]), as they characterise the

general fuzzy rough set model with an EP implicator I that is left-continuous in the first argument

and such that I (·, 0), i.e., the induced negator, is continuous and a left-continuous t-norm T 1.

They give axioms to characterise the lower and upper approximation operator separately, while

other authors use dual operators. When the operators are not dual, we do not necessarily get the

same fuzzy relation.

Other papers that describe an axiomatic approach are [48, 62, 63, 44, 51, 66, 40, 41]. We will

shortly discuss their approaches at the end of this chapter.

The axioms the authors use to characterise the lower and upper approximation operators, are

based on properties of fuzzy relations (see e.g. [54]). The choice of axioms depends on which

model we want to derive. For example, as we will see in the next section, Wu et al. use a t-norm

and an implicator to derive the general fuzzy rough set model. If we use max and min instead,

we would obtain the model designed by Dubois and Prade. Although the axioms to characterise

the fuzzy rough set model are different in the papers, the axioms needed to obtain reflexivity,

symmetry or transitivity are quite similar.

We begin with the axiomatic characterisation of an upper approximation operator and a lower

approximation operator. Next, we study two interesting pairs of operators: dual and T -coupled

pairs. We end with a short overview of other axiomatic approaches in the literature.

1They assumed a continuous implicator and continuous t-norm, but we were able to prove that these conditions can

be weakened.

97
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5.1 Axiomatic characterisation of T -upper fuzzy approximation op-

erators

Wu et al. ([61]) discuss the axiomatic characterisation of (I ,T )-fuzzy rough sets, i.e., the general

fuzzy rough set model defined in Definition 3.2.1 with C a left-continuous t-norm T and I
an EP implicator that is left-continuous in the first argument and of which the induced negator

is continuous. The approach does not work for more general conjunctors, since we need the

properties that t-norms are commutative and assiociative.

We use a fuzzy set-valued operator H to characterise the upper approximation operator.

Definition 5.1.1. Let H : F (U)→F (U) be an operator and let T be a left-continuous t-norm. H

is called a T -upper fuzzy approximation operator if and only if it satisfies the following axioms:

(H1) ∀A∈ F (U),∀α ∈ I : H(α̂∩T A) = α̂∩T H(A),

(H2) ∀A j ∈ F (U), j ∈ J : H

 

⋃

j∈J
A j

!

=
⋃

j∈J
H(A j),

with α̂(x) = α for all x ∈ U as before2.

If H is a T -upper fuzzy approximation operator on F (U), we define the fuzzy relation Rel(H)
on U × U as

∀(x , y) ∈ U × U : Rel(H)(x , y) = H({x})(y). (5.1)

Remark 5.1.2. In [62], Rel(H) is defined by Rel(H)(x , y) = H({y})(x), since they work with the

model
(R↓IA)(x) = inf

y∈U
I (R(x , y), A(y)),

(R↑T A)(x) = sup
y∈U
T (R(x , y), A(y)).

We see that the operator R↑T is a T -upper fuzzy approximation operator: the first axiom is

fulfilled by the fact that a left-continuous t-norm is associative and complete-distributive w.r.t. the

supremum. Due to the latter, the second axiom is fulfilled by extension of Proposition 4.1.8. We

have the following connection between Rel(R↑T ) and R:

Lemma 5.1.3. Let R ∈ F (U × U). We have that Rel(R↑T ) = R.

Proof. This holds because for all (x , y) ∈ U × U , we have that

(Rel(R↑T ))(x , y) = R↑T ({x})(y) = sup
z∈U
T (R(z, y), {x}(z)) = R(x , y),

as for all t-norms and for all a ∈ I we have that T (a, 0) = 0 and T (a, 1) = a.

2Wu et al. used an operator H : F (W )→F (U), but as before, we restrict ourselves to fuzzy relations R ∈ F (U ×U).
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We have the following relation between (Rel(H))↑T and H:

Lemma 5.1.4. Let T be a left-continuous t-norm and H a T -upper fuzzy approximation operator,

then we have that (Rel(H))↑T = H, i.e., for all A∈ F (U) it holds that (Rel(H))↑T A= H(A).

Proof. Recall that with ÕA(y) we denote the constant A(y)-set. If A is a fuzzy set in U , then we can

write

A=
⋃

y∈U

(ÕA(y)∩T {y})

because for all x ∈ U it holds that






⋃

y∈U

(ÕA(y)∩T {y})






(x) = sup

y∈U
T (ÕA(y)(x), {y}(x))

=max

¨

sup
y 6=x
T (A(y), 0),T (A(x), 1)

«

=max{0, A(x)}

= A(x).

We obtain for x ∈ U that

(Rel(H))↑T A(x) = sup
y∈U
T (Rel(H)(y, x), A(y))

= sup
y∈U
T (H({y})(x), A(y))

= sup
y∈U
(H({y})∩T ÕA(y))(x)

= sup
y∈U
(ÕA(y)∩T H({y}))(x)

= sup
y∈U

H(ÕA(y)∩T {y})(x)

= H







⋃

y∈U

(ÕA(y)∩T {y}






(x)

= H(A)(x)

which proves that (Rel H)↑T = H. We have used (H1) in step 5 and (H2) in step 6.

These two lemmas lead to the desired theorem.

Theorem 5.1.5. Let T be a left-continuous t-norm. An operator H : F (U)→F (U) is a T -upper

fuzzy approximation operator if and only if there exists a general fuzzy relation R on U × U such

that H = R↑T , i.e., for all A∈ F (U):
H(A) = R↑T A.
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Proof. ⇒ Take R= Rel H. It follows immediately from Lemma 5.1.4.

⇐ R↑T is a T -upper fuzzy approximation operator.

If we add axioms to the ones in Definition 5.1.1, we can obtain extra properties of the relation

R.

Proposition 5.1.6. Let T be a left-continuous t-norm and H a T -fuzzy approximation operator.

Then there exists an inverse serial fuzzy relation R such that H = R↑T if and only if H satisfies the

axiom H(U) = U .

Proof. By Theorem 5.1.5 we know that there is a fuzzy relation R such that H = R↑T .

First suppose R is inverse serial, then we have that sup
y∈U

R(y, x) = 1, for all x ∈ U . We have for

x ∈ U that
(R↑T U)(x) = sup

y∈U
T (R(y, x), 1)

= sup
y∈U

R(y, x)

= 1

= U(x).

(5.2)

Now assume that R↑T U = U . We deduce from Equation (5.2) that sup
y∈U

R(y, x) = 1, for all x ∈ U ,

i.e., R is inverse serial. This completes the proof.

The axiom H(U) = U is equivalent with the axiom ∀α ∈ I : H(α̂) = α̂. This follows from the

fact that for each fuzzy relation R and for each α ∈ I it holds that

R↑T (α̂) = α̂⇔ R↑T U = U .

Let us check this condition:

⇐ Assume R↑T U = U , then for α ∈ I it holds that

R↑T α̂= R↑T (α̂∩T 1̂)

= R↑T (α̂∩T U)

= α̂∩T R↑T U

= α̂∩T U

= α̂∩T 1̂

= α̂.

⇒ Take α= 1.
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We now characterise the properties of being reflexive, symmetric and T -transitive.

Proposition 5.1.7. Let T be a left-continuous t-norm and H a T -upper fuzzy approximation

operator. There exists a fuzzy relation R such that H = R↑T that is

1. reflexive⇔∀A∈ F (U): A⊆ H(A),

2. symmetric⇔∀(x , y) ∈ U × U : H({x})(y) = H({y})(x),

3. T -transitive⇔∀A∈ F (U): H(H(A))⊆ H(A).

So, H fulfils the three above axioms if and only if R is a T -similarity relation.

Proof. By Theorem 5.1.5 we know that there is a fuzzy relation R such that H = R↑T .

1. Let R be reflexive, then for all A∈ F (U) and for all x ∈ U we have that

(R↑T A)(x) = sup
y∈U
T (R(y, x), A(y))

≥ T (R(x , x), A(x))

= T (1, A(x))

= A(x),

i.e., A⊆ R↑T A= H(A). Now assume that H fulfils the first axiom. We have

R(x , x) = (R↑T {x})(x)≥ {x}(x) = 1,

and thus R is reflexive.

2. This follows immediately from the fact that for all x , y ∈ U we have that

(R↑T {y})(x) = sup
z∈U
T (R(z, x), {y}(z))

= R(y, x),

as T (R(z, x), 0) = 0 and T (R(y, x), 1) = R(y, x).

3. Assume that R is T -transitive. For all A∈ F (U) and for all x ∈ U it holds that

(R↑T (R↑T A))(x) = sup
y∈U
T (R(y, x), sup

z∈U
T (R(z, y), A(z)))

= sup
y∈U

sup
z∈U
T (R(y, x),T (R(z, y), A(z)))

= sup
y∈U

sup
z∈U
T (T (R(z, y), R(y, x)), A(z))

≤ sup
y∈U

sup
z∈U
T (R(z, x), A(z))

= sup
z∈U
T (R(z, x), A(z))

= (R↑T A)(x)
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so H(H(A))⊆ H(A). Conversely, assume H fulfils the third axiom. For all x , z ∈ U we have

that
R(x , z) = (R↑T {x})(z)

≥ (R↑T (R↑T {x}))(z)

= sup
y∈U
T (R(y, z), (R↑T {x})(y))

= sup
y∈U
T (R(y, z), R(x , y))

= sup
y∈U
T (R(x , y), R(y, z)).

This proves that R is T -transitive.

Proposition 5.1.7 explains why some properties do not hold for general fuzzy relations. For

example, the inclusion property only holds for reflexive fuzzy relations. On the other hand, the

idempotence property can only hold when we have a reflexive fuzzy relation that is T -transitive.

We continue with an axiomatic characterisation of the lower approximation.

5.2 Axiomatic characterisation of I -lower fuzzy approximation op-

erators

Throughout this section, we assume I to be an EP implicator on I such that I is left-continuous

in the first argument and such that NI is continuous. We shall refer to this three conditions as ‘the

standard conditions’ on I . S-implicators and IMTL-implicators are examples of implicators that

fulfil the standard conditions.

We start by defining an I -lower fuzzy approximation operator.

Definition 5.2.1. Let L : F (U) → F (U) be an operator and I an implicator that satisfies the

standard conditions. L is called an I -lower fuzzy approximation operator if and only if it satisfies

the following axioms:

(L1) ∀A∈ F (U),∀α ∈ I : L(α̂⇒I A) = α̂⇒I L(A),

(L2) ∀A j ∈ F (U), j ∈ J : L

 

⋂

j∈J
A j

!

=
⋂

j∈J
L(A j),

with α̂(x) = α for all x ∈ U3.

3Wu et al. used an operator L : F (W )→F (U), but as before, we restrict ourselves to fuzzy relations R ∈ F (U ×U).
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Now, let L be an I -lower fuzzy approximation operator onF (U), then we can define a relation

Rel(L) on U × U as

∀(x , y) ∈ U × U : Rel(L)(x , y) = sup{α ∈ I | I (α, 0) = L(U \ {x})(y)}. (5.3)

Note that by standard conditions of I we have that

I (Rel(L)(x , y), 0) = L(U \ {x})(y).

If NI is the negator induced by I we obtain that

NI (Rel(L)(x , y)) = L(U \ {x})(y).

Just like R↑T a T -upper fuzzy approximation operator is, is R↓I an I -lower fuzzy approxima-

tion operator. We obtain the first axiom by

(R↓I (α̂⇒I A))(x) = inf
y∈U
I (R(y, x), (α̂⇒I A)(y))

= inf
y∈U
I (R(y, x),I (α, A(y)))

= inf
y∈U
I (α,I (R(y, x), A(y)))

= I
�

α, inf
y∈U
I (R(y, x), A(y))

�

= I (α, (R↓IA)(x))

= (α̂⇒I R↓IA)(x)

for all x ∈ U . The second axiom is fulfilled by extension of Proposition 4.1.8 and the fact that I is

left-continuous in the first argument.

We study the relation between Rel(R↓I ) and R.

Lemma 5.2.2. If (U , R) is a fuzzy approximation space with R a general fuzzy relation and I is

an implicator that satisfies the standard conditions, then for all x , y ∈ U it holds that

I ((Rel(R↓I ))(x , y), 0) = I (R(x , y), 0).

Proof. This follows from the fact that for all x , y ∈ U

I ((Rel(R↓I ))(x , y), 0) = (R↓I (U \ {x}))(y)

=min
�

inf
z 6=x
I (R(z, y), 1),I (R(x , y), 0)

�

= I (R(x , y), 0),

as for all z ∈ U it holds that

I (R(z, y), 1)≥ I (0, 1) = 1.



CHAPTER 5. AXIOMATIC APPROACH OF FUZZY ROUGH SETS 104

We have the following relation between (Rel(L))↓I and L:

Lemma 5.2.3. Let I be an implicator that satisfies the standard conditions and L an I -lower

fuzzy approximation operator, then (Rel(L))↓I = L.

Proof. We can write A∈ F (U) as

A=
⋂

y∈U

(ÕA(y)∪ U \ {y})

because for x ∈ U it holds that






⋂

y∈U

(ÕA(y)∪ U \ {y})






(x) = inf

y∈U
max{A(y), (U \ {y})(x), }

=min
�

inf
y 6=x

max{A(y), 1},max{A(x), 0}
�

=min{1, A(x)}

= A(x).

Since we assumed I (·, 0) to be continuous, for all y ∈ U there exists a by ∈ I such that

A(y) = I (by , 0),

and thus

(ÕA(y)∪ U \ {y}) = (cby ⇒I U \ {y}).

Recall that

I (Rel(L)(x , y), 0) = L(U \ {x})(y).

We can now prove the lemma: for all x ∈ U it holds that

(Rel(L)↓IA)(x) = inf
y∈U
I (Rel(L)(y, x), A(y))

= inf
y∈U
I (Rel(L)(y, x),I (by , 0))

= inf
y∈U
I (by ,I (Rel(L)(y, x), 0))

= inf
y∈U
I (by , L(U \ {y})(x))

= inf
y∈U

L(cby ⇒I U \ {y})(x)

= inf
y∈U

L(ÕA(y)∪ U \ {y})(x)

= L







⋂

y∈U

(ÕA(y)∪ U \ {y})






(x)

= L(A)(x),

where we use (L1) in step 5 and (L2) in step 7.
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We again obtain the desired theorem.

Theorem 5.2.4. Let I be an implicator that satisfies the standard conditions. An operator

L : F (U) → F (U) is an I -lower fuzzy approximation operator if and only if there exists a

general fuzzy relation R on U × U such that L = R↓I , i.e., for all A∈ F (U):

L(A) = R↓IA.

Proof. This follows immediately from Equation (5.3), Lemma 5.2.2 and Lemma 5.2.3 with R =
Rel L.

Just like we have done with the T -upper fuzzy approximation operator, we want to describe

which axioms an I -lower fuzzy approximation operator has to fulfil to obtain certain properties of

the relation R. We start with an inverse serial relation.

Proposition 5.2.5. Let I be a border implicator that fulfils the standard conditions and the

following condition for a, b ∈ I :

a ≤ b⇔∀c ∈ I : I (a, c)≤ I (b, c). (5.4)

Let L be an I -lower fuzzy approximation operator. Then there exists an inverse serial fuzzy relation

R on U such that L = R↓I if and only if L satisfies the axiom

∀α ∈ I : L(α̂) = α̂.

Proof. Due to Theorem 5.2.4, we have a relation R such that L = R↓I . Suppose R is inverse serial,

then we have for all x ∈ U that

(R↓I α̂)(x) = inf
y∈U
I (R(y, x),α)

= I
�

sup
y∈U

R(y, x),α

�

= I (1,α)

= α

= α̂(x).

On the other hand, assume L fulfils the axiom. Since I satisfies condition (5.4), I satisfies also

a = b⇔∀c ∈ I : I (a, c) = I (b, c).

We have for every α ∈ I that

I
�

sup
y∈U

R(y, x),α

�

= (R↓I α̂)(x)

= α̂(x)

= α

= I (1,α),
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which implies that sup
y∈U

R(y, x) = 1 and thus that R is inverse serial.

For example, IMTL-implicators fulfil the extra conditions on I .

If I is a CP implicator, then I satisfies condition (5.4). Let us prove this. If a ≤ b, then of

course I (a, c)≥ I (b, c) for every c ∈ I since an implicator is non-increasing in the first argument.

Suppose I (a, c) ≥ I (b, c) for all c ∈ I and a > b. Then we have that I (a, c) ≤ I (b, c) for all

c ∈ I and thus

∀c ∈ I : I (a, c) = I (b, c).

In particular, I (a, a) = I (b, a) and I (a, b) = I (b, b). Since I is a CP implicator, this means

that I (b, a) = 1 and I (a, b) = 1 or b ≤ a and a ≤ b. This contradicts the assumption a > b. We

conclude that

a ≤ b⇔∀c ∈ I : I (a, c)≥ I (b, c).

We now characterise the properties of being reflexive, symmetric and T -transitive.

Proposition 5.2.6. Let I be a border implicator that fulfils the standard conditions and condi-

tion 5.4. Let T be a t-norm and L an I -lower fuzzy approximation operator. There exists a fuzzy

relation R such that L = R↓I that is

1. reflexive⇔∀A∈ F (U): L(A)⊆ A,

2. symmetric⇔∀(x , y) ∈ U × U ,∀α ∈ I :

L({x} ⇒I α̂)(y) = L({y} ⇒I α̂)(x),

3. T -transitive⇔∀A∈ F (U): L(A)⊆ L(L(A)) and if I satisfies

∀a, b, c ∈ I : I (a,I (b, c)) = I (T (a, b), c).

So, L fulfils the three above axioms if and only if R is a T -similarity relation.

Proof. By Theorem 5.2.4, we know that there exists a relation R such that L = R↓I .

1. Let R be reflexive. For all A∈ F (U) and x ∈ U it holds that

(R↓IA)(x) = inf
y∈U
I (R(y, x), A(y))

≤ I (R(x , x), A(x))

= I (1, A(x))

= A(x),
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which means that L(A) ⊆ A. Now assume that L fulfils the first axiom. Note that for all

x , y ∈ U and α ∈ I it holds that I ({x}(y),α) = 1 if y 6= x and that it is equal to α if y = x .

We obtain
I (R(x , x),α) = R↓I ({x} ⇒I α̂)(x)

≤ ({x} ⇒I α̂)(x)

= I (1,α).

This means by condition (5.4) that R(x , x) = 1 and thus that R is reflexive.

2. This follows immediately from the fact that

∀(x , y) ∈ U × U ,∀α ∈ I : (R↓I ({y} ⇒I α̂))(x) = I (R(y, x),α).

and condition (5.4). Let us prove the above equation: take x , y ∈ U and α ∈ I , we obtain

(R↓I ({y} ⇒I α̂))(x) = inf
z∈U
I (R(z, x), ({y} ⇒I α̂)(z))

= inf
z∈U
I (R(z, x),I ({y}(z),α))

=min
�

inf
z 6=y
I (R(z, x),I ({y}(z),α)),I (R(y, x),I ({y}(y),α))

�

=min
�

inf
z 6=a
I (R(z, x),I (0,α)),I (R(y, x),I (1,α))

�

=min
�

inf
z 6=y
I (R(z, x), 1),I (R(y, x),α)

�

= I (R(y, x),α),

since I is non-increasing in the first argument and non-decreasing in the second argument.

3. Assume I satisfies

∀a, b, c ∈ I : I (a,I (b, c)) = I (T (a, b), c).

Let R be T -transitive. Then we have for all A∈ F (U) and x ∈ U that

(R↓IA)(x) = inf
z∈U
I (R(z, x), A(z))

≤ inf
z∈U
I
�

sup
y∈U
T (R(z, y), R(y, x)), A(z)

�

= inf
z∈U

inf
y∈U
I (T (R(y, x), R(z, y)), A(z))

= inf
y∈U

inf
z∈U
I (R(y, x),I (R(z, y), A(z)))

= inf
y∈U
I
�

R(y, x), inf
z∈U
I (R(z, y), A(z))

�

= (R↓I (R↓IA))(x).
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Thus, we obtain L(A)⊆ L(L(A)). On the other hand, assume that L satisfies the third axiom.

For all x , z ∈ U and α ∈ I we have that

I (R(y, x),α) = (R↓I ({y} ⇒I α̂))(x)

≤ (R↓I (R↓I ({y} ⇒I α̂)))(x)

= inf
z∈U
I (R(z, x), (R↓I ({y} ⇒I α̂))(z))

= inf
z∈U
I (R(z, x),I (R(y, z),α))

= inf
z∈U
I (T (R(z, x), R(y, z)),α)

= I
�

sup
z∈U
T (R(y, z), R(z, x)),α

�

.

By applying Equation (5.4) we obtain

R(y, x)≥ sup
z∈U
T (R(y, z), R(z, x)),

i.e., R is T -transitive.

The extra condition on I to obtain T -transitivity is fulfilled by R-implicators based on a

left-continuous t-norm and thus in particular by IMTL-implicators. An example of an implicator

which fulfils all the conditions is the Łukasiewicz implicator.

The axiomatic approach gives us more insight in the logical structure of the general fuzzy

rough set model. For example, we saw that the inclusion property only holds if the relation is

reflexive, so this never can hold in general for a general fuzzy relation.

We now discuss some interactions between a T -upper fuzzy approximation operator and an

I -lower fuzzy approximation operator.

5.3 Dual and T -coupled pairs

In the previous two sections, we gave axioms to describe an upper and a lower approximation

operator separately. We discuss now some interesting relations between an upper and lower

approximation operator. The first pair we study is a dual pair.

With the right choices for T and I , there is a duality between T -upper and I -lower fuzzy

approximation operators.

Definition 5.3.1. Let L, H : F (U)→F (U) be two operators and N an involutive negator. We

call L and H dual operators with respect to N if for all A∈ F (U) we have:

L(A) = coN (H(coN (A))),

H(A) = coN (L(coN (A))).
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If we have dual operators, we only need to define one operator and then derive the other

operator by the duality relation. Furthermore, we can obtain the axioms for the corresponding

operator from the axioms for the defined operator. We have dual operators if we work for example

with a t-norm T and the S-implicator IS based on the dual t-conorm S of T with respect to N .

If H is a T -fuzzy approximation operator and L is an I -fuzzy approximation operator and if

H and L are dual operators, it holds that Rel(H) = Rel(L), i.e., we obtain the same relation R in

Theorems 5.1.5 and 5.2.4.

Lemma 5.3.2. Let T be a left-continuous t-norm, I an implicator that satisfies the standard

conditions and NI the negator induced by I . Let H be a T -upper fuzzy approximation operator

and L an I -lower fuzzy approximation operator. If H and L are dual to NI and NI is involutive,

then for all (x , y) ∈ U × U it holds that

Rel(L)(x , y) = Rel(H)(x , y).

Proof. Since NI is involutive and induced by I we have that for all (x , y) ∈ U × U:

Rel(L)(x , y) =NI (L(U \ {x})(y))

= H(NI (U \ {x}))(y)

= H({x})(y)

= Rel(H)(x , y).

We can see that the duality between L and H is analogous to the duality properties studied in

Chapter 4.

Next, we discuss a T -coupled pair, i.e., a pair consisting of a left-continuous t-norm and its

R-implicator. This can be useful, because not every negator induced by an implicator is involutive,

for example, the Gödelnegator is induced by the Gödelimplicator, but it is not involutive.

Definition 5.3.3. Let T be a left-continuous t-norm and let IT be its R-implicator. Let

H, L :F (U)→F (U)

be two operators. We say that (H, L) is a T -coupled pair of approximation operators if the following

conditions hold:

(H1,H2) H is a T -upper fuzzy approximation operator,

(L2) ∀A j ∈ F (U), j ∈ J : L

 

⋂

j∈J
A j

!

=
⋂

j∈J
L(A j),

(HL) ∀A∈ F (U),∀α ∈ I : L(A⇒IT α̂) = H(A)⇒IT α̂,
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where I is the R-implicator of T , and with α̂(x) = α for all x ∈ U , α ∈ I .

We have the following characterisation for a T -coupled pair.

Theorem 5.3.4. Let T be a left-continuous t-norm. A pair of operators (H, L) is T -coupled pair

of approximation operators if and only if there exists a general fuzzy relation R on U ×U such that

H = R↑T and L = R↓IT , i.e., for all A∈ F (U):

H(A) = R↑T A and L(A) = R↓IT A.

Proof. It is clear that R↑T and R↓IT satisfy (H1, H2) and (L2) respectively. Let us show that they

also satisfy (HL). Recall the following properties for IT and T ([54]):

IT (a,IT (b, c)) = IT (T (a, b), c),

IT (sup
j∈J

b j , a) = inf
j∈J
IT (b j , a).

Take x ∈ U and α ∈ I , then
�

R↓IT (A⇒IT α̂)
�

(x) = inf
y∈U
IT (R(y, x), (A⇒IT α̂)(y))

= inf
y∈U
IT (R(y, x),IT (A(y),α))

= inf
y∈U
IT (T (R(y, x), A(y)),α)

= IT

�

sup
y∈U
T (R(y, x), A(y)),α

�

= IT ((R↑T A)(x),α)

= (R↑T A⇒IT α̂)(x).

Hence, R↑T and R↓IT fulfil (HL).

Conversely, assume (H, L) is a T -coupled pair. By (H1, H2), H is a T -upper fuzzy approxima-

tion operator, and by Theorem 5.1.5 we have a general fuzzy relation R= Rel(H) such that for all

A∈ F (U) we have that

H(A) = R↑T A.

We have the following representation for a fuzzy set A:

A=
⋂

y∈U

({y} ⇒IT
ÕA(y)).

Take x ∈ U , then






⋂

y∈U

({y} ⇒IT
ÕA(y))






(x) = inf

y∈U
IT ({y}(x), A(y))

=min
�

IT (1, A(x)), inf
y 6=x
IT (0, A(y))

�

=min{A(x), 1}

= A(x),
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since R-implicators are border implicators. Because L satisfies (L2), we have that

L(A) =
⋂

y∈U

L({y} ⇒IT
ÕA(y))

and by (HL) we derive

L(A) =
⋂

y∈U

H({y})⇒IT
ÕA(y).

For x ∈ U we obtain:
L(A)(x) = inf

y∈U
IT (H{y}(x),ÕA(y)(x))

= inf
y∈U
IT (R(y, x), A(y))

= (R↓IT A)(x),

where we have used Equation (5.1) in the second step. This proves the theorem.

If we take α= 0 in (HL), then we obtain

∀A∈ F (U) : L(coN (A)) = coN (H(A))

with N = NI . This is another form of duality where N is not necessarily involutive. If NI is

involutive (as it is the case of T being the Łukasiewicz t-norm or in general any IMTL t-norm4),

then a T -coupled pair (H, L) is also dual in the sense of Definition 5.3.1.

We now characterise the properties of being inverse serial, reflexive, symmetric and T -

transitive.

Proposition 5.3.5. Let T be a left-continuous t-norm and let (H, L) be a T -coupled pair of

approximation operators. Then there exists a fuzzy relation R on U × U such that H = R↑T and

L = R↓IT that is:

1. inverse serial ⇔ H(U) = U

⇔∀A∈ F (U): L(A)⊆ H(A),

2. reflexive ⇔∀A∈ F (U): L(A)⊆ A,

3. symmetric ⇔∀x , y ∈ U : H({x})(y) = H({y})(x)

⇔∀A∈ F (U): H(L(A))⊆ A

⇔∀A∈ F (U): A⊆ L(H(A)),

4. T -transitive ⇔∀A∈ F (U): L(A)⊆ L(L(A))

⇔∀A∈ F (U): H(H(A))⊆ H(A).

So, H and L fulfil the last three axioms if and only if R is a T -similarity relation.

4An IMTL t-norm is a t-norm of which its R-implicator I is contrapositive w.r.t. NI (see [21, 33]).
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Proof. By Theorem 5.3.4 we know that there exists a relation R such that H = R↑T and L = R↓IT .

Then we can use results from [54] in the frame of fuzzy modal logics that we can adapt to our

framework of a T -coupled pair of approximation operators.

1. The equivalence that R is inverse serial if and only if L(A) ⊆ H(A) for all A ∈ F (U) corre-

sponds to [54, Proposition 4]. The equivalence with the condition H(U) = U can easily be

proved as follows:
H(U)(x) = sup

y∈U
T (R(y, x), U(y))

= sup
y∈U
T (R(y, x), 1)

= sup
y∈U

R(y, x).

Hence, U = H(U) if and only if H(U)(x) = 1 for all x ∈ U , i.e., if and only if sup
y∈U

R(y, x) = 1

for all x ∈ U .

2. The characterisation of the reflexivity of R by the conditions L(A)⊆ A for all A∈ F (U), or

A⊆ H(A) for all A∈ F (U), corresponds to [54, Proposition 5].

3. The characterisation of the symmetry of R by the conditions H(L(A))⊆ A for all A∈ F (U),
or A⊆ L(H(A)) for all A∈ F (U), corresponds to [54, Proposition 9]. The equivalence with

the condition H({x})(y) = H({y})(x) for all x , y ∈ U is proved in Proposition 5.1.7.

4. The characterisation of the T -transitivity of R by the conditions L(A) ⊆ L(L(A)) for all

A∈ F (U), or H(H(A))⊆ H(A) for all A∈ F (U), corresponds to [54, Proposition 13].

To end this chapter, we provide a brief overview of other axiomatic characterisations that can

be found in the literature.

5.4 A chronological overview of axiomatic approaches

In this section, we will give a more detailed overview of axiomatic approaches in the literature.

Morsi and Yakout ([48]) were the first to approach lower and upper approximations in a more

axiomatic way, but not yet in the way we have seen it in Sections 5.1 and 5.2. They were the first

to study the properties and other authors used their results. The model Morski and Yakout used

is the general fuzzy rough set model with a left-continuous t-norm T , its R-implicator IT and a

T -similarity relation R.

Wu et al. ([62, 63]) used the model of Dubois and Prade with a general fuzzy relation

R ⊆ F (U ×W ), which we shall restrict to relations from U to U . Wu et al. worked with finite

universes. We have the following theorem.
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Theorem 5.4.1. Let H, L :F (U)→F (U) be two dual operators, i.e., for a fuzzy set A in U:

L(A) = coN (H(coN (A))),

H(A) = coN (L(coN (A))).

for a given involutive negator N . Then there exists a general fuzzy relation R such that L = R↓
and H = R↑ if and only if L and H satisfy the following axioms:

(L1′) ∀A∈ F (U),∀α ∈ I : L(α̂∪ A) = α̂∪ L(A),

(L2′) ∀A, B ∈ F (U) : L(A∩ B) = L(A)∩ L(B),

(H1′) ∀A∈ F (U),∀α ∈ I : H(α̂∩ A) = α̂∩H(A),

(H2′) ∀A, B ∈ F (U) : H(A∪ B) = H(A)∪H(B).

This was done by defining R(x , y) = H({x})(y) for x , y ∈ U . To characterise that R is reflexive,

symmetric or transitive, the same axioms were used as in Proposition 5.1.7 and Proposition 5.2.6,

only to characterise symmetry with the operator L, they used the following axiom:

∀x , y ∈ U : L(U \ {x})(y) = L(U \ {y})(x).

Mi and Zhang ([44]) used the general fuzzy rough set model with an R-implicator I and

its dual coimplicator J with respect to the standard negator NS and a general fuzzy relation

R⊆F (U ×W ). They worked with dual operators. We give the approach for the operator H.

Theorem 5.4.2. Let H :F (U)→F (U) be an operator and let C be the conjunctor based on J
and NS. Then there exists a general fuzzy relation R such that H = R↑C if and only if H satisfies

the following axioms5:

(H1) ∀A∈ F (U),∀α ∈ I : H(α̂∩C A) = α̂∩C H(A),

(H2) ∀A j ∈ F (U), j ∈ J : H







⋃

j∈J

A j






=
⋃

j∈J

H(A j).

The relation we obtain based on H is the following:

∀x , y ∈ U : R(x , y) = 1− sup
α∈I
C (1−H(α̂∩C {x})(x),α)

= inf
α∈I
C (H(α̂∩C {x})(x), 1−α)

= inf
α∈I
C (C (α, H({x})(x)), 1−α).

The axioms to derive a reflexive or transitive relation are the same as in Proposition 5.1.7, but to

characterise a symmetric relation, they used the following axiom:

∀x , y ∈ U ,∀α ∈ I :C (α, H{x}(y)) =C (α, H{y}(x)).
5In [44] finite unions were used, but since they worked in an infinite universe, infinite unions have to be used.
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Pei ([51]) used Dubois and Prade’s model with a general fuzzy relation R. He worked with

dual operators.

Theorem 5.4.3. Let H, L :F (U)→F (U) be two dual operators, i.e., for a fuzzy set A in U:

L(A) = coN (H(coN (A))),

H(A) = coN (L(coN (A))).

for a given involutive negator N . Then there exists a general fuzzy relation R such that L = R↓
and H = R↑ if and only if L and H satisfy the following axioms:

(L1′) ∀A∈ F (U),∀α ∈ I : L(α̂∪ A) = α̂∪ L(A),

(L2) ∀A j ∈ F (U), j ∈ J : L







⋂

j∈J

A j






=
⋂

j∈J

L(A j),

(H1′) ∀A∈ F (U),∀α ∈ I : H(α̂∩ A) = α̂∩H(A),

(H2) ∀A j ∈ F (U), j ∈ J : H







⋃

j∈J

A j






=
⋃

j∈J

H(A j).

Again this was done by defining R(x , y) = H({x})(y) for x , y ∈ U . To characterise that R is

reflexive, symmetric or transitive, the same axioms as in [62, 63] were used.

Yeung et al. ([66]) used the general fuzzy rough set model with a left-continuous t-norm

and an S-implicator based on the dual t-conorm and the general fuzzy rough set model with

an R-implicator based on a left-continuous t-norm and its dual coimplicator. The negator is an

arbitrary involutive negator and the relation is a general fuzzy relation. We will only discuss the

model based on a left-continuous t-norm and an S-implicator.

Theorem 5.4.4. Let H : F (U)→ F (U) be an operator and let T be a left-continuous t-norm.

Then there exists a general fuzzy relation R such that H = R↑T if and only if H satisfies the

following axioms:

(H1) ∀A∈ F (U),∀α ∈ I : H(α̂∩T A) = α̂∩T H(A),

(H2) ∀A j ∈ F (U), j ∈ J : H







⋃

j∈J

A j






=
⋃

j∈J

H(A j).

Again, we obtain this result by setting R(x , y) = H({x})(y) for all x , y ∈ U . For the lower

approximation operator we have:

Theorem 5.4.5. Let L : F (U)→F (U) be an operator and S the t-conorm dual to T w.r.t. an

involutive negator N . Then there exists a general fuzzy relation R such that L = R↓IS if and only
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if L satisfies the following axioms:

(L1′) ∀A∈ F (U),∀α ∈ I : L(α̂∪S A) = α̂∪S L(A),

(L2) ∀A j ∈ F (U), j ∈ J : L







⋂

j∈J

A j






=
⋂

j∈J

L(A j).

This result is obtained by setting R(x , y) = coN (L(U \ {x}))(y) for x , y ∈ U . If L and H are

dual to the same involutive negator as T and S , then the two relations are the same, i.e.,

∀x , y ∈ U : coN (L(U \ {x}))(y) = H({x})(y).

The axioms to characterise reflexivity, symmetry and transitivity are the same as in [62, 63] were

used.

Liu ([40]) also used the model designed by Dubois and Prade with a general fuzzy relation R.

He used the operator L.

Theorem 5.4.6. Let L :F (U)→F (U) be an operator. Then there exists a general fuzzy relation

R such that L = R↓ if and only if L satisfies the following axioms:

(L1′) ∀A∈ F (U),∀α ∈ I : L(α̂∪ A) = α̂∪ L(A),

(L2) ∀A j ∈ F (U), j ∈ J : L







⋂

j∈J

A j






=
⋂

j∈J

L(A j).

This was done by setting R(x , y) = 1− L(U \ {x})(y) for x , y ∈ U . The axioms to characterise

a reflexive or transitive relation R are the same as in Proposition 5.2.6. The axiom to characterise a

symmetric relation is:

∀A, B ∈ F (U) : [A, L(B)] = [B, L(A)]

where [A, B] denotes the outer product of A and B. This is defined by

[A, B] = inf
x∈U

max{A(x), B(x)}.

The characterisation of a fuzzy similarity relation by an operator H was derived by dual results.

Next, we discuss an important application of fuzzy rough sets: feature selection.



Chapter 6

Application of fuzzy rough sets: feature

selection

In this chapter, we discuss an application of fuzzy rough sets: attribute selection or feature subset

selection. This is a common problem in data mining, machine learning and pattern recognition.

For example, which symptoms determine a certain disease? And is it possible to do easy tests for

those symptoms instead of advanced ones?

Nowadays, databases expand not only in the rows, i.e., the objects we observe (the elements of

the universe), but also in the columns, i.e., the attributes or features we use to describe the objects.

Not all these attributes are relevant. Too much data can lead to big training and test times and can

make data understanding very difficult.

A challenge is to find good strategies to select a minimal subset of relevant attributes, i.e.,

a decision reduct. We want to say as much as possible with as little as possible. Features can

be misleading of they can be redundant, i.e., they do not add extra information. To find such a

decision reduct, we can start with the whole set and then omit irrelevant attributes or we can start

with the empty set and add relevant attributes.

To do this within the context of rough set theory, we can use positive regions and dependency

degrees to find a decision superreduct, i.e., a set that contains a decision reduct, or we can use

discernibility matrices and functions to determine all decision reducts. Both strategies will be

discussed. We study some theoretical approaches to determine decision reducts and describe

algorithms to do this in practice. We will illustrate the algorithms and techniques with an artificial

example.

The structure of this chapter is as follows: in Section 6.1, we start with studying feature

selection in rough set analysis, where we define all concepts. In Section 6.2, we extend the crisp

concepts in an intuitive way to fuzzy rough analysis. We study the approaches of Cornelis et al.

([15]), where a new definition of positive region is introduced, and Jensen and Shen ([37]). Next,

in Section 6.3, we will use the general fuzzy rough set model to find decision reducts. Tsang et al.

116
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([60]) propose a method to find all decision reducts using the fuzzy rough set model designed by

Dubois and Prade. Chen et al. ([6, 7]) do something similar, but they use the general fuzzy rough

set model with a left-continuous t-norm T and its R-implicator IT . Zhao and Tsang ([69]) study

relations between different types of decision reducts. We discuss these three approaches. To end,

we give in Section 6.4 an overview of approaches to fuzzy rough feature selection in the literature.

6.1 Feature selection in rough set analysis

We start by introducing the concepts we need in feature selection (see e.g., [15]). In rough set

analysis, data is represented as an information system (U ,A ) with U a finite, non-empty universe

of objects and A a finite, non-empty set of attributes. Each attribute a in A corresponds to a

mapping a : U → Va, where Va is the value set of a over U . Note that Va is a finite set. For each

subset B ofA , we define the B-indiscernibility relation RB as

RB = {(x , y) ∈ U2 | ∀a ∈ B : a(x) = a(y)}. (6.1)

When B is a singleton {a}, we write Ra instead of R{a}. It is clear that RB is an equivalence relation

on U×U . If B ⊆A is a subset such that RB = RA , then we call B a superreduct. If B is a superreduct

and for all B′ ( B it holds that RB′ 6= RA , then we call B a reduct.

A decision system (U ,A ∪{d}) is an information system such that the attribute d /∈A . We call

the elements ofA conditional attributes and we call d the decision attribute. Given a subset B of

A , the B-positive region POSB contains those objects from U for which the values of B allow to

predict the decision class unequivocally, i.e.,

POSB =
⋃

y∈U

RB↓[y]Rd
,

where the lower approximation operator is the one defined in Definition 2.1.2. Some authors also

use the boundary region of a subset B to determine decision reducts (e.g., [37]). The B-boundary

region of B ⊆A is given by

BNRB =







⋃

y∈U

RB↑[y]Rd






\







⋃

y∈U

RB↓[y]Rd






.

If an element x is in BNRB then there is a y ∈ U such that [x]RB
∩ [y]Rd

6= ;, but for all z ∈ U

it holds that [x]RB
* [z]Rd

. The element x can not be classified in a decision class [z]Rd
by the

information in B.

The degree of dependency of d on B, denoted by γB, measures the predictive ability w.r.t. d of

the attributes in B:

γB =
|POSB |
|U |

.
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A decision system is called consistent if γA = 1. A subset B ofA is called a decision superreduct

if POSB = POSA and it is called a decision reduct if it is a decision superreduct and if there is no

proper subset B′ of B such that POSB′ = POSA , i.e., B is minimal for the condition POSB = POSA .

Feature selection can have different goals, e.g.,

• find all decision reducts,

• find one decision reduct,

• find one decision superreduct,

• find all decision superreducts,

• find a global minimal decision reduct, i.e., the smallest possible decision reducts over all

decision reducts.

Finding all the decision reducts is an NP-problem, but mostly it is enough to generate a subset of

decision reducts, or to generate decision superreducts. We will concentrate ourselves on the first

three goals. The QuickReduct algorithm (Algorithm 1) finds a single decision superreduct of the

decision system based on the degree of dependency. The ReverseReduct algorithm (Algorithm 2)

always finds a decision reduct ([14]). Sometimes it can be practical to first determine a decision

superreduct S ⊆A with QuickReduct and then apply ReverseReduct to S to make it minimal, i.e.,

take B = S instead of B =A in the first step of Algorithm 2.

Algorithm 1 QuickReduct
B← {}
do

T ← B

for each a ∈ (A \ B)
if γB∪{a} > γT

T ← B ∪ {a}
B← T

until γB = γA
return B

Let us illustrate the concepts and algorithms we saw above in an artificial example. In Table 6.1,

we consider a decision system1 with seven objects (U = {y1, . . . , y7}) and eight conditional

attributes that are all quantitive (A = {a1, . . . , a8}). We have one qualitative decision attribute d.

We see that we have two decision classes: [y1]Rd
contains all y ∈ U such that d(y) = 0 and

[y2]Rd
contains all y ∈ U such that d(y) = 1.

1This is a sample taken from the Pima Indians Diabetes data set located at the UCI Machine Learning repository,

availabe at http://www.ics.uci.edu/~mlearn/MLRepository.html and was also given in [15].

http://www.ics.uci.edu/~mlearn/MLRepository.html
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Algorithm 2 ReverseReduct
B←A
do

T ← ;
for each a ∈ B

if γB\{a} = γA
T ← B \ {a}
if T 6= ;
B← T

until T = ;
return B

a1 a2 a3 a4 a5 a6 a7 a8 d

y1 1 101 50 15 36 24.2 0.526 26 0

y2 8 176 90 34 300 33.7 0.467 58 1

y3 7 150 66 42 342 34.7 0.718 42 0

y4 7 187 68 39 304 37.7 0.254 41 1

y5 0 100 88 60 110 46.8 0.962 31 0

y6 0 105 64 41 142 41.5 0.173 22 0

y7 1 95 66 13 38 19.6 0.334 25 0

Table 6.1: Decision system (U ,A ∪{d})

Since we only work with crisp sets, we need to discretise the data. A possible way to discretise

the data is given in Table 6.2. We first prove that the system is consistent. Since no two objects

a1 a2 a3 a4 a5 a6 a7 a8 d

y1 0 0 0 0 0 0 2 0 0

y2 1 2 2 1 1 1 1 1 1

y3 1 1 1 1 1 2 2 1 0

y4 1 2 1 1 1 2 0 1 1

y5 0 0 2 1 0 3 2 1 0

y6 0 0 1 1 0 3 0 0 0

y7 0 0 1 0 0 0 1 0 0

Table 6.2: Discretised data

have the same value for all conditional attributes, we have that [y]RA = {y}, and thus POSA = U ,

which means the system is consistent, i.e., γA = 1.
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Let B = {a4, a5}. We want to compute the positive region of B. Let us do this by first calculating

the lower approximation of [y1]Rd
and [y2]Rd

for the B-indiscernibility relation RB:

RB↓[y1]Rd
= {y1, y5, y6, y7},

RB↓[y2]Rd
= ;.

This means that POSB = {y1, y5, y6, y7} and the degree of dependency of d on B is γB =
4
7
. The

upper approximation for the B-indiscernibility relation RB is U for [y1]Rd
and {y2, y3, y4} for

[y2]Rd
. The boundary region of B is then:

BNRB =U \ {y1, y5, y6, y7}= {y2, y3, y4}.

Let us apply QuickReduct and ReverseReduct to these discretised data. It can be checked that

POSa2
= U , therefore QuickReduct terminates after the first iteration, yielding the decision reduct

{a2}.
ReverseReduct will take more work. Since POSA\{a1} = U , we can omit a1. Since POSA\{a1,a2} =

U , we can also omit a2. We can do the same with a3, a4, a5 and a6, since POSA\{a1,...,a6} = U . We

cannot omit a7 or a8, since POSa7
= {y1, y3, y5} and POSa8

= {y1, y6, y7}. ReverseReduct gives us

the decision reduct {a7, a8}.
Both algorithms give us one decision reduct, and the output is different for both algorithms.

A possible technique to generate all decision reducts is using the discernibility matrix and

function. The discernibility matrix O of (U ,A ∪{d}) is the n× n-matrix (with n= |U |) such that

∀i, j ∈ {1, . . . , n}:

Oi j =







; if d(yi) = d(y j)

{a ∈A | a(yi) 6= a(y j)} otherwise

with yi , y j ∈ U . The discernibility function of (U ,A ∪{d}) is the mapping f : {0, 1}m→ {0, 1} (with

m= |A |) such that

f (a∗1, . . . , a∗m) = ∧
n

∨O∗i j | 1≤ i < j ≤ n, Oi j 6= ;
o

(6.2)

with O∗i j = {a
∗ | a ∈ Oi j} and a∗ the Boolean variable corresponding with the attribute a. We

denote A ∗ = {a∗1, . . . , a∗m}. Let F be the disjunctive normal form of f , i.e., there is an l ∈ N and

there are B∗k ⊆A , 1≤ k ≤ l, such that

F(a∗1, . . . , a∗m) = (∧B∗1)∨ . . .∨ (∧B∗l ),

then the set of decision reducts is {B1, . . . , Bl} with each Bk a set of attributes ofA ([59]).
We can also use the valuation function to determine decision superreducts. If B ⊆A , then the

valuation function corresponding to B, denoted by VB, is defined by VB(a∗) = 1 if and only if a ∈ B.

We can extend this valuation to arbitrary Boolean formulas such that

VB( f (a
∗
1, . . . , a∗m)) = f (VB(a

∗
1), . . . ,VB(a

∗
m)).
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This expresses whether the attributes in B preserve the discernibility of (U ,A ∪{d}). If the decision

system is consistent, we only have that VB( f (a∗1, . . . , a∗m)) = 1 if for every i and j in {1, . . . , n} such

that d(yi) 6= d(y j) there is an a ∈ B such that a(yi) 6= a(y j). This means that there is an attribute

in B that distinguishes yi and y j if d(yi) 6= d(y j) ([59]).
Let us illustrate how O and f find all decision reducts. We take again the discretised data of

Table 6.2. Note that O is a symmetric matrix, so we only give the lower triangular matrix. Since for

all i ∈ {1, . . . , n}, we have Oii = ;, we can also omit the diagonal (see [15]):

O =



























A
; {a2, a3, a6, a7}
A ; {a2, a7}
; {a1, a2, a5, a6, a7} ; {a1, a2, a3, a5, a6, a7}
; {a1, a2, a3, a5, a6, a7, a8} ; {a1, a2, a5, a6, a8} ;
; {a1, a2, a3, a4, a5, a6, a8} ; {a1, a2, a4, a5, a6, a7, a8} ; ;



























.

From this, we want to construct the discernibility function. We use the following properties of ∨
and ∧:

a∗ ∧ (a∗ ∨ b∗) = a∗,

a∗ ∨ (a∗ ∧ b∗) = a∗,

with a∗ and b∗ Boolean variables. We obtain

f (a∗1, . . . , a∗8) = (a
∗
2 ∨ a∗7)∧ (a

∗
1 ∨ a∗2 ∨ a∗5 ∨ a∗6 ∨ a∗8).

Now, if we reduce f to its disjunctive normal form, we get

F(a∗1, . . . , a∗8) = (a
∗
2)∨ (a

∗
1 ∧ a∗7)∨ (a

∗
5 ∧ a∗7)∨ (a

∗
6 ∧ a∗7)∨ (a

∗
8 ∧ a∗7).

The set of all decision reducts is

{{a2}, {a1, a7}, {a5, a7}, {a6, a7}, {a7, a8}}.

It is easy to see that {a2} is a global minimal decision reduct. So, if we take B1 = {a1, a7}, then

VB1
( f (a∗1, . . . , a∗8)) = f (VB1

(a∗1), . . . ,VB1
(a∗8))

= f (1, 0,0, 0,0, 0,1, 0)

= (0∨ 1)∧ (1∨ 0∨ 0∨ 0∨ 0)

= 1

but with B2 = {a4, a5} we have

VB2
( f (a∗1, . . . , a∗8)) = f (VB2

(a∗1), . . . ,VB2
(a∗8))

= f (0, 0,0, 1,1, 0,0, 0)

= (0∨ 0)∧ (0∨ 0∨ 1∨ 0∨ 0)

= 0.
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We see that B1 is a decision reduct and B2 is not.

Let us extend these concepts to a fuzzy rough setting.

6.2 Feature selection in fuzzy rough set analysis

We have seen above that when we work in rough set analysis, we need to discretise the data. This

leads to information loss. This information loss is one of the main reasons why we introduce fuzzy

sets into the models and why fuzzy rough sets are so interesting for feature selection: rough sets

let us deal with imprecision, vagueness and uncertainty in the data, while fuzzy sets give us the

opportunity to work with real-valued attributes, as we can construct fuzzy similarity relations to

model the discernibility between objects.

In this section we discuss the approaches of Cornelis et al. ([15]) and Jensen and Shen

([37]). We extend the concepts we defined in Section 6.1. We again work in a decision system

(U ,A ∪{d})2 and we assume that U = {y1, . . . , yn} andA = {a1, . . . , am}. In most applications,

we work with a fuzzy tolerance relation R. Some authors will also impose T -transitivity (e.g.,

[37]).
For a subset B ofA and a t-norm T , the fuzzy B-indiscernibility relation RB is defined by

∀x , y ∈ U : RB(x , y) = T (Ra(x , y))

where we take the t-norm over all attributes a ∈ B. When all a ∈ B are qualititive, we obtain the

traditional indiscernibility relation defined in Equation (6.1). Jensen and Shen used the minimum

t-norm for T , while Cornelis et al. used arbitrary t-norms.

We give an example of a fuzzy tolerance relation that we can use in feature selection ([15]).

Let a be a quantitative attribute inA ∪{d} and x , y ∈ U , then Ra(x , y) can be given by

Ra(x , y) =max
�

0,min
�

a(y)− a(x) +σa

σa
,

a(x)− a(y) +σa

σa

��

(6.3)

with σa the standard deviation of a, i.e.,

σa =

s

1

n− 1

n
∑

i=1

(a(yi)− ā)2

with ā = 1
n

n
∑

i=1
a(yi). If a is qualitative (or nominal) then Ra(x , y) = 1 if a(x) = a(y) and

Ra(x , y) = 0 otherwise. Possible fuzzy T -similarity relations are given in the following example

([37]).

Example 6.2.1. Let T be a t-norm, x , y ∈ U , a ∈A and σa the standard deviation of a. Possible

T -similarity relations to use in feature selection are:

2Jensen and Shen considered a set of decision attributes D, but we will not discuss this.
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• Ra(x , y) = 1− |a(x)−a(y)|
max(a)−min(a) ,

• Ra(x , y) = exp
�

− (a(x)−a(y))2

2σ2
a

�

,

• Ra(x , y) =max
n

0,min
n

a(y)−(a(x)−σa)
a(x)−(a(x)−σa)

, (a(x)+σa)−a(y)
(a(x)+σa)−a(x)

oo

.

If a choice for Ra is not T -transitive, then the fuzzy transitive closure can be computed for

each attribute, i.e., Rn−1
a with n= |U | (see Section 2.2.3).

To derive good algorithms, we first need to define the concept of a decision reduct in a fuzzy

rough setting ([15]).

Definition 6.2.2. LetM be a monotone P (A )→ I mapping such thatM (A ) = 1. Let B ⊆A
and 0 < α ≤ 1. B is a fuzzy M -decision superreduct to degree α if M (B) ≥ α and B is a fuzzy

M -decision reduct to degree α if moreover for all B′ ( B,M (B′)< α.

We discuss three approaches to determine decision reducts. Herefore we use fuzzy positive

regions, fuzzy boundary regions and fuzzy discernibility functions.

6.2.1 Feature selection based on fuzzy positive regions

We recall the definition of a B-positive region ([15]).

Definition 6.2.3. Let I be an implicator, B ⊆A and RB a fuzzy B-indiscernibility relation, then

the fuzzy B-positive region for x ∈ U is

POSB(x) = sup
y∈U
(RB↓IRd y)(x) (6.4)

where d is the decision attribute and where we take the lower approximation of Rd y as in

Definition 3.2.1.

If Rd is a crisp relation, then we have that POSB(x) = (RB↓IRd x)(x):

POSB(x) = sup
y∈U
(RB↓IRd y)(x)

=max

(

sup
y∈Rd x

(RB↓IRd y)(x), sup
y /∈Rd x

(RB↓IRd y)(x)

)

=max

¨

sup
y∈Rd x

inf
z∈U
I (RB(z, x), Rd(z, y)), 0

«

= sup
y∈Rd x

inf
z∈U
I (RB(z, x), Rd(z, x))

= inf
z∈U
I (RB(z, x), Rd(z, x))

= (RB↓IRd x)(x),
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since inf
z∈U
I (RB(z, x), Rd(z, y))≤ I (RB(x , x), Rd(x , y)) = I (1, 0) = 0. If d is quantitive, then this

does not longer hold in general, but we do have POSB(x) ≥ (RB↓IRd x)(x) when Rd is a fuzzy

tolerance relation. This leads to another possible way of defining the fuzzy positive region ([15]).

Definition 6.2.4. Let I be an implicator, B ⊆A and RB a fuzzy B-indiscernibility relation, then

we define for x ∈ U

POS
′

B(x) = (RB↓IRd x)(x)

where d is the decision attribute and where we take the lower approximation of Rd x as in

Definition 3.2.1.

As explained above, we always have POS ′B(x) ≤ POSB(x), so the new definition results in

smaller positive regions, i.e., we have less objects we can classify based on B.

In the next example, we illustrate how we calculate the positive region of a set of attributes

([15]).

Example 6.2.5. We now take the original data from Table 6.1 and we use Equation (6.3) to

determine the indiscernibility relation. Again, let B = {a4, a5}. Let us take IL as implicator and TL

as t-norm. Since d is qualitative, we can use the characterisation POSB(x) = (RB↓IRd x)(x) for all

x ∈ U . Let us take x = y3. If b = 1, then IL(a, b) = 1 for all a ∈ I . With this in mind, we derive

that
POSB(y3) = (RB↓IL

Rd y3)(y3)

= inf
z∈U
IL(RB(z, y3), Rd(z, y3))

=min{1, 1− RB(y2, y3), 1, 1− RB(y4, y3), 1, 1, 1}

=min
n

1−TL(Ra4
(y2, y3), Ra5

(y2, y3)),

1−TL(Ra4
(y4, y3), Ra5

(y4, y3))
o

.

We first determine that a4 =
244
7

and σa4
= 16.385 and that a5 =

1272
7

and σa5
= 131.176. With

this, we obtain that
Ra4
(y2, y3) = 0.512 and Ra5

(y2, y3) = 0.680,

Ra4
(y4, y3) = 0.817 and Ra5

(y4, y3) = 0.710.

We continue our computation of the positive region:

POSB(y3) =min{1− 0.192, 1− 0.527}.

= 0.473.

We can do this for the other elements of U . The result is:

POSB = {(y1, 1), (y2, 0.808), (y3, 0.473), (y4, 0.473), (y5, 1), (y6, 1), (y7, 1)}

where (x , a) ∈ POSB means that POSB(x) = a. Note that in this case POSB(x) = 1 if x is y1, y5,

y6 or y7, just as in the crisp case.
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Once we have fixed the fuzzy positive region, we can define measures that can act as stopping

criteria for algorithms. Such a measure is an increasing P (A )→ I mapping. An example of such

a measure is a normalised extension of the degree of dependency ([15]): for B ⊆A , define γB

and γ′B by

γB =
|POSB |
|POSA |

and γ′B =
|POS

′

B |

|POS
′

A |
.

We assume that the denominators are not zero, but this would only be the case when the positive

region ofA would be empty and then every positive region would be empty. We do not consider

these cases.

Jensen and Shen used |U | as denominator instead of |POSA | and |POS
′

A | which will lead to

smaller values for the dependency degrees. When the decision system is consistent, the results will

be the same.

Instead of taking the average of the membership degrees of the B-positive region, we can also

consider the most problematic element ([15]):

δB =
min
x∈U

POSB(x)

min
x∈U

POSA (x)
and δ′B =

min
x∈U

POS
′

B(x)

min
x∈U

POS
′

A (x)
.

Again we assume that the denominators are not zero. The four measures are clearly increasing

functions and we have that

γA = γ
′
A = δA = δ

′
A = 1.

This means that these four measures fulfil the conditions of the functionM from Definition 6.2.2

and we can use them to construct a modification of the QuickReduct algorithm (see Algorithm 3).

Algorithm 3 Modified QuickReduct to obtain a fuzzyM -decision superreduct to degree α
B← {}
do

T ← B,β ←−1

for each a ∈ (A \ B)
ifM (γB∪{a})> β
T ← B ∪ {a},β ←M (γB∪{a})
B← T

untilM (γB∪{a})≥ α
return B

Dependency degrees are not only measures for subsets ofA , but there are also measures for

attributes. For example, the significance of an attribute a ∈ B ([37]):

σB(a) = γB − γB\{a}.
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If the significance of an attribute is 0, then we call the attribute dispensable. This means we

can delete the attribute from our subset B without loss of dependency degree. If we look at the

indispensable attributes, we obtain the core of A : these are the attributes a ∈ A such that the

dependency degree ofA changes if the attribute is removed ([37]):

Core(A ) = {a ∈A | γA\{a} < γA }

= {a ∈A | σA (a)> 0}.

The core ofA contains the relevant attributes. We can also determine the core ofA with other

choices of dependency degree.

We continue with determining decision reducts based on fuzzy boundary regions.

6.2.2 Feature selection based on fuzzy boundary regions

The second technique is based on fuzzy boundary regions ([37]). We do not only take the lower,

but also the upper approximation into account. Let B be a subset of A and let I and T be an

implicator and a t-norm, respectively. The fuzzy B-boundary region in x ∈ U is given by

BNRB(x) = sup
y∈U
(RB↑T Rd y)(x)− sup

y∈U
(RB↓IRd y)(x).

Again we want to find a decision (super)reduct B. Since we work with fuzzy sets, we need to

take additional uncertainty into account. The uncertainty degree of a subset B ofA is given by

µB =
1− |BNRB |
1− |BNRA |

.

We can again construct an algorithm similar to QuickReduct, where we want to maxime the

uncertainty degree. Note that if the denominator of µ is zero, then BNRA = U and then we have

again that the positive region ofA is empty. We do not consider these cases in applications.

The third technique uses fuzzy discernibility functions and determines all decision reducts.

6.2.3 Feature selection based on fuzzy discernibility functions.

Besides fuzzy positive and boundary regions, we can use fuzzy tolerance relations to define fuzzy

discernibility functions. Recall that a∗ is the Boolean variable associated with attribute a. If the

decision system (U ,A ∪{d}) is consistent andA = {a1, . . . , am}, we can rewrite Equation (6.2)

as follows
f (a∗1, . . . , a∗m)

= ∧
§

m
∨

k=1
a∗k
�

d(yi) 6= d(y j)⇒ ak(yi) 6= ak(y j)
�

| 1≤ i < j ≤ n
ª

= ∧
§

m
∨

k=1
a∗k
�

ak(yi) = ak(y j)⇒ d(yi) = d(y j)
�

| 1≤ i < j ≤ n
ª

= ∧
¨�

∧
a∗k=1
(ak(yi) = ak(y j)

�

⇒ d(yi) = d(y j) | 1≤ i < j ≤ n

«
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with yi ∈ U for all i ∈ {1, . . . , n}.
We can generalise this by using t-norms, implicators and fuzzy indiscernibility relations to

obtain a fuzzy discernibility function ([15]).

Definition 6.2.6. Let T be a t-norm and I an implicator. We define the fuzzy discernibility function

f : {0,1}m→ I as

f (a∗1, . . . , a∗m) = T (Oi j(a
∗
1, . . . , a∗m)) with 1≤ i < j ≤ n

and with

Oi j(a
∗
1, . . . , a∗m) = I (T (Rak

(yi , y j)), Rd(yi , y j))

where we take the t-norm over all ak such that a∗k = 1.

If Rak
(yi , y j) w.r.t. ak decreases or Rd(yi , y j) w.r.t. d increases, then Oi j increases. If Rak

and

Rd are crisp, we obtain the discernibility function from Equation (6.2).

We discuss the fuzzy discernibility function derived by Jensen and Shen ([37]). Let N be a

negator. They define a fuzzy clause O′i j as

O′i j(a) =N (Ra(yi , y j))

for a ∈ A and 1 ≤ i, j ≤ n. A fuzzy clause measures the fuzzy discernibility between two objects.

If O′i j(a) = 1, then yi and y j are distinct for a. If it is 0, then yi and y j are identical for a. When

O′i j(a) is in ]0,1[, we call the objects yi and y j partly discernible.

Definition 6.2.7. Let N be a negator and I an implicator. We define the fuzzy discernibility

function f ′ : {0,1}m→ I by

f ′(a∗1, . . . , a∗m) =min
n

I (O′i j(d),max{O′i j(ak)}) | 1≤ i < j ≤ n, a∗k = 1
o

with O′i j(a) =N (Ra(yi , y j)).

When we take T the minimum t-norm and I a contrapositive implicator with respect to the

negator N , the fuzzy discernibility functions of Cornelis et al. and Jensen and Shen coincide. We

derive:

f (a∗1, . . . , a∗m) =min{Oi j(a
∗
1, . . . , a∗m) | 1≤ i < j ≤ n}

with
Oi j(a

∗
1, . . . , a∗m) = I (min{Rak

(yi , y j)}, Rd(yi , y j))

= I (N (Rd(yi , y j)),N (min{Rak
(yi , y j)}))

= I (O′i j(d),max{O′i j(ak)})

where we every time take the ak ’s into account for which a∗k = 1. Hence,

f (a∗1, . . . , a∗m) =min{I (O′i j(d),max{O′i j(ak)}) | 1≤ i < j ≤ n, a∗k = 1}

= f ′(a∗1, . . . , a∗m).
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Again we need measures to construct stopping criteria ([15]). Let us look at the valuation VB

associated with B ⊆A : the value of VB in f (a∗1, . . . , a∗m) is now in I and not in {0,1}. Recall that

VB( f (a∗1, . . . , a∗m)) = f (VB(a∗1), . . . ,VB(a∗m)) with VB(a∗k) = 1 if ak ∈ B and VB(a∗k) = 0 otherwise.

Based on this, we introduce a normalised subset evaluation measure fB ([15]):

fB =
VB( f (a∗1, . . . , a∗m))

VA ( f (a∗1, . . . , a∗m))
.

We can also generalise Equation (6.2) by taking the average instead of the minimum ([15]).
We obtain the function

g(a∗1, . . . , a∗m) =

2 ·
∑

1≤i< j≤n
Oi j(a∗1, . . . , a∗m)

n(n− 1)
.

This can be useful, since the function f is 0 as soon as one Oi j is 0. The associated measure with g

is

gB =
VB(g(a∗1, . . . , a∗m))

VA (g(a∗1, . . . , a∗m))
.

Both measures fB and gB are increasing and it holds that fA = gA = 1. Let us illustrate these two

measures ([15]).

Example 6.2.8. We take the data from Table 6.1 and we use Equation (6.3) to determine the

indiscernibility relation. Let us again take B = {a4, a5}, I = IL and T = TL .

We have that

fB =
VB( f (a∗1, . . . , a∗m))

VA ( f (a∗1, . . . , a∗m))

=
f (0,0, 0,1, 1,0, 0,0)
f (1,1, 1,1, 1,1, 1,1)

=
TL(Oi j(0, 0,0, 1,1, 0,0,0))

1
with 1≤ i < j ≤ 7. We calculate for example O12(0, 0,0, 1,1, 0,0,0):

O12(0,0, 0,1, 1,0, 0,0) = IL(TL(Ra4
(y1, y2), Ra5

(y1, y2)), Rd(y1, y2))

= IL(TL(0,0), 0)

= IL(0,0)

= 1.

With the results from Example 6.2.5 we can see that

O23(0, 0,0, 1,1, 0,0, 0) = IL(TL(0.518, 0.680), 0) = IL(0.192, 0) = 0.808.

We obtain
fB = TL(1, 1,1, 1,1,1, 0.808,1, 1,1, 1,0.473, 1,1, 1,1, 1,1, 1,1, 1)

= TL(0.808, 0.473)

= 0.281.
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We can also do this for gB, then we have that

gB =
VB(g(a∗1, . . . , a∗m))

VA (g(a∗1, . . . , a∗m))

=
g(0, 0,0, 1,1, 0,0,0)
g(1, 1,1, 1,1, 1,1,1)

=

∑

1≤i< j≤7
Oi j(0, 0,0,1, 1,0, 0,0)

∑

1≤i< j≤7
1

=
20.281

21
= 0.966.

There are some relations between the six measures we saw ([15]). For example,

δ′B ≤ γ
′
B ≤ γB and δ′B ≤ δB ≤ γB

always holds for B ⊆ A . If d is qualitative, then γB = γ′B and δB = δ′B. These inequalities hold,

because POS′B ≤ POSB and we have equalities when d is qualitative. We also have the following

lemma ([15]).

Lemma 6.2.9. Let us assume that we use the same I and T to define the model, the indiscerni-

bility relation and the discernibility functions. Let U = {y1, . . . , yn}. For every B ⊆ A it holds

that

1. if POS′A = U , then fB ≤ δ′B and γ′B ≤ gB,

2. if T = TM , then fB = δ′B,

3. if POS′A = U and gB = 1, then γ′B = γB = 1.

Proof. 1. Assume POS′A = U , then min
y∈U

POS′A (y) = 1. We also have that

POS′A = U ⇔∀x ∈ U : (RA ↓IRd x)(x) = 1

⇔∀x ∈ U : inf
y∈U
I (RA (y, x), Rd(y, x)) = 1

⇔∀x , y ∈ U : I (RA (y, x), Rd(y, x)) = 1

⇔∀x , y ∈ U : I (T (Ra(y, x)), Rd(y, x)) = 1

⇔∀i, j ∈ {1, . . . , n} : I (T (Ra(yi , y j)), Rd(yi , y j)) = 1
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where we take the t-norm over all attributes a. We obtain that

VA ( f (a∗1, . . . , a∗m)) = f (1,1, . . . , 1)

= T (Oi j(1, 1, . . . , 1)) (with 1≤ i < j ≤ n)

= T (I (T (Ra(yi , y j)), Rd(yi , y j))) (with 1≤ i < j ≤ n, a ∈A )

= T (1,1, . . . , 1)

= 1.

We derive that

fB =
VB( f (a∗1, . . . , a∗m))

VA ( f (a∗1, . . . , a∗m))

= VB( f (a
∗
1, . . . , a∗m))

= T (I (RB(yi , y j), Rd(yi , y j))) (with 1≤ i < j ≤ n)

≤ min
1≤i< j≤n

I (RB(yi , y j), Rd(yi , y j))

= min
x ,y∈U

I (RB(x , y), Rd(x , y))

=min
y∈U
(RB↓IRd y)(y)

=min
y∈U

POS′B(y)

= δ′B.

We obtain for γ′B and gB that

γ′B =

∑

y∈U
(RB↓IRd y)(y)

n

=

∑

y∈U
inf
x∈U
I (RB(x , y), Rd(x , y))

n

=

∑

1≤ j≤n
inf
x∈U
I (RB(x , y j), Rd(x , y j))

n

≤

2 ·
∑

1≤i< j≤n
I (RB(yi , y j), Rd(yi , y j))

n(n− 1)

= gB.

2. If we take T = TM , then for all B ⊆A we have that

VB( f (a
∗
1, . . . , a∗m)) =min

y∈U
POS′B(y)

and thus in particular for B =A . Hence, fB = δ′B.
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3. Assume gB = 1, then
2 ·

∑

1≤i< j≤n
I (RB(yi , y j), Rd(yi , y j))

n(n− 1)
= 1.

This means that for all i, j ∈ {1, . . . , n} with i < j we have

I (RB(yi , y j), Rd(yi , y j)) = 1.

Since RB and Rd are reflexive and symmetric, we have for j ≤ i that

I (RB(yi , y j), Rd(yi , y j)) = 1,

or in other words

∀ j ∈ {1, . . . , n} : inf
x∈U
I (RB(x , y j), Rd(x , y j)) = 1.

We conclude that γ′B = 1. Since γ′B ≤ γB, γB is also 1.

This lemma shows that f and δ are essentially built upon the same idea, but there is a

difference between g and γ: g evaluates all pairwise evalutions of I (RB(x , y), Rd(x , y)), while γ

looks at the lowest value of I (RB(x , y), Rd(x , y)) for each y ∈ U and then averages over these

values. The last property tells us that for consistent data, a crisp g-decision reduct is always a crisp

γ- and γ′-decision reduct.

Jensen and Shen ([37]) propose another measure. Let S be a t-conorm. We define the

satisfaction of a fuzzy clause O′i j for a subset B ofA by

SATB(O
′
i j) = S (O

′
i j(a)) = S (N (Ra(yi , y j)))

where we take the t-conorm over all a ∈ B. If we take the decision attribute d into account, we

define

SATB,d(O
′
i j) = I (O

′
i j(d), SATB(O

′
i j)).

for a certain implicator I . For a subset B of A , we can also define the total satisfiability of all

clauses:

SAT(B) =

∑

1≤i< j≤n
SATB,d(O′i j)

∑

1≤i< j≤n
SATA ,d(O′i j)

.

If SAT(B) = 1, then we have found a decision superreduct. Note that SAT is monotone in B and

can be used as a stopping criterium for a modified QuickReduct algorithm similar to Algorithm 3.

We start with B = ; and we add the attribute a to B if

SAT(B ∪ {a})≥ SAT(B ∪ {c})
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for all c ∈ A \ B. The algorithm stops when we have found a subset B such that SAT(B) =
SAT(A ) = 1.

If we take the standard negator NS, an implicator I contrapositive w.r.t. NS, T = min and

S =max, we have a connection between SAT and gB.

Proposition 6.2.10. Let NS be the standard negator, I an implicator contrapositive w.r.t. NS,

T =min and S =max. Then

∀B ⊆A : gB = SAT(B).

Proof. Fix B ⊆A and i < j ∈ {1, . . . , n}. We obtain that

SATB,d(O
′
i j) = I (O

′
i j(d), SATB(O

′
i j))

= I (N (Rd(yi , y j)), max{N (Ra(yi , y j))})

= I (N (Rd(yi , y j)),N (min{Ra(yi , y j)}))

= I (min{Ra(yi , y j)}, Rd(yi , y j))

= Oi j(a
∗
1, ..., a∗m)

where we take the maximum and the minimum over all a ∈ B, i.e., we only take into account those

ak ’s such that VB(a∗k) = 1. So, we can write

SATB,d(O
′
i j) = Oi j(VB(a

∗
1), ...,VB(a

∗
m)).

We derive

gB =
VB(g(a∗1, . . . , a∗m))

VA (g(a∗1, . . . , a∗m))

=

∑

1≤i< j≤n
Oi j(VB(a∗1), ...,VB(a∗m))

∑

1≤i< j≤n
Oi j(VA (a∗1), ...,VA (a∗m))

=

∑

1≤i< j≤n
SATB,d(O′i j)

∑

1≤i< j≤n
SATA ,d(O′i j)

= SAT(B).

In the next section, we study some results of introducing fuzzy rough set models into feature

selection.

6.3 Feature selection with fuzzy rough set models

In this section, we use fuzzy rough set theory to find all decision reducts. Again, we will build a

discernibility function to do this. We start with a detailed overview of the approach of Tsang et al.

([60]), who used the model designed by Dubois and Prade.
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Next, we give an overview of the approach of Chen et al. ([7]), who used the general fuzzy

rough set model with a left-continuous t-norm T and its R-implicator I as fuzzy rough set model

(see Definition 3.2.1). In [6], Chen et al. used the Łukasiewicz t-norm and implicator.

To end, we discuss some relations between different reducts. This was studied by Zhao and

Tsang ([69]).
Throughout this section we work in the decision system (U ,A ∪{d}) with U = {y1, . . . , yn},

A = {a1, . . . , am} and d the decision attribute.

6.3.1 Feature selection based on the general fuzzy rough set model

There are two key problems we should keep in mind when dealing with attribute selection with

fuzzy rough sets. The first question is what we should keep invariant after reduction. In feature

selection with rough set analysis, we keep the positive region of the decision attribute d invariant.

Here we will see how we can change this condition to something we can use in an algorithm.

The second question is the selection of aggregation operator for several fuzzy similarity

relations. We want that a smaller fuzzy similarity relation can provide a more precise lower

approximation. As seen in Proposition 4.1.7, the general fuzzy rough set model is monotone with

respect to fuzzy relations. Further, we know that with a reflexive fuzzy relation and a border

implicator I , the lower approximation of a fuzzy set A is contained in A. This shall fulfil our second

question. That is why both the model designed by Dubois and Prade and the general fuzzy rough

set model with an R-implicator I are good models to use in feature selection.

Dubois and Prade’s model

We start by discussing the approach of Tsang et al. ([60]). We only need the lower approximation

operator R↓.
As seen in Section 6.2, we can associate each attribute a ∈ A ∪ {d} with a fuzzy similarity

relation Ra. This can be done in different ways, as illustrated in Example 6.2.1. LetR be the family

of assiociated fuzzy similarity relations, i.e.,

R = {Ra | a ∈A}.

Again, we call R the conditional attributes set and (U ,R ∪ Rd) a fuzzy decision system.

We take the minimum operator as aggregation operator and define the following relation on

U × U:

Sim(R) = ∩{R | R ∈ R}.

This is again a fuzzy similarity relation. As before, we define the positive region as the union of

lower approximations:

∀x ∈ U : (POSSim(R) Rd)(x) = sup
y∈U
((Sim(R))↓[y]Rd

)(x).
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A subset P ⊆R is a decision reduct if POSSim(P ) Rd = POSSim(R) Rd and if for all R ∈ P it holds

that POSSim(P \{R}) Rd < POSSim(P ) Rd .

The collection of all the indispensable elements is again called the core:

Core(R) = {R ∈ R | POSSim(R) Rd > POSSim(R\{R}) Rd}

We will show that

Core(R) = ∩Red(R)

where Red(R) is the collection of all decision reducts of the decision system.

We want to know under which conditions P could be a decision reduct of R . To do that, we

recall some properties about the structure of R↓A for A a fuzzy set and R a fuzzy similarity relation.

We want to describe the lower approximation with fuzzy granules.

First we define a fuzzy point: let λ ∈]0, 1], then the fuzzy point xλ is defined by

∀z ∈ U : (xλ)(z) =







λ z = x

0 z 6= x .

Note that x0 = ;. A basic granule (xλ)R is a similarity class w.r.t. R, for such a fuzzy point. Let R be

a fuzzy similarity relation and xλ a fuzzy point. For every z ∈ U , we define

(xλ)R(z) =







λ 1− R(z, x)< λ

0 1− R(z, x)≥ λ.

Since R(x , x) = 1, we have that xλ ⊆ (xλ)R. We have the following lemma that characterises R↓A
([60]).

Lemma 6.3.1. Let R be a fuzzy similarity relation and A a fuzzy set in U , then

R↓A= ∪{(xλ)R | (xλ)R ⊆ A,λ ∈]0, 1]}.

Proof. We prove that

(xλ)R ⊆ R↓A⇔ (xλ)R ⊆ A.

Fix x ∈ U and λ ∈]0, 1]. Assume (xλ)R ⊆ A and take y ∈ U . If 1− R(y, x)< λ, then

(xλ)R(y) = λ≤ A(y)≤max{1− R(y, x), A(y)}.

If 1− R(y, x)≥ λ, then also λ≤max{1− R(y, x), A(y)}. So, we have for z ∈ U

(R↓A)(z) = inf
y∈U

max{1− R(y, z), A(y)} ≥ λ≥ (xλ)R(z).

This means that if (xλ)R ⊆ A, we have that (xλ)R ⊆ R↓A.
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On the other hand, suppose that (xλ)R ⊆ R↓A. This means that (R↓A)(x) ≥ λ. Take y ∈ U . If

1− R(y, x)≥ λ, then (xλ)R(y) = 0≤ A(y). But if 1− R(y, x)< λ, then A(y) has to be greater or

equal than λ since

(R↓A)(x) = inf
y∈U

max{1− R(y, x), A(y)} ≥ λ

and thus (xλ)R(y) = λ≤ A(y). This means that (xλ)R ⊆ A.

It is also easy to see that

R↓(xλ)R = ∪{(xβ)R | (xβ)R ⊆ (xλ)R,β ∈]0, 1]}= (xλ)R.

This holds, because the general fuzzy rough set model fulfils the inclusion property for a reflexive

fuzzy relation and a border implicator and

(xλ)R ⊆ ∪{(xβ)R | (xβ)R ⊆ (xλ)R,β ∈]0,1]}.

Also note that for all x , y ∈ U , λ ∈]0,1] we have either (xλ)R = (yλ)R or (xλ)R ∩ (yλ)R = ;.
Let us prove this. Assume that (xλ)R ∩ (yλ)R 6= ;, then there is a z ∈ U such that (xλ)R(z) 6= 0

and (yλ)R(z) 6= 0, but then (xλ)R(z) = (yλ)R(z) = λ. This implies that 1 − R(z, x) < λ and

1− R(z, y) < λ and thus 1− R(x , y) < λ by min-transitivity. This means that xλ ⊆ (yλ)R and

yλ ⊆ (xλ)R, hence (xλ)R = (yλ)R.

Let us look again at the relation Sim(R). We have the following statements ([60]):

Lemma 6.3.2. Let x , y ∈ U and λ ∈]0,1]. It holds that

1. (xλ)Sim(R) =
⋂

R∈R
(xλ)R,

2. (xλ)Sim(R) = (yλ)Sim(R) if and only if (xλ)R = (yλ)R for every R ∈ R .

Proof. 1. Take z ∈ U , then we have that:

(xλ)Sim(R)(z) = λ⇔ 1− (Sim(R))(z, x)< λ

⇔∀R ∈ R : 1− R(z, x)< λ

⇔∀R ∈ R : (xλ)R(z) = λ

⇔
⋂

R∈R
(xλ)R(z) = λ.

2. Assume there is an R ∈ R such that (xλ)R 6= (yλ)R, then (xλ)R ∩ (yλ)R = ;. Without loss of

generality, this means that there is a z ∈ U such that (xλ)R(z) = λ and (yλ)R(z) = 0. By the

first statement we obtain (xλ)Sim(R) 6= (yλ)Sim(R).

On the other hand, if for all R ∈ R hold that (xλ)R = (yλ)R, then
⋂

R∈R
(xλ)R =

⋂

R∈R
(yλ)R,
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hence (xλ)Sim(R) = (yλ)Sim(R).

Since U is finite and

�

POSSim(R) Rd

�

(x) = sup
z∈U
((Sim(R))↓[z]Rd

)(x),

we know that
�

POSSim(R) Rd

�

(x) has to reach its maximum value for some z. This will be reached

in x itself ([60]).

Lemma 6.3.3. Take x , z ∈ U and λ ∈]0,1]. If (xλ)Sim(R) ⊆ [z]Rd
, then (xλ)Sim(R) ⊆ [x]Rd

.

Proof. Take x , z ∈ U and λ ∈]0, 1] and assume (xλ)Sim(R) ⊆ [z]Rd
. Then for every y ∈ U we have

that

(xλ)Sim(R)(y)≤ Rd(y, z).

So, if we take y = x , then λ≤ Rd(x , z). Because Rd is min-transitive, we obtain

(xλ)Sim(R)(y)≤min{(xλ)Sim(R)(y),λ}

≤min{Rd(y, z), Rd(x , z)}

≤ Rd(x , y)

= [x]Rd
(y)

which implies that (xλ)Sim(R) ⊆ [x]Rd
.

If we fix λ such that λ=
�

POSSim(R) Rd

�

(x), then there exists a z ∈ U such that

λ= ((Sim(R))↓[z]Rd
)(x).

Since we have by Lemma 6.3.1 that

λ= ((Sim(R))↓[z]Rd
)(x) = sup{((xβ)Sim(R))(x) | (xβ)Sim(R) ⊆ [z]Rd

,β ∈ I},

we have that (xλ)Sim(R) ⊆ [z]Rd
, and thus (xλ)Sim(R) ⊆ [x]Rd

. Hence, λ ≤ ((Sim(R))↓[x]Rd
)(x)

and thus ((Sim(R))↓[x]Rd
)(x) = λ.

From this we can conclude that keeping the positive region invariant after deleting attributes

from R is the same as keeping ((Sim(R))↓[x]Rd
)(x) invariant for every x ∈ U . With this in mind,

we can characterise a decision reduct of R ([60]).

Lemma 6.3.4. Suppose P ⊂R , then P contains a decision reduct of R if and only if P satisfies

(xλ)Sim(P ) ⊆ [x]Rd
for λ= ((Sim(R))↓[x]Rd

)(x) and for all x ∈ U .
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Proof. Suppose P contains a decision reduct of R , then

POSSim(R) Rd = POSSim(P ) Rd .

By Lemma 6.3.3, we have for x ∈ U that

λ= ((Sim(R))↓[x]Rd
)(x) = ((Sim(P ))↓[x]Rd

)(x),

thus, (xλ)Sim(P ) ⊆ (Sim(P ))↓[x]Rd
and hence by Lemma 6.3.1 (xλ)Sim(P ) ⊆ [x]Rd

.

On the other hand, we always have

λ= ((Sim(R))↓[x]Rd
)(x)≥ ((Sim(P ))↓[x]Rd

)(x).

Now, if (xλ)Sim(P ) ⊆ [x]Rd
, then by Lemma 6.3.1, (xλ)Sim(P ) ⊆ (Sim(P ))↓[x]Rd

. This implies that

λ≤ ((Sim(P ))↓[x]Rd
)(x).

By Lemma 6.3.3, we have POSSim(R) Rd = POSSim(P ) Rd and hence, P contains a decision reduct

of R .

Note that λ= ((Sim(R))↓[x]Rd
)(x) depends on x . Since P ⊂R , we have

(xλ)Sim(P ) ⊇ (xλ)Sim(R).

Keeping the positive region invariant can be reduced to keep the inclusion

(xλ)Sim(P ) ⊆ [x]Rd

for every x in U and λ = ((Sim(R))↓[x]Rd
)(x). We can characterise a decision reduct of R in

another way ([60]):

Lemma 6.3.5. Suppose P ⊂R , then P contains a decision reduct of R if and only if for every

x ∈ U and λ= ((Sim(R))↓[x]Rd
)(x), it holds that if (yλ)Sim(R) * [x]Rd

for y ∈ U , then

Sim(P )(y, x)≤ 1−λ.

Proof. Fix x ∈ U and λ = ((Sim(R))↓[x]Rd
)(x). Assume that P contains a decision reduct

of R , then (xλ)Sim(P ) ⊆ [x]Rd
. Take y ∈ U . If (yλ)Sim(R) * [x]Rd

, then (yλ)Sim(P ) * [x]Rd
.

Since (xλ)Sim(P ) 6= (yλ)Sim(P ), we have that (xλ)Sim(P ) ∩ (yλ)Sim(P ) = ;. We conclude that

Sim(P )(y, x)≤ 1−λ.

On the other hand, if (yλ)Sim(R) * [x]Rd
, then Sim(P )(y, x)≤ 1−λ implies that

(xλ)Sim(P ) ∩ (yλ)Sim(P ) = ;.

This means that (xλ)Sim(P ) ⊂ [x]Rd
and by Lemma 6.3.4, we conclude that P contains a decision

reduct of R .
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By Lemma 6.3.1, we have

(yλ)Sim(R) * [x]Rd
⇔ (Sim(R)↓[x]Rd

)(y)< λ.

By Lemma 6.3.5, we have that keeping the positive region of the decision attribute invariant is

equivalent to keeping

Sim(P )(y, x)≤ 1−λ

invariant for (yλ)Sim(R) * [x]Rd
and λ = ((Sim(R))↓[x]Rd

)(x). This can easily be applied as

stopping criteria in an algorithm to compute decision reducts. So, P is a decision reduct of R if

and only if P is the minimal subset of R satisfying the conditions of Lemma 6.3.4 and 6.3.5.

We are going to use the above discussion to develop a reduction algorithm. We do this by

constructing a discernibility matrix and discernibility function. The discernibility matrix O of

(U ,R ∪ {Rd}) is an n× n-matrix with ∀i, j ∈ {1, . . . , n} and for all yi , y j ∈ U:

Oi j =







{R | 1− R(yi , y j)≥ λi} λi > λ j

; otherwise

with λi = ((Sim(R))↓[yi]Rd
)(yi), λ j = ((Sim(R))↓[yi]Rd

)(y j). Note that O does not have to be

symmetric and that Oii is empty. We study what R ∈ Oi j means:

R ∈ Oi j ⇒
�

((yi)λi
)Sim(R) ∩ ((y j)λi

)Sim(R) = ; ⇒ ((yi)λi
)R ∩ ((y j)λi

)R = ;
�

.

We check this equation. Assume that R ∈ Oi j and that ((yi)λi
)Sim(R) ∩ ((y j)λi

)Sim(R) = ;, i.e., R
distinguishes yi and y j . Now assume that ((yi)λi

)R ∩ ((y j)λi
)R 6= ;, then there is an element x ∈ U

such that

((yi)λi
)R(x) = ((y j)λi

)R(x) = λi .

This means that 1−R(x , yi)< λi and 1−R(x , y j)< λi and since R is a fuzzy similarity relation we

have that 1−R(yi , y j)< λi , i.e., R /∈ Oi j . This is a contradiction. So, if yi and y j are distinguishable

by all the attributes and R ∈ Oi j , then yi and y j are distinguishable by R.

Now, if λi = ((Sim(R))↓[yi]Rd
)(yi) = ((Sim(P ))↓[yi]Rd

)(yi) for P ⊂R , then

((yi)λi
)Sim(R) ∩ ((y j)λi

)Sim(R) = ; ⇒ ((yi)λi
)Sim(P ) ∩ ((y j)λi

)Sim(P ) = ;,

which is equivalent to saying that P contains an element in Oi j. So, Oi j is the collection of

conditional attributes that can keep

((yi)λi
)Sim(R) ∩ ((y j)λi

)Sim(R) = ;

for λ j < λi .
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We denote the Boolean variable associated with Ri by R∗i , i ∈ {1, . . . , m}. We define the

discernibility function f of (U ,R ∪ {Rd}) by

f (R∗1, . . . R∗m) = ∧
n

∨O∗i j | Oi j 6= ;, 1≤ i, j ≤ n
o

with O∗i j = {R
∗
k | Rk ∈ Oi j , 1≤ k ≤ m}. Note that f is a mapping from {0,1}m to I .

We discuss that f represents all decision reducts of R . First, we characterise the core of R
([60]).

Lemma 6.3.6. We have

Core(R) = {R | ∃i, j ∈ {1, . . . , n} : Oi j = {R}}.

Proof. We have

R ∈ Core(R)⇔ POSSim(R) Rd 6= POSSim(R\{R}) Rd

⇔∃yi ∈ U : ((yi)λi
)Sim(R\{R}) * [yi]Rd

and ∃y j ∈ U : ((y j)λi
)Sim(R) * [yi]Rd

and ((yi)λi
)Sim(R\{R}) = ((y j)λi

)Sim(R\{R})

⇔ 1− R′(yi , y j)< λ,∀R′ 6= R, and ((yi)λi
)R 6= ((y j)λi

)R

⇔ Oi j = {R}

with λi = ((Sim(R))↓[yi]Rd
)(yi).

The statement Oi j = {R} implies that R is the unique attribute to ensure

((yi)λi
)Sim(R) ∩ ((y j)λi

)Sim(R) = ;

for λ j < λi .

This means that P ⊂R contains a decision reduct of R if and only if

∀Oi j 6= ; :P ∩Oi j 6= ;, (6.5)

or, P is a decision reduct of R if and only if P is minimal for Equation (6.5).

Now let F be the disjunctive normal form of the discernibility function f , i.e., there is an l ∈ N
and there are Rk ⊆R , 1≤ k ≤ l such that

F = (∧R∗1)∨ . . .∨ (∧R∗l )

where every element in Rk only appears one time. We have the following theorem ([60]).

Theorem 6.3.7.

Red(R) = {R1, . . . ,Rl}.
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Proof. We first prove that every Rk is a reduct of R . For every k ∈ {1, . . . , l} and for every Oi j 6= ;,
i, j ∈ {1, . . . , n}, we have that ∧R∗k ≤ ∨O∗i j since

l
∨

r=1
(∧R∗k) = ∧{∨O∗i j | Oi j 6= ;}

and thus, Rk ∩Oi j 6= ; for every Oi j 6= ;. Let R ′k =Rk \ {R}, then

F <
�

k−1
∨

r=1
(∧R∗r )

�

∨ (∧R ′k
∗)∨

�

l
∨

r=k+1
(∧R∗r )

�

.

If for every Oi j 6= ; we have that R ′k ∩Oi j 6= ; and thus ∧R ′k
∗ ≤ ∨O∗i j then

F ≥
�

k−1
∨

r=1
(∧R∗r )

�

∨ (∧R ′k
∗)∨

�

l
∨

r=k+1
(∧R∗r )

�

which is a contradiction. Hence, there is an Oi0 j0 6= ; such that R ′k ∩Oi0 j0 = ;. This means that Rk

is indeed a decision reduct of R .

Now take X ∈ Red(R). For every Oi j 6= ;, i, j ∈ {1, . . . , n}, we have that X ∩Oi j 6= ;, so

f ∧ (∧X ∗) = ∧(∨O∗i j)∧ (∧X
∗) = ∧X ∗.

This implies that ∧X ∗ ≤ f = F . Suppose for every k that Rk \X 6= ;, then take for every k an

Rk ∈ Rk \X . We rewrite F such that

F =
�

l
∨

r=1
R∗k

�

∧ . . .

and thus ∧X ∗ ≤
l
∨

r=1
R∗k. So, there is an Rk0

such that ∧X ∗ ≤ R∗k0
, which implies that Rk0

∈ X . This

is a contradiction. There has to be a k1 ∈ {1, . . . , l} such that Rk1
∩X = ;, which implies Rk1

⊆X ,

but since they are both decision reducts, we have X =Rk1
∈ {R1, . . . ,Rl}.

From this, we obtain that Core(R) = ∩Red(R). Assume R ∈ Core(R), then there is an Oi j

such that Oi j = {R}. Then for every reductRk, 1≤ k ≤ l, we have thatRk∩Oi j 6= ; and so, R ∈ Rk

for 1 ≤ k ≤ l. This means that R ∈ ∩Red(R). Now take R ∈ ∩Red(R), then for every decision

reduct Rk we have that R ∈ Rk. This means that

POSSim(Rk) Rd = POSSim(R) Rd and POSSim(Rk\{R}) Rd < POSSim(Rk) Rd ,

hence,

POSSim(R\{R}) Rd < POSSim(R) Rd .

By definition, we have that R ∈ Core(R).
Before we give the algorithm, we note that if Oi j ∩ Core(R) 6= ;, then {R∗} ∧ (∨O∗i j) = {R

∗}
for R ∈ Oi j ∩Core(R). So, when we compute F from f , we should only consider the elements in

Core(R) and Oi j satisfying Oi j ∩Core(R) = ; to reduce the computations.
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Algorithm 4 Reduction algorithm based on fuzzy rough sets
1. Compute Sim(R).
2. Compute (Sim(R))↓[x]Rd

for every x ∈ U .

3. Compute Oi j: if λ j < λi , then Oi j = {R | 1− R(yi , y j)≥ λi}, otherwise, Oi j = ;.
4. Compute the core as a collection of those Oi j with single element.

5. Delete those Oi j = ; or Oi j with non-empty overlap with the core.

6. Define f = ∧{∨O∗i j} with the Oi j left after the previous step.

7. Compute F = (∧R∗1)∨ . . .∨ (∧R∗l ) from f .

8. Return all decision reducts R1, . . . ,Rl .

Let U be a universe and d the decision attribute. Let λi = ((Sim(R))↓[yi]Rd
)(yi) and λ j =

((Sim(R))↓[yi]Rd
)(y j) for yi , y j ∈ U , then we can construct Algorithm 4.

We study now what happens if we use the general fuzzy rough set model with a left-continuous

t-norm and its R-implicator.

Using a left-continuous t-norm and its R-implicator

Chen et al. did something similar, but now they used the general fuzzy rough set model with a

left-continuous t-norm T and its R-implicator I ([6, 7]). We have the same concepts as in the

setting where we used Dubois and Prade’s model, only the positive region of Rd relative to the

fuzzy similarity Sim(R) is now defined by

POSSim(R) Rd =
⋃

x∈U

(Sim(R))↓I [x]Rd
.

Note that in this setting, we can work with fuzzy T -similarity relations instead of fuzzy min-

similarity relations. We again want to know when P ⊂R contains a decision reduct of R .

We first describe the basic granules ([7]). If λ ∈]0, 1], then xλ is a fuzzy point.

Lemma 6.3.8. Let R be a fuzzy T -similarity relation and A a fuzzy setting in U , then

R↓IA= ∪{R↑T (xλ) | R↑T (xλ)⊆ A},

R↑T A= ∪{R↑T (xλ) | xλ ⊆ A}.
(6.6)

Proof. Recall that T is left-continuous. Fix x ∈ U and λ ∈]0,1]. To prove the first equality, we

prove that

R↑T (xλ)⊆ R↓IA⇔ R↑T (xλ)⊆ A.
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Take z ∈ U , then
(R↑T (xλ))(z)≤ (R↓IA)(z)

⇔ sup
y∈U
T (R(y, z), xλ(y))≤ inf

y∈U
I (R(y, z), A(y))

⇔T (R(x , z),λ)≤ inf
y∈U
I (R(y, z), A(y))

⇔∀y ∈ U : T (R(x , z),λ)≤ I (R(y, z), A(y))

⇔∀y ∈ U : T (T (R(x , z),λ), R(y, z))≤ A(y)

⇔∀y ∈ U : T (T (R(x , z), R(z, y)),λ)≤ A(y)

⇔∀y ∈ U : T (R(x , y),λ)≤ A(y)

⇔∀y ∈ U : sup
u∈U
T (R(u, y), xλ(u))≤ A(y)

⇔ R↓T (xλ)⊆ A

where we used the the residual principle in the fourth step.

The second equality follows from the fact that

A=
⋃

{xλ | λ ∈]0, 1],λ≤ A(x)}=
⋃

{xλ | λ ∈]0, 1], xλ ⊆ A}

and the fact that the upper approximation of a union is equal to the union of the upper approxima-

tions ([17]). The latter holds by Proposition 4.1.8 and by the fact that T is complete-distributive

w.r.t the supremum.

This means we can use the set {R↑T (xλ) | x ∈ U ,λ ∈]0, 1]} as basic granules. Now, take x and

y in U . If y /∈ [x]Rd
, then clearly

(R↓I [x]Rd
)(y)≤ I (R(y, y), Rd(y, x)) = 0.

Now, for y ∈ [x]Rd
, we have the following lemma ([7]).

Lemma 6.3.9. Suppose y ∈ [x]Rd
, then we have that

R↑T (yλ)⊆ R↓I [x]Rd
⇔∀z /∈ [x]Rd

: (R↑T (yλ))(z) = 0.

Proof. Take x , y ∈ U such that y ∈ [x]Rd
. If R↑T (yλ) ⊆ R↓I [x]Rd

, then for z /∈ [x]Rd
we have

(R↓I [x]Rd
)(z) = 0, hence (R↑T (yλ))(z) = 0.

On the other hand, suppose for all z /∈ [x]Rd
that (R↑T (yλ))(z) = 0. Since for all u ∈ [x]Rd

it

holds that [x]Rd
(u) = 1, we have

(R↑T (yλ))(u)≤ ([x]Rd
)(u)

and thus R↑T (yλ)⊆ [x]Rd
. By Equation (6.6) we have that R↑T (yλ)⊆ R↓I [x]Rd

.
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Note that since yλ ⊆ R↑T (yλ), we obtain the following equivalence from Lemma 6.3.9:

yλ ⊆ R↓I [x]Rd
⇔∀z /∈ [x]Rd

: (R↑T (yλ))(z) = 0.

We can now characterise decision reducts ([7]).

Lemma 6.3.10. Suppose P ⊂R , then P contains a decision reduct of R if and only if for every

x ∈ U:

(Sim(P ))↑T xλ ⊆ [x]Rd
,

with λ= ((Sim(R))↓I [x]Rd
)(x).

Proof. Take x , y ∈ U . We either have [x]Rd
= [y]Rd

or [x]Rd
∩ [y]Rd

= ;. So keeping

POSSim(R) Rd = POSSim(P ) Rd

invariant is the same as keeping

(Sim(R))↓I [x]Rd
= (Sim(P ))↓I [x]Rd

invariant for every x ∈ U . By Equation (6.6) and Lemma 6.3.9, this latter statement is equivalent

to

∀y ∈ [x]Rd
: (Sim(P ))↑T yλ ⊆ [x]Rd

which is equivalent to

(Sim(P ))↑T xλ ⊆ [x]Rd

since y ∈ [x]Rd
implies [x]Rd

= [y]Rd
.

Note that λ depends on x . This lemma can be used to give us two other characterisations ([7]).

Lemma 6.3.11. Suppose P ⊂R , then P contains a decision reduct of R if and only if for every

x , z ∈ U:

∀z /∈ [x]Rd
: ((Sim(P ))↑T xλ)(z) = 0,

with λ= ((Sim(R))↓I [x]Rd
)(x).

Proof. This follows from Equation 6.6, Lemma 6.3.9 and Lemma 6.3.10.

Lemma 6.3.12. Suppose P ⊂ R , then P contains a decision reduct of R if and only if

there exists a P ∈ P such that T (P(x , z),λ) = 0 for every x , z ∈ U and z /∈ [x]Rd
and

λ= ((Sim(R))↓I [x]Rd
)(x).
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Proof. Take x , z ∈ U such that z /∈ [x]Rd
. We obtain

((Sim(P ))↑T xλ)(z) = sup
y∈U
T (Sim(P )(y, z), xλ(y))

= T (Sim(P )(x , z),λ)

=min{T (P(x , z),λ) | P ∈ P }.

The statement follows now from Lemma 6.3.11.

Clearly P is a decision reduct of R if and only if P is minimal for the conditions in

Lemma 6.3.11 and 6.3.12. This last characterisation can easily be used to design an algorithm to

compute all decision reducts. We do this by constructing the discernibility matrix and function of

the decision system (U ,R ∪ {Rd}). We assume that |U | = n and |R| = m. The discernibility matrix

O is an n× n-matrix with the (i, j)-th entry defined by

Oi j =







{R ∈ R | T (R(yi , y j),λi) = 0} y j /∈ [yi]Rd

; otherwise

with yi , y j ∈ U , 1 ≤ i, j ≤ n and λi = ((Sim(R))↓I [yi]Rd
)(yi). The matrix does not have to be

symmetric and Oii can be empty. Oi j is the collection of conditional attributes such that

(R↑T (yi)λi
)(y j) = 0

for y j /∈ [yi]Rd
. The discernibility function f is constructed in the same way as before. If we denote

the Boolean variable associated with Ri by R∗i , i ∈ {1, . . . , m}, then the discernibility function f of

(U ,R ∪ {Rd}) is the function

f (R∗1, . . . R∗m) = ∧
n

∨O∗i j | Oi j 6= ;, 1≤ i, j ≤ n
o

with O∗i j = {R
∗
k | Rk ∈ Oi j , 1≤ k ≤ m}. Again, f is a mapping from {0, 1}m to I .

Now, f represents all decision reducts of R . We can characterise the core of R .

Lemma 6.3.13. We have

Core(R) = {R | ∃i, j ∈ {1, . . . , n} : Oi j = {R}}.

Proof. We have
R ∈ Core(R)⇔ POSSim(R) Rd 6= POSSim(R\{R}) Rd

⇔∃yi , y j ∈ U : T (R(yi , y j),λi) = 0

and ∀R′ 6= R : T (R′(yi , y j),λi)> 0

⇔ Oi j = {R}

with λi = ((Sim(R))↓[yi]Rd
)(yi). The statement Oi j = {R} implies that R is the unique attribute to

maintain T (R(yi , y j),λi) = 0.
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This means that P ⊂R contains a decision reduct of R if and only if

∀Oi j 6= ; :P ∩Oi j 6= ;, (6.7)

or, P is a desicion reduct of R if and only if P is minimal for Equation (6.7).

Now let F be the disjunctive normal form of the discernibility function f , i.e., there is an l ∈ N
and there are Rk ⊆R , 1≤ k ≤ l such that

F = (∧R∗1)∨ . . .∨ (∧R∗l ),

where every element in Rk only appears one time. We have the following theorem.

Theorem 6.3.14.

Red(R) = {R1, . . . ,Rl}.

Proof. The proof is the same as the proof of Theorem 6.3.7.

As in the approach of Tsang et al. ([60]), we have that

Core(R) = ∩Red(R).

As before, we should only consider the elements in Core(R) and Oi j satisfying Oi j ∩Core(R) = ;
to reduce the computations.

Let U be a universe and d the decision attribute. With λi = (Sim(R))↓[yi]Rd
)(yi), we can

construct algorithm 5 (see [6]). As we see, this is the same as Algorithm 4, only step 2 and 3 differ,

Algorithm 5 Reduction algorithm based on fuzzy rough sets 2
1. Compute Sim(R).
2. Compute (Sim(R))↓I [x]Rd

for every x ∈ U .

3. Compute Oi j: if y j /∈ [yi]Rd
, then Oi j = {R | T (R(yi , y j),λi) = 0}, otherwise, Oi j = ;.

4. Compute the core as a collection of those Oi j with single element.

5. Delete those Oi j = ; or Oi j with non-empty overlap with the core.

6. Define f = ∧{∨O∗i j} with the Oi j left after the previous step.

7. Compute F = (∧R∗1)∨ . . .∨ (∧R∗l ) from f .

8. Return all decision reducts R1, . . . ,Rl .

because we work with another fuzzy rough set model and we have found another criterium to

define O.

We continue with discussing some relations between decision reducts.
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6.3.2 Relations between decision reducts

We saw two approaches of how we can construct an algorithm to find all decision reducts. Zhao

and Tsang ([69]) give us some relations between different decision reducts. We have the following

set-up: a fuzzy decision system (U ,A ∪ D) with U the universe of the objects, A the set of

conditional attributes and D the set of decision attributes, which in this case are all symbolic. Every

subset B ⊆A can be described by a fuzzy similarity relation RB: for x , y ∈ U , RB(x , y) is given by

RB(x , y) =min{Ra(x , y) | a ∈ B},

as seen before. Let I be an implicator, then the positive region of B in x is given by

(POSB(C))(x) = sup
y∈U
(RB↓I [y]RC

)(x)

with C ⊆ D and RC(x , y) = min{Rd(x , y) | d ∈ C}. Since U is finite, the positive region of B

reaches its maximum membership degree in a certain point z ∈ U and as seen before, we have

(POSB(C))(x) = (RB↓I [x]RC
)(x).

We work again with the dependency degree of C on B:

γB(C) =
|POSB(C)|
|U |

.

Since the general fuzzy rough set model is monotone with respect to fuzzy sets, the positive region

is also monotone with respect to fuzzy sets, i.e., if B1 ⊆ B2 ⊆A and C ⊆ D, then

POSB1
(C)⊆ POSB2

(C).

Before we can study relations between decision reducts, we need the following two definitions.

By Redi , we denote the type (or set) of decision reducts obtained in model i.

Definition 6.3.15. Given two types of decision reducts, i.e., Red1 and Red2, that are obtained by

two different fuzzy approximation operators. If

∀B1 ∈ Red1 ∃B2 ∈ Red2 such that B1 ⊆ B2,

∀B3 ∈ Red2 ∃B4 ∈ Red1 such that B4 ⊆ B3,

then we say that the type of decision reducts Red1 is included by the type of decision reducts Red2

or Red2 includes Red1.

We also want to know when two types of decision reducts are identical.
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Definition 6.3.16. Given two types of decision reducts, i.e., Red1 and Red2, that are obtained by

two different fuzzy approximation operators. If

∀B1 ∈ Red1 it holds that B1 ∈ Red2,

∀B2 ∈ Red2 it holds that B2 ∈ Red1,

then we say that the type of decision reducts Red1 and the type of decision reducts Red2 are

identical. We denote this by Red1 = Red2.

We discuss some relations between different types of decision reducts. We will only give the

results, the proofs can be found in [69]. The first two properties gives some information about

decision reducts found by an S-implicator and decision reducts found by an R-implicator.

Proposition 6.3.17. Let S be a t-conorm and IS its S-implicator. Let T be a t-norm and IT
its R-implicator. Let Red1 be obtained by the fuzzy approximation operator R↓IS and let Red2

be obtained by the fuzzy approximation operator R↓IT . If S is the dual t-conorm of T w.r.t. the

standard negator, then Red2 includes Red1.

If this t-norm is the Łukasiewicz t-norm, then both types are identical.

Proposition 6.3.18. Let T be the Łukasiewicz t-norm TL and S its dual t-conorm w.r.t. the

standard negator. Let Red1 be obtained by the fuzzy approximation operator R↓ISL
and let Red2

be obtained by the fuzzy approximation operator R↓ITL
, then Red1 and Red2 are identical.

The following two theorems show how a t-norm can influence the attribute reductions. Let

x ∈ U and C ⊆ D.

Proposition 6.3.19. Let S1 and S2 be two t-conorms. If Red1 is obtained by the fuzzy approxima-

tion (R↓IS1
[x]Rc

)(x) and Red2 is obtained by the fuzzy approximation (R↓IS2
[x]Rc

)(x), then Red1

and Red2 are identical.

Proposition 6.3.20. Let T1 and T2 be t-norms. If Red1 is obtained by the fuzzy approximation

(R↓IT1
[x]Rc

)(x) and Red2 is obtained by the fuzzy approximation (R↓IT2
[x]Rc

)(x), and we have

for all a, b ∈ I that
IT1
(a, 0) = IT1

(b, 0)⇒ a = b,

IT2
(a, 0) = IT2

(b, 0)⇒ a = b,

then Red1 and Red2 are identical.

If IT2
does not fulfil the condition, but the other conditions are fulfilled, then Red2 includes

Red1.

We end with a chronological overview of authors that use fuzzy rough sets for feature selection.
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6.4 A chronological overview of fuzzy rough feature selection

The first to apply fuzzy rough sets to feature selection was Kuncheva ([39], 1992). However, her

work is largely disconnected from the mainstream literature on the subject, both because of the

rough set model used and the assumptions that are made about the data. She assumes that the

data is characterised by a weak fuzzy partition3 of U , i.e., a family P = {P1, . . . , Pk} of fuzzy sets

in U such that
k
⋃

i=1
supp(Pi) = U . This is called the a priori classification of the data.

Each subset B of the set of attributes A is assumed to induce a weak fuzzy partition PB =
{B1, . . . , Bl} of U , with l not necessarily equal to |P |.

The fuzzy rough set model used by Kuncheva uses an inclusion measure, i.e., a mapping

Inc: F (U)2→ I

that evaluates the degree to which one fuzzy set is included into another one, as well as two

thresholds λ1 and λ2 in I such that λ1 > λ2. Some examples of inclusion measures were discussed

in Section 3.4.2.

Given a weak fuzzy partitionP = {P1, . . . , Pk} of U , Kuncheva defined the lower approximation

of a fuzzy set A in U by

R↓P ,λ1
A=

⋃

Inc(Pi ,A)≥λ1

Pi .

The boundary region is given by

BNRP ,λ1,λ2
A=

⋃

λ2<Inc(Pi ,A)<λ1

Pi .

To measure the quality of the approximation of the a priori classification by means of the

attribute subset B, Kuncheva used the measure

n
∑

i=1

wiνB,λ1,λ2
(Pi)

with W = 〈w1, . . . , wn〉 a weight vector and

νB,λ1,λ2
(Pi) =

1

2

�

SIM(R↓PB ,λ1
Pi , Pi) + 1− SIM

�

BNRPB ,λ1,λ2
Pi , Pi

��

where SIM is a similarity measure, i.e., a F (U)2→ I mapping that evaluates to what extent two

fuzzy sets are similar.

A lot of pioneering work on fuzzy rough feature selection in the first half of the 2000’s was

done by Jensen and Shen. In [34] (and [35, 36, 58]) they proposed a reduction method based

on fuzzy extensions of the positive region and the dependency measure based on fuzzy lower

3This is not the same as a T -semipartition defined in Chapter 2.
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approximations. However, in [60] it was noticed that there are problems with Jensen and Shen’s

approach. Before that, Bhatt and Gopal already had stated some problems with the approach of

Jensen and Shen ([3, 4, 5]).
In [32], Hu et al. assumed that for every subset B of attributes, there exists a fuzzy similarity

relation RB. The fuzzy rough set model they use is the one designed by Dubois and Prade. They

base the definition of a decision reduct on the positive region POSB and the degree of dependency

γB. They also introduce the conditional entropy H(d|B) of the decision attribute d relative to B:

H(d|B) =−
1

n

n
∑

i=1

log
� |Rd x i ∩ RB x i|

|RB x i|

�

.

They prove that B is a decision reduct if H(d|B) = H(d|A ) and

H(d|B \ {a})> H(d|A )

for all a in B.

In a second approach, Hu et al. ([31]) assumed that each conditional attribute a generates

a fuzzy similarity relation Ra in U and that RB =
⋂

a∈B
Ra for B ⊆A . Furthermore, they assumed

the decision attribute d categorical, thus it induces a crisp equivalence relation in U . This leads to

a partition of U . Given a fuzzy set A in U , a fuzzy similarity relation R in U , 0≤ l < 0.5< u≤ 1,

the approximations of A by R are given by the VQFRS model4 with the couple of fuzzy quantifiers

(Q≥u,Q>l).
A very important paper from theoretical point of view, is by Tsang et al. ([60]). The approaches

of Chen et al. ([6, 7]) and Zhao and Tsang ([69]) are also based on the general fuzzy rough set

model. We studied these three approaches in Section 6.3.

Cornelis and Jensen ([14]) applied the VQFRS model to feature selection, but since the

approximation operators defined by this model are not monotone w.r.t. the fuzzy relation, adding

more attributes does not necessarily increase the positive region. This can give problems when

applying the QuickReduct algorithm (see Algorithm 1 and 3).

In Jensen and Shen’s second approach ([37]) three subset quality measures are presented. We

discussed these measures in Section 6.2, just like the approach of Cornelis et al. ([15]) that defines

an alternative definition for the positive region of a attribute subset B and an alternative measure

for the degree of dependency γB.

Chen and Zhao ([10]) focused on a specific subset of decision classes (local reduction), instead

of keeping the full positive region invariant (global reduction).

Chen et al. ([9]) used the definition of a decision reduct for fuzzy rough sets from [60]. They

provided a fast algorithm to obtain one decision reduct, based on a procedure to find the minimal

elements of the fuzzy discernibility matrix. The execution time is a lot faster then the proposals in

[37] and [60].
4They did not make the link with the VQFRS model, since that model did not exist at the moment.
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Currently, they are some recent papers about the subject: e.g., Derrac et al. ([18]) combined

fuzzy rough feature selection with evolutionary instance selection, Chen et al. ([8]) considered

feature selection with kernelised fuzzy rough sets and He and Wu ([25]) developed a new method

to compute membership for fuzzy support vector machines by using Gaussian kernel-based fuzzy

rough sets.



Chapter 7

Conclusion

In this thesis, we have seen that fuzzy rough set theory provides us with good techniques to

construct algorithms for feature selection. We have introduced a general fuzzy rough set model

with an implicator I and a conjunctor C , that covers a lot of fuzzy rough set models in the

literature. With the right choices for I and C and the fuzzy relation R, this model fulfils all the

properties of the original rough set model of Pawlak. We can refine this model in a natural way,

by using tight and loose approximation operators. We have also shown that it is very useful in

applications such as feature selection.

Furthermore, we have studied some robust models. The soft fuzzy rough set model turns out

to be ill-defined. Studying the properties of the variable precision fuzzy rough set model is very

difficult, due to the complex definition of the model. Further study is required. We have shown

that the OWA-based fuzzy rough set model is related to the vaguely quantified fuzzy rough set

model (VQFRS) by using quantifiers to determine the weight vectors. The main advantage of the

OWA-based fuzzy rough set model is that it is monotone with respect to fuzzy relations, a property

that is not fulfilled by the VQFRS model. The OWA-based fuzzy rough set model also covers fuzzy

rough set models based on robust nearest neighbour. Further work will be to study more properties

of fuzzy rough set models and find connections between them. Defining new robust models is also

a big challenge.

In Chapter 5, we saw that the properties of approximation operators and the properties of

fuzzy relations are strongly related. This can help us to define new fuzzy rough set models. Another

open problem is to develop axiomatic approaches for robust fuzzy rough set models.

Another important challenge is to find good approaches to use robust models in feature

selection. Developing new algorithms will also be a subject of future research. For example, we

want to construct an algorithm to determine all decision reducts for a fuzzy tolerance relation

instead of a fuzzy similarity relation.
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