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Abstract

In recent years, our behaviour towards data has changed. As technology evolves,

we are more and more able to process large amount of data, often in real time, to

the point where data itself becomes the building block of data products. Examples

of such data products are music and movie recommendations on websites like

Spotify and Netflix, friends recommendations on social media or personalized

advertising by local supermarkets.

To this aim, we want to obtain useful knowledge from data. In the early eighties,

Zdzisław Pawlak introduced rough set theory in order to obtain information from

inconsistent, insufficient and incomplete data, and hence, to obtain knowledge

from this data. The basic idea of rough set theory is that it provides a lower and

upper approximation of a concept with respect to the indiscernibility between

objects based on the data. The lower approximation contains all the elements of

the universe certainly belonging to the concept, while the upper approximation

contains the elements possibly belonging to the concept. In the original model

of Pawlak, an equivalence relation is used to model indiscernibility. Many au-

thors have generalized Pawlak’s model by using binary non-equivalence relations,

neighborhood operators and coverings.

However, as rough set models are designed to process qualitative or discrete
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4 Abstract

data, it faces limitations when dealing with real-valued data sets. To overcome these

limitations, it is interesting to study the hybridization of rough set theory and fuzzy

set theory. It was recognized early on that both theories are complementary, rather

than competitive. In fuzzy rough set theory, we use a fuzzy relation to formalize

the indiscernibility between objects and moreover, the concepts we approximate

are fuzzy.

The goal of this work is to provide a systematic, theoretical study of rough set

theory and fuzzy rough set theory, unifying existing proposals and developing new

ones, with a view to enhance their suitability for machine learning purposes, as well

as to investigate desirable properties that may be inherited from the contributing

theories.

First, we study rough set theory from a semantical point of view. To this aim,

we discuss a new conceptual understanding of rough set models. We recall a

semantical approach of Pawlak’s rough set model, for which we construct a two-

part language. Then, we develop a semantical approach to covering-based rough

set models, for which we allow other relations between attribute values than the

equality relation to describe the indiscernibility between objects. We illustrate this

semantical approach by applying it to dominance-based rough sets. Furthermore,

we introduce a semantical approach for decision tables with missing values using

Pawlak’s rough set model.

Next, we provide a theoretical comparison of different covering-based rough

set approximation operators. To this end, we construct a unified framework of dual

covering-based approximation operators. We recall existing models and introduce

new ones. We study equalities and partial order relations between the different

approximation operators, in order to derive insight in the accuracy of the approx-

imation operators. In addition, we study which properties of Pawlak’s rough set

model are maintained for each of the pairs of dual covering-based approximation

operators.

Finally, we discuss different fuzzy rough set models. We study fuzzy coverings

and fuzzy neighborhood operators based on fuzzy coverings. Additionally, we

introduce a fuzzy rough set model which encapsulates many fuzzy rough set models

discussed in literature. Moreover, we examine different fuzzy covering-based rough

set models. To end, we discuss noise-tolerant fuzzy rough set models.



Contents

Abstract 3

Contents 5

Dankwoord 9

1 Introduction 13

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 Rough set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.2 Fuzzy rough set theory . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.3 Applications in machine learning . . . . . . . . . . . . . . . . . 18

1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Preliminaries 27

2.1 Pawlak’s rough set model . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Covering-based rough set models . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Framework of Yao and Yao . . . . . . . . . . . . . . . . . . . . . 31

2.2.2 Framework of Yang and Li . . . . . . . . . . . . . . . . . . . . . 38

2.2.3 Framework of Zhao . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.4 Framework of Samanta and Chakraborty . . . . . . . . . . . . 42

2.2.5 Singleton, subset and concept approximation operators . . . 44

2.3 Variable precision rough set model . . . . . . . . . . . . . . . . . . . . 45

5



6 CONTENTS

3 Semantical approach to rough set theory 49

3.1 A new conceptual understanding of rough set models . . . . . . . . . 51

3.2 Semantically sound approach of Pawlak’s rough set model . . . . . . 54

3.2.1 A descriptive language for conjunctive concepts . . . . . . . . 54

3.2.2 A descriptive language for disjunctions of conjunctive

concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.3 Approximations of undefinable sets . . . . . . . . . . . . . . . 57

3.2.4 Computational approach of Pawlak’s rough set model . . . . 59

3.3 Semantically sound approach of covering-based rough set models . 61

3.3.1 A generalized descriptive language for conjunctive concepts 62

3.3.2 A generalized descriptive language for disjunctions of

conjunctive concepts . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.3 Approximations of undefinable sets . . . . . . . . . . . . . . . 66

3.3.4 Computational approach of covering-based rough set

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Application: dominance-based rough set models . . . . . . . . . . . . 71

3.5 Pawlak’s rough set model for decision tables with missing values . . 75

3.5.1 A descriptive language for conjunctive concepts . . . . . . . . 78

3.5.2 A descriptive language for disjunctions of

conjunctive concepts . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5.3 Approximations of undefinable sets . . . . . . . . . . . . . . . 85

3.5.4 Computational approach of Pawlak’s rough set model for a

decision table with missing values . . . . . . . . . . . . . . . . 86

3.6 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Computational approach of covering-based rough sets 93

4.1 Element-based approximation operators . . . . . . . . . . . . . . . . . 95

4.1.1 Neighborhood operators based on coverings . . . . . . . . . . 96

4.1.2 Partial order relations between neighborhood operators . . . 104

4.1.3 Partial order relations between element-based approxima-

tion operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2 Granule-based approximation operators . . . . . . . . . . . . . . . . . 113

4.3 Subsystem-based approximation operators . . . . . . . . . . . . . . . 116



CONTENTS 7

4.4 Framework of Yang and Li . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.5 Framework of Zhao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.6 Framework of Samanta and Chakraborty . . . . . . . . . . . . . . . . 126

4.7 Properties of covering-based approximation operators . . . . . . . . 133

4.8 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Preliminary notions of fuzzy set theory 145

5.1 Fuzzy logical connectives . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2 Fuzzy set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.3 Aggregation operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.4 Technique of representation by levels . . . . . . . . . . . . . . . . . . . 156

6 Fuzzy neighborhood operators 159

6.1 Fuzzy neighborhood systems based on a fuzzy covering . . . . . . . 160

6.2 Fuzzy neighborhood operators based on a fuzzy covering . . . . . . 163

6.3 Fuzzy coverings derived from a fuzzy covering . . . . . . . . . . . . . 168

6.4 Equalities between fuzzy neighborhood operators . . . . . . . . . . . 172

6.5 Partial order relations between fuzzy neighborhood operators . . . . 178

6.6 Fuzzy neighborhood operator introduced by Ma . . . . . . . . . . . . 189

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7 The implicator-conjunctor-based fuzzy rough set model 195

7.1 An introduction to fuzzy rough set theory . . . . . . . . . . . . . . . . 195

7.2 The IC model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.3 Properties of the IC model . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8 Fuzzy covering-based rough set models 213

8.1 Fuzzy extensions of tight granule-based approximation operators . 215

8.1.1 Model of Li et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.1.2 Model of Inuiguchi et al. . . . . . . . . . . . . . . . . . . . . . . 217

8.1.3 Model of Wu et al. . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.1.4 Model induced by the theory of representation by levels . . . 220

8.1.5 Model of intuitive extension . . . . . . . . . . . . . . . . . . . . 221



8 CONTENTS

8.2 Fuzzy extensions of loose granule-based approximation operators . 222

8.2.1 Model of Li et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

8.2.2 Model induced by the theory of representation by levels . . . 226

8.3 Hasse diagram of fuzzy covering-based approximation operators . . 229

8.4 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . 242

9 Noise-tolerant fuzzy rough set models 245

9.1 Noise-tolerant models based on frequency . . . . . . . . . . . . . . . . 246

9.1.1 Variable precision fuzzy rough set model . . . . . . . . . . . . 247

9.1.2 Vaguely quantified fuzzy rough set model . . . . . . . . . . . . 256

9.1.3 Soft fuzzy rough set model . . . . . . . . . . . . . . . . . . . . . 259

9.1.4 Variable precision fuzzy rough set model based on fuzzy

granules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

9.2 Fuzzy variable precision rough set model . . . . . . . . . . . . . . . . 268

9.3 Noise-tolerant models based on aggregation operators . . . . . . . . 271

9.3.1 β-precision fuzzy rough set model . . . . . . . . . . . . . . . . 272

9.3.2 Ordered weighted average based fuzzy rough set model . . . 275

9.4 Experimental evaluation on robustness . . . . . . . . . . . . . . . . . . 280

9.5 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . 286

10 Conclusions and future research directions 291

Appendices 297

A Counterexamples for Chapter 4 299

B Properties of (apr
N

, aprN) 309

Samenvatting 313

List of publications 317

Bibliography 321

Index 341



Dankwoord

Allereerst wens ik mijn promotor Chris Cornelis te bedanken voor alle tijd en

goede raad. Als promotor van mijn masterthesis gaf hij mij de mogelijkheid om een

doctoraatsopleiding aan te vangen. Zijn kennis van de ruwverzamelingenleer is

van onschatbare waarde. Hij stimuleerde mij om met onderzoekers vanuit de hele

wereld in contact te komen via conferenties en buitenlandse verblijven. In juli 2014

trok ik voor vier weken naar Granada, waar ik samenwerkte met Mauricio Restrepo

en Daniel Sánchez. In september 2015 verbleef ik vijf weken aan de universiteit

van Regina, voor een samenwerking met Yiyu Yao. I want to thank them all for the

fruitful collaborations.

Verder wil ik graag de voorzitter van onze onderzoeksgroep Martine De Cock

bedanken. Als lesgeefster van het vak ‘Vaagheids- en onzekerheidsmodellen’ maakte

ze mij warm voor de wereld van de vaagverzamelingen. Zij is medepromotor van

dit doctoraat. Bedankt voor de hulp bij alle administratie, voor het organiseren

van de LogE-workshops en voor de steun tijdens dit doctoraat.

Agradecimiento especial a Lluis Godo. Desde mi estancia Erasmus en Barcelona

en la primavera de 2013, eres una verdadera inspiración para mí. Gracias por el

apoyo, la colaboración y las muchas comidas durante los últimos cuatro años. ¡La

próxima corre de mi cuenta!

9



10 Dankwoord

Ook wil ik graag de andere leden van de onderzoeksgroep bedanken. Etienne,

bedankt voor de leuke anekdotes en de vele inspirerende woorden. Sofie, bedankt

om een topbureaugenoot te zijn. Onze gesprekken waren van levensbelang om dit

doctoraat te voltooien. Elie, since day one we are making fun of and with each other.

I hope we can keep on doing that! Nele, bedankt om mijn masterthesis te begeleiden

en mij te introduceren in de wereld van het onderzoek. Bedankt voor de fijne

samenwerking, het gezelschap tijdens conferenties en de toffe gesprekken. Sarah,

jouw werkattitude is een inspiratie. Bedankt dat ik af en toe mocht binnenwippen

voor een gezellige babbel. Marjon, met jou deel ik de liefde voor Barcelona. Dank

je wel voor alle leuke momenten. Bart, Golnoosh and Musthofa, thank you very

much for all the support.

Hartelijk dank ook aan alle collega’s van de vakgroep ‘Toegepaste Wiskunde,

Informatica en Statistiek’. Een aantal van hen wil ik graag persoonlijk bedanken.

Thomas, bedankt om een fijne bureaugenoot te zijn. Herman, bedankt voor de

leuke namiddagen in de resto. Onze gedeelde liefde voor de Efteling vat alles

zowat samen. Benoit, jouw aanwezigheid geeft kleur aan elke gelegenheid. Dank

je wel om altijd jezelf te zijn. Doctor Bart, het was geweldig om een companion

te zijn. Catherine, jouw initiatieven zorgen ervoor dat collega’s echte vrienden

worden. Charlotte, bedankt om er altijd voor iedereen te zijn. Dieter, bedankt voor

alle toffe momenten. Jij houdt het hier draaiende! Niels, bedankt om mij Python

te leren. Mijn vrees voor programmeren is hierdoor toch een beetje overwonnen.

Marko, bedankt voor de fijne samenwerking voor het vak ‘Redeneren, abstraheren

en formuleren’ en de gesprekken tijdens de autoritten. Pieter en Roy, bedankt voor

jullie vriendschap sinds 2008!

Verder wil ik Alicia, Dorien, Joachim, Kevin en Thomas bedanken om een

klassfeer te creëeren waar ik volledig mezelf kon zijn. Jullie maakten van mij een

betere wiskundige. Bedankt voor alle kaartnamiddagen en spelletjesavonden, voor

toneelvoorstellingen en cinemabezoeken, voor pi-feestjes en uitstapjes naar de

kerstmarkt en naar de zee.

Esperanza, muchas gracias por tu amistad, tu amabilidad y tu risa. A pesar del

hecho de que estás en el otro lado del mundo, estás siempre cerca de mi corazón.

Een enorme dank u aan al mijn scoutsvrienden: Pius X’ers, Heidenaars, week-

endresidenten, beheerders en bestuurders! Jullie zorgden voor de perfecte balans.



Dankwoord 11

Sarah en Miguel, Erika en Iwein, Elien en Rein, Sarah, Ellen, Roel: bedankt

voor jullie jarenlange vriendschap en steun.

Een zeer grote dank je wel aan mijn grootouders, tantes en nonkels, en neven

en nichten. Bedankt voor jullie steun en al die geweldige familieherinneringen!

Fons, Sofie en Abderrahim, jullie zijn mijn tweede familie sinds 2009. Silke en

Quinten, het is een eer om jullie zus te zijn. Mama en papa, bedankt voor alles.

Jullie lieten mij steeds mijn eigen weg zoeken en steunden mij in elke beslissing.

Pieter, dank je wel voor je geduld en je geloof in mij. Jouw liefde maakt alle

aspecten van mijn leven beter.

Lynn

Maart 2017



12 Dankwoord

Dit doctoraat kwam tot stand met steun van het Bijzonder Onderzoeksfonds

van de Universiteit Gent. Het buitenlands verblijf aan de Universiteit van Regina,

Canada, werd gefinancieerd door het Fonds voor Wetenschappelijk Onderzoek

Vlaanderen.



CHAPTER1

Introduction

In recent years, our behaviour towards data has changed. As technology evolves,

we are more and more able to process large amounts of data, often in real time,

to the point were data itself becomes the building block of data products [123].
Examples of such data products are music and movie recommendations on websites

like Spotify and Netflix, friends recommendations on social media or personalized

advertising by local supermarkets. Moreover, we can find it in finance, where data

is used for credit ratings, and in government, to optimize transportation.

To this aim, we want to obtain useful knowledge from data. Rough set theory

provides us a tool to do this. For example, rough set techniques have been used

for tumor classification [23], for image retrieval [104] and for the classification of

microarray data [109].

In this chapter, we first provide some background to situate our research. We

discuss rough set and fuzzy rough set theory. Next, we state the research objectives

of this dissertation. We end with the outline of this work.
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14 Chapter 1. Introduction

1.1 Background

In this section, we present some background to situate our research. We discuss

rough set theory and fuzzy rough set theory. We end with some topics in machine

learning which use (fuzzy) rough set theory.

1.1.1 Rough set theory

In the early eighties, Zdzisław Pawlak [128] introduced rough set theory in order

to obtain information from inconsistent, insufficient and incomplete data, and

hence, to obtain knowledge from this data. This problem occurs in many situations

where decision making is involved: when diagnosing patients, spam or image

classification, learning from examples, pattern recognition, rule-based control,

minimizing credit risk, . . . [130]. For example, assume the universe U to be a set

of patients. We say that the data is

• inconsistent, if two patients share exactly the same symptoms, but only one

of the patients has a certain disease.

• insufficient, if we cannot determine whether a patient has a certain disease

given the considered symptoms.

• incomplete, if for a patient the result of a symptom is missing or if there are

multiple possibilities for the result.

Such data can be represented in an information table. An information table is

presented by the following tuple:

T = (U , At, {Va | a ∈ At}, {Ia | a ∈ At}), (1.1)

where U is a finite non-empty set of objects, also called instances, called the uni-

verse, At is a finite non-empty set of attributes or features, Va is the non-empty

domain, i.e., the set of possible values, of a ∈ At, and Ia : U → Va is an information

function for a ∈ At. The table T is called complete if all functions Ia are complete,

i.e., they each map an object of U to exactly one value in Va, otherwise T is called

incomplete. While an information table has been defined by Pawlak [128] to rep-

resent data, decision tables are considered for applications such as classification
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and regression tasks. The table T is called a decision table if the set of attributes At
is the union of two disjoint sets C and {d}, with C the set of conditional attributes

and d the decision attribute. Note that sometimes a set of decision attributes D is

considered.

Since rough set theory does not require preliminary or additional information

about data like probability distributions in probability theory, grades of membership

in fuzzy set theory, or mass functions in Dempster-Shafer theory of evidence, it

has a major advantage compared to other theories which derive information and

knowledge from data [38]. The starting point of the theory is the question whether

two objects of the universe are indiscernible from each other based on the available

attributes. In Pawlak’s original rough set model, this indiscernibility is described

by an equivalence relation: two objects are in the same equivalence class if they

are indiscernible from each other. Based on this indiscernibility relation, Pawlak

constructed the lower and upper approximation operator. Given a subset X of the

universe U , the lower approximation of X contains those objects which certainly

belong to the set X and the upper approximation of X contains those objects which

possibly belong to X . This way, we describe the imprecise information given by the

set X by two sets which provides us with more precise information. For example,

if X is the set of patients with a particular disease, the lower approximation of X
contains those patients which certainly have the disease, while the patients in the

upper approximation of X possibly have the disease. Based on this information, we

only need to perform an extra examination on the patients in the bounadary region,

i.e., the difference between the upper and lower approximation of X . Pawlak’s

approximation operators have been generalized by considering a general binary

relation or neighborhood operator. In this work, we will discuss different genera-

lizations.

In literature, there are three approaches to rough set theory: the axiomatic,

constructive and semantical approach. The main difference between them is the

function of the approximation operators.

• Axiomatic approach: this approach is used to obtain insight in the algebraic

structure of approximation operators. Given a set of axioms, we want to
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determine which approximation operators this set characterizes. In other

words, given a set of preferable properties, which approximation operators

will fulfil these properties. In this approach, approximation operators are

used as primitive notions.

• Constructive or computational approach: in this approach, approximation

operators are derived notions based on the following primitive notions:

binary relations, partitions of the universe, coverings of the universe, lattices,

Boolean algebras, . . . We study for each pair of approximation operators

which properties it satisfies. This approach is very suitable for applications,

as it allows to construct algorithms based on rough set theory.

• Semantical or conceptual approach: this approach is used to provide insight

in the meaning of the concepts of rough set theory. Given a decision table,

we want to determine the definable sets related with this table. Based on

these definable sets, approximation operators are derived notions in this

approach.

In this dissertation, most results can be classified under the constructive approach

of rough set theory. Given a certain approximation space, we define pairs of ap-

proximation operators, study their properties, and compare them with each other

to determine which pairs are suitable for applications. Moreover, we discuss some

semantically sound approaches to different rough set models. In this work, we

will not consider the axiomatic approach to rough set theory. More details on the

axiomatic approach to rough set theory can be found in [98,181].

For more information regarding rough set theory, we refer to the references

of [130]. Note that rough set approximation operators have similarities with

operators in modal logic [188], formal concept analysis [184] and topology [134],
however, comparison with these theories is outside the scope of this work.

1.1.2 Fuzzy rough set theory

The research of rough set theory has flourished since the early eighties. However,

as rough set models are designed to process qualitative or discrete data, it faces
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limitations when dealing with real-valued data sets [81]. To overcome these limi-

tations, it is interesting to study the hybridization of rough set theory and fuzzy

set theory.

Fuzzy set theory is introduced by Zadeh in 1965 [193] to deal with vague

concepts and graded indiscernibility. In classical set theory, an object belongs to

a concept or it does not belong to the concept. It is either ‘yes’ or ‘no’, ‘1’ or ‘0’,

‘black’ or ‘white’. However, in everyday life, not everything is binary. As humans, we

think in grey-scales. Concepts such as ‘old’ or ‘tall’ cannot be describe with a strict

boundary. Most people will agree that a child of height 1m is short, and a basketball

player of 2m is tall, but what about me, a person of height 1m78? Depending on

your own height, you will consider me ‘short’ or ‘tall’. To avoid such subjectiveness,

we can describe the property ‘tall’ by a fuzzy set instead of a classical crisp set.

Formally, a fuzzy set is described as a function from the set of objects to a lattice,

often the unit interval [0, 1]. We will always work with [0, 1]. Thus, a fuzzy set X
on the universe U is a function

X : U → [0, 1]: x 7→ X (x). (1.2)

Every object x ∈ U is associated with its membership degree X (x) ∈ [0,1]. For

example, the child of height 1m will have degree 0, i.e., ‘not tall’, the basketball

player of height 2m will have degree 1, i.e., ‘tall’ and I will have degree 0.6, i.e., I

am ‘rather tall’.

Note that there is a fundamental difference between fuzzy set theory and

probability theory. For instance, consider the concept ‘rain’. When looking up the

weather, it will tell you with what chance it will rain today, but it will not tell you

the intensity of the rain. With the following sentences, we illustrate this difference:

• The sentence ‘there is an 80% chance on rain of degree 0.1’ states that it will

almost certainly drizzle.

• The sentence ‘there is a 10% chance on rain of degree 0.8’ states that there

is a slight chance on pouring rain.
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From early on, it was clear that rough set theory and fuzzy set theory are rather

complementary, than competitive. We illustrate this with the following quotations.

‘A fuzzy set is a class with unsharp boundaries whereas a rough set

is a crisp set which is coarsely described.’

Lotfi A. Zadeh in the foreword of [124].

‘Rough set theory is about the size of the pixels, fuzzy set theory is

about the existence of more than two levels of grey.’

Didier Dubois and Henri Prade in the foreword of [129].

Dubois and Prade were two of the first authors to describe a fuzzy rough set

model. Such a model uses a fuzzy relation or fuzzy neighborhood operator to

describe the indiscernibility relation on the universe U . In other words, two objects

x and y are indiscernible to a certain degree. Moreover, the set which contains

the imprecise information and which we would like to approximate is a fuzzy set

instead of a crisp set.

An illustrative example to apply fuzzy rough set theory to is the prediction

of the price of our house given the prices of similar houses. Since we want to

determine a real-valued outcome, the approximated sets are fuzzy. Moreover, the

indiscernibility between houses is fuzzy: two houses can very similar based on the

number of rooms, residential area, type of roof, . . . However, if we used a crisp

relation to describe the similarity of houses, we would find a very small number of

houses similar to ours, hence, it would be very difficult to predict the price of our

house.

Fuzzy rough set theory has been applied in many machine learning applications

which deal with both vague and incomplete information. In the next section, we

discuss some of these machine learning techniques, to illustrate the motivation

behind the multiple developments of different fuzzy rough set models.

1.1.3 Applications in machine learning

In [162], Vluymans et al. present a survey of applications of fuzzy rough set theory

in machine learning. We will highlight some machine learning applications, to
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situate the research domain. As we will not discuss applications in this dissertation,

we will not provide details for which we refer to [162].
The goal of machine learning applications is to obtain knowledge from data.

To this aim, algorithms which can learn from data and predict based on known

properties are studied and constructed. This way, machine learning slightly differs

from data mining, which focuses more on discovering patterns in data.

Fuzzy rough set theory is used in a wide variety of machine learning applications.

Here we will focus on some supervised learning algorithms. Supervised learning

implies that a set of labeled elements is available in the training phase of the

method [162], i.e., there is a teacher at hand for the method to learn from. A

supervised learning algorithm constructs a model to predict the outcome of new

objects based a set of labeled objects, i.e., objects of which we know the outcome.

To go back to the pricing of our house, we want to predict the price based on a set

of houses of which we know the price.

If the outcome of the prediction is categorical, the learning task is considered a

classification task, otherwise, we consider it a regression task. We will discuss both

tasks briefly. Moreover, the data we consider often needs to be preprocessed, in

order to fasten the learning time or to increase the prediction ability. Examples of

such preprocessing step are feature and instance selection, which we discuss first.

Feature selection

Feature or attribute selection is a preprocessing step which removes conditional

attributes from the decision table, in order to decrease the dimensionality of the

problem without losing the semantical meaning of the data. In addition, we would

like our reduced set of conditional attributes to preserve the ability to discern the

objects of the universe which are discernible based on the original data. The goal

is to obtain a set of conditional attributes which is minimal for this property. Such

a minimal set is called a reduct. We say that the conditional attributes in such a

reduct are joint sufficient and individually necessary, i.e., together they preserve

the discernibility ability of the original set of conditional attributes and moreover,

none of the attributes can be removed from this set, i.e., they are all necessary.

When a set of conditional attributes which preserves the discernibility ability is not
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minimal, it is called a superreduct.
In a classification problem, it is usually sufficient to preserve the ability to

discern between decision classes and not necessarily between individual elements.

In this case, we call such a minimal set a decision reduct or relative reduct.
Additionally, a general framework for fuzzy rough attribute selection was pre-

sented in [18]. LetM be a monotone measure to determine the degree of ability

to preserve the discernibility between decision classes such thatM (C) = 1. Let

A⊆ C , then A is a fuzzyM -decision superreduct to degree α ∈ (0, 1] ifM (A)≥ α. If

A is minimal for this property for α, i.e., ∀A′ ⊆ A:M (A′)< α, the set A is called a

fuzzyM -decision reduct to degree α.

To determine which attributes are dispensable or redundant, we can consider

different techniques. If we want to determine all reducts, we could make use of a

discernibility matrix. If finding one reduct is sufficient, we could use some heuristic

algorithms.

A discernibility matrix M is a matrix of size n×n, with n = |U |. Every entry Mi j of

the matrix contains those conditional attributes which discern the objects x i , x j ∈ U .

Based on M , we can describe the discerniblity function f given by

f =
∧
�
∨

{a ∈ C | a ∈ Mi j} | Mi j 6= ;
	

,

i.e., we take the conjunction of all disjunctions of conditional attributes in a non-

empty entry of the matrix. Such discernibility function is defined as a conjunctive

normal form. If we transform f into its disjunctive normal form, every disjunction

of f represents a decision reduct. Note that this transformation is an NP-hard

problem.

In literature, the concepts of discernibility matrix and discernibility function

are extended to fuzzy rough set theory. Examples of algorithms which use a

fuzzy discernibility matrix to determine all fuzzy decision reducts can be found

in [11,12,14,66,195].

On the other hand, if we only want to determine one decision reduct, it is suffi-

cient to apply a heuristic algorithm. For this, the dependency degree [18] is often
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used as a measure to express the portion of the universe which can be discerned

when reducing the set of conditional attributes. For example, the QuickReduct

algorithm [15] uses the dependency degree as search and stopping criterium:

starting from the empty set, the conditional attribute which provides the highest

dependency degree is added to the set of attributes. The result of this algorithm is a

superreduct. Examples which uses a fuzzy variant of QuickReduct of an alternative

heuristic algorithm can be found in [5,16,17,37,39,82,83,108,133,167].

Instance selection

Instance selection is a preprocessing step similar to feature selection, however, the

size of the universe is reduced instead of the size of the attribute set. By removing

instances or objects from the data, it can remove noisy data and thus, improve the

performance of the learning algorithm. Other advantages are the reduced storage

requirement and reduced running times. This preprocessing step is also called

prototype selection, training set selection and sample selection.

The first instance selection method using fuzzy rough set theory was developed

in [78]. The authors considered three different decision criteria to decide whether

an object is removed from the dataset. A more complex instance selection method

was proposed in [159] and later optimized in [160], for which the authors used

ordered weighted average based fuzzy rough sets [19].

Classification

In classification tasks, the goal is to predict a qualitative outcome. Given a training

set where each object is labeled to a decision class, we want to determine for a new

object to which decision class it belongs, by comparing it based on the conditional

attributes to the objects in the training set.

A possible classification algorithm is rule induction [60]. Based on the data at

hand, we want to construct ‘if-then’ rules. Applications which discuss fuzzy rule

induction can be found in [50,67,80,102,157,167,195].
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Another classification algorithm is nearest neighbor classification. Given k ∈ N,

the k nearest neighbor classifier [22] assigns a class label to a new object by looking

at the k nearest training instances. In [6,85,136,139,145,161], we can find some

methods using fuzzy k nearest neighbor algorithms.

Regression

In regression tasks, we want to estimate a real-valued outcome based on the

conditional attributes values of the object. Since less attention has been directed to

fuzzy rough set theory based regression, research on this topic is minor. Applications

can be found in [1,79].

1.2 Research objectives

The goal of this work is to provide a systematic, theoretical study of rough set

theory and fuzzy rough set theory, unifying existing proposals and developing new

ones, with a view to enhance their suitability for machine learning purposes, as well

as to investigate desirable properties that may be inherited from the contributing

theories. Based on the theoretical study done in this dissertation, researchers are

able to choose between different models based on their needs. In order to do so,

we define the following research objectives:

• In a wide range of generalizations of Pawlak’s rough set model, which gener-

alizations are meaningful from a semantical point of view? In other words,

we will study which approximation operators provide approximations which

can be interpreted by means of the original data.

• In a wide range of (fuzzy) generalizations of Pawlak’s rough set model, which

generalizations are meaningful from a constructive point of view? In other

words, we will study which approximation operators maintain theoretical

properties.

• In a wide range of (fuzzy) generalizations of Pawlak’s rough set model, which

generalizations are meaningful from a practical point of view? In other words,

we will study which approximation operators yield high accuracy.
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1.3 Outline of the dissertation

The outline of this work is as follows. In Chapter 2, we introduce some prelimi-

nary notions of rough set theory. First, we discuss the original rough set model

introduced by Pawlak [128]. The model of Pawlak has three equivalent definitions

which can all be generalized in different ways. Such generalizations can often be

classified as covering-based rough set models. In Section 2.2, we recall different

covering-based rough set models defined in literature. Furthermore, we discuss

the variable precision rough set (VPRS) model of Ziarko [203]. This model allows

for more flexibility towards noisy data compared to Pawlak’s rough set model.

In Chapter 3, we study rough set theory from a semantical point of view. To

this aim, we discuss a new conceptual understanding of rough set models. We

recall a semantical approach of Pawlak’s rough set model, for which we construct

a two-part language. The formulas related with this language can be interpreted

as the intension of a concept [186]. The extensions of the concepts related with

the formulas provide the set of definable sets, which is algebraically described by a

Boolean algebra. Then, we develop a semantical approach to covering-based rough

set models. Since we allow other relations between attribute values than the equal-

ity relation, the set of definable sets will now longer be given by a Boolean algebra,

but by a join-semilattice. We illustrate this semantical approach by applying it to

dominance-based rough sets. Furthermore, we introduce a semantical approach

for decision tables with missing values using Pawlak’s rough set model. The results

obtained in Sections 3.3 and 3.5 motivate the research on covering-based rough

set models, as it allows rule induction for ordered and incomplete decision tables.

In Chapter 4, we aim to provide a theoretical comparison of different covering-

based approximation operators. To this end, we construct a unified framework

of dual covering-based approximation operators. By studying equalities between

different approximation operators, we reduce the 69 pairs of dual approximation

operators we consider to 36 pairs of covering-based rough set approximation oper-

ators, of which 13 pairs are introduced by us. Furthermore, we study partial order

relations between these 36 pairs to provide more insight in the accuracy of the
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approximation operators. In addition, we study which properties of Pawlak’s rough

set model are maintained for each of the 36 pairs.

In Chapter 5, we recall some preliminary notions of fuzzy set theory. First, we

discuss fuzzy logical connectives and fuzzy set theory introduced by Zadeh [193].
Moreover, we recall some aggregation operators and we discuss the technique of

representation by levels introduced by Sánchez et al. [144].

In Chapter 6, we discuss fuzzy neighborhood operators from the perspective

of fuzzy rough set theory. We introduce the notion of a fuzzy covering, the fuzzy

neighborhood system of an object and the fuzzy minimal and maximal description

of an object given a fuzzy covering. In addition, we extend four crisp neighborhood

operators and six crisp coverings studied in [189] to the fuzzy setting. We study

which results for crisp neighborhood operators are maintained. Moreover, we com-

bine four fuzzy neighborhood operators and six fuzzy coverings, resulting in 24

combinations of fuzzy neighborhood operators. We study partial order relations

between these 24 fuzzy neighborhood operators. In addition, we discuss a fuzzy

neighborhood operator introduced in [107].

In Chapter 7, we introduce the implicator-conjunctor-based (IC) fuzzy rough

set model. First, we present a historical overview on the research of fuzzy rough set

theory. Next, we introduce this general fuzzy rough set model which encapsulates

many fuzzy rough set models discussed in literature and we study which properties

of Pawlak’s rough set model are maintained for the IC model. Note that each

fuzzy neighborhood operator studied in Chapter 6 may be used to describe the

indiscernibility between objects of the universe, hence, it may be used to define

the IC model.

In Chapter 8, we examine different fuzzy covering-based rough set models. We

recall four existing models and introduce three new ones. For each of the seven

models, we discuss which properties of Pawlak’s rough set model are maintained.

Furthermore, we discuss partial order relations between these seven models and

IC models using different fuzzy neighborhood operators based on a fuzzy covering
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to study accuracy of the approximation operators.

In Chapter 9, we discuss different noise-tolerant fuzzy rough set models. A

drawback of the IC model is the use of the infimum and supremum operator, as

both operators are very sensitive to noise in data. Here, we recall seven noise-

tolerant fuzzy rough set models: four models are frequency-based, one adjusts

the set which is approximated and two use different aggregation operators than

the infimum and supremum operator. For each model, we generalize, correct or

simplify its definition and study which properties of Pawlak’s rough set model are

maintained. Similarly as the VPRS model, allowing more flexibility towards noise

typically involves sacrificing some desirable properties. Furthermore, we analyze

the robustness of the noise-tolerant fuzzy rough set models and the IC model with

respect to attribute and class noise.

Finally, in Chapter 10, we state the most important conclusions of this work. In

addition, we discuss future research challenges.

Many results presented in this dissertation have been published or have been

submitted for publication to peer reviewed international journals and to the pro-

ceedings of international conferences. Specifically, the semantical approach to

Pawlak’s rough set model and covering-based rough set models has been presented

in [30], and the application to dominance-based rough sets was discussed in [29].
The publication of the results concerning the semantical approach for decision

tables with missing values is in preparation. The computational approach of rough

sets was first studied in [31] and later extended in [26]. Currently, we are preparing

the publication of the results concerning the frameworks of Zhao and Samanta and

Chakraborty. The study on fuzzy neighborhood operators was published in [27]. We

introduced the implicator-conjunctor-based fuzzy rough set model in the journal

article [35], in which we also discussed noise-tolerant fuzzy rough set models, and

in the conference proceedings [33,34]. Some noise-tolerant models were adapted

in [32]. Finally, fuzzy covering-based rough set models were studied in [25,28].
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CHAPTER2

Preliminaries

In this chapter, we introduce some preliminary notions of rough set theory. In

Section 2.1, we recall the original rough set model of Pawlak. Next, in Section 2.2,

we discuss different covering-based rough set models defined in literature. Finally,

we recall the variable precision rough set model of Ziarko in Section 2.3.

2.1 Pawlak’s rough set model

In the early eighties, Zdzisław Pawlak [128] introduced rough set theory in order

to obtain information from inconsistent, insufficient and incomplete data. This

problem occurs in many situations where decision making is involved: when

diagnosing patients, spam or image classification, learning from examples, pattern

recognition, rule-based control, minimizing credit risk, . . . [130]. For example,

assume the universe U to be a set of patients. We say that the data is

• inconsistent, if two patients share exactly the same symptoms, but only one

of the patients has a certain disease.

27
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• insufficient, if we cannot determine whether a patient has a certain disease

given the considered symptoms.

• incomplete, if for a patient the result of a symptom is missing or if there are

multiple possibilities for the result.

When two patients share the same symptoms, we say that these patients are

indiscernible from each other, i.e., we cannot distinguish them based on the list

of symptoms. More formally, Pawlak used an equivalence relation to describe the

indiscernibility between objects, also called instances, of the universe. Recall that

an equivalence relation E ⊆ U × U is

• reflexive, i.e., ∀x ∈ U : (x , x) ∈ E,

• symmetric, i.e., ∀x , y ∈ U : (x , y) ∈ E⇒ (y, x) ∈ E,

• transitive, i.e., ∀x , y, z ∈ U : (x , y) ∈ E and (y, z) ∈ E⇒ (x , z) ∈ E.

The equivalence class of an instance x ∈ U by E describes all the objects which

cannot be discerned from x and is denoted by

[x]E = {y ∈ U | (x , y) ∈ E}.

Given such an equivalence relation E, we call the tuple (U , E) a Pawlak approxi-
mation space. Note that the equivalence classes are also called the basic granules
of U .

Furthermore, let X ⊆ U denote a concept in the Pawlak approximation space

(U , E), e.g., X is the set of all patients with a particular disease. It is possible that

we cannot fully describe the concept X by the equivalence classes given in the

partition U/E. Therefore, Pawlak introduced the lower and upper approximation
operator with respect to the indiscernibility relation E.

Definition 2.1.1. Let (U , E) be a Pawlak approximation space, then the lower

approximation operator apr
E

: P (U)→P (U) is defined by

∀X ⊆ U : apr
E
(X ) = {x ∈ U | [x]E ⊆ X } (2.1)

and the upper approximation operator aprE : P (U)→P (U) is defined by

∀X ⊆ U : aprE(X ) = {x ∈ U | [x]E ∩ X 6= ;}, (2.2)
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where P (U) represents the collection of subsets of U .

The lower approximation apr
E
(X ) of a concept X contains those objects which

certainly belong to X and the upper approximation aprE(X ) of a concept X contains

those objects which possibly belong to X . Going back to our example where X is

the set of patients with a particular disease, we see that the patients in apr
E
(X )

certainly have the disease, while the patients in aprE(X ) possibly have the disease.

Besides the lower and upper approximation of a concept X , we can also de-

scribe X by three pair-wise disjoint regions: the positive, the negative and the

boundary region [129]. Let X ⊆ U , then the positive region, the negative region

and the boundary region of X in (U , E) are defined by

POSE(X ) = apr
E
(X ), (2.3)

NEGE(X ) = apr
E
(X c), (2.4)

BNDE(X ) = aprE(X ) \ apr
E
(X ), (2.5)

where X c represents the set-theoretic complement of X . The positive region of X
is the same as the lower approximation of X , it describes all objects certainly

belonging to the concept, while the negative region describes the objects which

certainly not belong to the concept (in our example it describes all the patients

which certainly do not have the disease). The boundary region contains those

elements of the universe of which it is uncertain whether they belong to the

concept X or not.

Note that the lower and upper approximation operators defined in Defini-

tion 2.1.1 are referred to as the two-way approximation operators and the three

regions are referred to as the three-way approximation operators. Furthermore,

we are able to obtain the two-way approximation operators from the three-way

approximation operators: for X ⊆ U , we have that

apr
E
(X ) = POSE(X ),

aprE(X ) = POSE(X )∪ BNDE(X ).

The interpretation of the two- and three-way approximation operators with respect

to E is illustrated in Figure 2.1.
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upper approximation of X boundary region

set X

lower approximation or positive region of X

negative region of X

U

Figure 2.1: Two- and three-way approximations of a concept X in (U , E)

The two-way approximation operators defined in Eqs. (2.1) and (2.2) have

equivalent characterizations [189]. While in Definition 2.1.1 the element-based
definition of Pawlak’s rough set model is given, we can also consider the granule-
based definition

∀X ⊆ U : apr
E
(X ) =

⋃

{[x]E ∈ U/E | [x]E ⊆ X }, (2.6)

∀X ⊆ U : aprE(X ) =
⋃

{[x]E ∈ U/E | [x]E ∩ X 6= ;} (2.7)

or the subsystem-based definition

∀X ⊆ U : apr
E
(X ) =

⋃

{Y ∈B(U/E) | Y ⊆ X }, (2.8)

∀X ⊆ U : aprE(X ) =
⋂

{Y ∈B(U/E) | X ⊆ Y }. (2.9)

In this definition,B(U/E) ⊆ P (U) is obtained from the partition U/E by adding

the empty set and closing it under set union. It is a σ-algebra of subsets of U and

it is a sub-Boolean algebra of the Boolean algebra (P (U), c,∩,∪), where ∩ and ∪
represent the set intersection and set union [128].
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To end this subsection, we discuss the properties of Pawlak’s rough set approxi-

mation operators in Table 2.1, where X and Y denote arbitrary subsets of U . Note

that with each property we associate an abbreviation.

The properties (D), (INC), (SM), (IU), (ID), (LU) and (UE) were already stated

in [128].
The idea of the adjointness property (A) comes from the concept of a Ga-

lois connection [76, 158]: let U1 and U2 be two universes and f : U1 → U2 and

g : U2→ U1 two mappings between these universes. We call ( f , g) a Galois connec-
tion in (U1, U2) if for all x ∈ U1 and y ∈ U2 it holds that f (x)≤2 y⇔ x ≤1 g(y),
where ≤i is an order relation in Ui . It is clear that if f and g are the upper and

lower approximation operator respectively, then they form a Galois connection in

(P (U),P (U)) with ≤1=≤2=⊆. As a consequence of this property, if for X ⊆ U
apr

E
(X ) = X holds, then necessarily also aprE(X ) = X , and vice versa.

The (RM)-property is relevant in many applications of rough sets. In particular,

in the context of attribute selection in information systems [146,154], the relation E
represents the indiscernibility between objects based on their attribute values. When

attributes are omitted from the information system, the granularity imposed by

the equivalence relation becomes coarser and it is then desirable that the lower

approximation does not increase, and the upper approximation does not decrease.

2.2 Covering-based rough set models

In this section, we discuss different covering-based rough set models defined in

literature. We present the frameworks of Yao and Yao [189], Yang and Li [177],
Zhao [197] and Samanta and Chakraborty [142,143]. Furthermore, we discuss

the concepts of singleton, subset and concept approximation operators.

2.2.1 Framework of Yao and Yao

We start by discussing the covering-based approximation operators studied by Yao

and Yao [189]. By weakening the condition of an equivalence relation, many gener-

alizations of Pawlak’s rough set model can be defined. An important generalization

can be obtained by replacing the partition U/E with a covering of U .
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Table 2.1: Properties of the lower and upper approximation operators for Pawlak

approximation spaces (U , E), (U , E1) and (U , E2)

Property Abbreviation Definition

Duality (D) aprE(X ) = (apr
E
(X c))c

Inclusion (INC) apr
E
(X ) ⊆ X and X ⊆ aprE(X )

Set monotonicity (SM) X ⊆ Y ⇒

¨

apr
E
(X ) ⊆ apr

E
(Y )

aprE(X ) ⊆ aprE(Y )

Intersection (IU) apr
E
(X ∩ Y ) = apr

E
(X )∩ apr

E
(Y )

and union aprE(X ∪ Y ) = aprE(X )∪ aprE(Y )

Idempotence (ID) apr
E
(apr

E
(X )) ⊇ apr

E
(X )

aprE(aprE(X )) ⊆ aprE(X )

Interaction lower (LU) aprE(apr
E
(X )) ⊆ apr

E
(X )

and upper apr
E
(aprE(X )) ⊇ aprE(X )

Universe (UE) apr
E
(U) = U and aprE(U) = U

and empty set aprE(;) = ; and aprE(;) = ;

Adjointness (A) aprE(X ) ⊆ Y ⇔ X ⊆ apr
E
(Y )

Relation monotonicity (RM) E1 ⊆ E2⇒

¨

apr
E2
(X ) ⊆ apr

E1
(X )

aprE1
(X ) ⊆ aprE2

(X )
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Definition 2.2.1. [201] Let C = {Ki ⊆ U | Ki 6= ;, i ∈ I} be a family of non-empty

subsets of U , with I a set of indices. The set C is called a covering of U if
⋃

i∈I
Ki = U .

The ordered pair (U ,C) is called a covering approximation space.

It is clear that a partition generated by an equivalence relation is a special case

of a covering of U . Every set K ∈ C is called a patch. In a covering approximation

space, equivalence classes can be generalized to neighborhoods.

Definition 2.2.2. [189] A neighborhood operator in a covering approximation

space (U ,C) is a mapping N: U →P (U) which associates with every object x ∈ U
a neighborhood N(x) ⊆ U .

In general, it is assumed that a neighborhood operator N is reflexive, i.e.,

∀x ∈ U : x ∈ N(x), in order to fulfil the intuitive idea of a neighborhood. Further-

more, a neighborhood operator N can be symmetric, i.e.,

∀x , y ∈ U : x ∈ N(y)⇒ y ∈ N(x),

and it can be transitive, i.e.,

∀x , y ∈ U : x ∈ N(y)⇒ N(x) ⊆ N(y).

Moreover, given a neighborhood operator N, we can define the inverse neighborhood
operator N−1 by ∀x , y ∈ U : y ∈ N−1(x)⇔ x ∈ N(y).

The neighborhood of an object x ∈ U can be regarded as a generalization of

the equivalence class [x]E . Therefore, each neighborhood operator N defines an

ordered pair (apr
N

, aprN) of element-based approximation operators defined by,

for X ⊆ U ,

apr
N
(X ) = {x ∈ U | N(x) ⊆ X }, (2.10)

aprN(X ) = {x ∈ U | N(x)∩ X 6= ;}. (2.11)

Yao and Yao [189] described some neighborhood operators based on a co-

vering C. For this purpose, they defined the neighborhood system C (C, x) of an

element x ∈ U given the covering C as follows:

C (C, x) = {K ∈ C | x ∈ K}. (2.12)
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In a neighborhood systemC (C, x), the minimal and maximal sets which contain

an element x ∈ U are particularly important. The set

md(C, x) = {K ∈ C (C, x) | (∀S ∈ C (C, x))(S ⊆ K ⇒ K = S)} (2.13)

is called the minimal description of x [8]. On the other hand, the set

MD(C, x) = {K ∈ C (C, x) | (∀S ∈ C (C, x))(K ⊆ S⇒ K = S)} (2.14)

is called the maximal description of x [202]. The sets md(C, x) and MD(C, x)
are also called the minimal-description and maximal-description neighborhood

systems of x [189]. The importance of the minimal and maximal description of x
is demonstrated by the following proposition:

Proposition 2.2.3. [189] Let (U ,C) be a covering approximation space, x ∈ U
and K ∈ C (C, x).

(a) If any descending chain in C is closed under the infimum, i.e., if for any set

{Ki | i ∈ I} with Ki+1 ⊆ Ki it holds that inf
i∈I

Ki =
⋂

i∈I
Ki ∈ C, then there exists a

set K1 ∈md(C, x) with K1 ⊆ K . Moreover, it holds that
⋂

{K ∈ C | K ∈md(C, x)}=
⋂

{K ∈ C | K ∈ C (C, x)}.

(a) If any ascending chain in C is closed under the supremum, i.e., if for any set

{Ki | i ∈ I} with Ki ⊆ Ki+1 it holds that sup
i∈I

Ki =
⋃

i∈I
Ki ∈ C, then there exists

a set K2 ∈MD(C, x) with K ⊆ K2. Moreover, it holds that
⋃

{K ∈ C | K ∈MD(C, x)}=
⋃

{K ∈ C | K ∈ C (C, x)}.

Note that the conditions in Proposition 2.2.3 are necessary, as illustrated in the

next example.

Example 2.2.4. Let U = (−1, 1), x = 0 ∈ U and assume

C (C, x) = {(−
1
n

,
1
n
) | n ∈ N \ {0}}.

As for all n ∈ N\{0} it holds that (− 1
n+1 , 1

n+1 ) ( (− 1
n , 1

n ), we obtain that md(C, x) = ;.
Moreover, it holds that

(−1,1) = U =
⋂

{K ∈ C | K ∈md(C, x)} 6=
⋂

{K ∈ C | K ∈ C (C, x)}= {0}.
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Note that Proposition 2.2.3 is satisfied when the covering C is finite. We will

always assume that the conditions on C are satisfied.

Given the three neighborhood systems of x ∈ U , Yao and Yao [189] constructed

the following four neighborhood operators based on the covering C:

• NC1 (x) =
⋂

{K ∈ C | K ∈md(C, x)}=
⋂

{K ∈ C | K ∈ C (C, x)},

• NC2 (x) =
⋃

{K ∈ C | K ∈md(C, x)},

• NC3 (x) =
⋂

{K ∈ C | K ∈MD(C, x)},

• NC4 (x) =
⋃

{K ∈ C | K ∈MD(C, x)}=
⋃

{K ∈ C | K ∈ C (C, x)}.

Therefore, for each NCi with i = 1, 2, 3, 4, we have a pair of dual approximation

operators
�

apr
NCi

, aprNCi

�

defined in Eqs. (2.10) and (2.11).

A large portion of element-based approximation operators studied in literature

uses a binary relation R on U to describe the neighborhood of an element x . More

specifically, given a relation R ⊆ U × U and an object x ∈ U , then the R-foreset
Rp(x) of x is given by all the predecessors of x by R:

Rp(x) = {y ∈ U | (y, x) ∈ R} (2.15)

and the R-afterset Rs(x) of x is given by all the successors of x by R:

Rs(x) = {y ∈ U | (x , y) ∈ R}. (2.16)

Often the considered relation R is assumed to be reflexive. If the relation R is

reflexive and symmetric, it is called a tolerance relation [147] and if R is reflexive

and transitive, then R is called a pre-order or dominance relation [53]. Note that a

binary relation R can also satisfy the following properties:

• R is serial if and only if ∀x ∈ U ,∃y ∈ U : (x , y) ∈ R.

• R is inverse serial if and only if ∀x ∈ U ,∃y ∈ U : (y, x) ∈ R.

• R is Euclidean if and only if ∀x , y, z ∈ U : (x , y) ∈ R, (x , z) ∈ R⇒ (y, z) ∈ R.
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Note that a symmetric relation R is Euclidean if and only if it is transitive. Moreover,

if R is reflexive and Euclidean, it is also symmetric and thus an equivalence relation.

It is clear that when R is an equivalence relation, the element-based approxi-

mation operators defined in Eqs. (2.10) and (2.11) with N(x) = [x]R for x ∈ U
coincide with Pawlak approximation operators. When a binary relation R is used

to describe the discernibility between the objects of the universe, we consider

a relation approximation space (U , R) instead of a covering approximation space

(U ,C). Moreover, when for example the foresets are considered, the approximation

operators are then denoted by, for X ⊆ U ,

apr
R
(X ) = {x ∈ U | ∀y ∈ U : (y, x) ∈ R⇒ y ∈ X }, (2.17)

aprR(X ) = {x ∈ U | ∃y ∈ U : (y, x) ∈ R∧ y ∈ X }. (2.18)

Besides generalizations of the element-based definition of Pawlak’s rough set

model, the granule-based representations can be generalized by considering a

covering C instead of a partition U/E. However, although (apr
E
, aprE) are dual

approximation operators, this property is no longer satisfied for the generaliza-

tions. Therefore, given a covering C, we consider two pairs of dual approximation

operators
�

apr’
C

, apr’
C

�

and
�

apr”
C

, apr”
C

�

which are defined, for X ⊆ U , by

apr’
C
(X ) =

⋃

{K ∈ C | K ⊆ X } (2.19)

= {x ∈ U | (∃K ∈ C)(x ∈ K ∧ K ⊆ X )}

apr’
C(X ) = (apr’

C
(X c))c (2.20)

= {x ∈ U | (∀K ∈ C)(x ∈ K ⇒ K ∩ X 6= ;)}

apr”
C
(X ) = (apr”

C(X
c))c (2.21)

= {x ∈ U | (∀K ∈ C)(x ∈ K ⇒ K ⊆ X )}

apr”
C(X ) =

⋃

{K ∈ C | K ∩ X 6= ;} (2.22)

= {x ∈ U | (∃K ∈ C)(x ∈ K ∧ K ∩ X 6= ;)}

The pair
�

apr’
C

, apr’
C

�

is called the tight pair of covering-based approximation

operators, while
�

apr”
C

, apr”
C

�

is called the loose pair of covering-based approxima-
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tion operators [21]. This is because of the following property:

∀X ⊆ U : apr”
C
(X ) ⊆ apr’

C
(X ) ⊆ X ⊆ apr’

C(X ) ⊆ apr”
C(X ).

Besides neighborhood operators based on a covering C, Yao and Yao [189]
also considered six coverings derived from an initial covering C:

• C1 =
⋃

{md(C, x) | x ∈ U},

• C2 =
⋃

{MD(C, x) | x ∈ U},

• C3 =
�⋂

md(C, x) | x ∈ U
	

=
�⋂

C (C, x) | x ∈ U
	

,

• C4 =
�⋃

MD(C, x) | x ∈ U
	

=
�⋃

C (C, x) | x ∈ U
	

,

• C∩ = C \
�

K ∈ C | (∃C′ ⊆ C \ {K})
�

K =
⋂

C′
�	

,

• C∪ = C \
�

K ∈ C | (∃C′ ⊆ C \ {K})
�

K =
⋃

C′
�	

.

The idea behind the first two coverings is similar to the rationale for NC1 , NC2 ,

NC3 and NC4 . Given the extreme neighborhood systems md(C, x) and MD(C, x) for

x ∈ U , the union of these systems leads to new coverings. Note that this is not the

case when taking the intersection. CoveringsC3 andC4 are directly related with NC1
and NC4 . The covering C3 is called the induced covering of C and is also denoted by

Cov(C) [10]. Covering C∩ is called the intersection reduct and C∪ the union reduct.
These reducts eliminate intersection reducible elements, resp. union reducible

elements, from the covering, respectively. An intersection reducible element of a

covering C is an element K ∈ C such that there exists a subcovering C′ ⊆ C \ {K}
for which K =

⋂

C′, while a union reducible element of C is an element K ∈ C
such that there exists a subcovering C′ ⊆ C \ {K} for which K =

⋃

C′. The equal-

ity C1 = C∪ was established in [141], while the other coverings are different in

general. Also, note that C1, C2 and C∩ are subcoverings of C, while C3 and C4 are

not. In addition, it holds that C2 ⊆ C∩ [141].

Next, we discuss generalizations of the subsystem-based definitions of Pawlak’s

model presented in Eqs. (2.8) and (2.9). Yao and Yao used the notion of a closure

system over U , i.e., a family of subsets of U that contains U and is closed under
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set intersection [189]. Given a closure system S over U , one can construct its dual

system S′ = {Kc | K ∈ S}. The system S′ contains ; and is closed under set union.

Given S = (S′,S), a pair of dual lower and upper approximations can be defined as

follows: for X ⊆ U ,

apr
S
(X ) =

⋃

{K ∈ S′ | K ⊆ X }, (2.23)

aprS(X ) =
⋂

{K ∈ S | X ⊆ K}. (2.24)

As a particular example of a closure system, Yao and Yao [189] considered the

intersection-closure S∩,C of a covering C, i.e., the minimal subset of P (U) that

contains C, ; and U , and is closed under set intersection:

S∩,C =
�
⋂

{K ⊆ U | K ∈ F} | F ⊆ C
	

. (2.25)

Note that the intersection-closure S∩,C is a meet-semilattice, i.e., every non-empty

finite subset of S∩,C has a greatest lower bound in S∩,C. On the other hand, the

union-closure of C, denoted by S∪,C, is the minimal subset of P (U) that contains

C, ; and U , and is closed under set union:

S∪,C =
�
⋃

{K ⊆ U | K ∈ F} | F ⊆ C
	

. (2.26)

The union-closure S∪,C is a join-semilattice, i.e., every non-empty finite subset

of S∪,C has a least upper bound in S∪,C. It can be shown that the dual system (S∪,C)′

forms a closure system. Both systems S∩ = ((S∩,C)′, S∩,C) and S∪ = (S∪,C, (S∪,C)′)
can be used to obtain two pairs of dual approximation operations, according to

Eqs. (2.23) and (2.24).

2.2.2 Framework of Yang and Li

Besides the study of dual generalized approximation operators, various authors

have studied upper approximation operators paired with a non-dual lower approx-

imation operator [132,156,173,174,194,199,200]. Yang and Li [177] provided

an overview of these non-dual pairs of approximation operators, which is resumed

below. Let (U ,C) be a covering approximation space, then we can define seven

upper approximation operators HCi : P (U)→P (U) as follows: let X ⊆ U , then

HC1 (X ) = apr’
C
(X )∪

�⋃¦⋃

md(C, x) | x ∈ X \ apr’
C
(X )

©�

(2.27)
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HC2 (X ) =
⋃

{K ∈ C | K ∩ X 6= ;} (2.28)

HC3 (X ) =
⋃¦⋃

md(C, x) | x ∈ X
©

(2.29)

HC4 (X ) = apr’
C
(X )∪

�⋃
�

K ∈ C | K ∩ (X \ apr’
C
(X )) 6= ;

	

�

(2.30)

HC5 (X ) =
⋃

{NC1 (x) | x ∈ X } (2.31)

HC6 (X ) = {x ∈ U | NC1 (x)∩ X 6= ;} (2.32)

HC7 (X ) =
⋃

{NC1 (x) | N
C
1 (x)∩ X 6= ;} (2.33)

The upper approximation operators HC1 to HC5 were studied with the tight lower

approximation operator apr’
C

, and the operators HC6 and HC7 with the tight lower

approximation operator for the covering C3, i.e., apr′
C3

. Note that our definition of

HC1 and HC3 slightly differs from the one presented in [177]: indeed, we need to

add one extra
⋃

-symbol compared to [177], since the minimal description of x
is a set of sets. It is clear from the definition that HC2 = apr”

C and HC6 = aprNC1
.

Although originally the upper approximation operators were studied with a non-

dual lower approximation operator, we will consider the dual pairs (LCi , HCi ), with

LCi (X ) = (H
C
i (X

c))c for X ⊆ U .

2.2.3 Framework of Zhao

In [197], Zhao studied covering-based approximation operators from a topological

point of view. Therefore, we discuss some essential topological concepts [119].

Definition 2.2.5. [119] A topology on a set U is a collection T of subsets of U
which has the following properties:

1. ; and U are in T .

2. The union of the elements of any subcollection of T is in T .

3. The intersection of the elements of any finite subcollection of T is in T .

The ordered pair (U ,T ) is called a topological space. The set X ⊆ U is said to be

open in U if it belongs to the collection T , and closed in U if X c is open in U . The

interior int(X ) of X is the union of all open sets in U contained in X . The closure X
of X is the intersection of all closed sets in U containing X .
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Furthermore, let V ⊆ U , then (V,TV ) is called a topological subspace of (U ,T ),
where

TV = {V ∩ X | X ∈ T }.

Moreover, a separation of U is a pair (X , Y ) of disjoint non-empty open sets in U
whose union is U . The space (U ,T ) is said to be connected if there does not exist a

separation of U .

Definition 2.2.6. [197] Given a topological space (U ,T ), we define an equiva-

lence relation on U by setting x ∼ y for x , y ∈ U if there is a connected subspace

of (U ,T ) containing both x and y. For each x in U , the equivalence class of x is

called the component of x and is denoted by [x]∼.

Zhao [197] introduced the topology induced by C, and showed that this notion

indeed satisfies the conditions of Definition 2.2.5.

Definition 2.2.7. [197] Let (U ,C) be a covering approximation space. The topol-

ogy T on U induced by C is defined as follows: X ⊆ U is open in U if and only if

for each x in X , there exist a subset {C1, C2, . . . , Cn} of C such that x ∈
n
⋂

i=1
Ci ⊆ X .

We illustrate the concepts of the previous two definitions in the following

example:

Example 2.2.8. Let U = {1,2,3,4} and C = {{1,2}, {1,3}, {2,3,4}}, then the

topology induced by C is given by

T = {;, U , {1,2}, {1, 3}, {2, 3,4}, {1}, {2}, {3}, {1,2, 3}}.

For V1 = {1} and V2 = {2,3,4} it holds that (V1,TV1
) and (V2,TV2

) are connected

subspaces. Therefore it holds that U/∼ = {{1}, {2, 3,4}}.

Given a covering approximation space (U ,C) and the topology T induced by C,

Zhao [197] studied the following seven pairs of dual covering-based approximation

operators in (U ,C):

• The pair (l−, l+) with for X ⊆ U ,

l−(X ) = {x ∈ U | NC1 (x) ⊆ X } (2.34)
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= int(X ),

l+(X ) = {x ∈ U | NC1 (x)∩ X 6= ;} (2.35)

= X .

• The pair (r−, r+) with for X ⊆ U ,

r−(X ) = {x ∈ U | (∀u ∈ U)(x ∈ NC1 (u)⇒ u ∈ X )}

= {x ∈ U | {x} ⊆ X }, (2.36)

r+(X ) =
⋃

{NC1 (x) | x ∈ X }

= {x ∈ U | {x} ∩ X 6= ;}. (2.37)

• The pair (s−, s+) with for X ⊆ U ,

s−(X ) = {x ∈ U | NC1 (x) ⊆ X ∨ {x} ⊆ X } (2.38)

= l−(X )∪ r−(X ),

s+(X ) = {x ∈ U | NC1 (x)∩ X 6= ; ∧ {x} ∩ X 6= ;} (2.39)

= l+(X )∩ r+(X ).

• The pair (b−, b+) with for X ⊆ U ,

b−(X ) = {x ∈ U | NC1 (x)∪ {x} ⊆ X } (2.40)

= l−(X )∩ r−(X ),

b+(X ) = {x ∈ U | (NC1 (x)∪ {x})∩ X 6= ;} (2.41)

= l+(X )∪ r+(X ).

• The pair (z−, z+) with for X ⊆ U ,

z−(X ) = {x ∈ U | NC1 (x) ⊆ X }, (2.42)

z+(X ) = {x ∈ U | NC1 (x)∩ X 6= ;}. (2.43)

Recall that NC1 (x) =
⋂

{Y ∈ T c | NC1 (x) ⊆ Y }, with T c the set of closed sets

defined by {Zc | Z ∈ T }.
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• The pair (COM−, COM+) with for X ⊆ U ,

COM−(X ) =
⋃

{Y ∈ U/∼ | Y ⊆ X }, (2.44)

COM+(X ) =
⋃

{Y ∈ U/∼ | Y ∩ X 6= ;}. (2.45)

• The pair (P4, P4) with for X ⊆ U ,

P4(X ) =
⋃
�

PCx | x ∈ U ∧ PCx ⊆ X
	

(2.46)

= {x ∈ U | PCx ⊆ X },

P4(X ) =
⋃
�

PCx | x ∈ U ∧ PCx ∩ X 6= ;
	

(2.47)

= {x ∈ U | PCx ∩ X 6= ;}.

where the adhesion PCx of x in U is defined by

PCx = {y ∈ U | (∀K ∈ C)(x ∈ K⇔ y ∈ K)}

= {y ∈ U | NC1 (x) = NC1 (y)}.

2.2.4 Framework of Samanta and Chakraborty

In [142,143], Samanta and Chakraborty did an extensive study on various covering-

based rough set approximation operators. They discussed the following pairs of

dual covering-based approximation operators in the covering approximation space

(U ,C):

• The pair (P1, P1) = (apr
NC4

, aprNC4
).

• The pair (P2, P2) with for X ⊆ U ,

P2(X ) =
⋃

{NC4 (x) | x ∈ U , NC4 (x) ⊆ X }, (2.48)

P2(X ) = {x ∈ U | ∀y ∈ U : x ∈ NC4 (y)⇒ NC4 (y)∩ X 6= ;}.

(2.49)

• The pair (P3, P3) = (apr’
C

, apr’
C).

• The pair (P4, P4) as defined in Eqs. (2.46) and (2.47).
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• The pair (C1, C1) = (apr’
C

, apr’
C).

• The pair (C2, C2) = (apr
NC1

, aprNC1
).

• The pair (C3, C3) with for X ⊆ U ,

C3(X ) = {x ∈ U | ∃y ∈ U : y ∈ NC1 (x)∧ NC1 (y) ⊆ X }, (2.50)

C3(X ) = {x ∈ U | ∀y ∈ U : y ∈ NC1 (x)⇒ NC1 (y)∩ X 6= ;}.

(2.51)

• The pair (C4, C4) = (LC7 , HC7 ).

• The pair (C5, C5) with for X ⊆ U ,

C5(X ) = {x ∈ U | ∀y ∈ U : x ∈ NC1 (y)⇒ y ∈ X }, (2.52)

C5(X ) =
⋃

{NC1 (x) | x ∈ X }. (2.53)

Moreover, Samanta and Chakraborty considered the following upper approximation

operators together with the lower approximation operator apr’
C

:

• The operator C
∗
= HC1 .

• The operator C− = HC2 .

• The operator C
#
= HC3 .

• The operator C
@
= HC4 .

• The operator C
+

defined by, for X ⊆ U ,

C
+
(X ) = apr’

C
(X )∪

�⋃

{NC1 (x) | x ∈ X \ apr’
C
(X )}

�

. (2.54)

Note that our definition of C
+

slightly differs from the one presented in [143]:
indeed, we need to add one extra

⋃

-symbol compared to [143], since NC1 (x)
is a set.
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• The operator C
%

defined by, for X ⊆ U ,

C
%
(X ) = apr’

C
(X )∪ (2.55)

�⋃¦⋃

{NC4 (y) | y ∈ U \ NC4 (x)} | x ∈ X \ apr’
C
(X )

©�c
.

We will study these six upper approximation operators C
i

with their dual lower

approximation operator C i for i ∈ {∗,−,#, @,+, %} defined for X ⊆ U by

C i(X ) = (C
i
(X c))c.

Finally, Samanta and Chakraborty studied the pair (CGr , C
Gr
) with for X ⊆ U ,

CGr(X ) =
⋃

{K ∈ C | K ⊆ X }, (2.56)

C
Gr
(X ) =

�
⋃

{K ∈ C | K ∩ X 6= ;}
�

\
�

CGr(X c)
�

. (2.57)

2.2.5 Singleton, subset and concept approximation operators

In literature, authors sometimes use the terminology of singleton, subset and

concept approximation operators [56,62]. We will illustrate them by means of the

neighborhood operator N. Given X ⊆ U , the singleton approximations of X are

given by

apr
sing
(X ) = {x ∈ U | N(x) ⊆ X },

aprsing(X ) = {x ∈ U | N(x)∩ X 6= ;},

i.e., the singleton approximation operators coincide with the element-based ap-

proximation operators (apr
N

, aprN). The subset approximations of X are given

by

apr
subs
(X ) =

⋃

{N(x) | x ∈ U ,N(x) ⊆ X },

aprsubs(X ) =
⋃

{N(x) | x ∈ U ,N(x)∩ X 6= ;},

i.e., the subset approximation operators coincide with the non-dual pair of granule-

based approximation operators (apr’
C

, apr”
C) when N is reflexive and the covering
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C = {N(x) | x ∈ U} is considered. Finally, the concept approximations of X are

given by

apr
conc
(X ) =

⋃

{N(x) | x ∈ X ,N(x) ⊆ X },

= apr
subs
(X )

aprconc(X ) =
⋃

{N(x) | x ∈ X ,N(x)∩ X 6= ;},

=
⋃

{N(x) | x ∈ X }.

Therefore, both HC3 and HC5 can be seen as concept upper approximation operators

by taking N = NC2 and N = NC1 respectively. We will prove in Chapter 4 that aprconc

is equivalent to an element-based upper approximation operator. Therefore, we

shall not consider this categorization of approximation operators in the remainder

of this dissertation, as the singleton, subset and concept approximation operators

can be described by element-based and granule-based approximation operators.

2.3 Variable precision rough set model

The original model designed by Pawlak has strict definitions, in the sense that it

does not allow misclassification: changing one element can lead to drastic changes

in the lower and upper approximation. The Variable Precision Rough Set (VPRS)

model proposed by Ziarko in 1993 [203] is designed to include tolerance to noisy

data. In this model, we allow some misclassification. To do this, we generalize the

standard set inclusion.

Let X and Y be non-empty subsets of the universe U . In the classical definition

of set inclusion, there is no room for misclassification, i.e., X is only included in Y
if all elements of X belong to Y . There is no distinction between sets that are more

included in Y than others. We introduce the measure to evaluate the relative degree
of misclassification of a set X with respect to a set Y :

c(X , Y ) =

(

1− |X∩Y |
|X | if X 6= ;

0 if X = ;
(2.58)

where |X | denotes the cardinality of the set X . We also call c(X , Y ) the relative

classification error and c(X , Y ) · |X | the absolute classification error. The more
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elements X and Y have in common, the lower the relative degree of misclassification.

So, if X is included in Y according to the classical definition of inclusion, then

c(X , Y ) = 0. Based on the measure c(X , Y ), we can characterize the classical

inclusion of X in Y without explicitly using a quantifier:

X ⊆ Y ⇔ c(X , Y ) = 0.

We can extend this in a natural way to the majority inclusion relation [203]. Given

0 ≤ β < 0.5 and X , Y ⊆ U , the majority inclusion relation between X and Y is

defined as

X
β

⊆ Y ⇔ c(X , Y )≤ β . (2.59)

We obtain the standard set inclusion (or total inclusion) for β = 0.

In addition, let R be a binary relation on U . For X ⊆ U and x ∈ U we define

the rough membership function RX of X as

RX (x) = 1− c(Rp(x), X ) =

(

|Rp(x)∩X |
|Rp(x)| Rp(x) 6= ;

1 Rp(x) = ;
(2.60)

The rough membership RX (x) quantifies the degree of inclusion of Rp(x) into X
and can be interpreted as the conditional probability that x belongs to X , given its

foreset Rp(x).
Ziarko worked in a Pawlak approximation space, but we can also introduce

the model in a relation approximation space (U , R). We work with asymmetric

boundaries as proposed by Katzberg and Ziarko.

Definition 2.3.1. [84] Let (U , R) be a relation approximation space, then the vari-

able precision rough set approximation operators (apr
R,u

, aprR,l) for 0≤ l < u≤ 1

are defined for X ⊆ U by

apr
R,u
(X ) = {x ∈ U | RX (x)≥ u}, (2.61)

aprR,l(X ) = {x ∈ U | RX (x)> l}. (2.62)

When u= 1− l, the rough set model presented in Definition 2.3.1 is called a

symmetric VPRS model. The original VPRS model proposed by Ziarko was based
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on an equivalence relation E and assumed 0≤ l < 0.5 and u= 1− l. With u= 1,

l = 0 and R an equivalence relation, we obtain the original rough set model of

Pawlak.

Although the VPRS model of Ziarko is more tolerant to noisy data in comparison

with the model of Pawlak, it lacks many properties of the latter. For 0< l < u< 1,

the VPRS model satisfies properties (SM) and (UE). When 0≤ l < 0.5 and u = 1− l,
the model also satisfies the duality property (D).
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CHAPTER3

Semantical approach to rough set theory

In a recent paper, Yao [186] argued that there are two sides to rough set theory: a

conceptual and a computational one. In a conceptual approach it is studied how to

define various notions and concepts of the theory, while in a computational approach
it is studied how to compute them. Therefore, the former approach provides

insights in the concepts of the theory, but may not supply computationally efficient

algorithms, whereas the latter approach is very suitable for computations and

applications, but the meaning of the concepts may be lost. Hence, both approaches

are fundamental in the research on rough set theory.

A fundamental task of rough set theory is to analyze data representation in order

to derive decision rules [60]. The left-hand-side (LHS) and the right-hand-side

(RHS) of a rule are descriptions of two concepts and the rule is a linkage between

the two concepts. In general, the left-hand-side consists of a conjunction of atomic

formulas (atoms), where an atomic formula describes the smallest information

block for a given attribute of the table and a possible value of that attribute. The

right-hand-side of a rule consists of a disjunction of such atomic formulas. If an

object satisfies all the atomic formulas in the left-hand-side of a decision rule, it

49
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will satisfy one of the atomic formulas in the right-hand-side of the rule. Hence,

we can make a decision on this object.

It is important to have a formal way to represent and interpret those de-

scriptors. To describe the semantics of a concept, we discuss its intension and its

extension [186]. While the intension of a concept describes the properties which

are characteristics of the concept, the extension of a concept contains all the objects

satisfying the properties of the intension. Unfortunately, the intensions of concepts

are barely discussed in the computational models, and if they are discussed, the

intension and extension of a concept are not explicitly connected, as happens

in Bonikowski et al. [8].
Such a semantically sound approach using both the intension and extension

was already suggested by Pawlak [126] and Marek and Pawlak [111] prior to the

introduction of rough set theory. However, except for a few articles by Marek and

Truszczyński [110] and Yao [185,187,191], the conceptual formulation of rough

sets is scarcely discussed. For three decades, the focus of the rough set research field

has been on the computational approach of rough set approximation operators, as

we will discuss in Chapter 4. However, whereas in the model of Pawlak there is a

clear semantical connection between the given data in the information or decision

table, this connection is often absent in generalized models.

With the aim of refocussing our attention again on the earlier research, we

recall the rough set framework of Pawlak [128,129] from a semantical point of

view. Starting from the data, the definability of subsets of the universe is discussed

before the notion of approximation operators [185]. In order to do this, a descriptive
language is constructed in two parts. The formulas in the language are considered

the intensions of the concepts. Corresponding to a formula, its meaning set, i.e., the

set of objects satisfying the formula, is the extension of the concept. A set of objects is

therefore definable, if it is the meaning set of a formula in the descriptive language,

otherwise, it is undefinable. From this point of view, approximation operators are

introduced in order to describe undefinable sets by means of definable sets. Given

an undefinable set X , the largest definable set contained in X is called the lower

approximation of X , while the smallest definable set containing X is called the

upper approximation of X . Therefore, these approximation operators are the only

meaningful ones in this framework. Moreover, in Section 3.3.4 it will be discussed
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that the definable sets for Pawlak’s model can be computed by a Boolean algebra

over a partition related to the data.

Unfortunately, it is not always possible to define such a partition. For in-

stance, in ordered information tables, in which the equivalence classes will mostly

consist of only one object, it is unreasonable for applications such as rule in-

duction to construct a partition. For analyzing such information tables, Greco

et al. used dominance-based rough sets [53, 54, 149]. Other examples include

the computational approaches for incomplete information tables discussed by

Kryszkiewicz [88,89] and Grzymala-Busse [59]. Therefore, we extend the semanti-

cal approach of Pawlak’s model to covering-based rough set models. However, the

definable sets will no longer be computed by the use of a Boolean algebra over a

partition, but by the union-closure of a covering, which is a join-semilattice.

The outline of this chapter is as follows. First, we give a formal overview of the

results obtained in Sections 3.2 and 3.3. Next, we recall a semantical approach for

Pawlak’s rough set model, for which we construct a two-part language. Furthermore,

we introduce a semantical approach for covering-based rough set models. We apply

this semantical approach to dominance-based rough sets in Section 3.4. In addition,

we introduce a semantical approach for decision tables with missing values using

Pawlak’s rough set model in Section 3.5. We end with conclusions and future work

in Section 3.6.

3.1 A new conceptual understanding of rough set

models

A possible application of Pawlak’s rough set model and covering-based rough set

models is rule induction. It is an important technique to extract knowledge from

data represented in a decision table [60]. Here, we assume the decision table T to

be complete with T the tuple

T = (U , At = C ∪ {d}, {Va | a ∈ At}, {Ia | a ∈ At}),

where U is a finite non-empty set of objects, At is a finite non-empty set of attributes

consisting of the set of conditional attributes C and the decision attribute d, Va
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Table TableTable

Elementary sets: U/E Elementary sets: C

Definable sets:B(U/E) Definable sets: S∪,C

Conjunctive concepts:

LHS of a rule

Disjunction of conjunctive concepts:

Set of rules

︸ ︷︷ ︸

Computational Pawlak
Extensions

︸ ︷︷ ︸

Semantics
Intensions

︸ ︷︷ ︸

Computational Covering
Extensions

Figure 3.1: Scheme comparing Pawlak’s model and covering-based models for a

complete decision table

is the non-empty domain of a ∈ At, and Ia : U → Va is a complete information

function for a ∈ At which maps every object to exactly one value in Va.

Knowledge in a decision table may be described with a set of rules, where each

rule consists of a condition part (left-hand-side) and decision part (right-hand-

side), based on the conditional and decision attributes of the table, respectively.

In general, the condition part of a rule can be written as a conjunction of atoms,

while the decision part of the rule consists of a disjunction of atoms. For example,

a rule can be represented as follows:

If object x satisfies condition1 ∧ condition2 ∧ . . .∧ conditionn,

then x satisfies decision1 ∨ decision2 ∨ . . .∨ decisionm.

Every atom is a formula related to an attribute a and one of its values v ∈ Va.

The set consisting of objects related with such an atomic formula is the smallest

indivisible block of information we can obtain from a decision table given the

pair (a, v). Every object which satisfies the condition part of a rule, will certainly

or possibly satisfy the decision part of that rule, depending whether the rule is

certain or possible [64]. We will restrict to certain rules, i.e., if an objects satisfies

all the information blocks in the condition part, it will satisfy at least one of the

information blocks in the decision part. Therefore, rule induction can be used for

the classification of new instances.

In Figure 3.1, a schematic overview is given of the results which we shall present
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in Sections 3.2 and 3.3. Given a table representing the data, a descriptive language

is constructed. The formulas of this descriptive language represent the intensions of

the considered concepts (‘Semantics’). The formulas of the language are constructed

in two parts. First, we describe formulas consisting of the conjunction of atomic

formulas of the language. Concepts with a conjunctive formula as intension are

called conjunctive concepts. Next, the disjunctions of conjunctive formulas are

described.

Moreover, the extensions of the considered concepts are discussed. These ex-

tensions are represented by a subset of the universe of discourse. The extension

corresponding to a conjunctive formula is called an elementary set, while a dis-

junction of conjunctive formulas results in a definable set. The elementary and

definable sets can be regarded as a certain structure related to the universe which

depends on the chosen framework (Pawlak or covering-based).

Given the family of definable sets, we are able to define approximation oper-

ators based on this family. As every definable set can be regarded as a union of

elementary sets, every subset X of the universe of discourse can either be described

by elementary sets if X is definable, or X can be approximated by elementary sets

if it is undefinable.

In Section 3.2, we will describe a semantically sound approach for Pawlak’s

model. We show that the elementary sets can be computationally described by

a partition U/E on the universe, determined by an equivalence relation E [128].
Moreover, the definable sets are formed by closing the partition under union,

resulting in a Boolean algebra B(U/E) over this partition. Although Pawlak’s

model provides very strong structures to describe the elementary and definable

sets, it is not always possible to build an equivalence relation (see e.g., [53, 54,

59,88,149]). Therefore, the descriptive language associated with Pawlak’s model

should be generalized. As we will discuss in Section 3.3, the elementary sets are

generally described by a coveringC instead of a partition U/E. Moreover, the union-

closure S∪,C of the covering C will describe the definable sets for the extended

generalized descriptive language. In general, this will no longer be a Boolean

algebra but a join-semilattice.
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3.2 Semantically sound approach of Pawlak’s rough

set model

We first elaborate on a semantically sound approach of Pawlak’s rough set model.

We construct a two-part language and discuss the elementary and definable sets

corresponding to this language. Moreover, we study how to derive the approxima-

tion operators and we discuss how the computational model of Pawlak is related

to this semantical approach.

3.2.1 A descriptive language for conjunctive concepts

In order to define the intension of a concept in Pawlak’s rough set model, we present

the following semantically sound approach. First, we introduce the descriptive

language DL for conjunctive concepts.

Definition 3.2.1. The symbols of the language DL are the symbols ‘=’, ‘(’, ‘)’, ‘,’

and ‘∧’, the finite set of attribute symbols At and the finite set of values Va for each

attribute a ∈ At. The descriptive language DL is now defined by

1. atomic formulas or atoms (a,=, v) with a ∈ At and v ∈ Va,

2. if ϕ,ψ ∈ DL, then (ϕ ∧ψ) ∈ DL.

That is, the descriptive language DL consists of the atoms (a,=, v) and is closed

under finite conjunctions. For A⊆ At, we denote DLA for the descriptive language1

restricted to the attributes of A. For the remainder of this section, we will work

with the language DLA, as DL is a special case for A= At.

We now define a satisfiability relation on U ×DLA.

Definition 3.2.2. Let x ∈ U and ϕ ∈ DLA a formula, the satisfiability of ϕ by x in
DLA, denoted by x �A ϕ, is defined as follows:

1. x �A (a,=, v) if and only if Ia(x) = v for a ∈ A and v ∈ Va,

1For the remainder of this chapter we will use the subscript a instead of {a} if A = {a} to avoid
notation overload. E.g., we denote DLa instead of DL{a}.
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2. x �A (ϕ ∧ψ) if and only if x �A ϕ and x �Aψ.

Thus, an object x satisfies an atomic formula (a,=, v) if the information func-

tion Ia maps x to v. Moreover, x satisfies the conjunction of formulas, if it satisfies

all formulas in the conjunction.

Based on the satisfiability relation �A for the descriptive language DLA, we

define the meaning set corresponding to a formula ϕ ∈ DLA as the set of objects

in U which satisfy ϕ:

Definition 3.2.3. Let ϕ ∈ DLA a formula, then the meaning set mA(ϕ) of ϕ is given

by mA(ϕ) = {x ∈ U | x �A ϕ}.

The meaning set of an atom (a,=, v) consists of those objects x such that

Ia(x) = v. For a ∈ A, it holds that mA((a,=, v)) = ma((a,=, v)), for v ∈ Va. Further-

more, note that the meaning set of a conjunction of formulas equals the intersection

of the meaning sets of the formulas in the conjunction. The meaning set mA(ϕ) is

exactly the extension of the concept which intension is the formula ϕ. A formula

of which the meaning set is the whole universe U is called a valid formula for the
language DLA.

We can now define the definability of a set of objects for the language DLA.

Definition 3.2.4. Given the language DLA, a subset X ⊆ U is called an A-definable
set if there exists a formula ϕ ∈ DLA such that X is the meaning set of ϕ, i.e.,

X = mA(ϕ). If X is not A-definable, it is called an A-undefinable set. The set of

A-definable sets given the table T is denoted by DEFDLA
(T ).

Next, we discuss an important subset of DEFDLA
(T ). Let ϕ be the conjunction of

information blocks from one row in the table, then ϕ can serve as the left-hand-side

of a rule related to the decision table. Hence, there exists a set A⊆ C , i.e., a set of

conditional attributes, and an object x ∈ U such that

ϕ =
∧

a∈A

(a,=, Ia(x)),

i.e., ϕ is the conjunction over the conditional attributes of A of atoms related to a

specific object x . The meaning set of such a formula ϕ is called an A-elementary
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set [128,186]. Note that every A-elementary set is also A-definable for the language

DLA, but is specifically in correspondence with a formula which represents the

left-hand-side of a rule. Therefore, the A-elementary sets will be important from a

computational point of view, as they are useful for the classification of a new object:

if a new object belongs to an A-elementary set, then it satisfies the left-hand-side

of a rule, and thus it certainly satisfies its right-hand-side and hence, it can be

classified.

However, given the language DLA, we are not able to describe the right-hand-

side of rules, as they are generally described by a disjunction of atomic formulas in

DLd , with d the decision attribute. Therefore, we have to extend the descriptive

language.

3.2.2 A descriptive language for disjunctions of conjunctive
concepts

The extended descriptive language is defined as follows:

Definition 3.2.5. The extended descriptive language EDLA for A⊆ At has the same

symbols as the language DLA, extended with the symbol ‘∨’. The formulas of EDLA

are defined by

1. if ϕ ∈ DLA, then ϕ ∈ EDLA,

2. if ϕ,ψ ∈ EDLA, then (ϕ ∨ψ) ∈ EDLA.

Hence, the descriptive language DLA is included in the extended descriptive

language EDLA. Furthermore, EDLA is closed under finite disjunctions.

The satisfiability relation �A is extended to a satisfiability relation on U ×EDLA:

Definition 3.2.6. Let x ∈ U and ϕ ∈ EDLA a formula, then the satisfiability of ϕ
by x in EDLA, denoted by x �E

A ϕ, is defined in the following way:

1. if ϕ ∈ DLA, then x �E
A ϕ if and only if x �A ϕ,

2. x �E
A (ϕ ∨ψ) if and only if x �E

A ϕ or x �E
A ψ.
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We see that the satisfiability relation �E
A reduces to the relation �A for formulas

in DLA. Furthermore, an object x satisfies a disjunction of formulas if it satisfies at

least one formula in the disjunction.

For a formula ϕ ∈ EDLA, we can define its meaning set as follows:

Definition 3.2.7. The meaning set mE
A(ϕ) of a formula ϕ ∈ EDLA is given by

mE
A(ϕ) = {x ∈ U | x �E

A ϕ}.

Hence, it represents all the objects which satisfy ϕ for �E
A . Since the satisfiability

relation �E
A reduces to the relation �A for a formula in DLA, the meaning set of

a formula of DLA does not change for the extended descriptive language EDLA.

Moreover, note that the meaning set of a disjunction of formulas is the union of

the meaning sets of the formulas in the disjunction. If mE
A(ϕ) = U , then ϕ is called

a valid formula in the language EDLA. Note that every formula valid in DLA is also

valid in EDLA.

We now define the set of definable sets of the language EDLA:

Definition 3.2.8. The A-definable sets of the table T for the extended descriptive

language EDLA, denoted by DEFEDLA
(T), are the subsets X ⊆ U which are the

meaning set of a formula in EDLA, i.e., X is A-definable if it is the extension of a

concept which intension is a formula in EDLA. If X is not A-definable, it is called

A-undefinable in EDLA.

We are now able to describe both the left-hand-side and the right-hand-side of

a rule, as they are formulas in the language EDLAt . More specifically, the left-hand-

side of the rule is a formula in the language DLA, with A⊆ C a set of conditional

attributes, and the right-hand-side of the rule is a formula in the language EDLd ,

with d the decision attribute.

3.2.3 Approximations of undefinable sets

For an A-undefinable set, we are not able to find a formula in EDLA. However, we

are able to approximate it by A-definable sets from DEFEDLA
(T ), which leads us to
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the notion of approximation operators, as discussed by Yao [186,190]. Naturally, a

set X ⊆ U is approximated from below by the family

{Y ∈ DEFEDLA
(T ) | Y ⊆ X ∧∀Z ∈ DEFEDLA

(T ), Z ⊆ X : Y ⊆ Z ⇒ Y = Z},

which is the family of maximal definable sets contained by X and it is approximated

from above by the family of the minimal definable sets containing X :

{Y ∈ DEFEDLA
(T ) | X ⊆ Y ∧∀Z ∈ DEFEDLA

(T ), X ⊆ Z : Z ⊆ Y ⇒ Y = Z}.

However, in Pawlak’s framework, there is a unique maximal definable set contained

by X and a unique minimal definable set containing X [190]. Hence, the lower

and upper approximation of a set X ⊆ U can be defined as follows:

Definition 3.2.9. Let X ⊆ U and A⊆ At, then the lower and upper approximation
of X in EDLA, denoted by apr

A
(X ) and aprA(X ), are defined as follows:

apr
A
(X ) = the largest definable set in EDLA contained by X ,

aprA(X ) = the smallest definable set in EDLA containing X .

In addition, we can define the positive, negative and boundary region of a set

X ⊆ U:

POSA(X ) = the largest definable set in EDLA contained by X ,

NEGA(X ) = the largest definable set in EDLA contained by X c,

BNDA(X ) = (POSA(X )∪NEGA(X ))
c.

Note that the correspondence between the two-way and three-way approximation

operators stated in Section 2.1 holds for the operators defined above.

If X is A-definable, we see that both the lower and the upper approximation

of X are the set X itself. Moreover, the positive region of X is X , the negative region

of X is its complement X c and the boundary region of X is empty. Hence, for an

A-definable set X , all elements of the universe can be classified either in the positive

or negative region of the set X .
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To end this section, we discuss the meaning set of the left-hand-side of a

rule and the meaning set for a set of rules in detail. This will provide us with a

computational approach to Pawlak’s model, consistent with the semantically sound

approach described above.

3.2.4 Computational approach of Pawlak’s rough set model

In [128] it is discussed that the partition U/E and the Boolean algebraB(U/E)
are very important structures to construct the Pawlak approximation operators.

Here we will see that both structures are obtained when computing the elementary

and definable sets of the descriptive language [190].
Given a set A ⊆ At, a set X ⊆ U and a formula ϕ ∈ EDLA, the concept (X ,ϕ)

with extension X and intension ϕ is A-definable for the language EDLA if and only

if X = mE
A(ϕ). As ϕ is a formula in EDLA, it is a disjunction of conjunctions of

atoms, i.e., ϕ = (. . . ((ϕ1 ∨ϕ2)∨ϕ3)∨ . . .∨ϕn) with each ϕi ∈ DLA of the form

(. . . (((ai j1 ,=, vi j1)∧ (ai j2 ,=, vi j2))∧ (ai j3 ,=, vi j3))∧ . . .∧ (ai jmi
,=, vi jmi

)).

Hence, the meaning set of ϕ is

mE
A(ϕ) =

n
⋃

i=1

jmi
⋂

j= j1

mA((ai j ,=, vi j)).

For i ∈ {1, . . . , n} and j ∈ { j1, . . . , jmi
} the meaning set of (ai j ,=, vi j) equals the

equivalence class [x i j]Eai j
, with

Eai j
= {(y, z) ∈ U × U | Iai j

(y) = Iai j
(z)}

and x i j ∈ U such that Iai j
(x i j) = vi j . Now, for every i ∈ {1,2, . . . , n}, we ei-

ther have that
jmi
⋂

j= j1

[x i j]Eai j
is empty or there exists an object x i ∈ U and a sub-

set of attributes Ai ⊆ A such that it equals the equivalence class [x i]EAi
with

EAi
= {(y, z) ∈ U × U | ∀a ∈ Ai : Ia(y) = Ia(z)}. Let k ∈ {1,2, . . . , n} such that

mA(ϕi) = [x i]EAi
for 1≤ i ≤ k and mA(ϕi) = ; for k < i ≤ n, then

mE
A(ϕ) =

k
⋃

i=1

[x i]EAi
.
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Hence, we conclude that the meaning set of a conjunctive formula ϕi , i.e., an

Ai-elementary set, is an equivalence class [x i]EAi
and the meaning set of ϕ, i.e.,

an A-definable set, is the union of equivalence classes based on attributes in A,

i.e., mE
A(ϕ) ∈B(U/EA), whereB(U/EA) is the Boolean algebra over the partition

U/EA. The Boolean algebra B(U/EA) contains ; and U/EA and is closed under

union. However, since U/EA is a partition, B(U/EA) is also closed under inter-

section and set complement. Therefore, we conclude that the A-definable sets for

EDLA are efficiently computed by constructingB(U/EA).

Furthermore, let X ⊆ U be A-undefinable for A⊆ At, then we can approximate X
with sets in DEFEDLA

(T ) =B(U/EA). The lower approximation of X is given by the

largest definable set in EDLA which is contained in X . AsB(U/EA) is closed under

union, the lower approximation of X is given by

apr
A
(X ) =

⋃

{Y ∈B(U/EA) | Y ⊆ X }.

Analogously, as the upper approximation of X is the smallest definable set in EDLA

which contains X and asB(U/EA) is closed under intersection, we obtain that

aprA(X ) =
⋂

{Y ∈B(U/EA) | X ⊆ Y }.

Moreover, as B(U/EA) is closed under set complement, we have that the lower

and upper approximation operator are dual operators:

∀X ⊆ U : (apr
A
(X c))c = aprA(X ).

Note that the pair (apr
A
, aprA) is in fact given by the subsystem-based definition

of Pawlak’s model (apr
E
, aprE) for the equivalence relation E = EA. Although the

subsystem-based definitions are seldom used for computational purposes, it is clear

from this discussion that they provide a semantical meaning to the lower and upper

approximation of an A-undefinable set X .

In addition, the positive, negative and boundary region of X are given by

POSA(X ) =
⋃

{Y ∈B(U/EA) | Y ⊆ X },

NEGA(X ) =
⋃

{Y ∈B(U/EA) | Y ⊆ X c},

BNDA(X ) = (POSA(X )∪NEGA(X ))
c
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=
⋂

{Y ∈B(U/EA) | Y ∩ X 6= ; ∧ Y ∩ X c 6= ;}.

If X ∈ DEFEDLA
(T ), then POSA(X ) = X and NEGA(X ) = X c, sinceB(U/EA) is closed

under set complement. Therefore, the boundary region of an A-definable set in

Pawlak’s rough set model is empty.

3.3 Semantically sound approach of covering-based

rough set models

To discuss a semantically sound approach of covering-based rough set models for a

complete decision table, we first determine how the universe can be granulated. A

granulation of the objects of the universe given an attribute a ∈ At is determined

by relationships between the attribute values of Va. Examples of such relationships

are the equality relation =, partial order relations �, the membership relation ∈,

or relationships obtained from clustering. However, other types of relationships

than the equality relation do not fit in the approach discussed in Section 3.2 and

hence, a generalization is needed.

In order to do this, we add extra semantics to the information or decision

table T [183]. Let La be a set of labels for an attribute a ∈ At which is used

to name the granules of the attribute value set Va. In general, every label in La

can be interpreted by the values of Va. The complete decision table with added

semantics T+ is the tuple (T, {La | a ∈ At}), with T the original complete decision

table.

Given a set of labels La for each attribute a ∈ At, various relationships between

the attribute values of a can be constructed, depending on the physical meaning of

the labels, i.e., a set of relations Ra is considered instead of only the equality rela-

tion =. Therefore, a crucial point in generalizing the semantically sound approach

of Pawlak’s rough set model is defining the atoms regarding the labels La and the

relations Ra. In order to correctly combine labels from La and relations from Ra,

a Boolean relation Ta, called a type compatibility relation [183], is determined as

follows: Ta(r, l) is true for r ∈ Ra and l ∈ La, if and only if it is reasonable to apply

the relation r on the label l for the attribute a ∈ At.
We illustrate a decision table with added semantics in the following example.
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Table 3.1: Decision table T+ with {La1
, La2

, Ld} the set of labels

a1 a2 d

x1 I medium 1

x2 II bad 0

x3 III bad 0

x4 IV good 1

x5 V good 1

Example 3.3.1. Consider the table T+ presented in Table 3.1. For a1, let Ra1
= {∈}

and La1
= {l1 = {I , I I , I I I}, l2 = {I I , I I I , IV}, l3 = {I I I , IV, V}} such that Ta1

(∈, li)
is true for i ∈ {1, 2, 3}. Next, for a2, let Ra2

= {≥} and La2
= {bad, medium,good}

such that Ta2
(≥, l) is true for all l ∈ La2

and good≥medium≥ bad. Finally, for d
we use the equality relation as with Pawlak’s rough set model, i.e., Rd = {=} and

Ld = {0,1} such that Td(=, 0) and Td(=, 1) are true.

Note that there are multiple choices for the set of relations and the set of

labels. For instance, for the attribute a2 we could have chosen R′a2
= {∈} and

L′a2
= {k1 = {bad}, k2 = {bad, medium}, k3 = {bad, medium, good}} such that

Ta2
(∈, ki) is true for i ∈ {1,2,3}. The labels in L′a2

represent respectively the

instances x ∈ U which scored at most ‘bad’, at most ‘medium’ and at most ‘good’.

For the remainder of this section we will work with the set of relations Ra2
and the

set of labels La2
.

To describe the semantical approach for covering-based rough set models in a

complete decision table with added semantics, we construct a two-part descriptive

language.

3.3.1 A generalized descriptive language for conjunctive con-
cepts

Given a complete decision table with added semantics, then we can define the

following language:
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Definition 3.3.2. The symbols of the generalized descriptive language GDL are the

symbols ‘(’, ‘)’, ‘,’ and ‘∧’, the finite set of attribute symbols At, the finite set of

relation or constraint symbols Ra for each attribute a ∈ At and the finite set of

labels La for each a ∈ At. The generalized descriptive language GDL with respect

to {Ta | a ∈ At} is now defined by

1. atomic formulas or atoms (a, r, l) with a ∈ At, r ∈ Ra, l ∈ La and Ta(r, l)
true,

2. if ϕ,ψ ∈ GDL, then (ϕ ∧ψ) ∈ GDL.

Hence, as for the language DL, GDL is closed under finite conjunctions. The

main difference between the languages DL and GDL is the set of atoms. Note how-

ever, that the language DL is a special case of GDL, when Ra = {=} and La = Va

for each attribute a ∈ At. Again, for a subset A⊆ At, we can restrict the language

GDL to the language GDLA, when only the attributes in A are considered.

We define a satisfiability relation on U ×GDLA:

Definition 3.3.3. Let x ∈ U and ϕ ∈ GDLA a formula, then the satisfiability of ϕ
by x in GDLA, denoted by x �A ϕ, is defined as follows:

1. x �A (a, r, l) if and only if Ia(x)r l,

2. x �A (ϕ ∧ψ) if and only if x �A ϕ and x �Aψ.

An object x satisfies an atomic formula (a, r, l) ∈ GDLA if the attribute value

Ia(x) is related by r to l. In addition, x satisfies a conjunction of formulas in GDLA

if it satisfies all formulas in the conjunction.

Based on this satisfiability relation, we can define the meaning set of a formula

ϕ ∈ GDLA:

Definition 3.3.4. Let ϕ ∈ GDLA a formula, then the meaning set mA(ϕ) of ϕ is

given by mA(ϕ) = {x ∈ U | x �A ϕ}.

The meaning set of an atomic formula (a, r, l) ∈ GDLA is the set of objects

x ∈ U such that Ia(x) is related to label l by relation r. Moreover, it holds that
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mA((a, r, l)) = ma((a, r, l)). The meaning set of a conjunction of formulas equals

the intersection of meaning sets of the formulas in the conjunction. A formula is

called valid in GDLA if its meaning set is the whole universe U .

We illustrate the meaning sets of the atomic formulas related with table T+
presented in Table 3.1 in the following example.

Example 3.3.5. Consider the table T+ presented in Table 3.1. We compute the

meaning sets of the atomic formulas in Table 3.2.

Table 3.2: Meaning sets of the atomic formulas of Table 3.1 for a ∈ {a1, a2, d}

Atomic formula Meaning set

(a1,∈, l1) {x1, x2, x3}
(a1,∈, l2) {x2, x3, x4}
(a1,∈, l3) {x3, x4, x5}

(a2,≥, bad) U
(a2,≥,medium) {x1, x4, x5}
(a2,≥, good) {x4, x5}

(d,=, 0) {x2, x3}
(d,=, 1) {x1, x4, x5}

Given the generalized descriptive language GDLA, we can define its definable

sets:

Definition 3.3.6. Given the language GDLA, the set of A-definable sets for the ta-

ble T+ contains all meaning sets of formulas of GDLA and is denoted by DEFGDLA
(T+),

i.e., X ∈ DEFGDLA
(T+) if there exists a formula ϕ ∈ GDLA such that X = mA(ϕ). If

X ⊆ U is not A-definable, it is called an A-undefinable set.

Similarly as in Pawlak’s model, the left-hand-side of a rule related to the table

is a conjunction of information blocks from a row of the table. However, these
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information blocks are now of the form (a, r, l) instead of (a,=, Ia(x)), where l
can be described by means of Ia(x) for x ∈ U . Let A⊆ C a subset of conditional

attributes and x ∈ U , then ϕ is of the form

ϕ =
∧

a∈A

(a, ra, la),

where ra ∈ Ra, la ∈ La such that la can be described by means of Ia(x) and such

that Ta(ra, la) is true. The meaning set of ϕ is called an A-elementary set.

Example 3.3.7. Consider table T+ presented in Table 3.1. The formula

ϕ = (a1,∈ l1)∧ (a2,≥, medium)

represents the left-hand-side of a rule related with the object x1 ∈ U . Its meaning

set

m{a1,a2}(ϕ) = {x1, x2, x3} ∩ {x1, x4, x5}= {x1}

is a {a1, a2}-elementary set.

As in the semantically sound approach of Pawlak, the language GDLA ensures

the construction of formulas which can be used in the left-hand-side of a rule.

However, as the right-hand-side of a rule consists of disjunctions, the generalized

descriptive language also needs to be extended.

3.3.2 A generalized descriptive language for disjunctions of
conjunctive concepts

For A⊆ At, the extended generalized descriptive language EGDLA is constructed

similarly to the language EDLA, i.e., we extend GDLA by closing it under finite

disjunctions:

Definition 3.3.8. The extended generalized descriptive language EGDLA has the

same symbols as the language GDLA, extended with the symbol ‘∨’. The formulas

of EGDLA with respect to {Ta | a ∈ At} are defined by

1. if ϕ ∈ GDLA, then ϕ ∈ EGDLA,

2. if ϕ,ψ ∈ EGDLA, then (ϕ ∨ψ) ∈ EGDLA.
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We extend the satisfiability relation �A to U × EGDLA:

Definition 3.3.9. Let x ∈ U and ϕ ∈ EGDLA a formula, then the satisfiability of ϕ
by x in EGDLA, denoted by x �E

A ϕ, is defined as follows:

1. if ϕ ∈ GDLA, then x �E
A ϕ if and only if x �A ϕ,

2. x �E
A (ϕ ∨ψ) if and only if x �E

A ϕ or x �E
A ψ.

Given the satisfiability relation defined above, we can define the meaning set

of a formula ϕ ∈ EGDLA:

Definition 3.3.10. Let ϕ ∈ EGDLA a formula, then the meaning set mE
A(ϕ) of ϕ is

given by mE
A(ϕ) = {x ∈ U | x �E

A ϕ}.

Since the satisfiability relation �E
A reduces to the relation �A for a formula in

GDLA, the meaning set of a formula of GDLA does not change for the extended

generalized descriptive language EGDLA. Note that the meaning set of a disjunction

of formulas equals the union of the meaning sets of the formulas in the disjunction.

Furthermore, a formula ϕ is called valid in EGDLA if mE
A(ϕ) = U .

We can now define the A-definable sets:

Definition 3.3.11. Given the language EGDLA, the A-definable sets of a table T+,

denoted by DEFEGDLA
(T+), are the meaning sets of formulas in EGDLA. If a set

X ⊆ U is not in DEFEGDLA
(T+), X is called A-undefinable for EGDLA.

The language EGDLAt allows us to describe both the conditional and decision

part of rules. In particular, the conditional part of a rule is a formula in GDLA with

A⊆ C a set of conditional attributes and the decision part is a formula in EGDLd

with d the decision attribute.

3.3.3 Approximations of undefinable sets

As in the framework of Pawlak, approximation operators are used to approximate

an A-undefinable set X ⊆ U by A-definable sets in DEFEGDLA
(T+), A⊆ At. Although

there is still a unique maximal A-definable set contained by X , there is no unique

minimal A-definable set containing X as opposed to Pawlak’s rough set model [190].
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Definition 3.3.12. Let X ⊆ U and A⊆ At, then the lower and upper approximations
of X in EGDLA, denoted by apr

A
(X ) and aprA(X ), are defined as follows:

apr
A
(X ) = the largest definable set in EGDLA contained by X ,

aprA(X ) = {Y ∈ DEFEGDLA
(T+) | X ⊆ Y, Y minimal},

with Y minimal if ∀Z ∈ DEFEGDLA
(T+), X ⊆ Z : Z ⊆ Y ⇒ Y = Z .

Hence, the upper approximation of X is not a definable set, but the family of

minimal definable sets containing X .

The definitions of the lower and upper approximation operator and the positive,

negative and boundary region are similar to the framework of Pawlak’s rough set

model.

POSA(X ) = the largest definable set in EGDLA contained by X ,

NEGA(X ) = the largest definable set in EGDLA contained by X c,

BNDA(X ) = (POSA(X )∪NEGA(X ))
c.

Note that the positive and negative region of X are definable sets. Therefore, it is

sometimes more useful to consider them instead of the lower and upper approxi-

mation operator, as the latter is not definable.

To end this section, we study how to efficiently compute the elementary and

definable sets of a covering-based rough set model. It will be shown that a covering

and its union-closure will describe the elementary and definable sets instead of a

partition and a Boolean algebra as in Pawlak’s rough set model.

3.3.4 Computational approach of covering-based rough set
models

The main difference between the semantically sound approach of Pawlak’s model

and covering-based rough set models is the construction of atomic formulas. Given

a ∈ At, then the {a}-elementary set for the atomic formula (a, r, l) ∈ GDLa is

the set {x ∈ U | Ia(x)r l}. Such a set is an information block, as it provides the
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information on which instances of the universe are related to the label l by the

relation r. However, such information blocks are not necessarily disjoint, as it is

possible that m((a, r, l))∩m((a, r ′, l ′)) 6= ;, with (a, r ′, l ′) ∈ GDLa. Therefore, the

{a}-elementary sets will be given by a covering

Ca = {ma((a, r, l)) | ma((a, r, l)) 6= ;, (a, r, l) ∈ GDLa}

instead of a partition U/Ea. The construction of the covering Ca is therefore

completely depending on the choices of Ra and La.

In addition, let A⊆ At and ϕ ∈ GDLA be a conjunctive formula which serves as

the left-hand-side of a rule. Then

ϕ =
∧

a∈A

(a, ra, la)

with (a, ra, la) ∈ GDLA and the meaning set of ϕ is given by

mA(ϕ) =
⋂

a∈A

mA((a, ra, la)).

If mA(ϕ) is not empty, then this A-elementary set represents an information block

for the set of attributes A. The set of non-empty A-elementary sets is also a covering,

denoted by CA.

From the above discussion, we obtain the following characterization of the

covering CA in terms of the coverings {Ca | a ∈ A}:

CA = {K ⊆ U | K 6= ; ∧ ∃ϕ ∈ GDLA : K = mA(ϕ)}

= {K ⊆ U | K 6= ; ∧∀a ∈ A∃r ∈ Ra,∃l ∈ La such that Ta(r, l) is true

and K =
⋂

a∈A

mA((a, r, l))}

= {K ⊆ U | K 6= ; ∧∀a ∈ A∃Ka ∈ Ca : K =
⋂

a∈A

Ka}.

Note that mA((a, r, l)) = ma((a, r, l)) is an information block in Ca. Hence, CA

contains of the non-empty intersections
⋂

a∈A
Ka, where for each a ∈ A we take

exactly one Ka ∈ Ca.

Furthermore, let A⊆ At, then an A-definable set is the extension of a disjunction

of conjunctive formulas in GDLA. Therefore, the set of meaning sets of formulas
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from EGDLA is obtained by closing the covering CA under the union operator, which

gives the union-closure S∪,CA
as defined in Eqs. (2.26). As CA is not a partition in

general, the union-closure S∪,CA
is not closed under intersection and set comple-

ment, in comparison with the Boolean algebra which is obtained when given a

partition. However, S∪,CA
is a join-semilattice.

To end, we discuss the approximation operators related to this semantically

sound approach of covering-based rough sets. Let A⊆ At and X ⊆ U , then

apr
A
(X ) =

⋃

{K ∈ S∪,CA
| K ⊆ X }=

⋃

{K ∈ CA | K ⊆ X },

since S∪,CA
is closed under union. Note that this is the tight or strong lower approx-

imation operator of X for the covering CA. However, since the union-closure of a

covering is not closed under intersection, there is no unique minimal definable set

containing X . Hence, we are not able to give a computationally efficient definition

of the upper approximation of X in which the semantics are clear. Nonetheless, we

are able to give computationally efficient definitions for the positive and negative

region of X :

POSA(X ) =
⋃

{K ∈ CA | K ⊆ X },

NEGA(X ) =
⋃

{K ∈ CA | K ⊆ X c}.

Note that S∪,CA
is not closed under set complement and therefore, the complement

of an A-definable set is not necessarily A-definable, hence, BNDA(X ) is not necessar-

ily definable and it can be non-empty for X ∈ DEFEGDLA
(T+) in the covering-based

rough set framework.

To end this section, we illustrate the computational approach of covering-based

rough set models with an example.

Example 3.3.13. Consider the table with added semantics T+ presented in Ta-

ble 3.1. For the conditional attributes a1 and a2 we obtain the following coverings:

Ca1
= {{x1, x2, x3}, {x2, x3, x4}, {x3, x4, x5}},

Ca2
= {{x1, x2, x3, x4, x5}, {x1, x4, x5}, {x4, x5}}.
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The covering C{a1,a2} is now obtained by intersecting the elements of Ca1
and Ca2

:

C{a1,a2} = {{x1, x2, x3}, {x2, x3, x4}, {x3, x4, x5}, {x1}, {x4}, {x4, x5}}.

Hence, the C-definable sets are given by

S∪,C{a1,a2}
= {;, {x1}, {x4}, {x1, x4}, {x4, x5}, {x1, x2, x3}, {x2, x3, x4},

{x3, x4, x5}, {x1, x4, x5}, {x1, x2, x3, x4}, {x1, x3, x4, x5},

{x2, x3, x4, x5}, {x1, x2, x3, x4, x5}}.

Note that S∪,C{a1,a2}
is not closed under set intersection and set complement, as

{x1, x2, x3} and {x2, x3, x4} are elements of S∪,C{a1,a2}
, but {x2, x3} and {x1, x5} are

not.

To illustrate the approximation operators, consider the set {x3, x4}. We obtain

that

apr
{a1,a2}

({x3, x4}) = {x4}

apr{a1,a2}({x3, x4}) = {{x2, x3, x4}, {x3, x4, x5}}

POS{a1,a2}({x3, x4}) = {x4}

NEG{a1,a2}({x3, x4}) = {x1}

BND{a1,a2}({x3, x4}) = {x2, x3, x5}

As apr{a1,a2}({x3, x4}) is a set of C-definable sets, the upper approximation is more

complicated from a computational perspective. Moreover, note that there is not

necessarily a connection between the conceptual upper approximation operator

and the tight covering-based upper approximation operator when we consider the

union or intersection: for X = {x2}, we have that

apr{a1,a2}({x2}) = {{x1, x2, x3}, {x2, x3, x4}},

apr′C{a1,a2}
({x2}) = {x2},

hence, neither the inclusion
⋃

apr{a1,a2}({x2, x3}) ⊆ apr′C{a1,a2}
({x2, x3}) nor the

inclusion
⋂

apr{a1,a2}({x2, x3}) ⊆ apr′C{a1,a2}
({x2, x3}) holds. For X = {x1, x4, x5},

we have that

apr{a1,a2}({x1, x4, x5}) = {{x1, x4, x5}},
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apr′C{a1,a2}
({x1, x4, x5}) = U ,

thus, neither the inclusion
⋃

apr{a1,a2}({x1, x4, x5}) ⊇ apr′C{a1,a2}
({x1, x4, x5}) nor

the inclusion
⋂

apr{a1,a2}({x1, x4, x5}) ⊇ apr′C{a1,a2}
({x1, x4, x5}) holds.

We now derive certain rules from the table T+ by computing the lower ap-

proximations or positive region of the decision classes {x1, x4, x5} and {x2, x3} for

different A⊆ {a1, a2}:

• From POSa1
({x1, x4, x5}) = ; we do not derive certain rules.

• From POSa2
({x1, x4, x5}) = {x1, x4, x5} = ma2

((a2,≥, medium)) we derive

the certain rule

If (a2,≥,medium), then (d,=, 1).

• From POS{a1,a2}({x1, x4, x5}) = {x1, x4, x5} we do not derive certain rules,

as we cannot write {x1, x4, x5} as the intersection of the meaning sets of an

atomic formula (a1,∈, z1) with z1 ∈ La1
and an atomic formula (a2,≥, z2)

with z2 ∈ La2
.

• From POSA({x2, x3}) = ; for A⊆ {a1, a2} we do not derive certain rules.

3.4 Application: dominance-based rough set models

To illustrate the semantical approach of covering-based rough sets, we determine

the elementary and definable sets in the framework of dominance-based rough

sets, introduced by Greco, Matarazzo and Słowiński [53, 54, 149]. The model

extends the rough set model of Pawlak by using a dominance relation instead of

an equivalence relation as indiscernibility relation. It is a good idea to choose a

dominance relation instead of an equivalence relation when the domains Va of

the attributes in At are preference-ordered, i.e., if there is a natural order on the

possible values of an attribute. A real-life example is the overall evaluation of bank

clients based on the evaluations of different risk factors.

Formally, an outranking relation �a is defined for each attribute a ∈ At based

on the natural order on Va, i.e., an object x ∈ U dominates an object y ∈ U , or y is
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dominated by x , with respect to the attribute a if Ia(x)�a Ia(y). Such a relation�a

is reflexive and transitive. It is assumed that each relation �a is complete, i.e., that

for every pair of objects one object is dominating the other. This way, we also get

preference-ordered decision classes Di , with Di = {x ∈ U | Id(x) = i}, i ∈ Vd . For

i, j ∈ Vd , if i �d j, the objects from Di are strictly preferred to the objects from Dj .

For example, the bank clients with overall evaluation ‘good’ are preferable to the

clients with overall evaluation ‘medium’.

As the decision classes are preference-ordered, we obtain the upward and

downward union of classes: for i ∈ Vd we have

D�i =
⋃

{Dj ∈ U/d | j �d i}

and

D�i =
⋃

{Dj ∈ U/d | i �d j}.

An object x belongs to D�i if the decision of x is at least i, while x belongs to D�i if

the the decision of x is at most i.
Given a set of conditional attributes A⊆ C , we obtain a relation DA of U based

on A as follows: an object x ∈ U dominates an object y ∈ U or y is dominated by x
with respect to A if and only if x �a y for all a ∈ A. The relation DA is a complete

pre-order, since all relations �a are. Given the relation DA for A⊆ C and an object

x ∈ U , we can define the A-dominating and A-dominated set of x . The former is

given by all predecessors of x by DA (foreset), the latter by the successors of x
(afterset):

Dp
A(x) = {y ∈ U | (y, x) ∈ DA}, (3.1)

Ds
A(x) = {y ∈ U | (x , y) ∈ DA}. (3.2)

An object y belongs to Dp
A (x) if for all attributes a ∈ A y dominates x with respect

to the attribute a, while y belongs to Ds
A(x) if for all attributes a ∈ A y is dominated

by x with respect to the attribute a. Note that both Dp
A(x) and Ds

A(x) are reflexive

and transitive neighborhoods of the object x [182].
To obtain useful knowledge from the decision table, we want to derive decision

rules from the given data. More specifically, Greco et al. obtained certain rules

from the following lower approximations of the upward and downward union of
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classes:

apr
Dp

A

(D�i ) = {x ∈ U | Dp
A(x) ⊆ D�i }, (3.3)

apr
Ds

A

(D�i ) = {x ∈ U | Ds
A(x) ⊆ D�i }. (3.4)

Moreover, the sets Cp
A = {D

p
A(x) | x ∈ U} and Cs

A = {D
s
A(x) | x ∈ U} are cover-

ings of the universe U . These coverings are meaningful families of basic granules

for A⊆ C as it is clear that every patch Dp
A(x), respectively Ds

A(x), represents the

objects which attributes values on A are bounded from below, respectively from

above, by the values of x on A.

In addition, the definable sets are given by the union-closed sets S∪,Cp
A

and S∪,Cs
A
.

From Section 3.3, the lower approximation of X ⊆ U using S∪,Cp
A

and S∪,Cs
A

is given,

respectively, by

apr
S∪,Cp

A

(X ) =
⋃

{Y ∈ S∪,Cp
A
| Y ⊆ X }, (3.5)

apr
S∪,Cs

A

(X ) =
⋃

{Y ∈ S∪,Cs
A
| Y ⊆ X }. (3.6)

By the following proposition we see that the lower approximations presented

in Eqs. (3.3) and (3.4) are equal to the ones presented in Eqs. (3.5) and (3.6)

when we consider the sets D�i and D�i respectively. Hence, the computational

approximation operators used by Greco et al. both have a semantically sound

counterpart, provided by the framework from Section 3.3.

Proposition 3.4.1. [140,182] Let N be a neighborhood operator and

CN = {N(x) | x ∈ U}.

The operators apr
N

and apr
S∪,CN

are equal if and only if N is reflexive and transitive.

The interpretation of the lower approximation of an upward union D�i is

the following: an object x certainly belongs to D�i , i.e., it belongs to its lower

approximation, if for every object y which dominates x with respect to A it holds

that the decision of y is at least i. Analogously, x certainly belongs to D�i if every

object y which is dominated by x with respect to A has a decision at most i. This
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way, if the evaluation of an object on A improves, the class assignment of the

object does not worsen and vice versa, if the evaluation on A is less good, the

class assignment does not improve. Therefore, it is less meaningful to consider

{x ∈ U | Dp
A (x) ⊆ D�i } and {x ∈ U | Ds

A(x) ⊆ D�i } as lower approximations since the

interpretation is more complicated, although it can be done from computational

point of view.

To obtain certain decision rules, let A= {a1, a2, . . . , an} ⊆ C and i ∈ Vd . If the

lower approximation apr
Dp

A

(D�i ) is not empty then we derive the certain decision

rule

if Ia1
(x)�a1

v1 ∧ Ia2
(x)�a2

v2 ∧ . . .∧ Ian
(x)�an

vn, then Id(x)�d i,

with vi ∈ Vai
. Analogously, if apr

Ds
A

(D�i ) is not empty, then the following certain

decision rule is obtained:

if v1 �a1
Ia1
(x)∧ v2 �a2

Ia2
(x)∧ . . .∧ vn �an

Ian
(x), then i �d Id(x).

In the above discussion, we obtained certain decision rules as we used the lower

approximations of the upward and downward unions of decision classes. However,

Greco et al. also derived possible rules by using the upper approximations, which

we obtain as the dual operators from Eqs. (3.3) and (3.4):

aprDp
A
(D�i ) = {x ∈ U | Ds

A(x)∩ D�i 6= ;}, (3.7)

aprDs
A
(D�i ) = {x ∈ U | Dp

A(x)∩ D�i 6= ;}. (3.8)

Note that these upper approximations are obtained from a computational view-

point, and not from a conceptual one. Although they provide us with possible rules

which can be used in data analysis, the semantical meaning of these rules is less

clear.

To end, we summarize the different steps to obtain the lower approximation

operator in the semantically sound approach and the dominance-based rough

set approach in Figure 3.2. The lower approximation operators from both frame-

works are equal, but there is no such comparison for the upper approximation

operators. By constructing the meaningful coverings Cp and Cs via the dominance

relation �, the dominance-based rough set model can be seen as a special case of

the semantically sound framework of rough sets.
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Table

Dominance relation: �

Appr. operators: apr
Dp

A

, apr
Ds

A

︸ ︷︷ ︸

Dominance-based framework
according to Greco et al.

Table

Dominance relation: �

Elementary sets: Cp,Cs

Definable sets: S∪,Cp
A
, S∪,Cs

A

Appr. operators: apr
S∪,Cp

A

, apr
S∪,Cs

A

︸ ︷︷ ︸

Dominance-based framework derived
using semantically sound approach

≡

Figure 3.2: Comparison between the semantical framework and the dominance-

based rough set model

3.5 Pawlak’s rough set model for decision tables with

missing values

Given a decision table

T = (U , At = C ∪ {d}, {Va | a ∈ At}, {Ia | a ∈ At}),

then the table is called incomplete if at least one information function Ia is incom-

plete. Note that we will assume that the information function Id related with the

decision attribute d is always complete.

There are two types of incomplete information tables [90]: set-valued informa-

tion tables [65,125] which contain information functions

Ia : U →P (Va),

i.e., a set of attribute values is associated with an object of U , and information

tables with missing values [77,88,89,121]. We will concentrate on the latter type.

Furthermore, there are two main strategies to deal with missing attribute values.

The first strategy is based on conversion of incomplete data sets into complete data

sets, e.g., by replacing missing values by the most common attribute value, or by

ignoring cases with missing attribute values [61,89,96,121]. The second strategy



76 Chapter 3. Semantical approach to rough set theory

acquires the knowledge from the incomplete decision table without preprocessing

the data [59].
Recently, Hu and Yao [68] discussed the concept of definability in set-valued

incomplete decision tables using an associated family of complete decision tables.

However, in this section we discuss definability for incomplete decision tables with

missing values without converting the incomplete decision table to a family of

complete decision tables. We base ourselves on some papers of Grzymala-Busse

[57,59] in which a characteristic set associated with x ∈ U and A⊆ At is constructed

as the smallest set of instances indiscernible from x by A. However, we will construct

a formal language and satisfiability relation in order to define the elementary and

definable sets related with a incomplete decision table T .

Note that we discuss a semantical approach for Pawlak’s rough set model for

incomplete decision tables. Thus, for all the attributes in At only the equality

relation = is considered.

We assume that there are three reasons for an attribute value Ia(x) to be

missing, for x ∈ U , a ∈ C:

1. The attribute value is a lost value. We will denote this by Ia(x) = ?. When the

attribute value Ia(x) is lost, then the attribute value was originally known,

however, it is not currently available. We therefore assume that the original

value Ia(x) is one of the attribute values v ∈ Va.

2. The attribute value is a do-not-care value. We will denote this by Ia(x) = ∗.
This means that the attribute value Ia(x) is not relevant and may be any

value in the domain Va of the attribute a.

3. The attribute value is an attribute-concept value. We will denote this by

Ia(x) = −. It means that the attribute value Ia(x) is not known, but belongs to

the set of typical attribute values Va,x ⊆ Va. The subset of attribute values Va,x

is defined by

Va,x = {v ∈ Va | ∃y ∈ U : Id(y) = Id(x) with Ia(y) = v}, (3.9)

i.e., it contains the attribute values of these objects with the same decision

as x .
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Table 3.3: Incomplete decision table T with At = {aT , aH , aN} ∪ {d}

Patient Temperature aT Headache aH Nausea aN Flu d

x1 high − no yes

x2 very high yes yes yes

x3 ? no no no

x4 high yes yes yes

x5 high ? yes no

x6 normal yes no no

x7 normal no yes no

x8 − yes ∗ yes

We illustrate the concepts of lost value, do-not-care value and attribute-concept

value in the following example.

Example 3.5.1. Consider the table T given in Table 3.3 (see [59]). The universe U
consists of eight patients and At = {aT , aH , aN} ∪ {d}. The conditional attribute aT

records the temperature of the patient and the conditional attributes aH and aN

state whether the patient has a headache and whether the patient is nauseated. The

decision attribute indicates whether the patient has the flu. However, the table T
is incomplete. For example, IaT

(x3) = ? reflects that the temperature of patient x3

was measured, but e.g., not registered in the computer system. The temperature of

patient x8 was not measured, but as IaT
(x8) = − and Id(x8) = yes, it is assumed

that the temperature of patient x8 lies in the set

VaT ,x8
= {IaT

(y) ∈ VaT
| Id(y) = Id(x8), y ∈ U}= {high, very high}.

Moreover, as IaN
(x8) = ∗, it was considered not relevant for the diagnosis whether

patient x8 was nauseated or not. The missing values IaH
(x1) and IaH

(x5) can be

interpreted in a similar way.

Incomplete decision tables where all missing attribute values are lost were

studied in, i.a., [63, 152]. On the other hand, decision tables were all missing

attribute values are do-not-care values were studied in, i.a., [55,88,89]. In [58],



78 Chapter 3. Semantical approach to rough set theory

both lost and do-not-care attribute values are considered. Decision tables in which

also attribute-concept values are considered were discussed in [57,59].
To describe the semantical approach for Pawlak’s rough set model in a deci-

sion table with missing values, we construct a two-part language and discuss the

elementary and definable sets corresponding to this language.

3.5.1 A descriptive language for conjunctive concepts

The descriptive language to describe the conjunctive concepts related with a deci-

sion table with missing values is denoted by DLI and is defined as follows:

Definition 3.5.2. The symbols of the descriptive language DLI consist of the symbols

‘=’, ‘(’, ‘)’, ‘,’ and ‘∧’, the finite set of attribute symbols At = C ∪ {d}, the finite set

of values Va for each attribute a ∈ At and the symbols ‘’?, ‘∗’ and ‘−’. For a ∈ C ,

let V+a = Va ∪ {?,∗,−}. As we assume Id to be complete, V+d = Vd . The descriptive

language DLI is now defined by

1. atomic formulas or atoms (a,=, v) with a ∈ At and v ∈ V+a ,

2. if ϕ,ψ ∈ DLI, then (ϕ ∧ψ) ∈ DLI.

Hence, the set of atomic formulas of DLI consists of the atomic formulas of the

language DL defined in Section 3.2.1 extended with the atoms (a,=, ?), (a,=,∗)
and (a,=,−) for each a ∈ C . Moreover, the language DLI is closed under finite

conjunction. For A⊆ At, we denote DLIA for the descriptive language restricted to

the attributes of A.

The crucial point in the construction of the definable sets related with DLIA is

the satisfiability relation �A. We have the following observations [59,77]:

• If the attribute value Ia(x) is lost, then there is one attribute value v ∈ Va

such that Ia(x) = v, hence, the object x satisfies one of the atomic formulas

(a,=, v) with v ∈ Va.

• If the attribute value Ia(x) is a do-not-care value, then Ia(x) lies in the

domain Va of the attribute a. As it does not matter which attribute value it

is, the object x satisfies all atomic formulas (a,=, v) with v ∈ Va.
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• If the attribute value Ia(x) is an attribute-concept value, then we assume

Ia(x) ∈ Va,x , hence, the object x satisfies the atomic formulas (a,=, v) with

v ∈ Va,x .

Given these interpretations of the different types of missing values, we introduce

the satisfiability relation �A on U ×DLIA as follows:

Definition 3.5.3. Let x ∈ U and ϕ ∈ DLIA a formula, then the satisfiability of ϕ by
x in DLIA, denoted by x �A ϕ, is defined as follows::

1. x �A (a,=, v) for v ∈ Va, a ∈ A, if and only if one of the following cases hold:

• Ia(x) = v,

• Ia(x) = ∗,

• Ia(x) = −∧ v ∈ Va,x ,

2. x �A (a,=, ?) for a ∈ A,

3. x �A (a,=,∗) for a ∈ A,

4. x �A (a,=,−) for a ∈ A if and only if one of the following conditions hold:

• Ia(x) = −,

• Ia(x) = ∗,

• Ia(x) ∈ Va ∧ (∃y ∈ U : Ia(y) = −∧ Ia(x) ∈ Va,y),

5. x �A (ϕ ∧ψ) if and only if x �A ϕ and x �Aψ.

We motivate this definition as follows. Let a ∈ A and v ∈ Va, then x satisfies

(a,=, v) if it is possible that the attribute value Ia(x) equals the value v. This is

the case when Ia(x) = v. Moreover, it is the case when Ia(x) = ∗, since Ia(x) can

be any value in the domain of Va. In addition, if Ia(x) = −, then we assume that

Ia(x) ∈ Va,x , hence, Ia(x) can be equal to the value v if and only if v ∈ Va,x .

An object x satisfies the atomic formula (a,=, ?) if and only if the attribute

value Ia(x) is one of the values in Va. This holds for all objects x ∈ U . Similarly,

every object x satisfies (a,=,∗), as Ia(x) lies in the domain Va of a.
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Finally, the atomic formula (a,=,−) is satisfied by the object x ∈ U if and only

if it is possible that Ia(x) belongs to the set of attribute values Va,y for an object

y ∈ U with Ia(y) = −. For Ia(x) = −, it holds that Ia(x) belongs to Va,x , hence, we

can choose y = x . For Ia(x) = ∗, the value Ia(x) is not relevant, hence, it may be

a value in Va,x .

We can now define the meaning set of a formula based on the satisfiability

relation �A:

Definition 3.5.4. The meaning set mA(ϕ) of a formula ϕ ∈ DLIA is defined by

mA(ϕ) = {x ∈ U | x �A ϕ}.

As we have discussed before, the meaning set of the conjunction (ϕ∧ψ) equals

the intersection of the meaning set of ϕ and the meaning set of ψ. Therefore, it is

interesting to study the meaning sets of the atomic formulas. Given the attribute

a ∈ A and v ∈ Va, then the meaning set of (a,=, v) is given by

mA((a,=, v)) = {x ∈ U | Ia(x) = v ∨ Ia(x) = ∗ ∨ (Ia(x) = −∧ v ∈ Va,x)}.

Moreover, mA((a,=, ?)) = U and mA((a,=,∗) = U . In addition, the meaning set of

the atomic formula (a,=,−) is given by

mA((a,=,−)) = {x ∈ U | Ia(x) = −∨ Ia(x) = ∗ ∨

(Ia(x) ∈ Va ∧ (∃y ∈ U : Ia(y) = −∧ Ia(x) ∈ Va,y))}.

Note that for a ∈ A it holds that mA((a,=, v)) = ma((a,=, v)), for v ∈ V+A . Moreover,

if the formula ϕ contains the atomic formula (a,=, ?) or (a,=,∗), its meaning set

is not restricted by these formulas.

Given a formula ϕ ∈ DLIA, the meaning set mA(ϕ) is the extension of the

concept with intension ϕ. A formula is called valid for the language DLIA if its

meaning set is the whole universe. Note that for each conditional attribute a ∈ A
the atomic formulas (a,=, ?) and (a,=,∗) are valid.

Example 3.5.5. By way of illustration, we compute the meaning sets of the atomic

formulas of Table 3.3 for a ∈ {aT , aH , aN} in Table 3.4. To this aim, we compute the

attribute value sets Va,x for a ∈ {aT , aH , aN} and x ∈ U . For x ∈ {x1, x2, x4, x8}:

VaT ,x = {high, very high},
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VaH ,x = {yes},

VaN ,x = {yes,no}.

For x ∈ {x3, x5, x6, x7} it holds that

VaT ,x = {normal, high},

VaH ,x = {yes,no},

VaN ,x = {yes,no}.

Again, every definable set is a meaning set of a formula in DLIA:

Definition 3.5.6. The set of definable sets for the language DLIA for A ⊆ At is

denoted by DEFDLIA
(T ) and consists of all meaning sets related with DLIA:

DEFDLIA
(T ) = {X ⊆ U | ∃ϕ ∈ DLIA : X = mA(ϕ)}.

A set X ∈ DEFDLIA
(T ) is called A-definable. If a subset X ⊆ U is not A-definable, it is

called A-undefinable for DLIA.

Again, the A-elementary sets for the language DLIA form a subset of DEFDLIA
(T )

and consists of those meaning sets related with a left-hand-side of a rule related

with T , i.e., let A⊆ C and x ∈ U , then the left-hand-side of the rule related with A
and x is given by

ϕ =
∧

a∈A

(a,=, Ia(x)).

We illustrate the concept of A-elementary sets with the following example.

Example 3.5.7. Given the decision table T presented in Table 3.3, then for A= C
and x1 ∈ U we have the following formula ϕ1:

ϕ1 = (aT ,=, high)∧ (aH ,=,−)∧ (aN ,=, no).

The formula ϕ1 describes the left-hand-side of a rule. The meaning set of ϕ1 can

be computed as follows:

mA(ϕ1) = mA((aT ,=, high))∩mA((aH ,=,−))∩mA(an,=, no))
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Table 3.4: Meaning sets of the atomic formulas of Table 3.3 for a ∈ {aT , aH , aN}

Atomic formula Meaning set

(aT ,=, normal) {x6, x7}
(aT ,=, high) {x1, x4, x5, x8}
(aT ,=, very high) {x2, x8}
(aT ,=, ?) U
(aT ,=,∗) U
(aT ,=,−) {x1, x2, x4, x5, x8}

(aH ,=, yes) {x1, x2, x4, x6, x8}
(aH ,=, no) {x3, x7}
(aH ,=, ?) U
(aH ,=,∗) U
(aH ,=,−) {x1, x2, x4, x6, x8}

(aN ,=, yes) {x2, x4, x5, x7, x8}
(aN ,=, no) {x1, x3, x6, x8}
(aN ,=, ?) U
(aN ,=,∗) U
(aN ,=,−) {x8}
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= {x1, x4, x5, x8} ∩ {x1, x2, x4, x6, x8} ∩ {x1, x3, x6, x8}

= {x1, x8},

where we have used Table 3.4. We compute the A-elementary sets related with ϕi

for x i ∈ U in a similar way. The results are presented in Table 3.5.

Table 3.5: A-elementary sets of Table 3.3 for A= {aT , aH , aN}

Left-hand-side Meaning set

ϕ1 = (aT ,=, high)∧ (aH ,=,−)∧ (aN ,=, no) {x1, x8}
ϕ2 = (aT ,=, very high)∧ (aH ,=, yes)∧ (aN ,=, yes) {x2, x8}
ϕ3 = (aT ,=, ?)∧ (aH ,=, no)∧ (aN ,=, no) {x3}
ϕ4 = (aT ,=, high)∧ (aH ,=, yes)∧ (aN ,=, yes) {x4, x8}
ϕ5 = (aT ,=, high)∧ (aH ,=, ?)∧ (aN ,=, yes) {x4, x5, x8}
ϕ6 = (aT ,=, normal)∧ (aH ,=, yes)∧ (aN ,=, no) {x6}
ϕ7 = (aT ,=, normal)∧ (aH ,=, no)∧ (aN ,=, yes) {x7}
ϕ8 = (aT ,=,−)∧ (aH ,=, yes)∧ (aN ,=,∗) {x1, x2, x4, x8}

As the right-hand-side of rules generally consist of a disjunction of formulas, we

extend the descriptive language. This will be done analogously as in Sections 3.2.2

and 3.3.2.

3.5.2 A descriptive language for disjunctions of
conjunctive concepts

We extend the descriptive language for a decision table with missing values as

follows:

Definition 3.5.8. The extended descriptive language EDLIA for A⊆ At has the same

symbols as the language DLIA, extended with the symbol ‘∨’. The formulas of EDLIA

are defined by

1. if ϕ ∈ DLIA, then ϕ ∈ EDLIA,

2. if ϕ,ψ ∈ EDLIA, then (ϕ ∨ψ) ∈ EDLIA.
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Hence, the descriptive language DLIA is included in the extended descriptive

language EDLIA. Furthermore, EDLIA is closed under finite disjunctions.

The satisfiability relation �A is extended to U × EDLIA:

Definition 3.5.9. Let x ∈ U and ϕ ∈ EDLIA a formula, then the satisfiability of ϕ
by x in EDLIA, denoted by x �E

A ϕ, is defined in the following way:

1. if ϕ ∈ DLIA, then x �E
A ϕ if and only if x �A ϕ,

2. x �E
A (ϕ ∨ψ) if and only if x �E

A ϕ or x �E
A ψ.

We see that the satisfiability relation �E
A reduces to the relation �A for formulas

in DLA. Furthermore, an object x satisfies a disjunction of formulas, if it satisfies at

least one formula in the disjunction.

The meaning set mE
A(ϕ) of a formula ϕ ∈ EDLIA represents all the objects which

satisfy ϕ for �E
A:

Definition 3.5.10. Let ϕ ∈ EGDLA a formula, then the meaning set mE
A(ϕ) of ϕ is

given by mE
A(ϕ) = {x ∈ U | x �E

A ϕ}.

Since the satisfiability relation �E
A reduces to the relation �A for a formula

in DLIA, the meaning set of formulas of DLIA does not change for the extended

descriptive language EDLA. Moreover, note that the meaning set of a disjunction

of formulas is the union of the meaning sets of the formulas in the disjunction. If

mE
A(ϕ) = U , then ϕ is called a valid formula in the language EDLIA. Note that every

formula valid in DLIA is also valid in EDLIA.

The meaning sets of EDLIA provide the definable sets related with this language.

Definition 3.5.11. Given A ⊆ At, the A-definable sets of the table T for the ex-

tended descriptive language EDLIA, denoted by DEFEDLIA
(T ), are the subsets X ⊆ U

which are the meaning set of a formula in EDLIA, i.e., X is A-definable if it is the

extension of a concept which intension is a formula in EDLIA. If X is not A-definable,

it is called A-undefinable in EDLIA.
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We are now able to describe both the left-hand-side and the right-hand-side of

a rule, as they are formulas in the language EDLIAt . More specifically, the left-hand-

side of the rule is a formula in the language DLIA, with A⊆ C a set of conditional

attributes, and the right-hand-side of the rule is a formula in the language EDLId ,

with d the decision attribute. However, note that we assumed that Id is complete.

Therefore, the language EDLId actually reduces to the language EDLd , which is

discussed in Section 3.2.2.

3.5.3 Approximations of undefinable sets

Let A ⊆ At and X ⊆ U an A-undefinable set, then we want to approximate X
with A-definable sets from DEFEDLIA

(T). We have the following observations for

DEFDLIA
(T ):

• Let x ∈ U and a ∈ A, then x ∈ mA((a,=, Ia(x)). Hence, there exists a

X ∈ DEFDLIA
(T ) such that x ∈ X .

• As illustrated in Table 3.5, the sets in DEFDLIA
(T ) are not disjoint.

Therefore, DEFDLIA
(T ) is not a partition, but a covering of the universe U . As the

meaning sets of EDLIA contain those of DLIA and is closed under union, the set of

definable sets DEFEDLIA
(T ) is the union-closure of the covering DEFDLIA

(T ). Hence,

the approximation operators we obtain for the language EDLIA are therefore similar

to the approximation operators for EGDLA described in Section 3.3.3:

Definition 3.5.12. Let X ⊆ U and A⊆ At, the lower and upper approximations of X
for the descriptive language EDLIA, denoted by apr

A
(X ) and aprA(X ), are defined

by

apr
A
(X ) = the largest definable set in EDLIA contained by X ,

aprA(X ) = {Y ∈ DEFEDLIA
(T ) | X ⊆ Y, Y minimal},

with Y minimal if ∀Z ∈ DEFEDLIA
(T ), X ⊆ Z : Z ⊆ Y ⇒ Y = Z .

Hence, the upper approximation of X is not a definable set, but the family of

minimal definable sets containing X . Moreover, the positive, negative and boundary
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region are defined as follows:

POSA(X ) = the largest definable set in EDLIA contained by X ,

NEGA(X ) = the largest definable set in EDLIA contained by X c,

BNDA(X ) = (POSA(X )∪NEGA(X ))
c.

3.5.4 Computational approach of Pawlak’s rough set model for
a decision table with missing values

Similarly as in Section 3.3.4, we obtain that the approximation operators are

covering-based approximation operators. For each a ∈ At, we have that

Ca = {ma((a,=, v)) | ma((a,=, v)) 6= ;, v ∈ V+a }.

Moreover, for A⊆ At, it holds that

CA =

�

K ⊆ U | K =
⋂

a∈A

Ka, Ka ∈ Ca, K 6= ;
�

,

i.e., CA contains the non-empty intersections K =
⋂

a∈A
Ka, where we take exactly

one set Ka in the intersection from Ca, a ∈ A.

In addition, we obtain that DEFEDLIA
(T ) = S∪,CA

. Moreover, we have the follow-

ing computational characterization for the approximation operators:

apr
A
(X ) =

⋃

{K ∈ S∪,CA
| K ⊆ X }

=
⋃

{K ∈ CA | K ⊆ X },

aprA(X ) = {K ∈ S∪,CA
| X ⊆ K , K minimal},

POSA(X ) =
⋃

{K ∈ S∪,CA
| K ⊆ X }

=
⋃

{K ∈ CA | K ⊆ X },

NEGA(X ) =
⋃

{K ∈ S∪,CA
| K ⊆ X c}

=
⋃

{K ∈ CA | K ⊆ X c},

BNDA(X ) = (POSA(X )∪NEGA(X ))
c

=
⋂

{K ∈ CA | K ∩ X 6= ;, K ∩ X c 6= ;}.
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For X ⊆ U it holds that apr
A
(X ), POSA(X ) and NEGA(X ) are definable sets, aprA(X )

is a set of definable sets and BNDA(X ) is not necessarily a definable set.

Remark 3.5.13. Note that the singleton, subset and concept approximation oper-

ators defined in Section 2.2 were introduced for rule induction [56,62]. However,

in [58] it was shown that the singleton approximation operators should not be

used for rule induction, due to the fact that the singleton lower approximation

operator does not provide a definable set. As the lower subset and lower concept

approximation operator are the same, and the upper concept approximation oper-

ator yields smaller approximations than the upper subset approximation operator,

the author of [57] suggests to use the concept approximation operators for rule

induction. It is very easy to see that for A⊆ At and X ⊆ U the lower concept ap-

proximation aprA
conc
(X ) coincides with the lower approximation apr

A
(X ) obtained

by the semantical approach for the following neighborhood operator: define the

neighborhood operator NX
A as follows:

∀x ∈ U : NX
A (x) =

⋃

{K ∈ CA | x ∈ K , K ⊆ X }. (3.10)

To end this section, we illustrate the computational approach for the decision

table T presented in Table 3.3 by obtaining certain rules from T .

Example 3.5.14. First, we describe the coverings CA for A ⊆ C . For A = {aT },
A= {aH} and A= {aN}, the respective coverings are obtained from Table 3.4:

CaT
= {{x6, x7}, {x1, x4, x5, x8}, {x2, x8}, U , {x1, x2, x4, x5, x8}},

CaH
= {{x1, x2, x4, x6, x8}, {x3, x7}, U},

CaN
= {{x2, x4, x5, x7, x8}, {x1, x3, x6, x8}, U , {x8}}.

Moreover, for |A|= 2, we have the following coverings:

C{aT ,aH} = {{x6}, {x7}, {x6, x7}, {x1, x4, x8}, {x1, x4, x5, x8},

{x2, x8}, {x1, x2, x4, x6, x8}, {x3, x7}, U ,

{x1, x2, x4, x8}, {x1, x2, x4, x5, x8}},

C{aH ,aN } = {{x2, x4, x8}, {x1, x6, x8}, {x1, x2, x4, x6, x8}, {x3}, {x7},

{x3, x7}, U , {x2, x4, x5, x7, x8}, {x1, x3, x6, x8}, {x8}},
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C{aN ,aT } = {{x6}, {x7}, {x6, x7}, {x4, x5, x8}, {x1, x8}, {x1, x4, x5, x8},

{x2, x8}, {x8}, {x2, x4, x5, x7, x8}, {x1, x3, x6, x8}, U ,

{x2, x4, x5, x8}, {x1, x2, x4, x5, x8}}.

Finally, for A= C:

CC = {{x6}, {x7}, {x6, x7}, {x4, x8}, {x1, x8}, {x1, x4, x8}, {x4, x5, x8},

{x1, x4, x5, x8}, {x2, x8}, {x8}, {x2, x4, x8}, {x1, x6, x8}, {x3}, U

{x1, x2, x4, x6, x8}, {x3, x7}, {x1, x2, x4, x8}, {x1, x3, x6, x8},

{x2, x4, x5, x8}, {x2, x4, x5, x7, x8}, {x1, x2, x4, x5, x8}}.

Certain rules are obtained by calculating the lower approximation of a decision

class. For example, let A= {aH , aN} and X = md((d,= yes)) = {x1, x2, x4, x8}, then

apr
A
(X ) = {x2, x4, x8}

= {x1, x2, x4, x6, x8} ∩ {x2, x4, x5, x7, x8}

= mA((aH ,=, yes))∩mA((aN ,=, yes)).

Hence, we obtain the certain rule

if (aH ,=, yes) and (aN ,=, yes), then (d,=, yes).

Similarly, the following certain rules can be obtained:

• From apr
aT
({x1, x2, x4, x8}) = {x2, x8}= maT

((aT ,=, very high)):

If (aT ,=, very high), then (d,=, yes).

• From apr
aT
({x3, x5, x6, x7}) = {x6, x7}= maT

((aT ,=, normal)):

If (aT ,=, normal), then (d,=, no).

• From apr
aH
({x3, x5, x6, x7}) = {x3, x7}= maH

((aH ,=, no)):

If (aH ,=, no), then (d,=, no).

For no other combination of A ⊆ C and X ∈ U/d we obtain that apr
A
(X ) is the

intersection of meaning sets, where each meaning set in the intersection relates

with exactly one attribute in A.
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3.6 Conclusions and future work

In this section, we have discussed three semantically sound approaches to rough

set models. First, we revised a semantically sound approach of Pawlak’s rough set

model for complete decision tables. Here, we constructed a descriptive language

in two parts. Moreover, we have described a satisfiability relation and the meaning

sets of formulas. The approximation operators are now defined based on the set

of definable sets, hence, they are derived concepts of the theory instead of the

basic notions to build a rough set model. In addition, we have discussed that the

elementary sets related with a set of conditional attributes A is algebraically given by

a partition U/EA, with EA the regular equivalence relation over the set of attributes A.

The set of definable sets is given by the Boolean algebraB(U/EA). Furthermore,

we have studied how the conceptual approximation operators coincide with the

subsystem-based approximation operators of Pawlak’s rough set model.

Second, we have extended this semantical approach to complete decision tables

with added semantics, allowing for more variety in the choices of relations between

the attribute values in the table. The crucial difference between the generalized

descriptive language and the descriptive language in the previous approach is the

set of atomic formulas, which is a direct consequence of the variation of relations.

Therefore, the set of elementary sets is no longer a partition, but a covering CA. The

set of definable sets is given by the union-closure S∪,CA
of this covering. Moreover,

the upper approximation operator provides not longer a definable set, but it is

a set of definable sets. We have studied that the lower approximation operator

obtained in this conceptual approach coincides with the tight covering-based

lower approximation operator. We have illustrated how this approach may lead to

certain rules given a complete decision table with added semantics. In addition,

we have applied this semantically sound approach to the theory of dominance-

based rough sets in which it is shown that the conceptual lower approximation

operator coincides with an element-based approximation operator for a reflexive

and transitive neighborhood operator.

Finally, we have introduced a semantically sound approach to decision tables

with missing values for Pawlak’s rough set model. We have considered three types

of missing attribute values: lost values, do-not-care values and attribute-concept
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values. We have introduced the satisfiability relation for a decision table with these

types of missing values. Although only the equality relation is considered as relation

between the attribute values, the elementary and definable sets coincide with a

covering and its union-closure. As in the previous approach, the conceptual lower

approximation operator coincides with the tight covering-based lower approxi-

mation operator and the conceptual upper approximation operator provides a set

of definable sets instead of a definable set. To end, we have illustrated how this

approach provides certain rules related with the table.

The results obtained in Sections 3.3 and 3.5 motivate the research on covering-

based rough set models, as it allows rule induction for ordered and incomplete

decision tables.

A future research objective is the study of other types of missing values. For

example, in [77] it is discussed how an attribute can be not applicable: for instance,

the attribute ‘Pregnant’ is not applicable for a male patient. This attribute value

should not be considered for this patient.

Another future research objective is the study of set-valued decision tables

[97,127]. If the attribute value of a certain object is a set of values, then this may

reflect our incomplete knowledge or it may represents that this object has a few

values simultaneously [77]:

• Consider the attribute ‘Name’: every person can only have one name, hence,

if the attribute value for a certain object is a set of names, then we know

only one of them is possible. This interpretation is similar to that of a lost

attribute value.

• Consider the attribute ‘Languages’: a person can speak different languages

at the same time. Hence, this interpretation is similar to a do-not-care at-

tribute value or an attribute-concept value. The latter is used when there is

a limitation on the possible attribute values.

Hence, the study of set-valued decision tables will be very similar to the study of

decision tables with missing values.
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Some other future research objectives include the following:

• The study of a semantically sound approach to covering-based rough set mod-

els when incomplete decision tables are considered, i.e., when we consider a

set of relations Ra instead of only the equality relation = for a ∈ At.

• The study of how to obtain meaningful atomic formulas related to a decision

table for covering-based rough set models, i.e., how to choose the relations Ra

and labels La for an attribute a ∈ At.

• The study of rule induction based on upper approximation operators to

derive possible rules.
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CHAPTER4

Computational approach of covering-based rough sets

The goal of this chapter is to construct a framework of dual covering-based approx-

imation operators. A first thorough survey of all dual generalizations of Pawlak’s

model was done by Samanta and Chakraborty in [142, 143], where 16 pairs of

approximation operators were considered. The authors discussed properties and im-

plication lattices, in which the implication relations between clusters of inclusions

are studied [9]. In 2012, Yao and Yao [189] studied 20 pairs of dual approxima-

tion operators. In 2014, Restrepo et al. [141] adopted the framework of Yao and

Yao, and also integrated the non-dual framework of Yang and Li [177] into it by

considering the corresponding dual lower approximation operators. They reduced

the number of different covering approximation operators to 16 dual pairs, and

studied the partial order relations between these 16 pairs of dual approximation

operators [141], showing which operators yield smaller or larger approximations.

Furthermore, in 2016, Zhao [197] studied seven dual pairs of covering-based

approximation operators from a topological point of view.

In this chapter, we continue the research on covering-based rough set approxi-

93
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mation operators and their partial order relations. We introduce some new approx-

imation operators. In addition, we fuse different frameworks of covering-based

approximation operators in order to obtain an overview of different covering-based

approximation operators defined in the literature. In Section 4.1, we discuss the

equalities and partial order relations between element-based approximation op-

erators based on neighborhood operators defined in [189]. Next, we extend our

framework with granule-based and subsystem-based approximation operators in

Sections 4.2 and 4.3 and in Section 4.4, with approximation operators related to

the framework of Yang and Li [177]. Moreover, we discuss in Sections 4.5 and 4.6

how the frameworks of Zhao [197] and Samanta and Chakraborty [142, 143]
correspond with the established framework. Note that some results were already

proven in [141]. Finally, we discuss which properties are satisfied by the approxi-

mation operators in Section 4.7. Counterexamples for this chapter can be found in

Appendix A.

In this chapter and Appendix A, we will often use an abbreviation to denote sets

in examples: let X = {x1, x2, . . . , xn} be a set in the universe U , then we will often

represent the set X by x1 x2 . . . xn, i.e., we will remove the braces and commas and

we write the elements of X as a string.

Example 4.0.1. Let U = {1,2,3} and C = {{1,2}, {3}, {1,2,3}} a covering of U ,

then we will denote C= {12,3, 123}.

Moreover, we consider two partial order relations � and ≤ in this chapter. The

former is used to describe partial order relations between neighborhood operators

and the latter denotes the partial order relation between approximation operators

or pairs of dual approximation operators:

• Let N and N′ be two neighborhood operators on U , then we say that N � N′

if and only if ∀x ∈ U : N(x) ⊆ N′(x).

• Let apr1 and apr2 be two approximation operators on U , then we say that

apr1 ≤ apr2 if and only if ∀X ⊆ U : apr1(X ) ⊆ apr2(X ).
Given two pairs of dual approximation operators (apr

1
, apr1) and (apr

2
, apr2),

we will denote (apr
1
, apr1) ≤ (apr

2
, apr2) if and only if apr

1
≤ apr

2
if and

only if apr2 ≤ apr1.
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If we use the partial order relation ≤ in the latter setting, we indicate that the

pair (apr
2
, apr2) yields a better accuracy than the pair (apr

1
, apr1). The accuracy

η(X ) of a pair of approximation operators (apr, apr) for a set X ⊆ U is defined

by the ratio of the cardinalities of the lower approximation of X and the upper

approximation of X [128], i.e.,

η(X ) =
|apr(X )|

|apr(X )|
.

We say that a pair (apr
2
, apr2) is more accurate than a pair (apr

1
, apr1) if

∀X ⊆ U :
|apr

1
(X )|

|apr1(X )|
≤
|apr

2
(X )|

|apr2(X )|
.

Since by duality it holds for X ⊆ U that |apr
1
(X )| ≤ |apr

2
(X )| if and only if

|apr2(X )| ≤ |apr1(X )|, we derive that pairs with larger lower approximations, and

thus smaller upper approximations, provide higher accuracy.

4.1 Element-based approximation operators

Let U be a non-empty universe and C a covering of U which satisfies the conditions

of Proposition 2.2.3. We will assume C satisfies these conditions in the remainder of

this chapter. To establish a unified framework, we discuss the partial order relations

between different element-based approximation operators. Therefore, we use the

following proposition:

Proposition 4.1.1. Let N and N′ be two neighborhood operators in the covering

approximation space (U ,C), then N � N′ if and only if

(apr
N′

, aprN′)≤ (apr
N

, aprN),

i.e., apr
N′
≤ apr

N
and aprN ≤ aprN′ .

Proof. Let N and N′ be two neighborhood operators in (U ,C). The necessary

condition was proven in [141]. For the sufficiency condition, let x , y ∈ U such that

x ∈ N(y), then N(y)∩ {x} 6= ; and thus, y ∈ aprN({x}). Hence, y ∈ aprN′({x}),
thus, N′(y)∩ {x} 6= ;. We conclude that x ∈ N′(y) and thus, N � N′.
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Hence, smaller neighborhood operators provide more accurate pairs of dual

element-based approximation operators. Moreover, we conclude the following

from Proposition 4.1.1:

Corollary 4.1.2. Let N and N′ be two neighborhood operators in the covering

approximation space (U ,C). Then N = N′ if and only if

(apr
N′

, aprN′) = (apr
N

, aprN).

Therefore, studying equalities and partial order relations between element-

based approximation operators reduces to studying equalities and partial order

relations between the respective neighborhood operators.

4.1.1 Neighborhood operators based on coverings

In [189], Yao and Yao described four neighborhood operators NC1 – NC4 based on C
and five2 derived coverings C1 – C4 and C∩. Hence, combining the four neighbor-

hood operators and six coverings we obtain 24 neighborhood operators N
C j

i , with

i ∈ {1,2,3,4} and C j ∈ {C,C1,C2,C3,C4,C∩}. For example, let us consider the

combination of neighborhood operator N1 and covering C4: let x , y ∈ U , then

y ∈ NC4
1 (x) ⇔ ∀K ∈ C (C4, x): y ∈ K

⇔ ∀z ∈ U : x ∈
⋃

C (C, z)⇒ y ∈
⋃

C (C, z)

⇔ ∀z ∈ U : z ∈
⋃

C (C, x)⇒ z ∈
⋃

C (C, y)

⇔
⋃

C (C, x) ⊆
⋃

C (C, y)

⇔ NC4 (x) ⊆ NC4 (y).

In other words, an element y belongs to NC4
1 (x) if all elements associated with x

by C are also associated with y by C.

In order to study possible equalities between different neighborhood operators,

we first show the following results for the minimal and maximal descriptions of

some of the derived coverings.

2The covering C∪ is omitted as it provides the same covering as C1.
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Proposition 4.1.3. Let (U ,C) be a covering approximation space and x ∈ U , then

(a) md(C1, x) =md(C, x),

(b) md(C2, x) =C (C2, x) =MD(C2, x) =MD(C, x),

(c) md(C3, x) =
�⋂

md(C, x)
	

=
�⋂

C (C, x)
	

,

(d)
⋂

md(C∩, x) =
⋂

C (C∩, x) =
⋂

C (C, x) =
⋂

md(C, x),

(e) MD(C∩, x) =MD(C, x).

Proof. (a) Take x ∈ U , we will prove that md(C1, x) =md(C, x).

Let K ∈ md(C, x), then by definition it holds that K ∈ C1 and x ∈ K. We

will prove that K ∈ md(C1, x): let K ′ ∈ C1 with x ∈ K ′ and K ′ ⊆ K, then

K ′ ∈ C since C1 ⊆ C. Because K ∈md(C, x), we have that K = K ′ and hence,

K ∈md(C1, x). Therefore, md(C, x) ⊆md(C1, x).

On the other hand, let K ∈ md(C1, x), then K ∈ C1 and x ∈ K. Since

C1 ⊆ C, K ∈ C and since x ∈ K, there exists K ′ ∈ md(C, x) with K ′ ⊆ K.

Hence, K ′ ∈ C1 and since K ∈ md(C1, x), we have that K = K ′. Therefore,

K ∈md(C, x) and md(C1, x) ⊆md(C, x).

We conclude that md(C1, x) =md(C, x).

(b) – Take x ∈ U . We will prove that md(C2, x) =C (C2, x).

By definition, md(C2, x) ⊆ C (C2, x).

On the other hand, take K ∈ C (C2, x) and K ′ ∈ C2 with x ∈ K ′ and

K ′ ⊆ K. Since K ′ ∈ C2, there exists y ∈ U such that K ′ ∈ MD(C, y).
Since K ′ ⊆ K, y ∈ K and since C2 ⊆ C, K ∈ C, thus K ∈ C (C, y).
Since K ′ ∈ MD(C, y) and K ′ ⊆ K, we obtain that K ′ = K. Hence,

K ∈md(C2, x).

We conclude that md(C2, x) =C (C2, x).

– Take x ∈ U . We will prove that C (C2, x) =MD(C2, x).

By definition, MD(C2, x) ⊆ C (C2, x).

On the other hand, take K ∈ C (C2, x) and K ′ ∈ C2 with x ∈ K ′ and

K ⊆ K ′. Since K ∈ C2, there exists y ∈ U such that K ∈ MD(C, y).
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Since K ⊆ K ′, y ∈ K ′ and since C2 ⊆ C, K ′ ∈ C, thus K ′ ∈ C (C, y).
Since K ∈ MD(C, y) and K ⊆ K ′, we obtain that K = K ′. Hence,

K ∈MD(C2, x).

We conclude that C (C2, x) =MD(C2, x).

– Take x ∈ U . We will prove that MD(C2, x) =MD(C, x).

Let K ∈ MD(C, x), then by definition it holds that K ∈ C2 and x ∈ K.

We will prove that K ∈MD(C2, x): let K ′ ∈ C2 with x ∈ K ′ and K ⊆ K ′,
then K ′ ∈ C since C2 ⊆ C. Because K ∈MD(C, x), we have that K = K ′

and hence, K ∈MD(C2, x). Therefore, MD(C, x) ⊆MD(C2, x).

On the other hand, let K ∈MD(C2, x), then K ∈ C2 and x ∈ K. Since

C2 ⊆ C, K ∈ C and since x ∈ K, there exists K ′ ∈ MD(C, x) with

K ⊆ K ′. Hence, K ′ ∈ C2 and since K ∈MD(C2, x), we have that K = K ′.
Therefore, K ∈MD(C, x) and MD(C2, x) ⊆MD(C, x).

We conclude that MD(C2, x) =MD(C, x).

(c) Take x ∈ U and K ∈ md(C3, x). Since K ∈ C3, there exists z ∈ U such that

K =
⋂

C (C, z). Denote L =
⋂

C (C, x), so L ∈ C3. We will prove that K = L.

Take y ∈ L, then for all M ∈ C it holds that if x ∈ M then y ∈ M . Furthermore,

since x ∈ K it holds for all M ∈ C that if z ∈ M then x ∈ M . Hence, for all

M ∈ C it holds that if z ∈ M then y ∈ M , thus, y ∈ K. Hence, L ⊆ K and

since K ∈md(C3, x) and L ∈ C3 with x ∈ L, we conclude that K = L.

(d) Take x ∈ U . We will prove that
⋂

C (C∩, x) =
⋂

C (C, x).

Since C∩ ⊆ C, we always have
⋂

C (C∩, x) ⊇
⋂

C (C, x).

For the other inclusion, if K ∈ C (C, x) \ C (C∩, x), then there exists a set

{Ki | i ∈ I} ⊆ C such that Ki 6= K for all i and

K =
⋂

i∈I

Ki .

We can assume that Ki ∈ C∩, ∀i ∈ I , otherwise we decompose Ki itself into

elements of C∩. Moreover, since x ∈ K , x ∈ Ki for i ∈ I .

Let y ∈
⋂

C (C∩, x) \
⋂

C (C, x), then for all K ∈ C∩ it holds that if x ∈ K
then y ∈ K and there exists K∗ ∈ C such that x ∈ K∗ and y /∈ K∗. Hence,
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there exists K∗ ∈ C (C, x) \ C (C∩, x) with y /∈ K∗. We can decompose K∗

into elements of C∩ as we saw before: K∗ =
⋂

i∈I
Ki with Ki 6= K∗. Since y /∈ K∗,

there exists Ki with Ki ∈ C∩, x ∈ Ki and y /∈ Ki , which is a contradiction.

We conclude that
⋂

C (C∩, x) =
⋂

C (C, x).

(e) Take x ∈ U . We will prove that MD(C, x) =MD(C∩, x).

First, let us consider K ∈ MD(C, x) and K ′ ∈ C∩ with x ∈ K ′ and K ⊆ K ′.
Since K ′ ∈ C and K ∈MD(C, x), we have that K = K ′ and thus K ∈ C∩ and

K ∈MD(C∩, x).

On the other hand, take K ∈ MD(C∩, x) and K ′ ∈ C with x ∈ K ′ and

K ⊆ K ′. If K ′ ∈ C∩, then K = K ′. If K ′ /∈ C∩, then there exists a set

{Ki | i ∈ I} ⊆ C∩ \ {K ′} with K ′ =
⋂

i∈I
Ki . Then for all i, K ⊆ Ki and thus,

K = Ki for all i. Again we can conclude that K = K ′. Hence, K ∈MD(C, x).

We conclude that MD(C, x) =MD(C∩, x).

From Proposition 4.1.3, we derive some more insight into the construction of

the different coverings. First, the covering C1 preserves the minimal description

of all the elements. Next, we obtain that the minimal and maximal description

in C2 of an element x correspond to all the sets in C2 which contain x . Moreover,

these sets are exactly the sets of the maximal description in C of x . Furthermore,

we derive that the minimal description of x by C3 is the singleton
�⋂

C (C, x)
	

which corresponds to the intersection of all elements in C (C, x). Next, for C∩, we

obtain that it preserves the intersection of the sets in C which contain an arbitrary

element x , and this for all elements x ∈ U . This is in line with the idea of C∩, i.e.,

C∩ omits intersection reducible sets from C. Moreover, C∩ preserves the maximal

description in C of all the elements.

From the results presented in Proposition 4.1.3 we immediately obtain the

following equalities between neighborhood operators.

Corollary 4.1.4. Let (U ,C) be a covering approximation space, then
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(a) NC1 = NC1
1 and NC2 = NC1

2 ,

(b) NC3 = NC2
1 = NC2

3 and NC4 = NC2
2 = NC2

4 ,

(c) NC1 = NC3
1 = NC3

2 ,

(d) NC1 = NC∩1 ,

(e) NC3 = NC∩3 and NC4 = NC∩4 .

The equalities presented in Corollary 4.1.4 are the only equalities between the

24 neighborhood operators N
C j

i . Counterexamples for the other equalities can be

found in Counterexamples 1 – 3 in Appendix A and the following two examples.

Example 4.1.5. Let U = {1,2,3} and C = {1,12,13}, then NC3
3 (1) = {1} and

NC3
4 (1) = {1,2,3}. Therefore, the neighborhood operators NC3

3 and NC3
4 are not

equal to each other.

Example 4.1.6. Let U = {1,2,3} and C = {12,23,13}, then NC3 (1) = {1} and

NC4
1 (1) = {1,2,3}. Therefore, the neighborhood operators NC3 and NC4

1 are not

equal to each other.

Hence, the set of 24 neighborhood operators reduces to a set of 13 groups of

equal neighborhood operators, presented in Table 4.1.

Besides the neighborhood operators presented in Table 4.1, we can also consider

their inverse neighborhood operators defined by

∀x , y ∈ U : y ∈ N−1(x)⇔ x ∈ N(y).

We have the following observations:

Proposition 4.1.7. Let (U ,C) be a covering approximation space.

(a) Let N and N′ be two neighborhood operators on (U ,C). If N 6= N′, then

N−1 6= N′−1.

(b)
�

NC4
�−1
= NC4 .
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Table 4.1: Neighborhood operators N
C j

i for (U ,C)

Group Operators Group Operators

a. NC1 , NC1
1 , NC3

1 , NC3
2 , NC∩1 h. NC1

4

b. NC3
3 i. NC4

1

c. NC2 , NC1
2 j. NC4 , NC2

2 , NC2
4 , NC∩4

d. NC1
3 k. NC4

2

e. NC∩2 l. NC4
3

f . NC3 , NC2
1 , NC2

3 , NC∩3 m. NC4
4

g. NC3
4

Proof. (a) Let N and N′ be two neighborhood operators on (U ,C) with N 6= N′,

then there exist, without loss of generality, x , y ∈ U such that x ∈ N(y) and

x /∈ N′(y). Hence, y ∈ N−1(x) and y /∈ N′−1(y), thus N 6= N′.

(b) Let x , y ∈ U , then

x ∈
�

NC4
�−1
(y) ⇔ y ∈ NC4 (x)

⇔ ∃K ∈ C: x , y ∈ K

⇔ x ∈ NC4 (y).

By the first observation, the 13 groups of neighborhood operators provide at

most 13 new groups of neighborhood operators and those 13 new groups are all

different. Moreover, by the second observation it holds that the neighborhood

operator NC4 is symmetric for every covering C. Therefore, the groups g, h, j and m
do not give rise to new neighborhood operators. Hence, there are at most nine new

groups. By Counterexamples 1 – 4 from Appendix A and the following example

there are no equalities between the first 13 groups and the nine new groups of

inverse neighborhood operators.
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Example 4.1.8. Let U = {1, 2,3} and C= {1, 12,13}, then

(a) NC3
3 (2) = NC3

4 (2) = {1, 2},

(b) (NC3
3 )

−1(2) = {2}.

Therefore, the neighborhood operator (NC3
3 )

−1 does not equal the operators NC3
3

or NC3
4 .

Combining the 13 groups of neighborhood operators and the nine groups of

inverse neighborhood operators, we derive 22 groups of neighborhood operators

in Table 4.2.

We briefly discuss which properties the neighborhood operators satisfy. By

definition, it is very easy to see that all neighborhood operators of Table 4.2 are

reflexive. Moreover, as discussed above, the neighborhood operators of groups g,

h, j and m are symmetric, while the neighborhood operators of the other groups

are not. We now want to discuss which neighborhood operators are transitive. To

this aim, we have the following proposition:

Proposition 4.1.9. Let (U ,C) be a covering approximation space, then

(a) the neighborhood operator NC1 is transitive,

(b) the neighborhood operator NC3 is transitive,

(c) if N is a transitive neighborhood operator on U , then N−1 is also transitive.

.

Proof. (a) Let x , y ∈ U and assume x ∈ NC1 (y). Now, let z ∈ NC1 (x) and

K ∈ md(C, y). Since x ∈ NC1 (y), x ∈ K. Thus, there exists K ′ ∈ md(C, x)
with K ′ ⊆ K , and z ∈ K ′ since z ∈ NC1 (x). Hence, z ∈ K and thus, z ∈ NC1 (y).

(b) Let x , y ∈ U and assume x ∈ NC3 (y). Now, let z ∈ NC3 (x) and K ∈MD(C, y).
Since x ∈ NC3 (y), x ∈ K . Thus, there exists K ′ ∈MD(C, x) with K ⊆ K ′, and

z ∈ K ′ since z ∈ NC3 (x). Since K ∈ MD(C, y), K = K ′. Hence, z ∈ K and

z ∈ NC3 (y).
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Table 4.2: Neighborhood operators N
C j

i and their inverse operators for (U ,C)

Group Operators Group Operators

a. NC1 , NC1
1 , NC3

1 , NC3
2 , NC∩1 a−1. (NC1 )

−1, (NC1
1 )

−1, (NC3
1 )

−1,

(NC3
2 )

−1, (NC∩1 )
−1

b. NC3
3 b−1. (NC3

3 )
−1

c. NC2 , NC1
2 c−1. (NC2 )

−1, (NC1
2 )

−1

d. NC1
3 d−1. (NC1

3 )
−1

e. NC∩2 e−1. (NC∩2 )
−1

f . NC3 , NC2
1 , NC2

3 , NC∩3 f −1. (NC3 )
−1, (NC2

1 )
−1, (NC2

3 )
−1, (NC∩3 )

−1

g. NC3
4 , (NC3

4 )
−1

h. NC1
4 , (NC1

4 )
−1

i. NC4
1 i−1. (NC4

1 )
−1

j. NC4 , NC2
2 , NC2

4 , NC∩4 ,

(NC4 )
−1, (NC2

2 )
−1, (NC2

4 )
−1, (NC∩4 )

−1

k. NC4
2 k−1. (NC4

2 )
−1

l. NC4
3 l−1. (NC4

3 )
−1

m. NC4
4 , (NC4

4 )
−1
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(c) Let x , y, z ∈ U with x ∈ N−1(y) and y ∈ N−1(z), then y ∈ N(x) and z ∈ N(y).
Hence, by the transitivity of N, it holds that z ∈ N(x), and thus x ∈ N−1(z).

We derive that the neighborhood operators in the groups a, a−1, b, b−1, d,

d−1, f , f −1, i, i−1, l and l−1 are transitive. By considering Counterexample 2

of Appendix A and the following example, we conclude that none of the other

neighborhood operators in Table 4.2 are transitive.

Example 4.1.10. Let U = {1,2,3} and C= {1,12,13}, then 1 ∈ NC3
4 (2) = {1,2},

but NC3
4 (1) = {1, 2,3} 6⊆ NC3

4 (2). Hence, NC3
4 is not transitive.

Next, we study the partial order relations with respect to � for the 22 groups

of neighborhood operators.

4.1.2 Partial order relations between neighborhood operators

Each of the 22 groups of neighborhood operators relates to a pair of element-

based approximation operators (apr
N

, aprN). By Corollary 4.1.4, these pairs are all

different. In order to study the partial order relations with respect to ≤ between

the different pairs of approximation operators, we need to study the partial order

relations with respect to � for the different neighborhood operators. First, note

that we have the following observation:

Proposition 4.1.11. Let N and N′ be two neighborhood operators on U , then

N � N′⇒ N−1 � N′−1.

Proof. Let N and N′ such that N � N′ and assume x ∈ N−1(y) for x , y ∈ U . Then

y ∈ N(x), thus y ∈ N′(x) and therefore, x ∈ N′−1(y).

Hence, studying the partial order relations between the groups a – m imme-

diately provides the results for the partial order relations between the groups of

inverse neighborhood operators. Also note that as all neighborhood operators from

Table 4.2 are different, it holds that if N � N′, then N′ � N cannot hold.
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We start by fixing the type of neighborhood operator and discuss the partial

order relations between the operators of type Ni based on different coverings.

We begin with the neighborhood operators of type N1. Recall that the groups of

neighborhood operators which contain an operator of type N1 are a, f and i.

Proposition 4.1.12. Let (U ,C) be a covering approximation space, then

(a) NC1 � NC2
1 ,

(b) NC2
1 � NC4

1 .

Proof. (a) We show that NC1 (x) ⊆ NC2
1 (x) for all x ∈ U . By definition, it holds

that C2 ⊆ C. Furthermore, for x ∈ U it holds that C (C2, x) ⊆ C (C, x). This

implies that
⋂

C (C, x) ⊆
⋂

C (C2, x), so NC1 (x) ⊆ NC2
1 (x).

(b) Take x ∈ U and y ∈ NC2
1 (x). Then for all K ∈ C2 with x ∈ K it holds that

y ∈ K . Take K ′ ∈ C (C4, x), then there exists a set {Ki | i ∈ I} ⊆ C2 such that

K ′ =
⋃

i∈I
Ki . Since x ∈ K ′, there exists i ∈ I such that x ∈ Ki . Hence, y ∈ Ki

and thus y ∈ K ′. We conclude that y ∈ NC4
1 (x).

Hence, in terms of the notation of Table 4.2, we conclude that a � f � i.

We continue with neighborhood operators of type N2. The groups of neighbor-

hood operators which contain an operator of type N2 are a, c, e, j and k.

Proposition 4.1.13. Let (U ,C) be a covering approximation space, then

(a) NC3
2 � NC2 ,

(b) NC3
2 � NC∩2 ,

(c) NC2 � NC2
2 ,

(d) NC∩2 � NC2
2 ,

(e) NC2
2 � NC4

2 .
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Proof. (a) Take x ∈ U , then by Proposition 4.1.3(c), NC3
2 (x) =

⋂

md(C, x).
Hence, NC3

2 (x) ⊆
⋃

md(C, x) = NC2 (x).

(b) Take x ∈ U , then by Proposition 4.1.3(c), NC3
2 (x) =

⋂

md(C, x) and by

Proposition 4.1.3(d), NC3
2 (x) =

⋂

md(C∩, x). Hence,

NC3
2 (x) ⊆

⋃

md(C∩, x) = NC∩2 (x).

(c) Take x ∈ U and y ∈ NC2 (x), then there exists K ∈ md(C, x) with y ∈ K.

Hence, there exists K ′ ∈MD(C, x) with K ⊆ K ′ and thus, y ∈ K ′. By Propo-

sition 4.1.3(b), MD(C, x) = md(C2, x). Thus, K ′ ∈ md(C2, x) and y ∈ K ′.
Hence, y ∈ NC2

2 (x).

(d) Take x ∈ U and y ∈ NC∩2 (x), then there exists K ∈ md(C∩, x) with y ∈ K.

Since K ∈ C∩ ⊆ C, there exists K ′ ∈MD(C, x) with K ⊆ K ′ and thus, y ∈ K ′.
By Proposition 4.1.3(b), MD(C, x) =md(C2, x). Thus, K ′ ∈md(C2, x) and

y ∈ K ′. Hence, y ∈ NC2
2 (x).

(e) By Corollary 4.1.4 it holds that NC2
2 = NC4 . Moreover, we recall that

C4 = {NC4 (x) | x ∈ U}.

Take x ∈ U , we will prove that NC4 (x) ⊆ NC4
2 (x).

Denote md(C4, x) = {NC4 (zi) | zi ∈ U , i ∈ I} and assume there is an element

y ∈ U with y ∈ NC4 (x)\NC4
2 (x), i.e., y ∈ NC4 (x) and for all i ∈ I : y /∈ NC4 (zi).

Hence, there exists K∗ ∈ C with x , y ∈ K∗ and for all i ∈ I and for all K ∈ C
it holds that if y ∈ K , then zi /∈ K . In other words, x ∈ NC4 (y) and zi /∈ NC4 (y)
for all i ∈ I . Since NC4 (y) ∈ C4 and x ∈ NC4 (y), there exists L ∈ md(C4, x)
with L ⊆ NC4 (y). Since L ∈md(C4, x), L = NC4 (zi) for some i ∈ I , and thus,

NC4 (zi) ⊆ NC4 (y). Hence, zi ∈ NC4 (y), which is a contradiction. We conclude

that NC4 (x) \ NC4
2 (x) = ; and thus, NC4 (x) ⊆ NC4

2 (x).

We can conclude that a � c � j � k and a � e � j � k.

Next, we discuss neighborhood operators of type N3 by considering groups b,

d, f and l.
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Proposition 4.1.14. Let (U ,C) be a covering approximation space, then NC3 � NC4
3 .

Proof. Take x ∈ U and y ∈ NC3 (x), then for all K ∈MD(C, x) it holds that y ∈ K.

Take L ∈ MD(C4, x). Since L ∈ C4, there exists z ∈ U such that L =
⋃

MD(C, z).
Since x ∈ L, there exists L′ ∈ MD(C, z) such that x ∈ L′ and thus, there exists

L′′ ∈MD(C, x) such that L′ ⊆ L′′. Since L′ ∈MD(C, z), we have that L′ = L′′, thus

L′ ∈MD(C, x) and therefore y ∈ L′. We conclude that y ∈ L and y ∈ NC4
3 (x).

Hence, we conclude that f � l.

Finally, we discuss the order relation for neighborhood operators of type N4.

The groups of neighborhood operators which contain an operator of type N4 are g,

h, j and m.

Proposition 4.1.15. Let (U ,C) be a covering approximation space, then

(a) NC3
4 � NC1

4 ,

(b) NC1
4 � NC4 ,

(c) NC4 � NC4
4 .

Proof. (a) Take x ∈ U and y ∈ NC3
4 (x), then there exists K ∈ MD(C3, x)

with y ∈ K. Then there exists K ′ ∈ C1 with K ⊆ K ′ and there exists

K ′′ ∈MD(C1, x) with K ′ ⊆ K ′′. Thus, y ∈ K ′′ ⊆ NC1
4 (x).

(b) Take x ∈ U and y ∈ NC1
4 (x), then there exists K ∈ MD(C1, x) with y ∈ K.

Thus, K ∈ C1 ⊆ C, so there exists K ′ ∈MD(C, x) with K ⊆ K ′. Hence, y ∈ K ′

and y ∈ NC4 (x).

(c) Take x ∈ U and y ∈ NC4 (x), then there exists K ∈MD(C, x) with y ∈ K . Take

K ′ =
⋃

MD(C, x) ∈ C4, then y ∈ K ′ and there exists K ′′ ∈ MD(C4, x) with

K ′ ⊆ K ′′. Hence, y ∈ K ′′ ⊆ NC4
4 (x).

In terms of Table 4.2, this means that g � h� j � m.
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Besides fixing the choice of type of neighborhood operator, it is also possi-

ble to fix the covering. For a fixed covering C, the following order relations for

neighborhood operators have been established in [141]:

Proposition 4.1.16. [141] Let (U ,C) be a covering approximation space, it holds

that

(a) NC1 � NC2 � NC4 ,

(b) NC1 � NC3 � NC4 .

These inequalities show that the operators N1 and N4 result in the smallest and

largest neighborhoods, given a covering C.

Corollary 4.1.17. Let (U ,C) be a covering approximation space, then for C1 we

obtain that

• NC1
2 � NC1

4 ,

• NC1
1 � NC1

3 � NC1
4 .

Moreover, for C3 it holds that

• NC3
1 � NC3

3 � NC3
4 ,

and for C4 that

• NC4
2 � NC4

4 ,

• NC4
1 � NC4

3 � NC4
4 .

Until now, we either fixed the covering, or the type of neighborhood operator.

However, we also have the following order relation between NC4
1 and NC4 .

Proposition 4.1.18. Let (U ,C) be a covering approximation space, then NC4
1 � NC4 .

Proof. For x ∈ U , NC4 (x) ∈ C4 and x ∈ NC4 (x). Thus, there exists a L ∈md(C4, x)
with L ⊆ NC4 (x). Hence, NC4

1 (x) ⊆ L ⊆ NC4 (x).
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We conclude that i � j.

The partial order relations discussed above are the only ones between the

groups a – m. Counterexamples for the other partial order relations can be found

in Counterexamples 1 – 4 of Appendix A and the following three examples.

Example 4.1.19. Let U = {1, 2, 3} and C= {3, 12, 13, 123}, then NC1
3 (3) = {1, 3}

and NC3
3 (3) = NC3

4 (3) = {3}. Therefore, NC1
3 � NC3

3 and NC1
3 � NC3

4 do not hold.

Example 4.1.20. Let U = {1,2,3,4} and C = {1,12,23,24,123,124}, then

NC3
4 (2) = {2,3,4} and NC3

3 (2) = {2}. Therefore, NC3
4 � NC3

3 does not hold. More-

over, NC2 (2) = {1,2,3,4} and NC∩2 (2) = {2,3,4}. Therefore, NC2 � NC∩2 does not

hold.

Example 4.1.21. Let U = {1,2,3} and C = {12,23,13}, then NC3 (1) = {1} and

NC4
1 (1) = {1,2, 3}. Therefore, NC4

1 � NC3 does not hold.

The Hasse diagram with respect to the partial order relation � for the neigh-

borhood operators a – m can be found in Figure 4.1a. A Hasse diagram is a

mathematical diagram which represents a finite partially ordered set (P,≤): each

element p ∈ P is represented by a vertex, and there is a directed edge from the

element p to the element q if p ≤ q and if there is no r ∈ P \ {p, q} with p ≤ r ≤ q.

Note that the Hasse diagram presented in Figure 4.1a represents a lattice, with a
the minimum and m the maximum.

Moreover, by Proposition 4.1.11, we immediately obtain the Hasse diagram

with respect to � for the inverse neighborhood operators of a – m in Figure 4.1b.

This is also a lattice, with a−1 the minimum and m−1 = m the maximum.

In addition, we need to study the partial order relations between the 13 groups

of neighborhood operators and the nine groups of inverse neighborhood operators.

From Figures 4.1a and 4.1b we immediately obtain the following:

Proposition 4.1.22. Let (U ,C) be a covering approximation space.

(a) For N ∈ {a, b, c, d, e, f , i} it holds that N � k−1.

(b) For N ∈ {a−1, b−1, c−1, d−1, e−1, f −1, i−1} it holds that N � k.
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a

f c b d

g

i h

e

j

l k

m

(a) Hasse diagram of the neighborhood operators a – m

a−1

f −1 c−1 b−1 d−1

g

i−1 h

e−1

j

l−1 k−1

m

(b) Hasse diagram of the inverse neighborhood operators of a – m
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These are the only partial order relations which hold between the 13 groups of

neighborhood operators and the nine groups of inverse neighborhood operators.

Counterexamples can be found in Counterexamples 1 – 4 of Appendix A and the

following two examples.

Example 4.1.23. Let U = {1,2,3,4,5,6} and C = {123,145,26}, then it holds

that N(3) = {1,2,3} for N ∈ {NC1 , NC3
3 , NC1

3 , NC3
4 } and (NC3

3 )
−1(3) = {3}. There-

fore, N � (NC3
3 )

−1 does not hold for N ∈ {NC1 , NC3
3 , NC1

3 , NC3
4 }. Moreover, for

N ∈ {(NC1 )
−1, (NC3

3 )
−1, (NC1

3 )
−1} it holds that N(2) = {2,3,6} and NC3

3 (2) = {2}.
Therefore, N � NC3

3 does not hold for N ∈ {(NC1 )
−1, (NC3

3 )
−1, (NC1

3 )
−1}.

Example 4.1.24. Let U = {1, 2, 3} and C= {3, 12, 13, 123}, then NC3
4 (1) = {1, 2}

and (NC1
3 )

−1(1) = {1, 2,3}. Therefore, (NC1
3 )

−1 � NC3
4 does not hold.

The Hasse diagram with respect to � for the 22 neighborhood operators pre-

sented in Table 4.2 is given in Figure 4.2. Based on the results obtained in Figure 4.2,

we derive partial order relations for the element-based approximation operators

related with the neighborhood operators of Table 4.2.

a

c b

g

df

i

j

kl

m

h

e

a−1

c−1b−1 d−1 f −1

i−1

k−1 l−1

e−1

Figure 4.2: Hasse diagram for the neighborhood operators in Table 4.2
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4.1.3 Partial order relations between element-based approxi-
mation operators

Each of the 22 groups of neighborhood operators from Table 4.2 generates a pair

of element-based approximation operators (apr
N

, aprN). We list the approximation

operators in Table 4.4: the pairs 1 – 22 represent the element-based approximation

operators related to groups of Table 4.2. To avoid overload on notation, we use

the lowercases a – m and a−1 – l−1 to denote the neighborhood operators.

The Hasse diagram with respect to the partial order relation ≤ for the upper

approximation operators of pairs 1 – 22 in Table 4.4 is presented in Figure 4.3.

Due to Proposition 4.1.1 all the information we need to construct Figure 4.3 is

given in Figure 4.2.

1

5 3

13

711

15

17

1820

22

14

9

2

64 8 12

16

19 21

10

Figure 4.3: Hasse diagram for the upper approximation operators of pairs 1 – 22

in Table 4.4

From Figure 4.3 we derive that the pairs of approximation operators (apr
a
, apra)

and (apr
a−1

, apra−1) yield the highest accuracies, while the pair of approximation

operators (apr
m

, aprm) yields the smallest.
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4.2 Granule-based approximation operators

We continue with studying the granule-based approximation operators (apr’
Cj

, apr’
Cj
)

and (apr”
Cj

, apr”
Cj
) for C j ∈ {C,C1,C2,C3,C4,C∩}.

For the tight approximation operators, the following equalities are proven

in [140]:

Proposition 4.2.1. [140] Let (U ,C) be a covering approximation space, then

(a) (apr′
C1

, apr′C1
) = (apr′

C
, apr′C),

(b) (apr′
C3

, apr′C3
) = (apr

NC1
, aprNC1

).

None of the granule-based pairs withC j ∈ {C,C1,C2,C4,C∩} equals an element-

based pair of approximation operators, as they are not a join morphism. In addition,

there are no other equalities between pairs of tight approximation operators. There-

fore, we can add four new pairs to Table 4.4, numbered 23 to 26.

Moreover, in [140] it is proven that each pair of loose approximation operators

is equal to a pair of element-based approximation operators. This result is based

on a result presented in [179].

Proposition 4.2.2. [179] Suppose (apr, apr) is a dual pair of approximation

operators on U . The upper approximation operator apr satisfies apr(;) = ; and for

all X i ⊆ U , i ∈ I , : apr

�

⋃

i∈I
X i

�

=
⋃

i∈I
apr(X i), i.e., apr is a complete join morphism,

if and only if there exists a relation R such that

(apr, apr) = (apr
R
, aprR),

with ∀x , y ∈ U : (x , y) ∈ R⇔ y ∈ apr({x}).

Based on this proposition, we present the following proposition:

Proposition 4.2.3. Let (U ,C) a covering approximation space, then

(apr”
Cj

, apr”
Cj
) = (apr

N
C j
4

, apr
N
C j
4
),

for all C j ∈ {C,C1,C2,C3,C4,C∩}.
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Proof. Let C j ∈ {C,C1,C2,C3,C4,C∩}. It is easy to see that apr”
Cj
(;) = ;. Addition-

ally, let {X i ⊆ U | i ∈ I} be a family of subsets of the universe U , then

apr”
Cj

�

⋃

i∈I

X i

�

=
⋃

{K ∈ C j | K ∩
�

⋃

i∈I

X i

�

6= ;}

=
⋃

{K ∈ C j |
⋃

i∈I

(K ∩ X i) 6= ;}

=
⋃⋃

i∈I

{K ∈ C j | K ∩ X i 6= ;}

=
⋃

i∈I

⋃

{K ∈ C j | K ∩ X i 6= ;}

=
⋃

i∈I

apr”
Cj
(X i).

Hence, by Proposition 4.2.2 it holds that (apr”
Cj

, apr”
Cj
) = (apr

R
, aprR), with R

defined by, for x , y ∈ U:

(x , y) ∈ R ⇔ y ∈ apr”
Cj
({x})

⇔ y ∈
⋃

{K ∈ C j | K ∩ {x} 6= ;}

⇔ y ∈
⋃

{K ∈ C j | x ∈ K}

⇔ y ∈ N
C j

4 (x).

Therefore, we conclude that (apr”
Cj

, apr”
Cj
) = (apr

N
C j
4

, apr
N
C j
4
).

Thus, the tight approximation operators yield no new pairs in Table 4.4.

To study the partial order relations with respect to ≤, we need to study for each

pair (apr
1
, apr1) of the pairs 23 – 26 and for each pair (apr

2
, apr2) of the pairs 1 –

26 in Table 4.4 whether one pair has a larger accuracy than the other or whether

both pairs are incomparable with respect to ≤. .

In [141], the following partial order relations between upper approximation

operators were proven:

Proposition 4.2.4. [141] Let (U ,C) be a covering approximation space, then

(a) apr′C3
≤ apr′C1

≤ apr′C∩ ≤ apr′C2
≤ apr′C4

,



4.2. Granule-based approximation operators 115

(b) apr′C ≤ aprNC2
,

(c) aprNC3
≤ apr′C2

,

(d) apr′C4
≤ aprNC4

.

Furthermore, we have the following two propositions:

Proposition 4.2.5. Let (U ,C) be a covering approximation space, then it holds

that aprN
C4
1
≤ apr′C4

.

Proof. Let X ⊆ U and x ∈ aprN
C4
1
(X ), then NC4

1 (x)∩X 6= ;. Now, for all K ∈ C4 with

x ∈ K it holds that NC4
1 (x) ⊆ K , hence, K ∩ X 6= ;. We conclude x ∈ apr′C4

(X ).

Proposition 4.2.6. Let (U ,C) be a covering approximation space, then it holds

that apr′C∩ ≤ aprNC∩2
.

Proof. Let X ⊆ U and x ∈ U such that x ∈ apr′C∩(X ), then for all K ∈ C∩ it holds

that x ∈ K implies K ∩ X 6= ;. Hence, there exists K ∈md(C∩, x) it holds that that

K ∩ X 6= ;, thus NC∩2 (x)∩ X 6= ;. We conclude x ∈ aprNC∩2
(X ).

Figure 4.4 represents the above partial order relations, as well as all the re-

maining partial order relations which hold by transitivity of ≤ for pairs 1 – 26 of

Table 4.4. Counterexamples for the other partial order relations can be found in

Counterexample 5 of Appendix A and the following three examples.

Example 4.2.7. Let U = {1,2,3,4} and C = {12,13,24,34}, then it holds that

apr1({1,4}) = {1,4} and apr2({1,4}) = {1,2,3,4}, hence apr2 ≤ apr1 does not

hold for

apr1 ∈ {aprb, aprb−1 , aprg , apri , apri−1 , aprl , aprl−1}

and

apr2 ∈ {apr′C, apr′C∩ , apr′C2
, apr′C4

}.

Example 4.2.8. Let U = {1, 2, 3, 4} and C = {1, 12, 23, 24, 123, 234}, then it holds

that aprh({1,4}) = {1,2,4} and apr′C∩({1,4}) = {1,2,3,4}. Hence, apr′C∩ ≤ aprh

does not hold. Moreover,

(a) apre({2}) = {2,3, 4},
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(b) apre−1({2}) = {1, 2,4},

(c) apr′C({2}) = apr′C∩({2}) = {2,3, 4},

(d) apr′C2
({2}) = {1, 2,3, 4}.

Hence, apr′C ≤ apre−1 , apr′C∩ ≤ apre−1 , apr′C2
≤ apre−1 and apr′C2

≤ apre do not hold.

Example 4.2.9. Let U = {1,2,3,4} and C = {1,2,12,23,14}, then it holds that

aprc−1({2}) = {2} and apr′C({2}) = apr′C∩({2}) = {2,3}, hence, apr′C ≤ aprc−1 and

apr′C∩ ≤ aprc−1 do not hold. Moreover, aprd({3}) = {2,3} and apr′C4
({3}) = {3},

hence, aprd ≤ apr′C4
does not hold.

1

5 3

13

711

15

17

1820

22

14

9

2

64 8 12

16

19 21

10

23
24

25

26

Figure 4.4: Hasse diagram for the upper approximation operators of pairs 1 – 26

in Table 4.4, where we have extended the Hasse diagram presented in Figure 4.3

with pairs 23 – 26.

4.3 Subsystem-based approximation operators

Next, we want to add the two pairs of subsystem-based approximation operators

(apr
S∩

, aprS∩) and (apr
S∪

, aprS∪) to Figure 4.4. In [140], the following equality was

proven:
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Proposition 4.3.1. [140] Let (U ,C) be a covering approximation space, then

(apr
S∪

, aprS∪) = (apr′
C

, apr′C).

The pair (apr
S∩

, aprS∩) defines a pair of approximation operators different from

the pairs 1 – 26 presented in Table 4.4. There is only one partial order relation

which holds:

Proposition 4.3.2. [141] Let (U ,C) be a covering approximation space, then

apra−1 ≤ aprS∩ .

To see that no upper approximation operator of pairs 1 – 26 from Table 4.4

yields a larger approximation than aprS∩ , consider the following example.

Example 4.3.3. Let U = {1, 2, 3, 4} and C = {1, 2, 3, 4}, then aprm({1, 2}) = {1, 2}
and aprS∩({1, 2}) = {1, 2, 3, 4}. As aprS∩ does not provide a smaller upper approxi-

mation than aprm, it does not provide a smaller upper approximation than any of

the upper approximation operators of pairs 1 – 26, hence, aprS∩ ≤ apr does not

hold for any apr of pairs 1 – 26 in Table 4.4.

Moreover, note from the previous example that when the considered covering

is a partition, the pair (apr
S∩

, aprS∩) does not necessarily coincide with Pawlak’s

rough set approximation operators. To see that no other upper approximation

operator other than apra−1 is smaller than aprS∩ , consider Counterexample 5 in

Appendix A.

We represent the new Hasse diagram with respect to ≤ for pairs 1 – 27 of

Table 4.4 in Figure 4.5.

4.4 Framework of Yang and Li

In [177], Yang and Li studied seven upper approximation operators, which we

consider with their dual lower approximation operator. As previously discussed

in Chapter 2, it is clear that HC2 = apr”
C and HC6 = aprNC1

. Moreover, in [140] the

following equality is proven:

Proposition 4.4.1. [140] Let (U ,C) be a covering approximation space, then

HC7 = apr
′′

C3
.
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Figure 4.5: Hasse diagram for the upper approximation operators of pairs 1 – 27

in Table 4.4, where we have extended the Hasse diagram presented in Figure 4.4

with pair 27.

Moreover, given a neighborhood operator N, we can prove the following equa-

lity:

Proposition 4.4.2. Let(U ,C) be a covering approximation space and N a neigh-

borhood operator, then aprconc = aprN−1 .

Proof. Let X ⊆ U and x ∈ U , then

x ∈ aprconc(X ) ⇔ ∃y ∈ X : x ∈ N(y)

⇔ ∃y ∈ X : y ∈ N−1(x)

⇔ N−1(x)∩ X 6= ;

⇔ x ∈ aprN−1(X ).

Therefore, the following equalities hold for HC3 and HC5 .

Corollary 4.4.3. Let (U ,C) be a covering approximation space, then

(a) HC3 = aprc−1 ,
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(b) HC5 = apra−1 .

However, we have no such equality for the approximation operators HC1 and HC4 .

We study the partial order relations with respect to ≤ for the pairs 1 – 29 of

Table 4.4. The only crucial partial order relations which hold for HC1 and HC4 are

proved in [166]:

Proposition 4.4.4. [166] Let (U ,C) be a covering approximation space, then

(a) HC5 ≤ HC1 ≤ HC3 ,

(b) HC1 ≤ HC4 ≤ HC2 .

We provide counterexamples for the partial order relations which do not hold

in Counterexample 5 of Appendix A and in the following two examples.

Example 4.4.5. Let U = {1,2,3,4} and C = {12,13,24,34}, then it holds that

apr1({1}) = {1} and apr2({1}) = {1,2,3}, hence apr2 ≤ apr1 does not hold for

apr1 ∈ {aprl , aprl−1} and apr2 ∈ {HC1 , HC4 }. Moreover, aprS∩({1,2,3}) = {1,2,3,4}
and HC4 ({1, 2,3}) = {1, 2,3}, hence, aprS∩ ≤ HC4 does not hold.

Example 4.4.6. Let U = {1,2,3,4} and C = {1,12,23,24,123,234}, then we

have that apre({2}) = {2,3,4}, apre−1({2}) = {1,2,4} and HC1 ({2}) = {1,2,3,4},
hence, HC1 ≤ apre and HC1 ≤ apre−1 do not hold. Moreover, apr f −1({1}) = {1,2,3}
and HC4 ({1}) = {1}, hence, apr f −1 ≤ HC4 does not hold.

The Hasse diagram with respect for ≤ for the upper approximation operators

of pairs 1 – 29 in Table 4.4 can be found in Figure 4.6.

4.5 Framework of Zhao

In [197], Zhao studied seven pairs of dual covering-based approximation operators

from a topological point of view. Moreover, Zhao studied the partial order relations

between these seven dual pairs. The Hasse diagram of the upper approximation

operators can be found in Figure 4.7. In addition, Zhao studied under which

conditions some of the pairs coincide with each other. However, in general, they
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Figure 4.6: Hasse diagram for the upper approximation operators of pairs 1 – 29

in Table 4.4, where we have extended the Hasse diagram presented in Figure 4.5

with pairs 28 and 29.

are all different.

We now want to extend the framework provided in Figure 4.6 with the seven

pairs of approximation operators studied by Zhao. By definition, we immediately

see the following result:

Proposition 4.5.1. Let (U ,C) be a covering approximation space, then it holds

that (l−, l+) = (apr
a
, apra).

Hence, the neighborhood operator NC1 effectively generates the interior and

closure operator of the topology induced by C. Moreover, as the following propo-

sition shows, the inverse neighborhood operator (NC1 )
−1, sometimes called the

complementary neighborhood operator [106], also has a topological interpretation:

Proposition 4.5.2. Let (U ,C) be a covering approximation space and T the topo-

logy induced by C. For x ∈ U it holds that {x}= (NC1 )
−1(x).

Proof. Assume x ∈ U . From [197] we obtain that the closure of {x} with respect
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COM+

z+

b+

l+ r+

s+

P4

Figure 4.7: Hasse diagram of upper approximation operators studied by Zhao

to the induced topology is given by U \
�

⋃

K∈C,x 6∈K
K

�

. Hence, we find

{x} = U \

�

⋃

K∈C,x 6∈K

K

�

=

¨

y ∈ U | y 6∈
⋃

K∈C,x 6∈K

K

«

= {y ∈ U | (∀K ∈ C)(x 6∈ K ⇒ y 6∈ K)}

= {y ∈ U | (∀K ∈ C)(y ∈ K ⇒ x ∈ K)}

=
�

y ∈ U | x ∈ NC1 (y)
	

= (NC1 )
−1(x).

From the previous proposition, we obtain the following equality of approxima-

tion operators.

Corollary 4.5.3. Let (U ,C) be a covering approximation space, then it holds that

(r−, r+) = (apr
a−1

, apra−1).
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Continuing, it is straightforward to check that the dual pairs (P4, P4), (b−, b+),
(z−, z+) and (COM−, COM+) are also element-based approximation operators. We

will denote the corresponding neighborhood operators by NCP4
, NCb , NCz and NCCOM

respectively, i.e., for x in U ,

NCP4
(x) = PCx ,

NCb (x) = NC1 (x)∪ {x}

NCz (x) = NC1 (x),

NCCOM(x) = [x]∼.

All of the four neighborhood operators are reflexive and symmetric, so they coincide

with their inverse neighborhood operators. Moreover, NCP4
and NCCOM are equivalence

relations and thus are also transitive. Neither NCb nor NCz are transitive, as the

following example demonstrates.

Example 4.5.4. For the covering approximation space (U ,C) with U = {1, 2, 3, 4}
and C= {12,13, 234}, then induced topology T is given by

T = {;, 1234, 12,13, 234,1, 2,3, 123}.

We find, for example, that NCb (2) = NCz (2) = {2, 4} and NCb (4) = NCz (4) = {2, 3, 4}.
So, 4 ∈ NCb (2) = NCz (2), but NCb (4) = NCz (4) 6⊆ NCb (2) = NCz (2). Hence, NCb and NCz
are not transitive.

The four neighborhood operators NCb , NCz , NCCOM and NCP4
do not coincide3

with one of the neighborhood operators from Table 4.2. Therefore, we can extend

Table 4.2 to Table 4.3. We will denote the four new neighborhood operators with the

lowercase letters n – q. In addition, we can denote the four pairs of approximation

operators as follows:

(P4, P4) = (apr
n
, aprn),

(b−, b+) = (apr
o
, apro),

(z−, z+) = (apr
p
, aprp),

3Counterexamples to support this claim can be found later on in the text, when we discuss the
partial order relations of the covering-based approximation operators.
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(COM−, COM+) = (apr
q
, aprq).

Moreover, note that the following example shows that (s−, s+) does not meet

the criteria of an element-based dual pair of approximation operators.

Example 4.5.5. Let U = {1, 2,3} and C= {1, 12,123}, then T is given by

T = {;, 1, 2, 123}.

It holds that NC1 (1) = {1}, NC1 (2) = {1,2}, NC1 (3) = {1,2,3}, and 1 = {1,2,3},
2= {2, 3}, 3= {3}.

In addition, s+({1}) = {1} and s+({3}) = {3}, thus, s+({1})∪ s+({3}) = {1, 3},
yet s+({1} ∪ {3}) = s+({1, 3}) = {1, 2, 3}. Therefore, by Proposition 4.2.2, s+ is not

an element-based approximation operator.

The pair (s−, s+) does not equal any of the covering-based approximation

operators of pairs 1 – 29 in Table 4.4. We will now study how to extend the Hasse

diagram in Figure 4.6 with the five upper approximations of pairs 30 – 34. From

Figure 4.7 it is clear that the following partial order relations hold:

Proposition 4.5.6. [197] Let (U ,C) be a covering approximation space, then

(a) aprn ≤ s+ ≤ apra,

(b) aprn ≤ s+ ≤ apra−1 .

Hence, the upper approximation operators aprn and s+ yield smaller upper

approximations than all the upper approximations of pairs 1 – 29 considered in

Table 4.4. From Counterexample 5 of Appendix A it is clear that s+ yields strictly

smaller upper approximations than apra and apra−1 .

Moreover, from Figure 4.7 we also derive following partial order relations:

Proposition 4.5.7. [197] Let (U ,C) be a covering approximation space, then

(a) apra ≤ apro ≤ aprp ≤ aprq,

(b) apra−1 ≤ apro ≤ aprp ≤ aprq.
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Table 4.3: Neighborhood operators for (U ,C)

Group Operators Group Operators

a. NC1 , NC1
1 , NC3

1 , NC3
2 , NC∩1 a−1. (NC1 )

−1, (NC1
1 )

−1, (NC3
1 )

−1,

(NC3
2 )

−1, (NC∩1 )
−1

b. NC3
3 b−1. (NC3

3 )
−1

c. NC2 , NC1
2 c−1. (NC2 )

−1, (NC1
2 )

−1

d. NC1
3 d−1. (NC1

3 )
−1

e. NC∩2 e−1. (NC∩2 )
−1

f . NC3 , NC2
1 , NC2

3 , NC∩3 f −1. (NC3 )
−1, (NC2

1 )
−1, (NC2

3 )
−1, (NC∩3 )

−1

g. NC3
4 , (NC3

4 )
−1

h. NC1
4 , (NC1

4 )
−1

i. NC4
1 i−1. (NC4

1 )
−1

j. NC4 , NC2
2 , NC2

4 , NC∩4 ,

(NC4 )
−1, (NC2

2 )
−1, (NC2

4 )
−1, (NC∩4 )

−1

k. NC4
2 k−1. (NC4

2 )
−1

l. NC4
3 l−1. (NC4

3 )
−1

m. NC4
4 , (NC4

4 )
−1

n. NCP4
, (NCP4

)−1

o. NCb , (NCb )
−1

p. NCz , (NCz )
−1

q. NCCOM, (NCCOM)
−1
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Again, from Counterexample 5 of Appendix A it is clear that apro yields strictly

larger upper approximations than apra and apra−1 .

In addition, the following partial order relations hold:

Proposition 4.5.8. Let (U ,C) be a covering approximation space, then

(a) apro ≤ aprg ,

(b) aprg ≤ aprq,

(c) aprp ≤ aprm.

Proof. Let (U ,C) be a covering approximation space, T the topology induced by C
and X ⊆ U .

(a) Let x ∈ U with x ∈ apro(X ), then NCb (x) ∩ X 6= ;. We shall prove that

NCb (x) ⊆ NC3
4 (x). Let y ∈ U with y ∈ NCb (x), then either y ∈ NC1 (x) or

y ∈ (NC1 )
−1(x). In both cases it holds that y ∈ NC3

4 (x). Hence, NC3
4 (x)∩X 6= ;,

and thus, x ∈ aprg(X ).

(b) Let x ∈ U with x ∈ aprg(X ), then NC3
4 (x) ∩ X 6= ;. We shall prove that

NC3
4 (x) ⊆ NCCOM(x). Let y ∈ U with y ∈ NC3

4 (x), then there exists K ∈ C3 such

that x , y ∈ K . In other words, there exists z ∈ U such that x , y ∈ NC1 (z). Con-

sider the topology T induced by C and V = {x , y, z}. It is clear that the topo-

logical subspace (V,TV ) of (U ,T ) is connected, since NC1 (z)∩ V = {x , y, z}
is the smallest set in TV which contains the element z. As a consequence,

[x]∼ = [y]∼ and hence y ∈ NCCOM(x). We conclude NCCOM(x) ∩ X 6= ; and

thus, x ∈ aprq(X ).

(c) Let x ∈ U with x ∈ aprp(X ), then NCz (x) ∩ X 6= ;. We shall prove that

(NC4
4 (x))

c ⊆ (NCz (x))
c. Assume y ∈ (NC4

4 (x))
c. We want to prove that

y ∈ (NCz (x))
c, i.e.,

y ∈ (NCz (x))
c ⇔ y /∈

⋂

{Y ∈ T c | NC1 (x) ⊆ Y }

⇔ y /∈
⋂

{X c | X ∈ T , NC1 (x) ⊆ X c}

⇔ y /∈
⋂

{X c | X ∈ T , NC1 (x)∩ X = ;}

⇔ y ∈
⋃

{X ∈ T | NC1 (x)∩ X = ;}.
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By definition, it holds that NC1 (y) ∈ T and y ∈ NC1 (y). Since y ∈ (NC4
4 (x))

c,

it holds that NC4 (x) ∩ NC4 (y) = ;, hence, NC1 (x) ∩ NC1 (y) = ;. Therefore,

y ∈
⋃

{X ∈ T | NC1 (x)∩ X = ;} and thus, y ∈ (NCz (x))
c. We conclude that

NCz (x) ⊆ NC4
4 (x), hence, NC4

4 (x)∩ X 6= ; and thus, x ∈ aprm(X ).

No other partial order relations hold. Counterexamples can be found in Coun-

terexamples 5 and 6 of Appendix A and the following two examples:

Example 4.5.9. Let U = {1, 2,3,4} with C= {12, 13,234}, then T is given by

T = {;, 1234, 12,13, 234,1, 2,3, 123}.

For apr1 ∈ {aprb, aprb−1} and apr2 ∈ {apro, aprp} it holds that apr1({2}) = {2, 3, 4}
and apr2({2}) = {2,4}. Hence, apr1 ≤ apr2 does not hold.

In addition, apr ∈ {apro, aprp, aprq} it holds that apr({2,3,4}) = {2,3,4} and

apr′C({2, 3,4}) = {1, 2,3, 4}. Hence, apr′C ≤ apr does not hold.

Example 4.5.10. Let U = {1,2, 3,4} with C= {1, 3,4,234}, then T is given by

T = {;, 1234,1, 3,4, 234,13, 14,34, 134}.

It holds that aprc({2}) = apre({2}) = {2} and apro({2}) = {2,3,4} and moreover,

aprc−1({3}) = apre−1({3}) = {3} and apro({3}) = {2,3}. Hence, apro ≤ apr does

not hold for apr ∈ {aprc , aprc−1 , apre, apre−1}.

Hence, the Hasse diagram with respect to ≤ for the upper approximation

operators of pairs 1 – 34 of Table 4.4 is given in Figure 4.8.

Note that by Proposition 4.1.1 we easily obtain the Hasse diagram with respect

to � for the neighborhood operators in Table 4.3 from Figure 4.8 in Figure 4.9.

4.6 Framework of Samanta and Chakraborty

In [142,143], Samanta and Chakraborty studied different covering-based approxi-

mation operators. By definition, many of these operators coincide with pairs 1 –

34 of Table 4.4:
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Figure 4.8: Hasse diagram for the upper approximation operators of pairs 1 – 34

in Table 4.4, where we have extended the Hasse diagram presented in Figure 4.6

with pairs 30 – 34.

• The pair (P1, P1) coincides with pair 17.

• The pair (P2, P2) coincides with pair 26.

• The pairs (P3, P3) and (C1, C1) coincide with pair 23.

• The pair (P4, P4) coincides with pair 31.

• The pair (C2, C2) coincides with pair 1.

• The pair (C4, C4) coincides with pair 13.

• The pair (C5, C5) coincides with pair 2.

• The pair (C∗, C
∗
) coincides with pair 28.

• The pair (C−, C−) coincides with pair 17.
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Figure 4.9: Hasse diagram for the neighborhood operators in Table 4.3

• The pair (C#, C
#
) coincides with pair 6.

• The pair (C@, C
@
) coincides with pair 29.

Moreover, we have the following equalities between approximation operators

studied by Samanta and Chakraborty and pairs 1 – 34 of Table 4.4.

Proposition 4.6.1. Let (U ,C) be a covering approximation space, then

(a) (C+, C
+
) = (LC5 , HC5 ),

(b) (CGr , C
Gr
) = (apr’

C
, apr’
C).

Proof. Let X ⊆ U .

(a)

apr’
C
(X )

= {x ∈ U | ∃K ∈ C: x ∈ K ∧ K ⊆ X }

= {x ∈ U | ∃K ∈ C: NC1 (x) ⊆ K ∧ K ⊆ X }

= {x ∈ U | ∃K ∈ C: (∃y ∈ U : x ∈ NC1 (y)∧ NC1 (y) ⊆ K)∧ K ⊆ X }
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= {x ∈ U | ∃y ∈ U : x ∈ NC1 (y)∧ (∃K ∈ C: NC1 (y) ⊆ K ∧ K ⊆ X )}

= {x ∈ U | ∃y ∈ U : x ∈ NC1 (y)∧ (∃K ∈ C: y ∈ K ∧ K ⊆ X )}

= {x ∈ U | ∃y ∈ C1(X ): x ∈ NC1 (y)}

=
⋃

{NC1 (y) | y ∈ apr’
C
(X )}.

Hence,

C
+
(X ) = apr’

C
(X )∪

�⋃

{NC1 (y) | y ∈ X \ apr’
C
(X )}

�

=
⋃

{NC1 (y) | y ∈ X }

= HC5 (X ).

(b) By definition, we have that CGr = apr’
C
. Moreover, the following holds for

X ⊆ U:

C
Gr
(X ) =

�

apr”
C(X )

�

\
�

CGr(X
c)
�

= apr”
C(X )∩ (CGr(X

c))c

= apr”
C(X )∩ (apr’

C
(X c))c

= apr”
C(X )∩ apr’

C(X )

= apr’
C(X ),

since apr’
C ≤ apr”

C.

We conclude that the pair (C+, C
+
) coincides with pair 2 and the pair (CGr , C

Gr
)

coincides with pair 23. The only approximation operators discussed by Samanta

and Chakraborty which are not considered in the pairs 1 – 34 of Table 4.4 are

the pairs (C3, C3) and (C%, C
%
). In the following, we will discuss partial order

relations for these two pairs of approximation operators. In addition, we will also

illustrate that both pairs lack an important property of approximation operators,

namely the inclusion property.

First, we discuss the pair of dual approximation operators (C3, C3). For this

pair, the only essential partial order relation which holds is the following one:
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Proposition 4.6.2. Let (U ,C) a covering approximation space, then C3 ≤ apra.

Proof. Let X ⊆ U and x ∈ C3(X ), then for all y ∈ U it holds that if y ∈ NC1 (x), then

NC1 (y)∩X 6= ;. As x ∈ NC1 (x), we have that NC1 (x)∩X 6= ;, hence, x ∈ apra(X ).

By the transitivity of ≤, C3 provides smaller upper approximations than all up-

per approximation operators which are larger than apra. From Counterexample 5 of

Appendix A we determine by X = {2} that apr≤ C3 does not hold for any upper ap-

proximation operator of pairs 1 – 34 of Table 4.4 or for C
%

since C3({2}) = ; 6⊇ {2}.
Moreover, we conclude from this example that the pair (C3, C3) does not satisfy the

inclusion property given by ∀X ⊆ U : apr(X ) ⊆ X ⊆ apr(X ) [143]. In addition, from

Counterexample 5 of Appendix A and the following two examples, we determine

that C3 ≤ apr does not hold for the upper approximation operator of pairs 2, 4, 6,

8, 10, 12, 16, 21, 27 – 31 and C
%

.

Example 4.6.3. Let U = {1,2,3,4,5,6} and C= {123,145,26}, then we obtain

that aprb−1({1}) = {1}, aprl−1({1}) = {1,2,3} and C3({1}) = {1,4,5}, hence,

C3 ≤ aprb−1 and C3 ≤ aprl−1 do not hold.

Example 4.6.4. Let U = {1,2,3,4} and C= {1,2,23,14}, then C3({2}) = {2,3}
and aprc−1({2}) = apre−1({2}) = {2}, hence, C3 ≤ aprc−1 and C3 ≤ apre−1 do not

hold.

Next, we discuss the pair (C%, C
%
). For convenience, we introduce the following

notation: for X ⊆ U ,

H%(X ) =
�⋃¦⋃

{NC4 (y) | y ∈ U \ NC4 (x)} | x ∈ X \ apr’
C
(X )

©�c
, (4.1)

hence, C
%
(X ) = apr’

C
(X )∪ H%(X ). Before we start the discussion on the partial

order relations of the pair (C%, C
%
), we make the following remark.

Remark 4.6.5. Let (U ,C) be a covering approximation space and X ⊆ U such that

apr’
C
(X ) = X . As X \ apr’

C
(X ) = ;, it holds that H%(X ) = U , hence, we obtain that

C
%
(X ) = X ∪U = U . As we assume that the authors of [99] have drawn inspiration

from the operators HC1 and HC4 when introducing this upper approximation operator,
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it should hold in this case that C
%
(X ) = X . Therefore, we rewrite the definition

of C
%

as follows: let X ⊆ U , then

C
%
(X ) =

(

X X \ apr’
C
(X ) = ;,

apr’
C
(X )∪H%(X ) X \ apr’

C
(X ) 6= ;.

(4.2)

Interpreting the operator C
%

as in Eq. (4.2), we prove the following characteri-

zation for the auxiliary operator H%:

Proposition 4.6.6. Let (U ,C) be a covering approximation space and X ⊆ U such

that X \ apr’
C
(X ) 6= ;, then

H%(X ) =
⋂

{(NC4
1 )

−1(x) | x ∈ X \ apr’
C
(X )}. (4.3)

Proof. Let X ⊆ U such that X \ apr’
C
(X ) 6= ; and x ∈ X \ apr’

C
(X ), then

z ∈
⋃

{NC4 (y) | y ∈ U \ NC4 (x)}

⇔ ∃y ∈ U : y /∈ NC4 (x)∧ z ∈ NC4 (y)

⇔ ∃y ∈ U : x /∈ NC4 (y)∧ z ∈ NC4 (y)

⇔ ∃K ∈ C4 : x /∈ K ∧ z ∈ K

⇔ x /∈ NC4
1 (z)

⇔ z /∈ (NC4
1 )

−1(x).

Therefore, we obtain that

H%(X ) =
�⋃

{((NC4
1 )

−1(x))c | x ∈ X \ apr’
C
(X )}

�c

=
⋂

{(NC4
1 )

−1(x) | x ∈ X \ apr’
C
(X )}.

Given this characterization for H%, we have the following two essential partial

order relations for C
%

:

Proposition 4.6.7. Let (U ,C) be a covering approximation space, then



132 Chapter 4. Computational approach of covering-based rough sets

(a) C
%
≤ apri ,

(b) C
%
≤ HC4 .

Proof. (a) Let X ⊆ U . If X \ apr’
C
(X ) = ;, then C

%
(X ) = X ⊆ apri(X ). On the

other hand, if X \ apr’
C
(X ) 6= ;, then we need to prove that

C
%
(X ) = apr’

C
(X )∪H%(X ) ⊆ apri(X ),

i.e., we need to prove that H%(X ) ⊆ apri(X ). Assume z ∈ H%(X ), then for all

x ∈ X \ apr’
C
(X ) it holds that z ∈ (NC4

1 )
−1(x), hence, x ∈ NC4

1 (z). Therefore,

NC4
1 (z)∩ X 6= ;, and thus, H%(X ) ⊆ apri(X ).

(b) This claim was already proven in [99]. However, we provide an alternative

proof here, as the proof in [99] is rather concise.

Let X ⊆ U . If X \ apr’
C
(X ) = ;, then C

%
(X ) = X ⊆ HC4 (X ). On the other hand,

if X \ apr’
C
(X ) 6= ;, then we need to prove that

C
%
(X ) = apr’

C
(X )∪H%(X ) ⊆ HC4 (X ),

i.e., we need to prove that

H%(X ) ⊆
⋃

{K ∈ C | K ∩ (X \ apr’
C
(X )) 6= ;}.

Let z ∈ H%(X ), then for all x ∈ X \ apr’
C
(X ) it holds that z ∈ (NC4

1 )
−1(x),

hence, x ∈ NC4
1 (z). As NC4

1 � NC4 , it holds that x ∈ NC4 (z), hence, there exists

a K ∈ Cwith x , z ∈ K . We conclude that z ∈
⋃

{K ∈ C | K∩(X \apr’
C
(X )) 6= ;}.

All the other partial order relations which hold for C
%

follow by the transitivity

of ≤. Counterexamples can be found in Counterexample 5 of Appendix A and in

the following three examples:

Example 4.6.8. Let U = {1,2,3,4} and C = {1,12,23,24,123,234}, then we

obtain that apre−1({2}) = {1,2, 4} and C
%
({2}) = {1, 2,3, 4}). Moreover,

(a) aprd({3}) = apre({3}) = {3},
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(b) aprc−1({3}) = aprh({3}) = HC1 ({3}) = {2,3},

(c) C
%
({3}) = {1,2, 3,4}).

Hence, C
%
≤ apr does not hold for

apr ∈ {aprc−1 , aprd , apre, apre−1 , aprh, HC1 }.

Example 4.6.9. Let U = {1,2,3,4,5,6} and C= {123,145,26}, then we obtain

that aprl−1({1}) = {1, 2, 3} and C
%
({1}) = {1, 3, 4, 5}, hence, C

%
≤ aprl−1 does not

hold.

Example 4.6.10. Let U = {1, 2,3} and C= {12, 23}, then we obtain that

P4({1, 3}) = s+({1, 3}) = {1, 3}

and C
%
({1, 3}) = ;. Hence, P4 ≤ C

%
and s+ ≤ C

%
do not hold.

The previous example also illustrates that the pair (C%, C
%
) does not satisfy

the inclusion property.

We now conclude this section. In Table 4.4, we provide an overview of all pairs

of dual covering-based approximation operators considered in this chapter. The

Hasse diagram with respect to ≤ of the upper approximation operators listed in

Table 4.4 is presented in Figure 4.10. Note that we have added the identity function

id: P (U)→P (U): X 7→ X to Figure 4.10, to illustrate that the two pairs (C3, C3)

and (C%, C
%
) do not satisfy the inclusion property (INC). This property is satisfied

by all the other pairs of dual approximation operators, as we have the following

observation: let (U ,C) be a covering approximation space, X ⊆ U and x ∈ X , then

since PCx ∩ X 6= ;, it holds that x ∈ P4(X ), i.e., id≤ P4.

4.7 Properties of covering-based approximation op-

erators

In this section, we evaluate for each pair of covering-based approximation opera-

tors in Table 4.4 which properties the pair satisfies. From Table 2.1, we discuss the
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Table 4.4: Overview of covering-based rough set approximation operators

No. Pairs No. Pairs

1 (apr
a
, apra), (apr′

C3
, apr′C3

) 23 (apr′
C

, apr′C), (apr′
C1

, apr′C1
)

(LC6 , HC6 ), (l
−, l+), (C2, C2) (apr

S∪
, aprS∪), (P3, P3)

2 (apr
a−1

, apra−1), (LC5 , HC5 ) (C1, C1), (CGr , C
Gr
)

(r−, r+), (C5, C5), (C+, C
+
) 24 (apr′

C∩
, apr′C∩)

3 (apr
b
, aprb) 25 (apr′

C2
, apr′C2

)

4 (apr
b−1

, aprb−1) 26 (apr′
C4

, apr′C4
), (P2, P2)

5 (apr
c
, aprc) 27 (apr

S∩
, aprS∩)

6 (apr
c−1

, aprc−1), (LC3 , HC3 ), (C
#, C

#
) 28 (LC1 , HC1 ),(C

∗, C
∗
)

7 (apr
d
, aprd) 29 (LC4 , HC4 ), (C

@, C
@
)

8 (apr
d−1

, aprd−1) 30 (s−, s+)

9 (apr
e
, apre) 31 (apr

n
, aprn), (P4, P4)

10 (apr
e−1

, apre−1) 32 (apr
o
, apro), (b

−, b+)

11 (apr
f
, apr f ) 33 (apr

p
, aprp), (z

−, z+)

12 (apr
f −1

, apr f −1) 34 (apr
q
, aprq), (COM−, COM+)

13 (apr
g
, aprg), (apr

′′

C3
, apr

′′

C3
) 35 (C3, C3)

(LC7 , HC7 ), (C4, C4) 36 (C%, C
%
)

14 (apr
h
, aprh), (apr

′′

C1
, apr

′′

C1
)

15 (apr
i
, apri)

16 (apr
i−1

, apri−1)

17 (apr
j
, apr j), (apr

′′

C
, apr

′′

C),

(apr
′′

C2
, apr

′′

C2
), (apr

′′

C∩
, apr

′′

C∩
)

(LC2 , HC2 ), (P1, P1), (C−, C−)
18 (apr

k
, aprk)

19 (apr
k−1

, aprk−1)

20 (apr
l
, aprl)

21 (apr
l−1

, aprl−1)

22 (apr
m

, aprm), (apr
′′

C4
, apr

′′

C4
)
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Figure 4.10: Hasse diagram for the upper approximation operators in Table 4.4,

where we have extended the Hasse diagram presented in Figure 4.8 with pairs 35

and 36.
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properties (D), (INC), (SM), (IU), (ID), (LU), (UE) and (A). By convention, we

have considered each pair of Table 4.4 as a pair of dual approximation operators,

hence, all pairs 1 – 36 satisfy the property (D). In addition, by the discussion in

Section 4.6, all pairs satisfy the property (INC), except the pairs 35 and 36.

First, we study the properties of the pairs of element-based approximation

operators, i.e., the pairs 1 – 22 and 31 – 34. We have the following proposition:

Proposition 4.7.1. Let N be a neighborhood operator on U . For the element-based

pair (apr
N

, aprN) the following holds:

(a) the pair satisfies (D), (SM), (IU) and (UE),

(b) the pair satisfies (INC) if and only if N is reflexive,

(c) the pair satisfies (ID) if and only if N is transitive,

(d) if N is symmetric, then the pair satisfies (LU) if and only if N is transitive,

(e) the pair satisfies (A) if and only if N is symmetric.

Proof. Proofs of the properties can be found in Appendix B.

Note that for the properties (INC), (ID), (LU) and (A) we provide necessary

and sufficient conditions on the neighborhood operator N. It is clear that the prop-

erties of (apr
N

, aprN) follow immediately from the properties of the neighborhood

operator N. Recall that the neighborhood operators of groups g, h, j, m, n, o, p
and q are symmetric, and the neighborhood operators of groups a, a−1, b, b−1, d,

d−1, f , f −1, i, i−1, l, l−1, n and q are transitive. Hence, we obtain the following

results:

• the pairs 1 – 22 and 31 – 34 satisfy (SM), (IU) and (UE),

• the pairs 1 – 4, 7, 8, 11, 12, 15, 16, 20, 21, 31 and 34 satisfy (ID),

• the pairs 31 and 34 satisfy (LU),

• the pairs 13, 14, 17, 22 and 31 – 34 satisfy (A).
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Note that in [141] the properties (SM), (IU), (ID), (UE) and (A) were discussed

for the pairs 1, 2, 5, 6, 11, 13, 14, 17 and 22. However, according to [141], the

pair (apr
f
, apr f ) does not satisfy (ID), which is incorrect.

Next we consider the pairs 23 – 29. In [141], the properties (SM), (IU), (ID),

(UE) and (A) were discussed:

• the property (SM) is satisfied by the pairs 23 - 27,

• the property (IU) is satisfied by none of these pairs,

• the property (ID) is satisfied by the pairs 23 – 26, 28 and 29,

• the property (UE) is satisfied by all of these pairs,

• the property (A) is satisfied by none of these pairs.

To study whether the pairs 23 – 29 satisfy (LU), consider the following two exam-

ples.

Example 4.7.2. Let U = {1, 2} and C= {1,12}, then

• apr′C({2}) = {2} 6⊆ ;= apr′
C
(apr′C({2})),

• apr′C∩({2}) = {2} 6⊆ ;= apr′
C∩
(apr′C∩({2})),

• apr
S∩
({2}) = {2} 6⊇ {1,2}= aprS∩(apr

S∩
({2})),

• HC1 ({1}) = {1} 6⊆ ;= LC1 (H
C
1 ({1})),

• HC4 ({1}) = {1} 6⊆ ;= LC4 (H
C
4 ({1})).

Example 4.7.3. Let U = {1, 2,3} and C= {12,13}, then

• apr′C2
({2}) = {2} 6⊆ ;= apr′

C2
(apr′C2

({2})),

• apr′C4
({2}) = {2} 6⊆ ;= apr′

C4
(apr′C4

({2})).
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Hence, we conclude that none of the pairs 23 – 29 satisfies (LU).

We continue with the study of the properties of the pair (s−, s+). From Exam-

ple 4.5.5, we conclude that the pair does not satisfy (IU). We have the following

proposition:

Proposition 4.7.4. Let (U ,C) be a covering approximation space, then the pair

(s−, s+) satisfies the properties (SM), (ID) and (UE).

Proof. By definition, we immediately obtain that (SM) and (UE) are satisfied by

the pair (s−, s+). For (ID), we prove that s+(s+(X )) ⊆ s+(X ) for all X ⊆ U , then

s−(X ) ⊆ s−(s−(X )) follows by duality. Let X ⊆ U and x ∈ s+(s+(X )), then there exist

y, z ∈ s+(X ) such that y ∈ NC1 (x) and z ∈ (NC1 )
−1(x). Since y ∈ s+(X ), it holds that

NC1 (y)∩X 6= ;, hence, by the transitivity of NC1 we have that NC1 (x)∩X 6= ;. On the

other hand, as z ∈ s+(X ), it holds that (NC1 )
−1(z)∩ X 6= ;, hence, by the transitivity

of (NC1 )
−1 we have that (NC1 )

−1(x)∩ X 6= ;. We conclude that x ∈ s+(X ).

As illustrated in the following example, the pair (s−, s+) does not satisfy (LU)

and (A).

Example 4.7.5. Let U = {1,2,3} and C = {1,12,123}, then s+({2}) = {2} and

s−(s+({2})) = ;, hence, (s−, s+) does not satisfy (LU). On the other hand, we have

that s+({2}) ⊆ {2}, but {2} 6⊆ ;= s−({2}), hence, (s−, s+) does not satisfy (A).

To study the properties of pairs 35 and 36, note that we obtain the following

results from [143]: the pair (C3, C3) satisfies the properties (SM) and (UE), but it

does not satisfy the properties (IU), (ID) and (LU) and the pair (C%, C
%
) satisfies

the properties (SM), (ID) and (UE), but it does not satisfy the properties (IU) and

(LU). We determine now by the following two examples that pairs 35 and 36 do

not satisfy property (A).

Example 4.7.6. Let U = {1,2,3,4} and C = {1,3,13,24,34,14,234}, then

C3({2}) = ; ⊆ {1, 2}, but {2} 6⊆ {1}= C3({1,2}).

Example 4.7.7. Let U = {1,2,3} and C = {12,23}, then C
%
({2,3}) = ; ⊆ {3},

but {2,3} 6⊆ {3}= C%({3}).
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Finally, as we now longer work with a binary relation R, the property (RM) is

not applicable. To this aim, we introduce a new property indicating monotonicity,

now related with coverings. Given a universe U , we define the following partial

order relation v on the set of coverings of U , inspired by the partial relation on

partitions of the universe [198]: let C and C′ be coverings of the universe U , then

Cv C′⇔ (∀K ∈ C)(∃K ′ ∈ C′)(K ⊆ K ′). (4.4)

Given two partitions Π and Π′ on U such that Πv Π′, i.e., Π is finer than Π′ or Π′

is coarser than Π, then for Pawlak’s rough set model it holds that

apr
Π′
≤ apr

Π
and aprΠ ≤ aprΠ′ ,

i.e., the pair (apr
Π

, aprΠ) provides more accurate approximations than the pair

(apr
Π′

, aprΠ′). When considering coverings instead of partitions, we want to study

whether a finer covering provides more accurate approximations. More formally,

let (U ,C) and (U ,C′) be two covering approximation spaces such that Cv C′. Let

(apr
1
, apr1) be a pair of dual approximation operators in (U ,C) and let (apr

2
, apr2)

be the same pair of dual approximation operators in (U ,C′), then we want to

determine whether apr
2
≤ apr

1
and apr1 ≤ apr2 holds. We will call this property

covering monotonicity and we will denote this as follows:

∀C,C′ covering of U : Cv C′⇒ (apr
2
, apr2)≤ (apr

1
, apr1), (CM)

with (apr
1
, apr1) and (apr

2
, apr2) as described above. We will discuss the property

(CM) for the pairs 1 – 36.

Let (U ,C) and (U ,C′) be two covering approximation spaces such that Cv C′.
Moreover, let (apr

1
, apr1) be a pair of dual approximation operators in (U ,C) and

let (apr
2
, apr2) be the same pair of dual approximation operators in (U ,C′), then

we want to determine whether apr
2
≤ apr

1
and apr1 ≤ apr2 holds. By duality, we

can limit ourselves to the comparability of the upper approximation operators.

First, we prove that the property (CM) holds for pair 17:

Proposition 4.7.8. Let (U ,C) and (U ,C′) be two covering approximation spaces

such that Cv C′, then pair 17 satisfies property (CM).
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Proof. Let X ⊆ U , then we prove that apr”
C ≤ apr”

C’. Let x ∈ apr”
C(X ), then there

exists K ∈ C such that x ∈ K and K ∩ X 6= ;. Since C v C′, there exists K ′ ∈ C′

such that K ⊆ K ′. Thus, x ∈ K ′ and K ′ ∩ X 6= ;, hence, x ∈ apr”
C’(X ).

Moreover, we have the following property for v:

Proposition 4.7.9. Let (U ,C) and (U ,C′) be two covering approximation spaces

such that Cv C′, then C4 v (C′)4.

Proof. Let Cv C′ and let K ∈ C4, then there exists x ∈ K such that K =
⋃

C (C, x).
Since C v C′, it holds for each L ∈ C (C, x) that there exists L′ ∈ C′ such that

L ⊆ L′. As L′ ∈
⋃

C (C′, x), we derive that K ⊆
⋃

C (C′, x). Hence, there exists

K ′ ∈ C′, namely K ′ =
⋃

C (C′, x), such that K ⊆ K ′.

From the two previous propositions, we obtain that pair 22 satisfies the property

(CM):

Corollary 4.7.10. Let (U ,C) and (U ,C′) be two covering approximation spaces

such that Cv C′, then pair 22 satisfies property (CM).

Pairs 17 and 22 are the only pairs which satisfy the property (CM). We provide

counterexamples for the other pairs in the following three examples.

Example 4.7.11. Consider U = {1,2,3,4} with coverings C = {12,34} and

C′ = {12, 34, 14, 23}, then Cv C′. Let apr1 be the upper approximation in (U ,C)
and apr2 be the same upper approximation in (U ,C′).

(a) For pairs 1 – 4, 7, 8, 11 – 13, 15, 16, 20, 21, 23 – 27, 30 – 36, it holds that

apr1({1}) = {1,2} 6⊆ {1}= apr2({1}).

(b) For pairs 28 and 29, it holds that

apr1({1,4}) = {1, 2,3, 4} 6⊆ {1, 4}= apr2({1,4}).

Example 4.7.12. Consider U = {1,2,3,4} with coverings C = {12,34} and

C′ = {1,2,12,34}, then C v C′. Let apr1 be the upper approximation in (U ,C)
and apr2 be the same upper approximation in (U ,C′). For pairs 5, 6, 9, 10 and 14

it holds that apr1({1}) = {1,2} 6⊆ {1}= apr2({1}).
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Example 4.7.13. Consider U = {1,2,3,4} with coverings C = {12,13,24} and

C′ = {123, 234}, then Cv C′. Let apr1 be the upper approximation in (U ,C) and

apr2 be the same upper approximation in (U ,C′).

(a) For pair 18: apr1({4}) = {1,2, 4} 6⊆ {2, 3,4}= apr2({4}).

(b) For pair 19: apr1({1}) = {1,2, 3,4} 6⊆ {1, 2,3}= apr2({1}).

In Table 4.5, we present an overview of the properties and the pairs which

satisfies them. For applications such as feature selection, it is advisable that the

considered approximation operators satisfy (INC) and (SM). Therefore, the pairs

28, 29, 35 and 36 are less interesting from a practical point of view. On the other

hand, pairs 17 and 22 are the only ones which satisfy the property (CM). Although

the accuracy provided by these approximation operators is rather low, pairs 17

and 22 contain useful approximation operators from a theoretical point of view.

Moreover, pairs 31 and 34 satisfy the properties (INC), (ID) and (LU), hence, for

these approximation operators we obtain that:

∀X ∈ P (U): apr(apr(X )) = apr(apr(X )) = apr(X ),

∀X ∈ P (U): apr(apr(X )) = apr(apr(X )) = apr(X ).

4.8 Conclusions and future work

In this chapter, we have constructed a unified framework of dual covering-based

approximation operators. We have discussed equalities and partial order relations

between the different approximation operators. The results of this research can be

found in Table 4.4 and Figure 4.10. By duality, we conclude that the groups 31, 35

and 36 provide the most accurate approximations. In addition, we have discussed

properties for all pairs of dual approximation operators and the conclusions of this

study are presented in Table 4.5. From this research, we conclude that pairs 35 and

36 are not suitable for applications, since they do not satisfy (INC). Choosing the

most suitable covering-based approximation operators in an application will always
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Table 4.5: Overview of properties for the covering-based rough set models presented

in Table 4.4

Property Satisfied by the following pairs:

(D) all pairs

(INC) all pairs except pairs 35 and 36

(SM) all pairs except pairs 28 and 29

(IU) pairs 1 – 22 and 31 – 34

(ID) pairs 1 – 4, 7, 8, 11, 12, 15, 16, 20, 21, 23 – 26, 28 – 31, 34 and 36

(LU) pairs 31 and 34

(UE) all pairs

(A) pairs 13, 14, 17, 22 and 31 – 34

(CM) pairs 17 and 22

be a consideration between accuracy on the one hand, and different properties on

the other hand and will depend on the goal of the application.

The framework of Restrepo et al. [140], which was the starting point of this

research, is extended with 20 different pairs of dual covering-based approximation

operators, of which 13 pairs consist of new approximation operators. In Table 4.6,

we give an overview of which pairs of approximation operators were already dis-

cussed in literature, and which are new. Specifically, we refer to the papers of

Restrepo et al. [140,141], who based their research on work of Yao and Yao [189]
and Yang and Li [177], Zhao [197] and Samanta and Chakraborty [142, 143].
From Table 4.6 we see that pairs 3, 4, 7 – 10, 12, 15, 16 and 18 – 21 evoke new

dual pairs of approximation operators.

Future work directions include the following:

• Study of the upper approximation operators H
C j

i , with i ∈ {1,4,7} and

C j ∈ {C1,C2,C3,C4,C∩}, i.e., one of the derived coverings obtained from

an original covering C, and their dual lower approximation operator L
C j

i .

• Study of the subsystem-based approximation operators when a derived
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covering C j ∈ {C1,C2,C3,C4,C∩} is considered.

• Study of the approximation operators (C%, C
%
) when the union is considered

for H% instead of the intersection (see Eqs. (4.1)). In this case, Remark 4.6.5

would be unnecessary and the results of Proposition 4.6.7 would still hold.

In addition, the upper approximation operator would satisfy the inclusion

property in contrast to the upper approximation operator presented in [99].
Moreover, we could study the auxiliary operator H% with other neighborhood

operators presented in Table 4.3.

• Study of other theoretical properties. For example, an adaptation of the (CM)

property in which we do not consider random coverings, but the coverings

{CA | A⊆ C} defined in Section 3.3.4, with C a set of conditional attributes

in a decision table.

• The application of covering-based rough approximation operators in machine

learning techniques such as feature and instance selection.
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Table 4.6: Overview of literature

Pair [141] [197] [143] Pair [141] [197] [143]

1 x x x 19

2 x x x 20

3 21

4 22 x

5 x 23 x x

6 x x 24 x

7 25 x

8 26 x x

9 27 x

10 28 x x

11 x 29 x x

12 30 x

13 x x 31 x x

14 x 32 x

15 33 x

16 34 x

17 x x 35 x

18 36 x



CHAPTER5

Preliminary notions of fuzzy set theory

Applications of rough set theory are widespread and are especially prominent in

data analysis [94,95] and more specifically in feature selection and classification

[154]. However, since the traditional rough set model of Pawlak [128] is designed

to process qualitative (discrete) data, it faces important limitations when dealing

with real-valued data sets [81]. Fuzzy set theory proposed in 1965 by Zadeh [193]
is very useful to overcome these limitations, as it can deal effectively with vague

concepts and graded indiscernibility.

In the following, we will discuss some preliminary notions regarding fuzzy

set theory. First, we discuss fuzzy logical connectives in Section 5.1 and fuzzy set

theory in Section 5.2. In Section 5.3, we recall some aggregation operators. To end,

we will discuss the technique of representation by levels, introduced by Sánchez et

al. [144] in Section 5.4.

145



146 Chapter 5. Preliminary notions of fuzzy set theory

5.1 Fuzzy logical connectives

We recall some important fuzzy logical connectives on the unit interval [0, 1]. First,

we discuss conjunctors, disjunctors and negators which are fuzzy extensions of the

Boolean conjunction ∧, disjunction ∨ and negation ¬.

A conjunctor is a mapping C : [0, 1]×[0, 1]→ [0, 1] which is increasing in both

arguments and which satisfies the boundary conditions

C (0,0) =C (0, 1) =C (1, 0) = 0,

C (1,1) = 1.

It is called a border conjunctor if for all a ∈ [0,1] it holds that C (1, a) = a.

A commutative and associative border conjunctor is called a triangular norm or

t-norm and is denoted by T . We provide some examples of t-norms:

(a) the standard minimum operator TM defined by ∀a, b ∈ [0, 1]:

TM (a, b) =min(a, b),

(b) the product operator TP defined by ∀a, b ∈ [0, 1]: TP(a, b) = a · b,

(c) the bold intersection or Łukasiewicz t-norm TL defined by ∀a, b ∈ [0,1]:

TL(a, b) =max(0, a+ b− 1),

(d) the cosine t-norm Tcos defined by ∀a, b ∈ [0, 1]:

Tcos(a, b) =max
�

0, ab−
Æ

(1− a2)(1− b2)
�

,

(e) the drastic t-norm TD defined by ∀a, b ∈ [0, 1]:

TD(a, b) =















b a = 1

a b = 1

0 otherwise,
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(f) the nilpotent minimum t-norm TnM defined by ∀a, b ∈ [0,1]:

TnM (a, b) =

(

min(a, b) a+ b > 1

0 otherwise.

Note that for every t-norm T it holds that

∀a, b ∈ [0,1]: TM (a, b)≥ T (a, b)≥ TD(a, b).

It is often assumed that the t-norm T is left-continuous, i.e., it is left-continuous

in both parameters. Since T is commutative, it is sufficient to assume that T is

left-continuous in the first parameter, i.e.,

(∀a, b ∈ [0,1])(∀ε > 0)(∃δ > 0)(∀c ∈ [0, 1]):

a−δ < c < a⇒ |T (c, b)−T (a, b)|< ε. (5.1)

Furthermore, a t-norm T is left-continuous if and only if it is complete-distributive

with respect to the supremum, i.e., for every family (ai)i∈I in [0, 1] it holds that

∀b ∈ [0, 1]: T
�

sup
i∈I

ai , b
�

= sup
i∈I
T (ai , b). (5.2)

A disjunctor is a mapping D : [0, 1]× [0, 1]→ [0, 1] which is increasing in both

arguments and which satisfies the boundary conditions

D(1, 1) = D(0, 1) = D(1, 0) = 1,

D(0, 0) = 0.

It is called a border disjunctor if for all a ∈ [0,1] it holds that D(0, a) = a. A

commutative and associative border disjunctor is called a triangular conorm or

t-conorm and is denoted by S . We provide some examples of t-conorms:

(a) the standard maximum operator SM defined by ∀a, b ∈ [0,1]:

SM (a, b) =max(a, b),

(b) the probabilistic sum SP defined by ∀a, b ∈ [0, 1]:

SP(a, b) = a+ b− a · b,



148 Chapter 5. Preliminary notions of fuzzy set theory

(c) the bounded sum or Łukasiewicz t-conorm SL defined by ∀a, b ∈ [0,1]:

SL(a, b) =min(1, a+ b),

(d) the cosine t-conorm Scos defined by ∀a, b ∈ [0, 1]:

Scos(a, b) =min
�

1, a+ b− ab+
Æ

(2a− a2)(2b− 2b2)
�

,

(e) the drastic t-conorm SD defined by ∀a, b ∈ [0, 1]:

SD(a, b) =















b a = 0

a b = 0

1 otherwise,

(f) the nilpotent maximum t-conorm SnM defined by ∀a, b ∈ [0,1]:

SnM (a, b) =

(

max(a, b) a+ b < 1

1 otherwise.

Note that for every t-conorm S it holds that

∀a, b ∈ [0, 1]: SM (a, b)≤ S (a, b)≤ SD(a, b).

A negator is a decreasing mapping N : [0, 1]→ [0, 1] which satisfies N (0) = 1

and N (1) = 0. A negator is called involutive if for all a ∈ [0,1] it holds that

N (N (a)) = a. Some widespread negators are the standard negator NS defined

by ∀a ∈ [0,1]: NS(a) = 1− a and the Gödel negator NG defined by ∀a ∈ [0,1]:

NG(a) =

(

1 a = 0

0 a > 0.

Given an involutive negator N , a conjunctor C and a disjunctor D, we can

define the N -dual of C and D. The N -dual of the conjunctor C is a disjunctor

DC ,N defined by

∀a, b ∈ [0,1] : DC ,N (a, b) =N (C (N (a),N (b)))
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and the N -dual of the disjunctor D is a conjunctor CD,N defined by

∀a, b ∈ [0,1]: CD,N (a, b) =N (D(N (a),N (b))).

It can be verified that the N -dual of a t-norm is a t-conorm and vice versa. For

example, all the t-conorms mentioned above are the NS-dual of the respective

t-norms.

Besides conjunctors, disjunctors and negators, we recall the notion of implica-

tors. They extend the Boolean implication⇒ to the fuzzy setting.

An implicator is a mapping I : [0,1]× [0,1]→ [0,1] which is decreasing in

the first and increasing in the second argument and which satisfies the boundary

conditions I (0,0) = I (0,1) = I (1,1) = 1 and I (1,0) = 0. It is called a border
implicator if for all a ∈ [0, 1] it holds that I (1, a) = a. It satisfies the weak confine-
ment principle if ∀a, b ∈ [0, 1]: a ≤ b⇒I (a, b) = 1. An implicator which satisfies

the weak confinement principle is called a WCP-implicator.

We can define negators based on implicators. Let I be an implicator. The

induced negator of I is the negator NI defined by

∀a ∈ [0, 1]: NI (a) = I (a, 0).

There are two important classes of implicators: S-implicators based on disjunc-

tors and negators and R-implicators based on border conjunctors.

• Let D be a disjunctor and N be a negator. The S-implicator ID,N based on

the disjunctor D and the negator N is defined by

∀a, b ∈ [0,1]: ID,N (a, b) = D(N (a), b).

• Let C be a border conjunctor. The residual implicator or R-implicator IC
based on the border conjunctor C is defined by

∀a, b ∈ [0, 1]: IC (a, b) = sup{c ∈ [0, 1] | C (a, c)≤ b}.
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Both S- and R-implicators are border implicators. R-implicators are also WCP-

implicators. A left-continuous t-norm T and its R-implicator I satisfy the residua-

tion principle:

∀a, b, c ∈ [0,1]: T (a, b)≤ c⇔ a ≤ I (b, c). (5.3)

A special class of R-implicators are IMTL-implicators, where IMTL stands for ‘Invo-

lutive Monoidal T-norm based Logic’ [43,49]: these R-implicators are based on a

left-continuous t-norm and have an involutive induced negator. A left-continuous

t-norm of which the R-implicator is an IMTL-implicator, is called an IMTL-t-norm.

Note that every IMTL-implicator is also a S-implicator. We provide some examples

of implicators:

(a) the Kleene-Dienes implicator IKD defined by ∀a, b ∈ [0,1]:

IKD(a, b) =max(1− a, b)

is a S-implicator based on the maximum and the standard negator,

(b) the Gödel implicator IG defined by ∀a, b ∈ [0, 1]:

IG(a, b) =

(

1 a ≤ b

b a > b

is an R-implicator based on the minimum,

(c) the Łukasiewicz implicator IL defined by ∀a, b ∈ [0, 1]:

IL(a, b) =min(1,1− a+ b)

is an IMTL-implicator based on the Łukasiewicz t-norm,

(d) the nilpotent minimum implicator InM defined by ∀a, b ∈ [0,1]:

InM (a, b) =

(

1 a ≤ b

max(1− a, b) a > b

is an IMTL-implicator based on the nilpotent minimum.
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The standard negator NS is the induced negator of the implicators IKD, IL and

InM . The induced negator of the Gödel implicator IG is the Gödel negator NG .

Finally, we recall that we can construct conjunctors based on implicators and

involutive negators. Given an involutive negator N and an implicator I , the

induced conjunctor of the implicator I and the negator N is the conjunctor CI ,N

defined by

∀a, b ∈ [0, 1]: CI ,N (a, b) =N (I (a,N (b))).

Note that CI ,N is not necessarily a t-norm.

5.2 Fuzzy set theory

Next, we recall basic notions on fuzzy set theory [193].
A fuzzy set X in a non-empty universe U is a mapping X : U → [0, 1], i.e., each

object x ∈ U is associated with a membership degree X (x) ∈ [0, 1]. The collection of

all fuzzy sets in U is denoted by F (U). If U is finite, the cardinality of X is defined

by

|X |=
∑

x∈U

X (x).

Note that for a finite universe U , we often use the following notation for a fuzzy

set X of U: let U = {x1, x2, . . . , xn}, then we denote X by

X = X (x1)/x1 + X (x2)/x2 + . . .+ X (xn)/xn.

The support of X is the crisp set supp(X ) = {x ∈ U | X (x)> 0}. Given α ∈ [0, 1],
the α-level set Xα of X in U is a crisp set in U such that x ∈ Xα if and only if X (x)≥ α.

We describe some special fuzzy sets. Given α ∈ [0, 1], the constant (fuzzy) set α̂
in U is defined by

∀x ∈ U : α̂(x) = α.

In the crisp case, the only constant sets in U are 0̂= ; and 1̂= U . Moreover, for

x ∈ U , the fuzzy set 1x is defined by 1x(x) = 1 and 1x(y) = 0 for all y ∈ U \ {x}.
For two fuzzy sets X and Y of U , we say that X is included in Y , denoted by

X ⊆ Y , if and only if ∀x ∈ U : X (x)≤ Y (x).
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In the crisp case, the complement is an operator on P (U) and the union

and the intersection are operators from P (U)×P (U) to P (U). We can extend

these notions to the fuzzy setting. Let X ∈ F (U) and N a negator, then the

N -complement XN of X is given by

∀x ∈ U : XN (x) =N (X (x)). (5.4)

Moreover, let X , Y ∈ F (U) and C a conjunctor, then the C -intersection of X and Y
is the fuzzy set X ∩C Y defined by

∀x ∈ U : (X ∩C Y )(x) =C (X (x), Y (x)), (5.5)

and the D-union of X and Y is the fuzzy set X ∪D Y defined by

∀x ∈ U : (X ∪D Y )(x) = D(X (x), Y (x)), (5.6)

When the minimum and maximum operator are considered, we write X ∩ Y and

X ∪ Y instead of X ∩TM
Y and X ∪SM

Y .

Let us also recall fuzzy relations. A (binary) fuzzy relation R is a fuzzy set in

the Cartesian product U × U , i.e., R ∈ F (U × U). The tuple (U , R) is called a fuzzy
relation approximation space. The inverse fuzzy relation R−1 of R is the fuzzy set in

U × U defined by

∀x , y ∈ U : R−1(x , y) = R(y, x). (5.7)

Given a fuzzy relation R and an object x ∈ U , then we can define the fuzzy set of
predecessors of x denoted by Rp(x) as follows

∀y ∈ U : (Rp(x))(y) = R(y, x), (5.8)

and we can define the fuzzy set of successors of x denoted by Rs(x) as follows

∀y ∈ U : (Rs(x))(y) = R(x , y). (5.9)

Furthermore, given a fuzzy relation R, then R can satisfy the following proper-

ties:

• R is serial if and only if ∀x ∈ U : sup
y∈U

R(x , y) = 1,



5.3. Aggregation operators 153

• R is strongly serial if and only if ∀x ∈ U∃y ∈ U : R(x , y) = 1,

• R is inverse serial if and only if ∀x ∈ U : sup
y∈U

R(y, x) = 1,

• R is strongly inverse serial if and only if ∀x ∈ U∃y ∈ U : R(y, x) = 1,

• R is reflexive if and only if ∀x ∈ U : R(x , x) = 1,

• R is symmetric if and only if ∀x , y ∈ U : R(x , y) = R(y, x),

• given a t-norm T , R is T -transitive if and only if

∀x , y, z ∈ U : T (R(x , y), R(y, z))≤ R(x , z),

• given a t-norm T , R is T -Euclidean if and only if

∀x , y, z ∈ U : T (R(y, x), R(y, z))≤ R(x , z).

A fuzzy relation which is reflexive and symmetric is called a fuzzy tolerance relation.

If the fuzzy relation is reflexive and T -transitive for a t-norm T , then the relation

is called a fuzzy T -dominance relation or fuzzy T -preorder. If the fuzzy relation

R is reflexive, symmetric and T -transitive for a t-norm T , the relation is called a

fuzzy T -similarity relation. Moreover, every fuzzy relation which is reflexive and

T -Euclidean is a fuzzy T -similarity relation [163]. Note that for the t-norm TM ,

we write transitive, Euclidean and fuzzy similarity relation instead of TM -transitive,

TM -Euclidean and fuzzy TM -similarity relation.

5.3 Aggregation operators

Generally speaking, an aggregation operator is an operator which provides one

numerical value for a set of numerical values. More formally, the function

f : U n→U

is an aggregation operator of order n on a domain U . In this work, we will always

use the domain U = [0, 1]. In the following, we discuss some aggregation opera-

tors.
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First, we study aggregation operators based on t-norms and t-conorms. Since

t-norms and t-conorms are associative and commutative, we can extend these

binary operators to n-ary operators as follows. Let T be a t-norm, then we can

define the i-ary operators T i : [0,1]i → [0, 1] for i ∈ N, i ≥ 2 as follows:

∀a1, a2 ∈ [0, 1]: T 2(a1, a2) = T (a1, a2),

∀i ∈ N, i ≥ 3,∀(a1, a2, . . . , ai−1, ai) ∈ [0, 1]i : (5.10)

T i(a1, a2, . . . , ai−1, ai) = T (T i−1(a1, a2, . . . , ai−1), ai).

Similarly, let S be a t-conorm, then we can define for i ∈ N, i ≥ 2, the i-ary

operators S i : [0,1]i → [0,1] as follows:

∀a1, a2 ∈ [0,1]: S 2(a1, a2) = S (a1, a2),

∀i ∈ N, i ≥ 3,∀(a1, a2, . . . , ai−1, ai) ∈ [0,1]i : (5.11)

S i(a1, a2, . . . , ai−1, ai) = S (S i−1(a1, a2, . . . , ai−1), ai).

Fernández-Salido and Murakami [47] proposed the β-precision quasi t-norm

and t-conorm for β ∈ [0, 1] as aggregation operators. Let T be a t-norm, S be a

t-conorm, β ∈ [0,1] and n ∈ N with n ≥ 2, then the β-precision quasi-t-norm Tβ
and the β-precision quasi-t-conorm Sβ of order n are [0,1]n → [0,1] mappings

such that for all (a1, a2, . . . , an−1, an) in [0, 1]n,

Tβ (a1, a2, . . . , an−1, an) = T n−m(b1, . . . , bn−m), (5.12)

Sβ (a1, a2, . . . , an−1, an) = S n−p(c1, . . . , cn−p), (5.13)

where bi is the i th greatest element of (a1, a2, . . . , an−1, an) and ci is the i th smallest

element of (a1, a2, . . . , an−1, an), and

m = max

(

i ∈ {0, . . . , n} | i ≤ (1− β)
n
∑

j=1

a j

)

,

p = max

(

i ∈ {0, . . . , n} | i ≤ (1− β)
n
∑

j=1

(1− a j)

)

.

When β = 1, we obtain the operators T n and S n for n ∈ N \ {0,1}.
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Second, we discuss ordered weighted average (OWA) operators, introduced by

Yager [175]. Let D be a sequence of n scalar values and let W = 〈w1, w2, . . . , wn〉
be a weight vector of length n, henceforth called an OWA weight vector of length n,

such that for all i ∈ {1, . . . , n}, wi ∈ [0, 1], and
n
∑

i=1
wi = 1. Let σ be the permutation

on {1, . . . , n} such that dσ(i) is the i th largest value of D. The OWA operator acting
on D yields the value

OWAW (D) =
n
∑

i=1

widσ(i). (5.14)

The OWA operator allows us to consider a wide variety of aggregation strategies.

We consider the following examples. Let D be a sequence of length n:

(a) for Wmin = 〈0,0, . . . , 0, 1〉, the result of OWAWmin
(D) equals the minimum

value of D,

(b) for Wmax = 〈1,0, . . . , 0, 0〉, the result of OWAWmax
(D) equals the maximum

value of D,

(c) for Wavg = 〈
1
n , 1

n , . . . , 1
n , 1

n 〉, the result of OWAWavg
(D) represents the average

of D.

Moreover, given an OWA weight vector W of length n, the orness degree and andness
degree of W are defined by

orness(W ) =
1

n− 1

n
∑

i=1

((n− i) ·wi), (5.15)

andness(W ) = 1− orness(W ). (5.16)

The orness and andness degree of W represent how similar W is to the maximum

and minimum operator, respectively. For instance, it holds that

(a) orness(Wmax) = 1 and andness(Wmax) = 0,

(b) orness(Wmin) = 0 and andness(Wmin) = 1,

(c) orness(Wavg) = andness(Wavg) = 0.5.
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5.4 Technique of representation by levels

In 2012, Sánchez et al. [144] introduced a non-nested level-based representation

of fuzziness. The idea is to describe a fuzzy concept with crisp representatives, each

one being a crisp realization under a certain condition [144]. Different levels of

restriction are considered, with using the levels in [0, 1], where level 1 is the most

restrictive level. Level 0 represents no restriction at all, but it will not be taken into

account in the representation. Since humans can only distinguish a finite set of

levels, for each fuzzy concept X it is assumed that there exists a finite set of levels

ΛX = {α1,α2, . . . ,αm} with 1= α1 > α2 > . . .> αm > αm+1 = 0 and m ∈ N \ {0}4.

A fuzzy concept X is described by a representation by levels (RL) which is a

tuple (ΛX ,ρX ) with ΛX a finite set of levels and ρX : ΛX →P (X ) a function which

associates each level α with a crisp subset of X . The set of crisp representatives ΩX

of (ΛX ,ρX ) is given by ΩX = {ρX (α) | α ∈ ΛX }. Furthermore, the crisp represen-

tatives on each level are independent of each other and they are not necessarily

nested, i.e., α > β 6⇒ ρX (α) ⊇ ρX (β) for X a fuzzy concept. Note that a fuzzy set X
can be seen as a special case of RL, in case there are only finitely many different

membership degrees: let ΛX = {X (x) | X (x)> 0} ∪ {1} and ρX (α) = Xα for each

α ∈ ΛX . In this case, the crisp representatives are nested.

Although this technique is useful to represent fuzzy information, it is not easy to

interpret by humans. Therefore, it is possible to obtain a fuzzy set that summarizes

the information given by the RL: let (ΛX ,ρX ) be an RL associated with a fuzzy

concept X , then the fuzzy summary vX : U → [0,1] is given by

vX (x) =
∑

{Y∈ΩX |x∈Y }

 

∑

{αi∈ΛX |Y=ρX (αi)}

(αi −αi+1)

!

=
∑

{αi∈ΛX |x∈ρX (αi)}

(αi −αi+1),

i.e., we take the summation of the differences αi −αi+1, where x belongs to the

crisp representative on level αi .

4It is possible to consider a countable set of levels. However, we will restrict to finite sets of levels.
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Considering operations on fuzzy concepts, this technique will allow to perform

the associated crisp operations on each level of the RL. Let f : P (U)n→P (U) be a

crisp operation, then f is extended to RLs in the following way: let (X1, X2, . . . , Xn)
be fuzzy concepts in U with each X i represented by (ΛX i

,ρX i
), then f (X1, X2, . . . , Xn)

is a fuzzy concept in U represented by (Λ f (X1,X2,...,Xn),ρ f (X1,X2,...,Xn)) where

Λ f (X1,X2,...,Xn) =
⋃

1≤i≤n

ΛX i

and

∀α ∈ Λ f (X1,X2,...,Xn) : ρ f (X1,X2,...,Xn)(α) = f (ρX1
(α),ρX2

(α), . . . ,ρXn
(α)).

Examples of such operations are the union, the intersection or the complement.

We have the following proposition:

Proposition 5.4.1. [144] Operations on RLs satisfy all the properties of the

Boolean logic.

In other words, all properties using operations of the Boolean logic, e.g., nega-

tion, conjunction and disjunction, which hold for a crisp concept will also hold

for its fuzzification, when RLs are used. This is the main advantage of non-nested

level-based representations.

Finally, we illustrate this technique with following example:

Example 5.4.2. Let U = {x , y, z} and consider the fuzzy sets

• X = 1/x + 0.8/y + 0.5/z,

• Y = 0.9/x + 0/y + 0.6/z.

Let T be a t-norm and N a negator, then we want to determine the fuzzy set

X ∩T YN by the technique of representations by levels. First, we determine the

set of levels: Λ(X∩T YN ) = ΛX ∪ΛY = {1,0.9,0.8,0.6,0.5}, with ΛX and ΛY the set

of non-zero membership degrees of X and Y . For each level α ∈ Λ(X∩T YN ), we

determine the crisp set ρX (α), ρY (α), ρYN (α) and ρ(X∩T YN )(α) in Table 5.1.
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Table 5.1: Representation by levels of X , Y , YN and X ∩T YN

α ρX (α) ρY (α) ρYN (α) ρ(X∩T YN )(α)

1 {x} ; {x , y, z} {x}
0.9 {x} {x} {y, z} ;
0.8 {x , y} {x} {y, z} {y}
0.6 {x , y} {x , z} {y} {y}
0.5 {x , y, z} {x , z} {y} {y}

From Table 5.1 we see that the crisp representatives of YN and X ∩T YN are

not nested. To determine the fuzzy set X ∩T YN , we compute the fuzzy summary

in each object of U:

(X ∩T YN )(x) = (1− 0.9) = 0.1,

(X ∩T YN )(y) = (0.8− 0.6) + (0.6− 0.5) + (0.5− 0) = 0.8,

(X ∩T YN )(z) = 0,

thus, X ∩T YN = 0.1/x + 0.8/y + 0/z. Note that this holds for every t-norm T
and every negator N .
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Fuzzy neighborhood operators

In machine learning processes, neighborhood operators play an important role as

they are generalizations of equivalence classes which were used in the original

rough set model of Pawlak. In this chapter, we introduce the notions of a fuzzy cov-

ering, the fuzzy neighborhood system of an object, the fuzzy minimal description

of an object and the fuzzy maximal description of an object based on a given fuzzy

covering. Moreover, we extend the definition of four covering-based neighborhood

operators as well as six derived coverings discussed by Yao and Yao [189] to the

fuzzy setting. We combine these four fuzzy neighborhood operators and seven

fuzzy coverings and prove that only 16 different fuzzy neighborhood operators are

obtained when a finite fuzzy covering, a left-continuous t-norm and its R-implicator

are considered. In addition, we study the partial order relations between those 16

fuzzy neighborhood operators and a fuzzy neighborhood operator introduced by

Ma [107]. Furthermore, we discuss which properties are satisfied by each fuzzy

neighborhood operator. To end, we state conclusions.

Note that in the literature, fuzzy neighborhood operators are often used in the

159
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context of fuzzy topology, e.g., [86,93,103,105], in order to describe concepts such

as open and closed sets, and interior and closure operators. Interior and closure

operators are closely related with the concept of approximation operators in data

analysis, and here we focus on the concept of a fuzzy neighborhood operator from

the perspective of fuzzy rough set theory.

6.1 Fuzzy neighborhood systems based on a fuzzy

covering

We first discuss the concept of a fuzzy covering. Different definitions of a fuzzy

covering are proposed in [36,91]. However, we introduce the following one:

Definition 6.1.1. Let U be a universe and let I be a possibly infinite index set. A

collection C = {Ki ∈ F (U) | Ki 6= ;, i ∈ I} is called a fuzzy covering, if for all x ∈ U
there exists K ∈ C such that K(x) = 1. The tuple (U ,C) is called a fuzzy covering
approximation space.

Note that for infinite coverings this definition guarantees for any x ∈ U the

existence of a set K ∈ C to which x fully belongs, which is not the case with the

proposals of [36,91]. Moreover, note that every crisp covering of U is also a fuzzy

covering of U , since P (U) ⊆F (U). Therefore, we will use the same notation for

a crisp and a fuzzy covering. From now on, we assume that C represents a fuzzy

covering, unless explicitly indicated otherwise.

Given a fuzzy covering C and an object x ∈ U , we want to describe the fuzzy

neighborhood system, the fuzzy minimal description and the fuzzy maximal de-

scription of x . We first introduce the following extension of the neighborhood

system of x ∈ U , which is the collection of all fuzzy sets in the fuzzy covering in

which x has a strict positive membership degree.

Definition 6.1.2. Let (U ,C) be a fuzzy covering approximation space and x ∈ U ,

then the fuzzy neighborhood system of x is given by

C (C, x) = {K ∈ C | K(x)> 0}. (6.1)
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By definition of a fuzzy covering, there is always a set K ∈ C with K(x) = 1,

hence, C (C, x) is not empty. It is easy to see that if C is crisp, the neighborhood

system C (C, x) given in Eq. (2.12) is obtained.

The fuzzy minimal and maximal descriptions of x are obtained as follows: in

every non-zero membership degree that is reached by x in C, we take the minimal,

respectively maximal, sets. This means that for all α ∈ {K(x) | K ∈ C, K(x) > 0}
there exist K1 ∈md(C, x) and K2 ∈MD(C, x) with K1(x) = K2(x) = α.

Definition 6.1.3. Let (U ,C) be a fuzzy covering approximation space and x ∈ U ,

then the fuzzy minimal description of x is given by

md(C, x) = {K ∈ C (C, x) | (∀S ∈ C (C, x))(S(x) = K(x), S ⊆ K ⇒ S = K)}
(6.2)

and the fuzzy maximal description of x is given by

MD(C, x) = {K ∈ C (C, x) | (∀S ∈ C (C, x))(S(x) = K(x), S ⊇ K ⇒ S = K)}.
(6.3)

If C is crisp, Eqs. (2.13) and (2.14) are obtained. Note that C (C, x), md(C, x)
and MD(C, x) are all collections of fuzzy sets and that both md(C, x) and MD(C, x)
are subsets of C (C, x).

We illustrate the fuzzy minimal and maximal descriptions in the following

example.

Example 6.1.4. Let U = {x , y} and let C = {K1, K2, K3, K4, K5} be a fuzzy cov-

ering on U with K1 = 1/x + 0.5/y, K2 = 0.7/x + 1/y, K3 = 0.7/x + 0.5/y,

K4 = 0.7/x + 0.2/y and K5 = 0/x + 0.5/y. Then C (C, x) = {K1, K2, K3, K4},
md(C, x) = {K1, K4} and MD(C, x) = {K1, K2}. On the other hand, C (C, y) = C,

md(C, y) = {K2, K4, K5} and MD(C, y) = {K1, K2, K4}.

Due to the construction of the fuzzy minimal and maximal descriptions, we

can extend Proposition 2.2.3 to the fuzzy setting:

Proposition 6.1.5. Let (U ,C) be a fuzzy covering approximation space.
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(a) If any descending chain in C is closed under infimum, i.e., for any set

{Ki ∈ C | i ∈ I} with Ki+1 ⊆ Ki it holds that inf
i∈I

Ki =
⋂

i∈I
Ki ∈ C, then for

K ∈ C (C, x) there exists K1 ∈md(C, x) with K1(x) = K(x) and K1 ⊆ K .

(b) If any ascending chain in C is closed under supremum, i.e., for any set

{Ki ∈ C | i ∈ I} with Ki ⊆ Ki+1 it holds that sup
i∈I

Ki =
⋃

i∈I
Ki ∈ C, then for

K ∈ C (C, x) there exists K2 ∈MD(C, x) with K2(x) = K(x) and K ⊆ K2.

Proof. (a) Since K ∈ C (C, x), K(x) > 0. If K /∈ md(C, x), then by definition,

there exists K1 ∈ Cwith K1(x) = K(x) and K1 ( K . If K1 /∈md(C, x), then by

definition, there exists K2 ∈ C with K2(x) = K1(x) = K(x) and K2 ( K1 ( K .

Continuing, as descending chains in C are closed under infimum, there exists

K1 ∈ C such that K1 = inf
i∈N

K i with K1(x) = K(x) and K1(y) ≤ K(y) for

all y 6= x and there is no set smaller in C than K1 with these properties,

therefore, K1 ∈md(C, x).

(b) Similarly, we can find a K2 ∈MD(C, x) such that K2(x) = K(x) and K ⊆ K2.

Under the hypothesis of Proposition 6.1.5, there always exists a K1 ∈md(C, x)
and K2 ∈MD(C, x) such that K1(x) = K2(x) = 1. Note that the condition of Propo-

sition 6.1.5 holds whenever the fuzzy covering C is finite. As this proposition is a

motivation for the fuzzy minimal and maximal descriptions, we will often explicitly

assume that C is finite in order to apply this property. Although the condition of a

finite C is stronger than the condition on C provided in Proposition 6.1.5, we will

often assume the former, as it is a more suitable condition for applications. Note

that the condition on C in Proposition 6.1.5 is necessary, as illustrated in the next

example:

Example 6.1.6. Let U = {x , y} with

C= {Kn | n ∈ N \ {0}} ∪ {K∗ = 0.7/x + 0.1/y}

such that Kn(x) = 1 and Kn(y) =
1
n . As K∗ is the only set in C with K∗(x) = 0.7,

K∗ ∈md(C, x). However, as for all n ∈ N \ {0} it holds that Kn+1 ⊆ Kn, we obtain

that Kn /∈ md(C, x) for all n ∈ N \ {0}. Therefore, there is no set K in md(C, x)
with K(x) = 1.
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6.2 Fuzzy neighborhood operators based on a fuzzy

covering

In this section, we discuss the notion of fuzzy neighborhood operators in the context

of fuzzy rough set theory and we propose definitions for the fuzzy extensions of

the four neighborhood operators discussed by Yao and Yao [189].

In the most general setting, a fuzzy neighborhood operator is defined as follows:

Definition 6.2.1. A fuzzy neighborhood operator on U is a mapping

N: U →F (U),

i.e., it associates each object x ∈ U with a fuzzy set N(x).

Note that every crisp neighborhood operator is also a fuzzy neighborhood

operator, since P (U) ⊆F (U). Therefore, we will use the same notation for a crisp

and a fuzzy neighborhood operator. From now on, we assume that N represents a

fuzzy neighborhood operator, unless explicitly indicated otherwise.

Fuzzy neighborhood operators on U are in correspondence with fuzzy binary

relations on U , just by taking N(x)(y) = R(x , y) for all x , y ∈ U .

A fuzzy neighborhood operator N on U can satisfy the following properties:

• N is normalized if and only if ∀x ∈ U : N(x) is normalized, i.e.,

∃y ∈ U : N(x)(y),

• N is reflexive if and only if ∀x ∈ U : N(x)(x) = 1,

• N is symmetric if and only if ∀x , y ∈ U : N(x)(y) = N(y)(x),

• given a t-norm T , N is T -transitive if and only if ∀x , y, z ∈ U :

T (N(x)(y), N(y)(z))≤ N(x)(z). (6.4)

We will assume that each fuzzy neighborhood operator is reflexive, to fulfil the

intuitive idea of a neighborhood. If N is symmetric, then the degree in which an
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object y ∈ U belongs to the fuzzy neighborhood of the object x ∈ U equals the de-

gree in which x belongs to the fuzzy neighborhood of y . If N is TM -transitive, then

the membership degree of the object z ∈ U belonging to the fuzzy neighborhood

of the object x ∈ U will be at least equal to the minimum of the membership de-

gree of y to N(x) and the membership degree of z to N(y), for each element y ∈ U .

Given the definitions of the fuzzy neighborhood system and the fuzzy minimal

and maximal description of an object x ∈ U for a given fuzzy covering C, we

can now introduce fuzzy extensions of the four crisp neighborhood operators

NC1 , NC2 , NC3 and NC4 defined in [189].

Fuzzy neighborhood operator NC1

To introduce a fuzzy extension for the crisp neighborhood operator NC1 , we can

rewrite the condition y ∈
⋂

C (C, x) for a crisp covering C as

∀K ∈ C: x ∈ K ⇒ y ∈ K .

A natural extension of this definition follows from replacing ∀ by the infimum

operator, x ∈ K by the membership degree K(x) and⇒ by an implicator I .

Definition 6.2.2. Let (U ,C) be a fuzzy covering approximation space and I an

implicator, then

NC1 : U →F (U): x 7→ NC1 (x) (6.5)

is a fuzzy neighborhood operator, such that for x ∈ U the fuzzy neighborhood

NC1 (x) is defined by

NC1 (x): U → [0,1]: y 7→ inf
K∈C
I (K(x), K(y)). (6.6)

If the covering C is a crisp covering, then the fuzzy neighborhood of x described

in Eq. (6.6) coincides with the crisp neighborhood NC1 (x). Indeed, for x , y ∈ U , the

membership degree NC1 (x)(y) is either 0 or 1 if the covering C is crisp. Moreover,

it holds that

NC1 (x)(y) = 1 ⇔ inf
K∈C
I (K(x), K(y)) = 1
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⇔ ∀K ∈ C: I (K(x), K(y)) = 1

⇔ ∀K ∈ C: K(x) = 1⇒ K(y) = 1

⇔ ∀K ∈ C: x ∈ K ⇒ y ∈ K

⇔ y ∈
⋂

C (C, x).

To construct the fuzzy neighborhoood operator NC1 , we have used the charac-

terization y ∈
⋂

C (C, x) of the crisp neighborhood NC1 (x). Next, we prove that

the characterization y ∈
⋂

md(C, x) yields the same fuzzy neighborhood operator

for a finite fuzzy covering C.

Proposition 6.2.3. Let (U ,C) be a fuzzy covering approximation space with C
finite and I an implicator, then for all x , y ∈ U it holds that

inf
K∈C
I (K(x), K(y)) = inf

K∈C (C,x)
I (K(x), K(y)) = inf

K∈md(C,x)
I (K(x), K(y)).

Proof. First note that if K(x) = 0, then I (K(x), K(y)) = 1, hence

inf
K∈C
I (K(x), K(y)) = inf

K∈C (C,x)
I (K(x), K(y)).

Since md(C, x) ⊆ C (C, x), we have that

inf
K∈C
I (K(x), K(y)) =

min
�

inf
K∈md(C,x)

I (K(x), K(y)), inf
K∈C (C,x)\md(C,x)

I (K(x), K(y))
�

.

If K ∈ C (C, x) \md(C, x), then there exists a K ′ ∈md(C, x) such that K ′ ⊆ K and

K ′(x) = K(x). Therefore, for all y ∈ U ,

I (K(x), K(y)) = I (K ′(x), K(y))≥ I (K ′(x), K ′(y)).

Hence, we can conclude that

inf
K∈md(C,x)

I (K(x), K(y))≤ inf
K∈C (C,x)\md(C,x)

I (K(x), K(y))

and thus,

inf
K∈C
I (K(x), K(y)) = inf

K∈md(C,x)
I (K(x), K(y)).

Note that we assume the fuzzy covering C to be finite, in order to be able to

apply Proposition 6.1.5.
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Fuzzy neighborhood operator NC2

For the fuzzy extension of the crisp neighborhood operator NC2 , note that the

condition y ∈
⋃

md(C, x) can be rewritten as

∃K ∈md(C, x): x ∈ K ∧ y ∈ K ,

when C is a crisp covering. A natural extension of this definition follows from

replacing ∃ by the supremum operator, x ∈ K by the membership degree K(x) and

∧ by a t-norm T .

Definition 6.2.4. Let (U ,C) be a fuzzy covering approximation space and T a

t-norm, then

NC2 : U →F (U): x 7→ NC2 (x) (6.7)

is a fuzzy neighborhood operator, such that for x ∈ U the fuzzy neighborhood

NC2 (x) is defined by

NC2 (x): U → [0,1]: y 7→ sup
K∈md(C,x)

T (K(x), K(y)). (6.8)

Note that if the coveringC is a crisp covering, the fuzzy minimal description of x
coincides with the crisp minimal description of x . Moreover, in that case, the fuzzy

neighborhood defined in Eq. (6.8) coincides with the crisp neighborhood NC2 (x).

Fuzzy neighborhood operator NC3

For a crisp covering C, the condition y ∈
⋂

MD(C, x) can be rewritten as

∀K ∈MD(C, x): x ∈ K ⇒ y ∈ K .

As with the operator NC1 , a natural extension of this definition follows from replacing

∀ by the infimum operator, x ∈ K by the membership degree K(x) and⇒ by an

implicator I .

Definition 6.2.5. Let (U ,C) be a fuzzy covering approximation space and I an

implicator, then

NC3 : U →F (U): x 7→ NC3 (x) (6.9)
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is a fuzzy neighborhood operator, such that for x ∈ U the fuzzy neighborhood

NC3 (x) is defined by

NC3 (x): U → [0, 1]: y 7→ inf
K∈MD(C,x)

I (K(x), K(y)). (6.10)

Given a crisp covering C, the fuzzy maximal description of x coincides with

the crisp maximal description of x and the fuzzy neighborhood of x described in

Eq. (6.10) coincides with the crisp neighborhood NC3 (x).

Fuzzy neighborhoood operator NC4

We can rewrite the characterization y ∈
⋃

C (C, x) for a crisp covering C as

∃K ∈ C: x ∈ K ∧ y ∈ K .

As with the operator NC2 , a natural extension of this definition follows from replacing

∃ by the supremum operator, x ∈ K by the membership degree K(x) and ∧ by a

t-norm T .

Definition 6.2.6. Let (U ,C) be a fuzzy covering approximation space and T a

t-norm, then

NC4 : U →F (U): x 7→ NC4 (x) (6.11)

is a fuzzy neighborhood operator, such that for x ∈ U the fuzzy neighborhood

NC4 (x) is defined by

NC4 (x): U → [0, 1]: y 7→ sup
K∈C
T (K(x), K(y)). (6.12)

It is easy to see that the fuzzy neighborhood of x defined in Eq. (6.12) is a

fuzzy extension of the crisp neighborhood NC4 (x).
We can prove the analogy of the crisp equality

⋃

C (C, x) =
⋃

MD(C, x)

for a finite fuzzy covering C.



168 Chapter 6. Fuzzy neighborhood operators

Proposition 6.2.7. Let (U ,C) be a fuzzy covering approximation space with C
finite and T a t-norm, then for all x , y ∈ U it holds that

sup
K∈C
T (K(x), K(y)) = sup

K∈C (C,x)
T (K(x), K(y)) = sup

K∈MD(C,x)
T (K(x), K(y)).

Proof. Analogously as in the proof of Proposition 6.2.3, we can prove that

sup
K∈C
T (K(x), K(y)) = sup

K∈C (C,x)
T (K(x), K(y))

and

sup
K∈MD(C,x)

T (K(x), K(y))≥ sup
K∈C (C,x)\MD(C,x)

T (K(x), K(y)).

Hence, the supremum will be reached in MD(C, x).

To end this section, note that the four fuzzy neighborhood operators are reflexive

under certain conditions:

Proposition 6.2.8. Let (U ,C) be a fuzzy covering approximation space, T a t-

norm and I a WCP-implicator, then the fuzzy neighborhood operators NC1 and

NC3 defined with I and the fuzzy neighborhood operator NC4 defined with T are

reflexive fuzzy neighborhood operators. The fuzzy neighborhood operator NC2
defined with T is reflexive if C is finite.

Proof. As I (a, a) = 1 for all a ∈ [0,1], the operators NC1 and NC3 are reflex-

ive. Moreover, let x ∈ U , then there exists K ∈ C such that K(x) = 1. Hence,

NC4 (x)(x)≥ T (K(x), K(x)) = 1.

Now assume C is finite, then there exists K1 ∈md(C, x) with K1(x) = K(x) = 1

and K1 ⊆ K . Hence, NC2 (x)(x)≥ T (K1(x), K1(x)) = 1, and thus, NC2 is a reflexive

fuzzy neighborhood operator.

6.3 Fuzzy coverings derived from a fuzzy covering

For a crisp covering C, Yao and Yao [189] introduced six derived coverings of C:

C1,C2,C3,C4,C∩ and C∪. In this section, we extend these derived coverings to

the fuzzy setting.
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Definition 6.3.1. Let (U ,C) be a fuzzy covering approximation space, consider

the t-norm T to construct the fuzzy neighborhood operator NC4 and consider the

implicator I to construct the fuzzy neighborhood operator NC1 , then define the

following collections of fuzzy sets:

C1 =
⋃

{md(C, x) | x ∈ U}, (6.13)

C2 =
⋃

{MD(C, x) | x ∈ U}, (6.14)

C3 = {NC1 (x) | x ∈ U}, (6.15)

C4 = {NC4 (x) | x ∈ U}, (6.16)

C∩ = C \ {K ∈ C | (∃C′ ⊆ C \ {K})(K =
⋂

C′)}, (6.17)

C∪ = C \ {K ∈ C | (∃C′ ⊆ C \ {K})(K =
⋃

C′)}. (6.18)

We illustrate these definitions in the following example.

Example 6.3.2. Let U = {x , y, z} and C = {K1, K2, K3, K4, K5, K6, K7, K8} with

K1 = 0.9/x+0.9/y+0.7/z, K2 = 0.9/x+1/y+0.9/z, K3 = 0.9/x+0.1/y+0.8/z,

K4 = 1/x + 0.9/y + 1/z, K5 = 1/x + 0/y + 0.6/z, K6 = 1/x + 1/y + 0.7/z,

K7 = 1/x + 0/y + 0.5/z and K8 = 1/x + 0.9/y + 0.7/z, then

C1 = C∪ = {K1, K2, K3, K4, K5, K6, K7}

and

C2 = C∩ = {K2, K3, K4, K5, K6, K7}.

Moreover, if T is the minimum operator and I its R-implicator, then

C3 = {1/x + 0/y + 0.5/z, 0.9/x + 1/y + 0.7/z, 1/x + 0/y + 1/z}

and

C4 = {1/x + 1/y + 1/z, 1/x + 1/y + 0.9/z, 1/x + 0.9/y + 1/z}.

Next, we will prove that the collections defined above are all fuzzy coverings if

the original fuzzy covering C is finite. First, we show that the collections C1, C2

and C∪ are finite fuzzy subcoverings of C.
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Proposition 6.3.3. Let (U ,C) be a fuzzy covering approximation space with C
finite, then C1, C2 and C∪ are all finite fuzzy subcoverings of C.

Proof. It is easy to see that all three collections are subsets of the fuzzy covering C,

and that they are finite collections of non-empty fuzzy sets of U . We need to study

for C j ∈ {C1,C2,C∪} whether the condition

∀x ∈ U ,∃K j ∈ C j : K j(x) = 1

holds.

Take x ∈ U , then there exists K ∈ C such that K(x) = 1. Hence, there exist

K1 ∈ md(C, x) and K2 ∈ MD(C, x) such that K1(x) = K(x) = K2(x) = 1 and

K1 ⊆ K ⊆ K2. Since K1 ∈ C1 and K2 ∈ C2, C1 and C2 are fuzzy coverings.

As for C∪, assume K /∈ C∪, then there exists a collection C′ ⊆ C \ {K} such

that K =
⋃

C′. Since C is finite, there exists a K ′ ∈ C′ such that K ′(x) = 1. Since

we can choose the collection C′ in C∪, there exists K ′ ∈ C∪ such that K ′(x) = 1.

Hence, C∪ is a fuzzy covering.

The condition of finiteness for C is necessary, as for the coverings C1 and C2

Proposition 6.1.5 is used. The necessity of the condition for C∪ is illustrated in the

next example:

Example 6.3.4. Let U = {x} and C = {Kn | n ∈ N\{0}}∪{K∗} with Kn(x) = 1− 1
n

and K∗(x) = 1. It holds that sup{Kn(x) | N \ {0}} = K∗(x), and thus, K∗ /∈ C∪.
Therefore, C∪ is not a fuzzy covering.

Next, we show that C∩ is a fuzzy covering for an infinite covering C.

Proposition 6.3.5. Let (U ,C) be a fuzzy covering approximation space, then C∩
is a fuzzy subcovering of C.

Proof. By definition, C∩ is a subset of C and therefore, it does not contain the

empty set. Moreover, let x ∈ U and K ∈ C with K(x) = 1. Assume that K /∈ C∩,
then there exists a collection C′ ⊆ C \ {K} such that K =

⋂

C′. Since K(x) = 1, it

holds for all K ′ ∈ C′ that K ′(x) = 1. Since we can choose the collection C′ in C∩,
there exists K ′ ∈ C∩ such that K ′(x) = 1. Hence, C∩ is a fuzzy covering.
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Furthermore, we prove that C3 and C4 are fuzzy coverings.

Proposition 6.3.6. Let (U ,C) be a fuzzy covering approximation space, T a t-

norm to construct C4 and I a WCP-implicator to construct C3, then C3 and C4 are

fuzzy coverings.

Proof. This follows immediately from the fact that NC1 and NC4 are reflexive (see

Proposition 6.2.8).

As opposed to the fuzzy coverings C1,C2,C∩ and C∪ which are subcoverings

of C, it is possible that the fuzzy coverings C3 and C4 have no overlap with the

original covering C. Moreover, note that the cardinality of C3 and C4 is at most

equal to the cardinality of U , while the cardinality of the other four derived cover-

ings will be at most equal to the cardinality of C.

In the following, we prove that C2 ⊆ C∩ and C∪ = C1 if C is finite.

Proposition 6.3.7. Let (U ,C) be a fuzzy covering approximation space with C
finite, then C2 is a fuzzy subcovering of C∩.

Proof. Let K ∈ C2, then there exists x ∈ U such that K ∈ MD(C, x). If K /∈ C∩,
then there exists a collection C′ ⊆ C \ {K} such that K =

⋂

C′. We can choose the

collection C′ in C∩. Since C is finite, take K ′ ∈ C′ such that K ′(x) = K(x) > 0.

Because K ⊆ K ′, K(x) = K ′(x) and K ∈ MD(C, x), we have that K = K ′. Hence,

K ∈ C∩.

Note that C2 is not necessarily a subset of C∩ if C is infinite:

Example 6.3.8. Let U = {x} and the covering C= {Kn | n ∈ N \ {0,1}} ∪ {K∗} is

defined by Kn(x) =
1
2 +

1
n and K∗(x) = 1

2 , then

inf{Kn(x) | n ∈ N \ {0,1}}= K∗(x),

thus K∗ /∈ C∩. Since the membership degree of x in every fuzzy set of C is different,

we have that C2 = C and therefore, C2 is not a subset of C∩.

Proposition 6.3.9. Let (U ,C) be a fuzzy covering approximation space with C
finite, then C∪ = C1.
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Proof. First, let K ∈ C1, then there exists x ∈ U such that K ∈md(C, x). If K /∈ C∪,

then there exists a collection C′ ⊆ C \ {K} such that K =
⋃

C′. We can choose the

collection C′ in C∪. Since C is finite, take K ′ ∈ C′ such that K ′(x) = K(x) > 0.

Because K ′ ⊆ K, K ′(x) = K(x) and K ∈ md(C, x), we have that K = K ′. Hence,

K ∈ C∪.
Second, let K ∈ C∪ and assume that K /∈ C1, then for all x ∈ U , K /∈md(C, x).

Since K is not empty, there exists x ∈ U such that K(x) > 0. Hence, there exists

Kx ∈md(C, x) with Kx(x) = K(x) and Kx ( K . Therefore,
⋃

{Kx | x ∈ U , Kx ∈md(C, x): Kx(x) = K(x)> 0, Kx ⊆ K} ⊆ K .

On the other hand, for each z ∈ U we have that

sup
x∈U : K(x)>0

Kx(z)≥ K(z),

because if K(z)> 0, then sup
x∈U : K(x)>0

Kx (z)≥ Kz(z) = K(z) and if K(z) = 0, it holds

trivially. Hence, we conclude that

K =
⋃

{Kx | x ∈ U , Kx ∈md(C, x): Kx(x) = K(x)> 0, Kx ⊆ K},

where {Kx | x ∈ U , K(x) > 0} ⊆ C \ {K}, which means that K /∈ C∪. This is a

contradiction, thus, K ∈ C1.

Note that the finiteness condition is necessary, as otherwise C1 and C∪ are not

fuzzy coverings.

We can conclude that a finite fuzzy coveringC yields five derived fuzzy coverings

C1 = C∪, C2, C3, C4 and C∩. These six fuzzy coverings (one original and five

derived ones) together with the four fuzzy neighborhood operators result in twenty-

four combinations of fuzzy neighborhood operators based on a finite fuzzy covering.

6.4 Equalities between fuzzy neighborhood opera-

tors

In this section, we discuss equalities between fuzzy neighborhood operators based

on a fuzzy covering C. We will assume that this fuzzy covering C is finite, therefore,
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the fuzzy covering C∪ is disregarded since it is equal to the fuzzy covering C1. First

note that when two neighborhood operators are different in the crisp case, they are

also different in the fuzzy setting. Hence, if we consider the fuzzy neighborhood

operators N
C j

i for i ∈ {1, 2, 3, 4} and C j ∈ {C,C1,C2,C3,C4,C∩}, we only need to

study whether the equalities of the neighborhood operators of groups a, c, f and j
of Table 4.1 are maintained.

We start with the following observations.

Proposition 6.4.1. Let (U ,C) be a fuzzy covering approximaton space with C
finite, then for all x ∈ U it holds that

(a) md(C1, x) =md(C, x),

(b) MD(C2, x) =MD(C, x),

(c) MD(C∩, x) =MD(C, x).

Proof. (a) Take x ∈ U . If K ∈md(C, x), then K ∈ C1 and K(x)> 0. Let K ′ ∈ C1

with K ′(x) = K(x)> 0 and K ′ ⊆ K . Since K ′ ∈ C and K ∈md(C, x), it holds

that K = K ′. Hence, K ∈md(C1, x).

On the other hand, if K ∈md(C1, x), then K ∈ C1 ⊆ C and K(x)> 0. Hence,

there exists K ′ ∈ md(C, x) with K ′(x) = K(x) and K ′ ⊆ K. Since K ′ ∈ C1

and K ∈md(C1, x), it holds that K = K ′. Hence, K ∈md(C, x).

(b) Take x ∈ U . If K ∈MD(C, x), then K ∈ C2 and K(x) > 0. Let K ′ ∈ C2 with

K ′(x) = K(x)> 0 and K ⊆ K ′. Since K ′ ∈ C and K ∈MD(C, x), it holds that

K = K ′. Hence, K ∈MD(C2, x).

On the other hand, if K ∈MD(C2, x), then K ∈ C2 ⊆ C and K(x)> 0. Hence,

there exists K ′ ∈ MD(C, x) with K ′(x) = K(x) and K ⊆ K ′. Since K ′ ∈ C2

and K ∈MD(C2, x), it holds that K = K ′. Hence, K ∈MD(C, x).

(c) Let C be finite, then C2 is a fuzzy subcovering of C∩, and x ∈ U . On the one

hand, if K ∈ MD(C, x), then K ∈ C2 ⊆ C∩ and K(x) > 0. Let K ′ ∈ C∩ with

K ′(x) = K(x)> 0 and K ⊆ K ′. Since K ′ ∈ C and K ∈MD(C, x), it holds that

K = K ′. Hence, K ∈MD(C∩, x).
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On the other hand, if K ∈ MD(C∩, x), then K ∈ C∩ ⊆ C and K(x) > 0.

Hence, there exists K ′ ∈ MD(C, x) with K ′(x) = K(x) and K ⊆ K ′. Since

K ′ ∈ C2 ⊆ C∩ and K ∈MD(C∩, x), it holds that K = K ′. Hence, K ∈MD(C, x).

Note that in the fuzzy setting the equality md(C2, x) =C (C, x) and the equality

MD(C2, x) =C (C, x) no longer hold as illustrated in the next example.

Example 6.4.2. Let U = {x , y} and C = {K1, K2} with K1 = 1/x + 0.5/y and

K2 = 1/x + 1/y, then C2 = C. We have that C (C2, x) = C (C, x) = {K1, K2},
md(C2, x) = {K1} and MD(C2, x) = {K2}.

The first group we discuss contains the fuzzy neighborhood operators NC1 , NC1
1 ,

NC3
1 , NC∩1 and NC3

2 . We show that the first four fuzzy neighborhood operators are

still equal in the fuzzy setting, but the last fuzzy neighborhood operator is different.

Proposition 6.4.3. Let (U ,C) be a fuzzy covering approximation space with C fi-

nite andI an implicator used to define the coveringC3 and the fuzzy neighborhood

operators NC1 , NC1
1 , NC3

1 and NC∩1 , then

(a) NC1 = NC1
1 ,

(b) NC1 = NC3
1 if I is the R-implicator of a left-continuous t-norm,

(c) NC1 = NC∩1 .

Proof. (a) This follows immediately from Propositions 6.2.3 and 6.4.1.

(b) Assume that I is an R-implicator of a left-continuous t-norm T . Since

NC1 (x) ∈ C3, we have for y ∈ U that

NC3
1 (x)(y) ≤ I (NC1 (x)(x), NC1 (x)(y))

= I (1, NC1 (x)(y))

= NC1 (x)(y).

On the other hand, by Proposition 6.5.13, NC1 is T -transitive. Therefore, for

all z ∈ U , we have

T (NC1 (z)(x), NC1 (x)(y))≤ NC1 (z)(y)
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⇒ T (NC1 (x)(y), NC1 (z)(x))≤ NC1 (z)(y)

⇒ NC1 (x)(y)≤ I (N
C
1 (z)(x), NC1 (z)(y)),

by the residuation priniciple. Hence,

NC1 (x)(y) ≤ inf
z∈U
I (NC1 (z)(x), NC1 (z)(y))

= inf
K∈C3

I (K(x), K(y))

= NC3
1 (x)(y).

(c) Since C∩ ⊆ C, NC1 (x) ⊆ NC∩1 (x) for all x ∈ U .

On the other hand, take y ∈ U . Since C is finite, let K ∈ C such that

NC1 (x)(y) = I (K(x), K(y)). If K ∈ C∩, then

NC∩1 (x)(y)≤ I (K(x), K(y)) = NC1 (x)(y).

If K /∈ C∩, we can find a collection C′ ⊆ C∩ such that K =
⋂

C′. Since C is

finite, there exists K ′ ∈ C′ with K ′(y) = K(y) and K ⊆ K ′. Therefore,

I (K(x), K(y))≥ I (K ′(x), K ′(y)).

Moreover, we also have that

I (K(x), K(y))≤ I (K ′(x), K ′(y))

since the infimum of NC1 (x)(y) is reached in K and K ′ ∈ C. Therefore,

NC∩1 (x)(y)≤ I (K
′(x), K ′(y)) = I (K(x), K(y)) = NC1 (x)(y).

In both cases we can conclude that NC∩1 (x) ⊆ NC1 (x).

In the following example, we illustrate that the fuzzy neighborhood operators

NC1 and NC3
2 are, in general, no longer equal.

Example 6.4.4. Let U = {x , y, z} and let C = {K1, K2, K3} be a fuzzy covering on U
with K1 = 1/x+0.8/y+0.6/z, K2 = 0.2/x+1/y+0.6/z, K3 = 0.2/x+0.8/y+1/z.

Let T be the minimum operator and I its R-implicator, then NC1 (y)(x) = 0.2. On

the other hand, C3 = C and NC3
2 (y)(x) = 0.8.
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Next, we consider the group with fuzzy neighborhood operators NC2 and NC1
2 .

These operators are still equal in the fuzzy setting.

Proposition 6.4.5. Let (U ,C) be a fuzzy covering approximation space with C
finite and NC2 and NC1

2 based on the t-norm T , then NC2 = NC1
2 .

Proof. This follows immediately from Proposition 6.4.1.

The third group we discuss, is the group containing the fuzzy neighborhood

operators NC3 , NC2
3 , NC∩3 and NC2

1 . The first three fuzzy neighborhood operators are

still equal, but the fourth fuzzy neighborhood operator is different in the fuzzy

setting.

Proposition 6.4.6. Let (U ,C) be a fuzzy covering approximation space with C
finite and NC3 , NC2

3 and NC∩3 based on the implicator I , then

(a) NC3 = NC2
3 ,

(b) NC3 = NC∩3 .

Proof. This follows immediately from Proposition 6.4.1.

The fuzzy neighborhood operators NC3 and NC2
1 are no longer equal.

Example 6.4.7. Let U = {x , y} and C = {K1, K2} with K1 = 1/x + 0.5/y and

K2 = 1/x + 1/y, then C2 = C. Let I be a border implicator. We have that

NC3 (x)(y) = I (K2(x), K2(y)) = 1 and NC2
1 (x)(y) = I (K1(x), K1(y)) = 0.5.

The final group we discuss consists of the fuzzy neighborhood operators

NC4 , NC2
4 , NC∩4 and NC2

2 . The first three fuzzy neighborhood operators are equal, but

the fourth fuzzy neighborhood operator is different in the fuzzy setting.

Proposition 6.4.8. Let (U ,C) be a fuzzy covering approximation space with C
finite and NC4 , NC2

4 and NC∩4 based on the t-norm T , then

(a) NC4 = NC2
4 ,

(b) NC4 = NC∩4 .

Proof. This follows immediately from Propositions 6.2.7 and 6.4.1.
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The fuzzy neighborhood operators NC4 and NC2
2 are no longer equal.

Example 6.4.9. Let U = {x , y} and C = {K1, K2} with K1 = 1/x + 0.5/y and

K2 = 1/x + 1/y , then C2 = C. Let T be a t-norm. We have that

NC4 (x)(y) = T (K2(x), K2(y)) = 1

and

NC2
2 (x)(y) = T (K1(x), K1(y)) = 0.5.

We conclude that given a finite fuzzy covering C, a left-continuous t-norm

to construct C4 and the fuzzy neighborhood operators N
C j

2 and N
C j

4 and its R-

implicator to construct C3 and the fuzzy neighborhood operators N
C j

1 and N
C j

3 , we

have 16 different groups of fuzzy neighborhood operators, listed in Table 6.1.

Table 6.1: Fuzzy neighborhood operators N
C j

i for (U ,C) with C finite, T left-

continuous and I its R-implicator

Group Operators Group Operators

a1. NC1 , NC1
1 , NC3

1 , NC∩1 g. NC3
4

a2. NC3
2 h. NC1

4

b. NC3
3 i. NC4

1

c. NC2 , NC1
2 j1. NC4 , NC2

4 , NC∩4

d. NC1
3 j2. NC2

2

e. NC∩2 k. NC4
2

f1. NC3 , NC2
3 , NC∩3 l. NC4

3

f2. NC2
1 m. NC4

4
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6.5 Partial order relations between fuzzy neighbor-

hood operators

In this section, we describe the partial order relations between the different groups

of fuzzy neighborhood operators of Table 6.1. We assume C to be a finite fuzzy

covering, T a left-continuous t-norm which is used to define the covering C4 and

the fuzzy neighborhood operators N
C j

2 and N
C j

4 and I its R-implicator which is

used to define C3 and the fuzzy neighborhood operators N
C j

1 and N
C j

3 , in order to

guarantee all equalities of Table 6.1.

We define a partial order relation � between fuzzy neighborhood operators as

follows: let N and N′ be fuzzy neighborhood operators on U , then we write N � N′

if and only if ∀x , y ∈ U : N(x)(y)≤ N′(x)(y). We say that two fuzzy neighborhood

operators N and N′ are incomparable with respect to � if neither N � N′ nor

N′ � N hold. Note that if two crisp neighborhood operators are incomparable, their

fuzzy extensions are incomparable as well, e.g., the fuzzy neighborhood operators

NC3
3 (group b) and NC1

3 (group d) are incomparable. Therefore, we only need to

consider the partial order relations given in Figure 4.1a. Moreover, let N and N′

be two fuzzy neighborhood operators of Table 6.1. If N and N′ are different, then

N � N′ implies that N′ � N cannot hold.

In [141] it was proven that for each crisp coveringC it holds that NC1 � NC2 � NC4
and NC1 � NC3 � NC4 . These relationships are maintained in the fuzzy setting.

Proposition 6.5.1. Let (U ,C) be a fuzzy covering approximation space with C
finite, T a left-continuous t-norm used to define the fuzzy neighborhood operators

NC2 and NC4 and I its R-implicator used to define the fuzzy neighborhood operators

NC1 and NC3 , then

(a) NC1 � NC2 ,

(b) NC1 � NC3 ,

(c) NC2 � NC4 ,

(d) NC3 � NC4 .
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Proof. (a) Assume that the inclusion does not hold for x , y ∈ U , then

sup
K∈md(C,x)

T (K(x), K(y))< inf
K∈C
I (K(x), K(y)),

i.e., for all K1 ∈md(C, x) and for all K2 ∈ C it holds that

T (K1(x), K1(y))< I (K2(x), K2(y)).

Take K∗ ∈ C such that K∗(x) = 1 and take K ′ ∈md(C, x) such that

K ′(x) = K∗(x) = 1

and K ′ ⊆ K∗. Then for K1 = K2 = K ′ we have

T (K ′(x), K ′(y))< I (K ′(x), K ′(y)),

hence, K ′(y)< K ′(y), which is a contradiction.

(b) This follows immediately from the fact that MD(C, x) ⊆ C.

(c) This follows immediately from the fact that md(C, x) ⊆ C.

(d) Assume that the inclusion does not hold for x , y ∈ U , then

sup
K∈C
T (K(x), K(y))< inf

K∈MD(C,x)
I (K(x), K(y)),

i.e., for all K1 ∈ C and for all K2 ∈MD(C, x) it holds that

T (K1(x), K1(y))< I (K2(x), K2(y)).

Take K∗ ∈ C such that K∗(x) = 1 and take K ′ ∈ MD(C, x) such that

K ′(x) = K∗(x) = 1 and K∗ ⊆ K ′. Then for K1 = K2 = K ′ we have

T (K ′(x), K ′(y))< I (K ′(x), K ′(y)),

hence, K ′(y)< K ′(y), which is a contradiction.
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Note that (a) and (d) of Proposition 6.5.1 uses Proposition 6.1.5, while the

partial order relations in (b) and (c) also hold for an infinite C. Proposition 6.5.1

implies that the following partial order relations hold for Table 6.1.

Corollary 6.5.2. Let (U ,C) be a fuzzy covering approximation space with C finite,

T a left-continuous t-norm used to define the fuzzy covering C4 and the fuzzy

neighborhood operators N
C j

2 and N
C j

4 and I its R-implicator used to define the

fuzzy covering C3 and the fuzzy neighborhood operators N
C j

1 and N
C j

3 , then in

terms of the groups of Table 6.1 we obtain

(a) for C: a1 � c � j1 and a1 � f1 � j1,

(b) for C1: a1 � c � h and a1 � d � h,

(c) for C2: f2 � j2 � j1 and f2 � f1 � j1,

(d) for C3: a1 � a2 � g and a1 � b � g,

(e) for C4: i � k � m and i � l � m,

(f) for C∩: a1 � e � j1 and a1 � f1 � j1.

Moreover, since C1 and C2 are subcoverings of the finite fuzzy covering C, we

obtain that a1 � f2 and h� j1.

Proposition 6.5.3. Let (U ,C) be a fuzzy covering approximation space with C
finite, T a left-continuous t-norm used to define the fuzzy neighborhood operators

NC4 and NC1
4 andI its R-implicator used to define the fuzzy neighborhood operators

NC1 and NC1
1 , then NC1 � NC2

1 and NC1
4 � NC4 .

Proof. This follows immediately from C2 ⊆ C and C1 ⊆ C.

Furthermore, it holds that f1 � i � j1 � k. To prove these partial order relations,

we first consider the following lemma.

Lemma 6.5.4. [138] Let T a left-continuous t-norm and I its R-implicator, then

I (a, b)≤ I (T (a, c),T (c, b)) holds for all a, b, c ∈ [0,1].
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Proposition 6.5.5. Let (U ,C) be a fuzzy covering approximation space with C
finite, T a left-continuous t-norm used to define the fuzzy covering C4 and the

fuzzy neighborhood operators NC4 and NC4
2 and I its R-implicator used to define

the fuzzy neighborhood operators NC3 and NC4
1 , then

(a) NC3 � NC4
1 ,

(b) NC4
1 � NC4 ,

(c) NC4 � NC4
2 .

Proof. (a) Let x , y ∈ U , then

NC4
1 (x)(y) = inf

z∈U
I (NC4 (z)(x), NC4 (z)(y))

= inf
z∈U
I (NC4 (x)(z), NC4 (z)(y))

= inf
z∈U
I
�

sup
K∈MD(C,x)

T (K(x), K(z)), NC4 (z)(y)

�

= inf
z∈U

inf
K∈MD(C,x)

I
�

T (K(x), K(z)), sup
K ′∈C
T (K ′(z), K ′(y))

�

≥ inf
z∈U

inf
K∈MD(C,x)

sup
K ′∈C
I
�

T (K(x), K(z)),T (K ′(z), K ′(y))
�

≥ inf
z∈U

inf
K∈MD(C,x)

I (T (K(x), K(z)),T (K(z), K(y)))

= inf
K∈MD(C,x)

inf
z∈U
I (T (K(x), K(z)),T (K(z), K(y)))

≥ inf
K∈MD(C,x)

I (K(x), K(y))

= NC3 (x)(y)

where in the penultimate step we have used Lemma 6.5.4.

(b) Let x , y ∈ U , then

NC4
1 (x)(y) ≤ I (NC4 (x)(x), NC4 (x)(y))

= I (1, NC4 (x)(y))

= NC4 (x)(y).
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(c) Let x , y ∈ U . If NC4 (x) ∈md(C4, x), then we have that

NC4
2 (x)(y)≥ T (N

C
4 (x)(x), NC4 (x)(y)) = T (1, NC4 (x)(y)) = NC4 (x)(y).

Similarly, if NC4 (y) ∈md(C4, x), then

NC4
2 (x)(y)≥ T (N

C
4 (y)(x), NC4 (y)(y)) = NC4 (x)(y).

Now assume that neither NC4 (x) nor NC4 (y) belong to md(C4, x). Hence,

∃z1 ∈ U : NC4 (z1)(x) = NC4 (x)(x) = 1, NC4 (z1) ⊆ NC4 (x),

∃z2 ∈ U : NC4 (z2)(x) = NC4 (y)(x), NC4 (z2) ⊆ NC4 (y),

with NC4 (z1), NC4 (z2) ∈md(C4, x). Note that

NC4 (y)(z2)≥ NC4 (z2)(z2) = 1.

We derive that

NC4
2 (x)(y)

≥ max
�

T (NC4 (z1)(x), NC4 (z1)(y)),T (NC4 (z2)(x), NC4 (z2)(y))
�

= max
�

T (1, NC4 (z1)(y)),T (NC4 (y)(x), 1)
�

= max
�

NC4 (z1)(y), NC4 (x)(y)
�

= NC4 (x)(y).

Furthermore, we can prove that g � h.

Proposition 6.5.6. Let (U ,C) be a fuzzy covering approximation space with C
finite, T a left-continuous t-norm used to define the fuzzy neighborhood operators

NC3
4 and NC1

4 and I its R-implicator used to define the fuzzy covering C3, then

NC3
4 � NC1

4 .

Proof. Let x , y, z ∈ U and let K∗ ∈md(C, z) with K∗(z) = 1, then

T (NC1 (z)(x), NC1 (z)(y)) ≤ inf
K∈md(C,z)

T (I (K(z), K(x)),I (K(z), K(y)))
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≤ T (I (K∗(z), K∗(x)),I (K∗(z), K∗(y)))

= T (I (1, K∗(x)),I (1, K∗(y)))

= T (K∗(x), K∗(y))

≤ sup
K∈md(C,z)

T (K(x), K(y)).

Hence, we obtain that

NC3
4 (x)(y) = sup

z∈U
T (NC1 (z)(x), NC1 (z)(y))

≤ sup
z∈U

sup
K∈md(C,z)

T (K(x), K(y))

= sup
K∈C1

T (K(x), K(y))

= NC1
4 (x)(y).

To end, we show that e � j2.

Proposition 6.5.7. Let (U ,C) be a fuzzy covering approximation space with C
finite and T a left-continuous t-norm used to define the fuzzy neighborhood

operators NC∩2 and NC2
2 , then NC∩2 � NC2

2 .

Proof. Let x ∈ U , then we first prove that md(C∩, x) ∩ C2 ⊆ md(C2, x). Let

K ∈md(C∩, x)∩C2 and take K ′ ∈ C2 with K ′(x) = K(x) and K ′ ⊆ K . As K ′ ∈ C∩
and K ∈md(C∩, x), we obtain K = K ′ and thus, K ∈md(C2, x).

Let y ∈ U and assume that NC∩2 (x)(y) = T (K
∗(x), K∗(y)) for K∗ ∈md(C∩, x).

If K∗ /∈ C2, then for each z ∈ U there exists a Kz ∈ C2 such that K∗(z) = Kz(z) and

K∗ ( Kz . However, this means that K∗ =
⋂

z∈U
Kz . As K∗ ∈ C∩, this is a contradiction.

Therefore, K∗ will be a set in C2 and by the observation above, K∗ ∈md(C2, x) is

obtained and thus,

NC∩2 (x)(y)≤ NC2
2 (x)(y).

By the transitivity of �, Figure 4.1a and the results obtained above, the only

partial order relations which also can hold are the following:
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(a) a2 � N with N a fuzzy neighborhood operator of groups b, c, d, e, f1, f2, i,
j2 and l,

(b) N � j2 with N a fuzzy neighborhood operator of groups b, c, d, f1, g, h and i.

However, none of these partial order relations hold, as illustrated in the following

two examples.

Example 6.5.8. Let U = {x , y, z}, T the product t-norm and I its R-implicator.

Let C = {K1, K2, K3, K4} with K1 = 1/x + 0.2/y + 0.6/z, K2 = 0.5/x + 1/y + 0.6/z,

K3 = 0.5/x + 0.6/y + 1/z and K4 = 0.5/x + 0.5/y + 0/z. Then C1 = C2 = C∩ = C
and

C3 = {1/x + 0.2/y + 0/z, 0.5/x + 1/y + 0/z, 0.5/x +
1
3
/y + 1/z}.

Hence, we have that

• NC3
2 (x)(y) = 0.5 (group a2),

• NC2 (x)(y) = NC∩2 (x)(y) = NC2
2 (x)(y) = 0.25 (groups c, e and j2),

• NC3
3 (x)(y) = NC1

3 (x)(y) = NC3 (x)(y) = NC2
1 (x)(y) = 0.2 (groups b, d, f1

and f2).

Hence, NC3
2 � N does not hold for N ∈ {NC3

3 , NC2 , NC1
3 , NC∩2 , NC3 , NC2

1 , NC2
2 }. There-

fore, the fuzzy neighborhood operator NC3
2 is incomparable with the fuzzy neigh-

borhood operators of the groups b – f2 and j2.

On the other hand, let C = {K1, K2, K3, K4} with K1 = 1/x + 0.8/y + 0.6/z,

K2 = 0.2/x +1/y+0.6/z, K3 = 0.2/x +0.8/y+1/z and K4 = 0.1/x +0.6/y+1/z
and let T be the minimum operator and I its R-implicator. Then

C3 = {1/x + 0.8/y + 0.6/z, 0.1/x + 1/y + 0.6/z, 0.1/x + 0.6/y + 1/z}

and

C4 = {1/x + 0.8/y + 0.6/z, 0.8/x + 1/y + 0.8/z, 0.6/x + 0.8/y + 1/z}.

Hence, we have that NC3
2 (y)(x) = 0.8 and NC4

1 (y)(x) = NC4
3 (y)(x) = 0.6, thus,

NC3
2 � NC4

1 and NC3
2 � NC4

3 do not hold. Therefore, the fuzzy neighborhood oper-

ator NC3
2 is incomparable with the fuzzy neighborhood operators of the groups i

and l.
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Example 6.5.9. Let U = {x , y, z} with C as in Example 6.3.2, T the minimum

operator and I its R-implicator, then NC2
2 (x)(y) = 0.1 and

NC2 (x)(y) = NC1
3 (x)(y) = NC3 (x)(y) = NC3

4 (x)(y) = NC4
1 (x)(y) = 0.9.

Hence, N � NC2
2 does not hold for N ∈ {NC2 , NC1

3 , NC3 , NC3
4 , NC4

1 }. Therefore, the

fuzzy neighborhood operator NC2
2 is incomparable with the fuzzy neighborhood

operators of the groups c, d, f1, g and i.
On the other hand, let C = {K1, K2, K3, K4} with K1 = 1/x + 0.2/y + 0.6/z,

K2 = 0.5/x +1/y+0.6/z, K3 = 0.5/x +0.6/y+1/z and K4 = 0.5/x +0.5/y+0/z
and T the product t-norm and I its R-implicator as in Example 6.5.8, then we

obtain that NC2
2 (x)(y) = 0.25 and NC1

4 (x)(y) = 0.5. Hence, NC1
4 � NC2

2 does not

hold. Therefore, the fuzzy neighborhood operator NC2
2 is incomparable with the

fuzzy neighborhood operator NC1
4 (group h).

To end, we illustrate that the fuzzy neighborhood operator NC2
2 is incompa-

rable with the fuzzy neighborhood operator NC3
3 (group b). Let U = {x , y} and

C = {K1, K2} a fuzzy covering on U with K1 = 1/x + 0.5/y and K2 = 1/x + 1/y
and let T be the minimum operator and I its R-implicator, then C2 = C3 = C.

Hence, NC2
2 (x)(y) = 0.5 while NC3

3 (x)(y) = 1. Hence, NC3
3 � NC2

2 does not hold.

The Hasse diagram with respect to � for the fuzzy neighborhood operators

presented in Table 6.1 is given in Figure 6.1. Note that the Hasse diagram is a

lattice, with minimum a1 and maximum m.

To end this section, we discuss the properties of the fuzzy neighborhood opera-

tors presented in Table 6.1. By Proposition 6.2.8 it holds that all fuzzy neighborhood

operators in Table 6.1 are reflexive when a finite fuzzy covering, a left-continuous

t-norm and its R-implicator are considered.

From the discussion in Section 4.1.1 we know that for a crisp covering C it

holds that the neighborhood operators of groups g, h, j and m are symmetric and

the neighborhood operators of groups a, b, d, f , i and l are transitive. We study

whether these properties are maintained in the fuzzy setting.

First, we prove that the fuzzy neighborhood operator NC4 is symmetric.
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a1

f2 c a2d

g

i h

e

j1

l k

m

f1

b

j2

Figure 6.1: Hasse diagram of the fuzzy neighborhood operators from Table 6.1 for

(U ,C) with C finite, T a left-continuous t-norm and I its R-implicator
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Proposition 6.5.10. Let (U ,C) be a fuzzy covering approximation space and T a

t-norm, then the fuzzy neighborhood operator NC4 based on T is symmetric.

Proof. This follows immediately since a t-norm is commutative.

From this, we obtain that the fuzzy neighborhood operators of groups g, h,

j1 and m are symmetric. The fuzzy neighborhood operator NC2
2 (group j2) is not

symmetric as illustrated in the next example:

Example 6.5.11. Let U = {x , y} and C = {K1, K2} with K1 = 1/x + 0.5/y and

K2 = 1/x + 1/y , then C2 = C. Let T be a t-norm, then

• NC2
2 (x)(y) = T (K1(x), K1(y)) = 0.5,

• NC2
2 (y)(x) =max(T (K1(y), K1(x)),T (K2(y), K2(x))) = 1.

Hence, we conclude that NC2
2 is not symmetric.

Second, the fuzzy neighborhood operators NC1 and NC3 are T -transitive for a

left-continuous t-norm T if the used implicator is the R-implicator of T . In order

to prove transitivity, we first consider the following result:

Lemma 6.5.12. [138] Let T be a left-continuous t-norm and I its R-implicator,

then T (I (a, b),I (b, c))≤ I (a, c) for all a, b, c ∈ [0,1].

Based on this lemma, we can prove the transitivity of the fuzzy neighborhood

operators NC1 and NC3 .

Proposition 6.5.13. Let (U ,C) be a fuzzy covering approximation space and let

T be a left-continuous t-norm and I its R-implicator used in the definition of the

fuzzy neighborhood operators NC1 and NC3 , then NC1 and NC3 are T -transitive fuzzy

neighborhood operators.
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Proof. We have for each x , y, z ∈ U that

T
�

NC1 (x)(y), NC1 (y)(z)
�

= T
�

inf
K∈C
I (K(x), K(y)), inf

K∈C
I (K(y), K(z))

�

≤ inf
K∈C
T (I (K(x), K(y)),I (K(y), K(z)))

≤ inf
K∈C
I (K(x), K(z))

= NC1 (x)(z),

where in the penultimate step Lemma 6.5.12 is used. The proof for NC3 is similar.

From this proposition, we immediately obtain that the fuzzy neighborhood

operators of groups a1, b, d, f1, f2, i and l are T -transitive, when a left-continuous

t-norm and its R-implicator is considered. The fuzzy neighborhood operator NC3
2

(group a2) is not T -transitive, as illustrated in the next example for T = TM :

Example 6.5.14. Let U = {x , y, z} andC = {K1, K2, K3} a fuzzy covering on U with

K1 = 1/x+0.8/y+0/z, K2 = 0.8/x+1/y+1/z and K3 = 0.5/x+0.6/y+1/z. Let

T be the minimum operator and I its R-implicator. We obtain with this implicator

that

C3 = {1/x + 0.8/y + 0/z, 0.5/x + 1/y + 0/z, 0.5/x + 0.6/y + 1/z}.

Thus, we derive that NC3
2 (x)(y) = 0.8, NC3

2 (y)(z) = 0.6 and NC3
2 (x)(z) = 0.5,

hence, 0.6= T (0.8,0.6)> 0.5. We conclude that NC3
2 is not TM -transitive.

Note that in the proof of Proposition 6.5.13 we have explicitly used properties

specific to a left-continuous t-norm and its R-implicator. We illustrate this with an

example.

Example 6.5.15. Let U = {x , y, z} and C = {K1, K2} with K1 = 1/x +0.1/y +1/z
and K2 = 0.5/x + 1/y + 0.2/z. Let T be the minimum operator TM and I
the Kleene-Dienes implicator which is used to define NC1 and NC3 . Since for all

x ∈ U it holds that MD(C, x) = C, we have that NC3 = NC1 . However, since

NC1 (y)(x) = NC1 (x)(z) = 0.5 and NC1 (y)(z) = 0.2, we obtain that NC1 and NC3
defined with the Kleene-Dienes implicator are not TM -transitive.
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6.6 Fuzzy neighborhood operator introduced by Ma

In [107], Ma introduced a family of fuzzy neighborhood operators based on a

fuzzy covering. Let β ∈ (0, 1], then the β -fuzzy neighborhood operator is defined as

follows

NCβ ,Ma : U →F (U): x 7→ NCβ ,Ma(x) (6.19)

such that the fuzzy neighborhood NC
β ,Ma(x) of the object x ∈ U is defined by

∀y ∈ U : NCβ ,Ma(x)(y) = inf{K(y) | K ∈ C, K(x)≥ β}. (6.20)

Note that Feng et al. described this fuzzy neighborhood operator for β = 1 in [45].
The parameter β is strictly greater than 0 for the following reason: the fuzzy

neighborhood operator NC0,Ma would map each object x to the fuzzy set XCinf with

∀y ∈ U : XCinf(y) = inf{K(y) | K ∈ C}.

Next, we study the properties of the fuzzy neighborhood operator NC
β ,Ma for

β ∈ (0,1]. Assume β < 1, then the fuzzy neighborhood operator NC
β ,Ma is not

necessarily reflexive as illustrated in the next example:

Example 6.6.1. Assume β ∈ (0, 1). Let U = {x} and C= {K1, K2} with K1(x) = 1

and K2(x) = β , then NC
β ,Ma(x)(x) = β , i.e., NC

β ,Ma is not reflexive.

However, the fuzzy neighborhood operator NC1,Ma is reflexive:

Proposition 6.6.2. [45] Let (U ,C) be a fuzzy covering approximation space, then

NC1,Ma is a reflexive fuzzy neighborhood operator.

By this result, we will only consider the fuzzy neighborhood operator NC1,Ma.

Note that this fuzzy neighborhood operator is neither symmetric nor T -transitive:

Example 6.6.3. Let U = {x , y, z} andC = {K1, K2, K3}with K1 = 1/x+0.8/y+0/z,

K2 = 0.8/x+1/y+1/z and K3 = 0.5/x+0.6/y+1/z. Then we have the following

observations:

(a) NC1,Ma(x)(z) = 0 and NC1,Ma(z)(x) = 0.5, hence, NC1,Ma is not symmetric.
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(b) NC1,Ma(x)(y) = 0.8, NC1,Ma(y)(z) = 1 and NC1,Ma(x)(z) = 0, then for every t-

norm T it holds that 0.8 = T (0.8, 1)> 0.5. Hence, NC1,Ma is not T -transitive

for any t-norm T .

We now want to add the fuzzy neighborhood operator NC1,Ma to the Hasse

diagram presented in Figure 6.1. We have the following partial order relations

with respect to �:

Proposition 6.6.4. Let (U ,C) be a fuzzy covering approximation space with C
finite, T a left-continous t-norm and I its R-implicator, then

(a) NC1 � NC1,Ma,

(b) NC1,Ma � NC2 ,

(c) NC1,Ma � NC∩2 .

Proof. (a) Let x , y ∈ U .

NC1 (x)(y) = inf
K∈C
I (K(x), K(y))

≤ inf
K∈C,K(x)=1

I (K(x), K(y))

= inf
K∈C,K(x)=1

K(y)

= NC1,Ma(x)(y).

(b) Let x , y ∈ U .

NC2 (x)(y) = sup
K∈md(C,x)

T (K(x), K(y))

≥ sup
K∈md(C,x),K(x)=1

T (K(x), K(y))

= sup
K∈md(C,x),K(x)=1

K(y)

≥ inf
K∈md(C,x),K(x)=1

K(y)

≥ inf
K∈C,K(x)=1

K(y)

= NC1,Ma(x)(y)
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(c) By definition of C∩, we have that

NC1,Ma(x)(y) = inf{K(y) | K ∈ C∩, K(x) = 1}.

By analogy of (b), we obtain that

NC∩2 (x)(y)≥ inf
K∈C∩,K(x)=1

K(y) = NC1,Ma(x)(y).

Note that the previous proposition also holds for every t-norm T and every

border implicator I .

As� is a transitive relation, we also have NC1,Ma � N for N a fuzzy neighborhood

operator of groups h, j1, j2, k, m. There are no other partial order relations as

illustrated in the next example.

Example 6.6.5. Let U = {x , y, z}, T the Łukasiewicz t-norm andI its R-implicator.

LetC = {K1, K2, K3, K4, K5}with K1 = 1/x+0.5/y+0.8/z, K2 = 1/x+0.8/y+0.5/z,

K3 = 1/x+0.8/y+1/z, K4 = 0.5/x+0.8/y+0.5/z and K5 = 0.5/x+1/y+0.5/z.

Then C1 = C, C2 = C∩ = {K1, K2, K3, K5},

C3 = {1/x + 0.5/y + 0.5/z, 0.5/x + 1/y + 0.5/z, 1/x + 0.7/y + 1/z}

and

C4 = {1/x + 0.8/y + 1/z, 0.8/x + 1/y + 0.8/z, 1/x + 0.8/y + 1/z}.

Hence, we derive that

• NC1,Ma(x)(y) = 0.5< 0.8= N(x)(y) for N a fuzzy neighborhood operator of

groups c, d, e, f1, h, i, j1, j2, k, l and m,

• NC1,Ma(x)(y) = 0.5< 0.7= NC3
3 (x)(y) = NC3

4 (x)(y) (groups b and h),

• NC1,Ma(y)(x) = 0.5< 0.7= NC3
2 (y)(x) (group a2),

• NC1,Ma(z)(y) = 0.8> 0.7= N(z)(y) for N a fuzzy neighborhood operator of

groups a1, a2, b, d, f1, f2 and g.



192 Chapter 6. Fuzzy neighborhood operators

On the other hand, consider C = {K1, K2} with K1 = 1/x + 1/y + 0/z and

K2 = 0.8/x + 0/y + 1/z, then

C4 = {1/x + 1/y + 0.8/z, 1/x + 1/y + 0/z, 0.8/x + 0/y + 1/z}.

It holds that NC1,Ma(x)(y) = 1> 0.2= NC4
1 (x)(y) = NC4

3 (x)(y) (groups i and l).

Finally, let C = {K1, K2} with K1 = 1/x + 0/y + 0/z and K2 = 1/x + 1/y + 1/z,

then C2 = {K2} and NC1,Ma(x)(y) = 0< 1= NC2
1 (x)(y) (group f2).

Hence, the Hasse diagram with respect to � of the 17 fuzzy neighborhood

operators is given in Figure 6.2.

6.7 Conclusions

In this chapter we have introduced the definition of a fuzzy covering. Moreover,

given a fuzzy covering we have introduced fuzzy extensions of the neighborhood

system, the minimal description and maximal description of an object of the

universe. In addition, four crisp neighborhood operators and six crisp coverings

studied in [189] are extended to the fuzzy setting, and moreover, some results

concerning crisp neighborhood operators and crisp coverings are maintained.

For a finite fuzzy covering, the four fuzzy neighborhood operators and six fuzzy

coverings, one original and five derived ones, result in 24 combinations of fuzzy

neighborhood operators. However, we have proven that for a left-continuous t-

norm and its residual implicator the obtained 24 combinations can be reduced

to 16 different groups of fuzzy neighborhood operators. In this setting, we have

derived the Hasse diagram of these 16 groups, which expresses which operators

yield larger or smaller fuzzy neighborhoods. Finally, we have discussed a family

of fuzzy neighborhood operators introduced by Ma in [107]. We have shown that

only for the parameter β = 1 the fuzzy neighborhood operator is reflexive. We

have discussed the properties of this fuzzy neighborhood operator and studied

the partial order relations with the 16 fuzzy neighborhood operators. The Hasse

diagram of these 17 fuzzy neighborhood operators can be found in Figure 6.2.
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NC1,Ma

Figure 6.2: Hasse diagram of the fuzzy neighborhood operators for (U ,C) with C
finite, T a left-continuous t-norm and I its R-implicator, where we have added the

fuzzy neighborhood operator NC1,Ma to the Hasse diagram presented in Figure 6.1
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CHAPTER7

The implicator-conjunctor-based fuzzy rough set model

In this chapter, we first present a historical overview on the research of fuzzy rough

set theory throughout the years. In Section 7.2, we introduce a general fuzzy rough

set model which uses a fuzzy relation or fuzzy neighborhood operator to describe

the indiscernibility between objects of the universe. This model extends the original

rough set model of Pawlak to the fuzzy setting and it encapsulates many fuzzy

rough set models discussed in literature. We discuss which properties the model

satisfies when a fuzzy neighborhood operator is considered in Section 7.3. To end,

we state conclusions in Section 7.4.

7.1 An introduction to fuzzy rough set theory

A drawback of rough set theory is its limitations when dealing with real-valued

data. Fuzzy set theory [193] is very useful to overcome these limitations. It was

recognized early on that rough set theory and fuzzy set theory are complementary,

rather than competitive. To that end, rough set theory has been extended in two

195
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ways [41]. Rough fuzzy set theory discusses the approximation of a fuzzy set by a

crisp indiscernibility relation. If moreover the indiscernibility relation is fuzzy as

well, fuzzy rough set theory is considered. Since every crisp relation can be seen as

a special case of a fuzzy relation, all results obtained in fuzzy rough set theory also

hold for rough fuzzy set theory.

The vestiges of fuzzy rough set theory date back to the late 1980s, and orig-

inate from work by Fariñas del Cerro and Prade [44], Dubois and Prade [40],
Nakamura [120] and Wygralak [172]. From 1990 onwards, research on the hy-

bridization between rough sets and fuzzy sets has flourished. The inspiration to

combine rough and fuzzy set theory was found in different mathematical fields. For

instance, Lin [92] studied fuzzy rough sets using generalized topological spaces

(Fréchet spaces) and Nanda and Majumdar [122] discussed fuzzy rough sets based

on an algebraic approach. Moreover, Thiele [155] examined the relationship with

fuzzy modal logic. Later on, Yao [180] and Liu [101] used level sets to combine

fuzzy and rough set theory.

In this chapter, we will focus on fuzzy rough set models using fuzzy relations or

fuzzy neighborhood operators. The seminal papers of Dubois and Prade [41,42] are

probably the most important in the evolution of these fuzzy rough set models, since

they influenced numerous authors who used different fuzzy logical connectives

and fuzzy relations. Essential work was done by Morsi and Yakout in [118] who

studied both constructive and axiomatic approaches and by Radzikowska and

Kerre [137] who defined fuzzy rough sets based on three general classes of fuzzy

implicators: S-, R- and QL-implicators. However, despite generalizing the fuzzy

connectives, they still used fuzzy similarity relations. A first attempt to use reflexive

fuzzy relations instead of fuzzy similarity relations was done by Greco et al. [51,52].
Thereafter, Wu et al. [170,171] were the first to consider general fuzzy relations.

Besides generalizing the fuzzy relation, Mi et al. [112,113] considered conjunctors

instead of t-norms. Furthermore, Yeung et al. [192] discussed two pairs of dual

approximation operators from both a constructive and an axiomatic point of view.

Hu et al. [71,73] for their part studied fuzzy relations based on kernel functions.

In the following, we introduce a general implicator-conjunctor-based (IC) fuzzy

rough set model which encapsulates all of them.
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7.2 The IC model

Given a fuzzy relation R on U to describe the indiscernibility relation between the

objects of the universe, we introduce the following fuzzy rough set model:

Definition 7.2.1. Let (U , R) be a fuzzy relation approximation space, I an impli-

cator and C a conjunctor. The pair of fuzzy relation-based approximation operators
(apr

R,I
, aprR,C ) is defined by, for X ∈ F (U) and x ∈ U ,

(apr
R,I
(X ))(x) = inf

y∈U
I (R(y, x), X (y)), (7.1)

(aprR,C (X ))(x) = sup
y∈U
C (R(y, x), X (y)). (7.2)

In the remainder of this work, we will refer to this model as the implicator-

conjunctor-based (fuzzy rough set) model or shortly, IC model.

When the fuzzy set X we want to approximate is crisp and the relation R is a

crisp equivalence relation E, this model coincides with Pawlak’s rough set model:

let x ∈ U ,

(apr
E,I
(X ))(x) = 1 ⇔ ∀y ∈ U : I (E(y, x), X (y)) = 1

⇔ ∀y ∈ U : E(y, x) = 1⇒ X (y) = 1,

⇔ [x]E ⊆ X ,

(aprE,C (X ))(x) = 1 ⇔ ∃y ∈ U : C (E(y, x), X (y)) = 1

⇔ ∃y ∈ U : E(y, x) = 1∧ X (y) = 1,

⇔ [x]E ∩ X 6= ;.

Definition 7.2.1 covers many fuzzy rough set models which have been proposed

in literature, and which emerge by choosing a specific implicator I , conjunctor C
and binary fuzzy relation R. We list these models in Table 7.1. For example, Dubois

and Prade [41] used the Kleene-Dienes implicator and the minimum operator to

replace the Boolean implication and conjunction respectively.

As can be seen from Table 7.1, Greco et al. [51,52] were the first to consider

reflexive binary fuzzy relations and Wu et al. [170,171] were the first to consider



198 Chapter 7. The implicator-conjunctor-based fuzzy rough set model

general binary fuzzy relations. Also note that Greco et al. used arbitrary t-norms

and t-conorms as aggregation operators instead of the infimum and supremum

operators. Mi and Zhang [113] initiated the use of conjunctors which are not

necessarily t-norms.

Remark 7.2.2. Note that some authors [73, 118, 192] require T to be lower

semi-continuous instead of left-continuous in each parameter, i.e.,

(∀a, b ∈ [0,1])(∀ε > 0)(∃δ > 0)(∀c ∈ [0,1]):

a−δ < c < a+δ⇒T (a, b)− ε≤ T (c, b).

By a result from [48] these two notions are equivalent for t-norms. Also, some

papers [100,112,113,169–171] consider fuzzy relations in U ×W , with both U
and W non-empty, finite universes, but in this work we restrict ourselves to the

case where U =W .

A variant of the IC model was proposed in [74] by Inuiguchi: the lower approx-

imation aprI
R∗,I
(X ) of X by a fuzzy relation R∗ in U is given by, for x ∈ U ,

(aprI
R∗,I
(X ))(x) =min(X (x), inf

y∈U
I (R∗(y, x), X (y))),

while the upper approximation aprI
R∗,C (X ) of X by R∗ is given by, for x ∈ U ,

(aprI
R∗,C (X ))(x) =max(X (x), sup

y∈U
C (R∗(x , y), X (y))).

Note that this model can be seen as a special case of the IC model if in Defini-

tion 7.2.1 a border implicator I and a border conjunctor C are chosen and if the

relation R defined by

∀x , y ∈ U : R(x , y) =max(R∗(x , y), id(x , y)),

is symmetric, where id is the fuzzy identity relation defined by

∀x , y ∈ U : id(x , y) =

(

1 x = y,

0 otherwise.

In addition, note that we can also consider the IC model with a fuzzy neighbor-

hood operator instead of a fuzzy relation.
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Table 7.1: Overview of implicator-conjunctor-based fuzzy rough set models in

literature

Reference C I R

[41,42] Dubois & Prade, ‘90 TM IKD TM -sim.

[118] Morsi & Yakout, ‘98 left-cont. T R-impl. T -sim.

[51,52] Greco et al., ‘98 T S-impl. reflexive

[7] Boixader et al., ‘00 cont. T R-impl. T -sim.

[137] Radzikowska & Kerre, ‘02 T border TM -sim.

[170,171] Wu et al., ‘03 TM S-impl. general

[113] Mi & Zhang, ‘04 C R-impl. general

[131] Pei, ‘05 TM S-impl. general

[169] Wu et al., ‘05 cont. T implicator general

[192] Yeung et al., ‘05 left-cont. T S-impl. general

[192] Yeung et al., ‘05 C R-impl. general

[100] Liu, ‘06 T R-impl. general

[24] De Cock et al., ‘07 T border general

[98] Liu, ‘08 TM S-impl. general

[112] Mi et al., ‘08 cont. T S-impl. general

[71,73] Hu et al., ‘10 left-cont. T S-impl. Tcos-sim.

[71,73] Hu et al., ‘10 C R-impl. Tcos-sim.
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Definition 7.2.3. Let N be a fuzzy neighborhood operator on U , I an implicator

and C a conjunctor, then the pair of fuzzy neighborhood-based approximation
operators (apr

N,I
, aprN,C ) is defined by, for X ∈ F (U) and x ∈ U ,

(apr
N,I
(X ))(x) = inf

y∈U
I (N(x)(y), X (y)), (7.3)

(aprN,C (X ))(x) = sup
y∈U
C (N(x)(y), X (y)). (7.4)

All fuzzy neighborhood operators discussed in Chapter 6 can be used to define

fuzzy neighborhood-based approximation operators. For the remainder of this

work, we will work with the IC model using fuzzy neighborhood operators. Note

that the models determined in Definitions 7.2.1 and 7.2.3 are interchangeable via

R(y, x) = N(x)(y) for x , y ∈ U . Next, we study the properties of the IC model.

7.3 Properties of the IC model

In this section, we consider the properties of the IC model defined with a fuzzy

neighborhood operator. In particular, we discuss which properties of Pawlak’s rough

set model of Table 2.1 are maintained, and which conditions need to be imposed

in order for the remaining ones to hold.

In Table 7.2, we list the adaptations of the properties in Table 2.1, with X and Y
fuzzy sets in U and (apr, apr) a pair of fuzzy approximation operators on U . For the

duality property, we assume N to be an involutive negator. For the property (IU),

we consider the TM -intersection and the SM -union. The constant set property (CS)

emerges by extending (UE) to every constant fuzzy set α̂ for α ∈ [0, 1]. If (CS) is

satisfied, then a priori (UE) also holds.

The property (RM) of Table 2.1 can be extended in three ways: relation mono-

tonicity (RM), neighborhood monotonicity (NM) and covering monotonicity (CM):

• Let R and R′ be fuzzy relations on U , (apr
1
, apr1) a pair of approximation

operators in the fuzzy relation approximation space (U , R) and (apr
2
, apr2)

a pair of approximation operators in the fuzzy relation approximation space
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(U , R′), then the property (RM) is given by

R ⊆ R′⇒

¨

∀X ∈ F (U): apr
2
(X ) ⊆ apr

1
(X )

∀X ∈ F (U): apr1(X ) ⊆ apr2(X )
(7.5)

• Let N and N′ be two fuzzy neighborhood operators on U , (apr
1
, apr1) a pair of

fuzzy approximation operators based on the fuzzy neighborhood operator N

and (apr
2
, apr2) a pair of fuzzy approximation operators based on the fuzzy

neighborhood operator N′, then the property (NM) is given by

N � N′⇒

¨

∀X ∈ F (U): apr
2
(X ) ⊆ apr

1
(X )

∀X ∈ F (U): apr1(X ) ⊆ apr2(X )
(7.6)

• LetC andC′ be two coverings of U , (apr
1
, apr1) a pair of fuzzy approximation

operators in the fuzzy covering approximation space (U ,C) and (apr
2
, apr2)

a pair of fuzzy approximation operators in the fuzzy covering approximation

space (U ,C′), then the property (CM) is given by

Cv C′⇒

¨

∀X ∈ F (U): apr
2
(X ) ⊆ apr

1
(X )

∀X ∈ F (U): apr1(X ) ⊆ apr2(X )
(7.7)

As in the crisp setting, we write Cv C′ if and only if

(∀K ∈ C)(∃K ′ ∈ C′)(K ⊆ K ′). (7.8)

All three monotonicity properties have a similar interpretation: the more objects

are discernible from each other, the more accurate the approximations. Moreover,

all are interchangeable, since we can define a fuzzy relation based on a fuzzy neigh-

borhood operator and vice versa, and we can define a covering {N(x) | x ∈ U}
for a reflexive neighborhood operator N. Depending on the considered theoretical

framework, we will choose one of the three. For instance, in this chapter we will

consider the property (NM).

Most of these properties have been studied for the IC model in one form or

another, however, only sufficient conditions on I , C and N were provided. We
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Table 7.2: Properties of the fuzzy approximation operators (apr, apr) on U

Property Definition

Duality (D) apr(X ) = (apr(XN ))N

Inclusion (INC) apr(X ) ⊆ X and X ⊆ apr(X )

Set monotonicity (SM) X ⊆ Y ⇒

¨

apr(X ) ⊆ apr(Y )

apr(X ) ⊆ apr(Y )

Intersection (IU) apr(X ∩ Y ) = apr(X )∩ apr(Y )

and union apr(X ∪ Y ) = apr(X )∪ apr(Y )

Idempotence (ID) apr(apr(X )) ⊇ apr(X )

apr(apr(X )) ⊆ apr(X )

Interaction lower (LU) apr(apr(X )) ⊆ apr(X )

and upper apr(apr(X )) ⊇ apr(X )

Constant set (CS) apr(α̂) = α̂ and apr(α̂) = α̂

Universe (UE) apr(U) = U and apr(U) = U

and empty set apr(;) = ; and apr(;) = ;

Adjointness (A) apr(X ) ⊆ Y ⇔ X ⊆ apr(Y )
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prove for the properties of (apr
N,I

, aprN,C ) which conditions on the fuzzy neigh-

borhood operator N are necessary and sufficient, given conditions on the fuzzy

logical connectives I and C . This way, the results stated in Proposition 4.7.1 are

extended to the fuzzy setting.

First, we discuss the duality property.

Proposition 7.3.1. Let N be a fuzzy neighborhood operator on U and N an

involutive negator. Let I be an implicator and C the induced conjunctor of I
and N , then the pair (apr

N,I
, aprN,C ) satisfies (D).

Proof. Let X ∈ F (U) and x ∈ U , then

(apr
N,I
(XN ))N (x) = N

�

inf
y∈U
I (N(x)(y),N (X (y)))

�

= sup
y∈U
N (I (N(x)(y),N (X (y))))

= sup
y∈U
C (N(x)(y), X (y))

= (aprN,C (X ))(x).

Proposition 7.3.1 holds when we consider the following fuzzy logical connec-

tives:

• C a IMTL-t-norm, I its R-implicator and N the induced negator of I ,

• N an involutive negator, C a t-norm T and I the S-implicator based on

the N -dual t-conorm of T and the negator N .

Next, the inclusion property is discussed.

Proposition 7.3.2. Let N be a fuzzy neighborhood operator on U , I a border

implicator and C a border conjunctor, then the pair (apr
N,I

, aprN,C ) satisfies (INC)

if and only if N is reflexive.
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Proof. Assume that the pair (apr
N,I

, aprN,C ) satisfies (INC), then for x ∈ U , it

holds that

1= 1x(x) ≤ (aprN,C (1x))(x)

= sup
y∈U
C (N(x)(y), 1x(y))

= C (N(x)(x), 1)

= N(x)(x),

hence, we conclude that N is reflexive.

On the other hand, assume N is reflexive. Let X ∈ F (U) and x ∈ U , then

(apr
N,I
(X ))(x)≤ I (N(x)(x), X (x)) = I (1, X (x)) = X (x),

(aprN,C (X ))(x)≥C (N(x)(x), X (x)) =C (1, X (x)) = X (x).

We conclude that the pair (apr
N,I

, aprN,C ) satisfies (INC).

In the following, it is verified that the properties (SM) and (IU) always hold.

Proposition 7.3.3. Let N be a fuzzy neighborhood operator on U , I an implicator

and C a conjunctor, then the pair (apr
N,I

, aprN,C ) satisfies (SM).

Proof. Every implicator I and every conjunctor C is increasing in the second

parameter.

Proposition 7.3.4. Let N be a fuzzy neighborhood operator on U , I an implicator

and C a conjunctor, then the pair (apr
N,I

, aprN,C ) satisfies (IU).

Proof. Since the pair (apr
N,I

, aprN,C ) satisfies (SM), it holds for all fuzzy sets

X , Y ∈ F (U) that

(a) apr
N,I
(X ∩ Y ) ⊆ apr

N,I
(X )∩ apr

N,I
(Y ),

(b) aprN,C (X ∪ Y ) ⊇ aprN,C (X )∪ aprN,C (Y ).

On the other hand, let x ∈ U , then

(apr
N,I
(X ∩ Y ))(x) = inf

y∈U
I (N(x)(y), min(X (y), Y (y)))
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= min
�

inf
y∈U , X (y)≤Y (y)

I (N(x)(y), X (y)),

inf
y∈U , Y (y)≤X (y)

I (N(x)(y), Y (y))
�

≥ min
�

inf
y∈U
I (N(x)(y), X (y)),

inf
y∈U
I (N(x)(y), Y (y))

�

= min
�

(apr
N,I
(X ))(x), (apr

N,I
(Y ))(x)

�

= (apr
N,I
(X )∩ apr

N,I
(Y ))(x).

Similarly, we obtain (aprN,C (X ∪ Y ))(x)≤ (aprN,C (X )∪ aprN,C (Y ))(x).

Next, we discuss the idempotence property.

Proposition 7.3.5. Let N be a fuzzy neighborhood operator on U and C a left-

continuous t-norm T .

(a) If I is the R-implicator of T , then the pair (apr
N,I

, aprN,T ) satisfies (ID) if

and only if N is T -transitive.

(b) If N is an involutive negator and I is the S-implicator based on the N -dual

of T and N , then the pair (apr
N,I

, aprN,T ) satisfies (ID) if and only if N is

T -transitive.

Proof. Let T be a left-continuous t-norm and I its R-implicator. First, assume that

the pair (apr
N,I

, aprN,T ) satisfies (ID). Let x , y ∈ U , then it holds that

(aprN,T (aprN,T (1y)))(x)≤ (aprN,T (1y))(x),

i.e.,

sup
z∈U
T
�

N(x)(z), sup
v∈U
T (N(z)(v), 1y(v))

�

≤ sup
u∈U
T (N(x)(u), 1y(u)).

By the definition of 1y , we obtain that

sup
z∈U
T (N(x)(z), N(z)(y))≤ N(x)(y).

We conclude that N is T -transitive.
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On the other hand, assume N is T -transitive. For X ∈ F (U) and x ∈ U , it holds

that

(apr
N,I
(X ))(x) = inf

y∈U
I (N(x)(y), X (y))

≤ inf
y∈U
I
�

sup
z∈U
T (N(x)(z),N(z)(y)), X (y)

�

= inf
y∈U

inf
z∈U
I (T (N(x)(z),N(z)(y)), X (y))

= inf
z∈U

inf
y∈U
I (N(x)(z),I (N(z)(y), X (y)))

= inf
z∈U
I (N(x)(z), inf

y∈U
I (N(z)(y), X (y)))

= inf
z∈U
I (N(x)(z), apr

N,I
(X )(z))

= (apr
N,I
(apr

N,I
(X )))(x).

In a similar way, we can prove that

(aprN,T (aprN,T (X )))(x)≤ (aprN,T (X ))(x).

The second statement can be proved analogously.

In the following, we discuss the property (LU).

Proposition 7.3.6. Let N be a fuzzy neighborhood operator on U , C a left-

continuous t-norm T and I its R-implicator. If N is symmetric, then the pair

(apr
N,I

, aprN,T ) satisfies (LU) if and only if N is T -transitive.

Proof. Assume that N is symmetric and the pair (apr
N,I

, aprN,T ) satisfies (LU). Let

x , y ∈ U , then

N(x)(y) = (aprN,T (1y))(x)

≤ inf
z∈U
I (N(x)(z), (aprN,T (1y))(z))

= inf
z∈U
I (N(x)(z),N(z)(y)).

Hence, by the residuation principle we obtain that for all z ∈ U:

T (N(x)(y), N(x)(z))≤ N(z)(y).
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Since T is commutative and N is symmetric, it holds for z ∈ U that

T (N(z)(x), N(x)(y))≤ N(z)(y).

Since x , y and z are chosen arbitrarily, we conclude that N is T -transitive.

On the other hand, assume N is symmetric and T -transitive. Note that for a

left-continuous t-norm T and its R-implicator I it holds that (see [137,138])

∀a, b, c ∈ [0,1]: T (a,I (b, c))≤ I (I (a, b), c).

Moreover, we have an alternative characterisation for T -transitivity:

∀x , y ∈ U : inf
z∈U
I (N(x)(z), N(z)(y)) = N(x)(y).

Let X ∈ F (U) and x ∈ U , then

(aprN,T (apr
N,I
(X )))(x) = sup

y∈U
T
�

N(x)(y), inf
z∈U
I (N(y)(z), X (z))

�

≤ sup
y∈U

inf
z∈U
T
�

N(x)(y),I (N(y)(z), X (z))
�

≤ sup
y∈U

inf
z∈U
I
�

I (N(x)(y),N(y)(z)), X (z)
�

≤ inf
z∈U
I
�

inf
y∈U
I (N(x)(y), N(y)(z)), X (z)

�

= inf
z∈U
I (N(x)(z), X (z))

= (apr
N,I
(X ))(x).

For the other inclusion, let y ∈ U , then

T (N(x)(y), (aprN,T (X ))(x)) = T
�

N(x)(y), sup
z∈U
T (N(x)(z), X (z))

�

= sup
z∈U
T
�

N(x)(y),T (N(x)(z), X (z))
�

= sup
z∈U
T (T (N(x)(y),N(x)(z)), X (z))

= sup
z∈U
T (T (N(y)(x),N(x)(z)), X (z))

≤ sup
z∈U
T (N(y)(z), X (z))

= (aprN,T (X ))(y).
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By this result and the definition of an R-implicator, it holds that

I (N(x)(y), (aprN,T (X ))(y))

= sup{d ∈ [0, 1] | T (N(x)(y), d)≤ (aprN,T (X ))(y)}

≥ (aprN,T (X ))(x).

Hence, since y was chosen arbitrarily:

(aprN,T (X ))(x) ≤ inf
y∈U
I (N(x)(y), (aprN,T (X ))(y))

= (apr
N,I
(aprN,T (X )))(x).

We conclude that the pair (apr
N,I

, aprN,T ) satisfies (LU).

The previous proposition does not hold for a left-continuous t-norm and an

S-implicator, as illustrated in the next example:

Example 7.3.7. Let U = {x , y}, T the minimum operator, I the Kleene-Dienes

implicator and N a fuzzy neighborhood operator on U such that

• N(x)(x) = N(y)(y) = 1,

• N(x)(y) = N(y)(x) = 0.5,

then N is symmetric and T -transitive. For the fuzzy set X = 0.2/x + 0.6/y, we

obtain that apr
N,I
(X ) = 0.2/x + 0.5/y and aprN,T (apr

N,I
(X )) = 0.5/x + 0.5/y.

Hence, the inclusion

aprN,T (apr
N,I
(X )) ⊆ apr

N,I
(X )

does not hold. We conclude that the pair (apr
N,I

, aprN,T ) does not satisfy (LU) for

this choice of t-norm and implicator.

Next, we study the properties (CS) and (UE).

Proposition 7.3.8. Let N be a fuzzy neighborhood operator on U ,I a border impli-

cator and C a border conjunctor. If N is normalized, then the pair (apr
N,I

, aprN,C )
satisfies (CS) and (UE).
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Proof. Let α ∈ [0, 1] and x ∈ U . As N is normalized, the fuzzy set N(x) is normal-

ized, hence, there exists y ∈ U such that N(x)(y) = 1. We obtain that

(apr
N,I
(α̂))(x)≤ I (N(x)(y),α) = I (1,α) = α,

(aprN,C (α̂))(x)≥C (N(x)(y),α) =C (1,α) = α.

On the other hand, as for all z ∈ U it holds that N(x)(z) ≤ 1, we obtain that

apr
N,I
(α̂) ⊇ α̂, since an implicator is decreasing in the first parameter, and

aprN,C (α̂) ⊆ α̂, since a conjunctor is increasing in the first parameter.

Note that the inverse statement of Proposition 7.3.8 does not hold.

Example 7.3.9. Let U = {xn | n ∈ N \ {0}}. For each xn, xm ∈ U , let

N(xn)(xm) = 1−
1
m

,

then N is not normalized. Let C be the minimum operator and I the Gödel

implicator. We illustrate that the pair (apr
N,I

, aprN,T ) satisfies (CS). Let α ∈ [0, 1]
and xn ∈ U ,

(aprN,T (α̂))(xn) = sup
xm∈U

min(N(xn)(xm),α)

= min

�

sup
xm∈U

N(xn)(xm),α

�

= min

�

sup
m∈N\{0}

(1−
1
m
),α

�

= min(1,α)

= α.

Moreover, note that apr
N,I
(α̂) ⊇ α̂, as I is decreasing in the first parameter. For

α = 1, it holds that apr
N,I
(α̂) = α̂, since I (a, 1) = 1 for all a ∈ [0,1]. Let α < 1

and let m ∈ N \ {0} such that α < 1− 1
m , then for xn ∈ U ,

(apr
N,I
(α̂))(xn)≤ I (N(xn)(xm),α) = α.

Hence, we conclude that the pair (apr
N,I

, aprN,T ) satisfies (CS), although the fuzzy

neighborhood operator N is not normalized.
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We study the adjointness property next.

Proposition 7.3.10. Let N be a fuzzy neighborhood operator on U , C a left-

continuous t-norm T and I its R-implicator, then the pair (apr
N,I

, aprN,T ) satisfies

(A) if and only if N is symmetric.

Proof. Assume that the pair (apr
N,I

, aprN,T ) satisfies (A). Let x , y ∈ U , then for

X = 1x and Y = N(x) it holds that

∀z ∈ U : (aprN,T (X ))(z)≤ Y (z)⇔∀z ∈ U : X (z)≤ (apr
N,I
(Y ))(z),

i.e.,

∀z ∈ U : sup
v∈U
T (N(z)(v), 1x(v))≤ N(x)(z)

⇔ ∀z ∈ U : 1x(z)≤ inf
v∈U
I (N(z)(v),N(x)(v)).

By the definition of 1x , we obtain that

∀z ∈ U : N(x)(z)≤ N(z)(x)⇔ 1≤ inf
v∈U
I (N(x)(v), N(x)(v)).

Since I is an R-implicator, the left-hand-side of this equivalence is true, hence, for

y ∈ U we obtain that N(x)(y)≤ N(y)(x). By changing the roles of the objects x
and y , we obtain in a similar way that N(y)(x)≤ N(x)(y). We conclude that N is

symmetric.

On the other hand, assume N is symmetric. For X , Y ∈ F (U) it holds that

aprN,T (X ) ⊆ Y ⇔ ∀x , y ∈ U : T (N(x)(y), X (y))≤ Y (x)

⇔ ∀x , y ∈ U : T (X (y),N(y)(x))≤ Y (x)

⇔ ∀x , y ∈ U : X (y)≤ I (N(y)(x), Y (x))

⇔ X ⊆ apr
N,I
(Y ).

We conclude that the pair (apr
N,I

, aprN,T ) satisfies (A).

Note that in the proof of Proposition 7.3.10 we explicitly used the residuation

principle. In general, this proposition does not hold for other combinations of T
and I .
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Example 7.3.11. Let U = {x , y} and N a fuzzy neighborhood operator on U
such that N(x)(x) = N(y)(y) = 1 and N(x)(y) = N(y)(x) = 0.5, then N is

symmetric. Let T be the minimum operator and I the Kleene-Dienes implicator.

For the fuzzy set X = 0.3/x + 0.4/y, we obtain that apr
N,I
(X ) = 0.3/x + 0.4/y

and aprN,T (X ) = 0.4/x + 0.4/y. Hence, X ⊆ apr
N,I
(X ), but aprN,T (X ) 6⊆ X . We

conclude that the pair (apr
N,I

, aprN,T ) does not satisfy (A) for this choice of t-norm

and implicator.

Finally, we discuss the property (NM).

Proposition 7.3.12. Let N be a fuzzy neighborhood operator on U ,I an implicator

and C a conjunctor, then the pair (apr
N,I

, aprN,C ) satisfies (NM).

Proof. Every implicator I is decreasing in the first parameter and every conjunc-

tor C is decreasing in the second parameter.

7.4 Conclusions

In this chapter, we have presented a historical overview of fuzzy rough set theory

since the late 1980s. We have introduced an implicator-conjunctor-based fuzzy

rough set model which encapsulates many fuzzy rough set models described in

literature. Moreover, we have studied the properties of this model when a fuzzy

neighborhood operator is considered. We conclude that all properties in Table 7.2

are satisfied when C is an IMTL-t-norm T , I is its R-implicator, N is its induced

negator and N is reflexive, symmetric and T -transitive. If we omit the duality

property, it is sufficient that T is left-continuous instead of begin an IMTL-t-norm.
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CHAPTER8

Fuzzy covering-based rough set models

In literature, different models are defined in which a fuzzy covering is used to

describe the indiscernibility between objects. Besides using fuzzy neighborhood

operators based on a fuzzy covering to define the implicator-conjunctor-based fuzzy

rough set model, we can extend the tight and loose granule-based approximation

operators for a fuzzy covering. Fuzzy extensions of the tight covering-based ap-

proximation operators have been studied by Li et al. [91], Inuiguchi et al. [74,75]
and Wu et al. [168] which we recall here. Moreover, we introduce two tight fuzzy

covering-based rough set models: one using the theory of representation by levels

introduced by Sánchez et al. [144] and one constructed from an intuitive point of

view. In addition, we recall the loose fuzzy covering-based rough set model of Li et

al. [91] and introduce a new loose fuzzy covering-based rough set model using

representation by levels.

For each fuzzy covering-based rough set model we study in Sections 8.1 and 8.2

which properties of Pawlak’s rough set model are maintained. From Table 4.5 we

obtain that the pair of tight granule-based approximation operators satisfies the

213
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properties (D), (INC), (SM), (ID) and (UE) for a crisp covering. Hence, given a fuzzy

covering, we study whether the fuzzy extensions of these approximation operators

satisfy the properties (D), (INC), (SM), (ID), (CS) and (UE). Moreover, the pair of

loose granule-based approximation operators satisfies the properties (D), (INC),

(SM), (IU), (UE), (A) and (CM). Thus, for the fuzzy extensions of these approxi-

mation operators we will study the properties (D), (INC), (SM), (IU), (CS), (UE),

(A) and (CM) for a fuzzy covering. To this aim, we do not consider the property

(NM) given in Eq. (7.6), but instead we study the property of covering monotonicity.

In addition, in Chapter 4 it is shown that the pair of loose granule-based approx-

imation operators coincides with a pair of element-based approximation operators.

We will show that this result is maintained in the fuzzy setting.

Furthermore, in Section 8.3 we will discuss partial order relations with re-

spect to ≤ between fuzzy covering-based approximation operators. Let apr1 and

apr2 be fuzzy approximation operators, then we write apr1 ≤ apr2 if and only

if ∀X ⊆ U : apr1(X ) ⊆ apr2(X ). Given two pairs of dual fuzzy approximation

operators (apr
1
, apr1) and (apr

2
, apr2), then we will write

(apr
1
, apr1)≤ (apr

2
, apr2) ⇔ ∀X ∈ F (U): apr

1
(X ) ⊆ apr

2
(X )

⇔ ∀X ∈ F (U): apr2(X ) ⊆ apr1(X ).

When (apr
1
, apr1) ≤ (apr

2
, apr2), we say that the pair (apr

2
, apr2) yields more

accurate approximations than the pair (apr
1
, apr1).

We will discuss the comparability of the IC model defined with the 17 fuzzy

neighborhood operators discussed in Chapter 6 to the fuzzy covering-based ap-

proximation operators studied in Sections 8.1 and 8.2.

To end, we will state conclusions and future work objectives in Section 8.4.
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8.1 Fuzzy extensions of tight granule-based approx-

imation operators

In this section, we study five fuzzy covering-based rough set models which all

extend the tight granule-based approximation operators defined in Eqs. (2.19) and

(2.20) to the fuzzy setting.

8.1.1 Model of Li et al.

The first fuzzy covering-based rough set model we discuss was introduced by Li et

al. [91].

Definition 8.1.1. [91] Let (U ,C) be a fuzzy covering approximation space, T a

t-norm and I an implicator, then the pair of fuzzy covering-based approximation

operators (apr’
C,Li,T ,I

, apr’
C,Li,T ,I ) is defined as follows: let X ∈ F (U) and x ∈ U ,

(apr’
C,Li,T ,I

(X ))(x) = sup
K∈C
T (K(x), inf

y∈U
I (K(y), X (y))),

(apr’
C,Li,T ,I (X ))(x) = inf

K∈C
I (K(x), sup

y∈U
T (K(y), X (y))).

This model was proposed by the authors as a more general model than the

models discussed in [18,36], where a fuzzy covering related with a fuzzy relation

was used. The properties of this model are given in the following proposition.

Proposition 8.1.2. Let (U ,C) be a fuzzy covering approximation space, T a t-norm

and I an implicator.

• The pair (apr’
C,Li,T ,I

, apr’
C,Li,T ,I ) satisfies (D) with respect to the involutive

negator N if T is an IMTL-t-norm, I is its R-implicator and N equals the

negator induced by I .

• The pair (apr’
C,Li,T ,I

, apr’
C,Li,T ,I ) satisfies (D) with respect to the involutive

negator N if I is the S-implicator with respect to the t-conorm S and the

negator N , where S is the N -dual of T .
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• The pair (apr’
C,Li,T ,I

, apr’
C,Li,T ,I ) satisfies (INC) if T is left-continuous and

I is its R-implicator.

• The pair (apr’
C,Li,T ,I

, apr’
C,Li,T ,I ) satisfies (SM).

• The pair (apr’
C,Li,T ,I

, apr’
C,Li,T ,I ) satisfies (ID) if T is left-continuous and I

is its R-implicator.

• The pair (apr’
C,Li,T ,I

, apr’
C,Li,T ,I ) satisfies (CS) and (UE) ifT is left-continuous

and I is its R-implicator.

Proof. The properties (D), (INC), (SM) and (ID) were proven in [91]. We prove the

last statement. Let T be a left-continuous t-norm, I its R-implicator and α ∈ [0, 1].
Since the inclusion property holds, it is sufficient to prove that α̂ ⊆ apr’

C,Li,T ,I
(α̂)

and apr’
C,Li,T ,I (α̂) ⊆ α̂. Let x ∈ U and let K∗ ∈ C such that K∗(x) = 1, then

(apr’
C,Li,T ,I

(α̂))(x) ≥ T (K∗(x), inf
y∈U
I (K∗(y),α))

= T (1, inf
y∈U
I (K∗(y),α))

= inf
y∈U
I (K∗(y),α)

≥ inf
y∈U
I (1,α)

= α,

where we have used that K∗(y) ≤ 1 for all y ∈ U . The proof for the inclusion

apr’
C,Li,T ,I (α̂) ⊆ α̂ is analogous.

Note that for the properties (INC), (ID), (CS) and (UE) it is essential to consider

a left-continuous t-norm and its R-implicator, as illustrated in the next example.

Example 8.1.3. Let U = {x , y} and C = {K1, K2, K3} with K1 = 1/x + 0.4/y,

K2 = 0.4/x + 1/y and K3 = 0.2/x + 0.7/y. Let T be the minimum operator and

I the Kleene-Dienes implicator, then for X = U it holds that

apr’
C,Li,T ,I (X ) = 0.8/x + 0.7/y.

Hence, X * apr’
C,Li,T ,I (X ). Thus, (INC), (UE) and (CS) do not hold.
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On the other hand, letC = {K1, K2, K3}with K1 = 1/x+1/y , K2 = 0.4/x+0.4/y
and K3 = 0.2/x + 0.7/y and consider the product t-norm and the S-implicator I
based on the probabilistic sum and the standard negator, i.e., I (a, b) = 1−a+a · b
for a, b ∈ [0, 1]. For X = 0.6/x+1/y it holds that apr’

C,Li,T ,I
(X ) = 0.6/x+0.644/y

and apr’
C,Li,T ,I

(apr’
C,Li,T ,I

(X )) = 0.6/x + 0.6/y . Hence, the inclusion

apr’
C,Li,T ,I

(X ) ⊆ apr’
C,Li,T ,I

(apr’
C,Li,T ,I

(X ))

does not hold, thus, the property (ID) is not satisfied.

8.1.2 Model of Inuiguchi et al.

Next, we study the model of Inuiguchi et al. [74, 75]. They used the follow-

ing logical connective: let I be an implicator, then the fuzzy logical connective

ξ[I ]: [0, 1]× [0, 1]→ [0,1] is defined by

∀a, b ∈ [0, 1]: ξ[I ](a, b) = inf{c ∈ [0,1] | I (a, c)≥ b}.

The connective ξ[I ] is a conjunctor if ∀a ∈ [0, 1): ξ[I ](1, a)< 1 (see [74]). We

will assume that this always holds.

Furthermore, when I is upper semi-continuous, i.e., I is left-continuous in the

first parameter and right-continuous5 in the second, then the following equivalence

holds [75]:
∀a, b, c ∈ [0, 1]: ξ[I ](a, b)≤ c⇔I (a, c)≥ b.

The model of Inuiguchi et al. is given in the following definition:

Definition 8.1.4. [74,75] Let (U ,C) be a fuzzy covering approximation space, I
an upper semi-continuous implicator and N an involutive negator, then the pair

of fuzzy covering-based approximation operators (apr’
C,In,I

, apr’
C,In,I ,N ) is defined

as follows: let X ∈ F (U) and x ∈ U ,

(apr’
C,In,I

(X ))(x) = sup
K∈C
ξ[I ](K(x), inf

y∈U
I (K(y), X (y))),

(apr’
C,In,I ,N (X ))(x) = (apr’

C,In,I
(XN ))N (x).

5The definition of right-continuity is very similar to the definition of left-continuity presented in
Eq. (5.1), only c is taken in the open interval (a, a+δ) instead of the interval (a−δ, a).
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In [74] and [75], a collection F ⊆ F (U) was used to define the operators.

However, we will always assume that the collection F is a fuzzy covering. Next,

we study the properties of this fuzzy covering-based rough set model.

Proposition 8.1.5. Let (U ,C) be a fuzzy covering approximation space, I an

upper semi-continuous implicator and N an involutive negator.

• The pair (apr’
C,In,I

, apr’
C,In,I ,N ) satisfies (D) with respect to N .

• The pair (apr’
C,In,I

, apr’
C,In,I ,N ) satisfies (INC), (SM), (ID) and (UE).

• The pair (apr’
C,In,I

, apr’
C,In,I ,N ) satisfies (CS) if I is a border implicator.

Proof. The properties (D), (INC), (SM), (ID) and (UE) were proven in [74, 75].
We prove the last statement. Let I be an upper semi-continuous border implicator,

N an involutive negator and α ∈ [0,1]. We will prove apr’
C,In,I

(α̂) = α̂, as the

statement for the upper approximation operator follows by duality. Since (INC)

holds, it holds that apr’
C,In,I

(α̂) ⊆ α̂. For the other inclusion, let x ∈ U and K∗ ∈ C
such that K∗(x) = 1, then

(apr’
C,In,I

(α̂))(x) ≥ ξ[I ](K∗(x), inf
y∈U
I (K∗(y),α))

= ξ[I ](1, inf
y∈U
I (K∗(y),α))

= inf{c ∈ [0, 1] | I (1, c)≥ inf
y∈U
I (K∗(y),α)}

= inf{c ∈ [0, 1] | c ≥ inf
y∈U
I (K∗(y),α)}

= inf
y∈U
I (K∗(y),α)

≥ inf
y∈U
I (1,α)

= α.

We conclude that the pair (apr’
C,In,I

, apr’
C,In,I ,N ) satisfies (CS).

8.1.3 Model of Wu et al.

The following model we discuss was introduced by Wu et al. [168]. It is inspired

by the use of weak α-level sets for K ∈ C.
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Definition 8.1.6. [168] Let (U ,C) be a fuzzy covering approximation space, then

the pair (apr’
C,Wu

, apr’
C,Wu) of fuzzy covering-based approximation operators is

defined as follows: let X ∈ F (U) and x ∈ U ,

(apr’
C,Wu
(X ))(x) = sup

K∈C
inf{X (y) | K(y)≥ K(x), y ∈ U},

(apr’
C,Wu(X ))(x) = inf

K∈C
sup{X (y) | K(y)≥ K(x), y ∈ U}.

Note that this model does not use fuzzy logical connectives. We discuss its

properties in the following proposition.

Proposition 8.1.7. Let (U ,C) be a fuzzy covering approximation space.

• The pair (apr’
C,Wu

, apr’
C,Wu) satisfies (D) with respect to an involutive nega-

tor N .

• The pair (apr’
C,Wu

, apr’
C,Wu) satisfies (INC), (SM), (ID), (CS) and (UE).

Proof. In [168], the properties (INC), (SM), (ID) and (UE) are proven. Moreover,

it was proven that (D) is satisfied with respect to the standard negator. However,

as every involutive negator N is continuous [4], it holds for every X ∈ F (U) and

x ∈ U that

(apr’
C,Wu
(XN )N )(x) = N

�

sup
K∈C

inf{N (X (y)) | K(y)≥ K(x), y ∈ U}
�

= inf
K∈C
N (inf{N (X (y)) | K(y)≥ K(x), y ∈ U})

= inf
K∈C

sup{X (y) | K(y)≥ K(x), y ∈ U}.

To prove that the pair (apr’
C,Wu

, apr’
C,Wu) satisfies (CS), let α ∈ [0, 1] and x ∈ U ,

then

(apr’
C,Wu
(α̂))(x) = sup

K∈C
inf{α | K(y)≥ K(x), y ∈ U}

= α.

The equality apr’
C,Wu(α̂) = α̂ can be proven similarly.
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Note that in [168], it is stated that (apr’
C,Wu

, apr’
C,Wu) also satisfies (IU). However,

this is not correct, as illustrated in the next example.

Example 8.1.8. Let U = {x , y, z} and C= {K1, K2} with K1 = 1/x + 0.7/y + 1/z
and K2 = 0.8/x + 1/y + 1/z. Consider the fuzzy sets X = 0.6/x + 0/y + 0.3/z and

Y = 0.2/x +0.8/y +0.4/z, then X ∩ Y = 0.2/x +0/y +0.3/z when the minimum

operator is considered. We obtain that

(apr’
C,Wu
(X )∩ apr’

C,Wu
(Y ))(z) =min(0.3,0.4) = 0.3,

but (apr’
C,Wu
(X ∩ Y ))(z) = 0.2. Hence, we conclude that the (IU) property does not

hold.

8.1.4 Model induced by the theory of representation by levels

A possible way to construct a fuzzy extension of the crisp operator apr’
C

is to

apply the technique of representation by levels stated in Section 5.4. Note that we

assume U and C to be finite, in order to induce a finite set of levels.

Definition 8.1.9. Let (U ,C) be a fuzzy covering approximation space with U
and C finite and X ∈ F (U). The fuzzy set apr’

C,RBL
(X ) is represented by the RL

(Λapr’
C,RBL

(X ),ρapr’
C,RBL

(X )), with

Λapr’
C,RBL

(X ) = ΛX ∪ΛC = {α1,α2, . . . ,αm}, m ∈ N \ {0}

ρapr’
C,RBL

(X )(α) =
⋃

{Kα | K ∈ C, Kα ⊆ Xα},

for all α ∈ Λapr’
C,RBL

(X ). To obtain the membership degree of x in apr’
C,RBL

(X ), we

compute the fuzzy summary:

(apr’
C,RBL

(X ))(x) =
∑

{αi∈Λapr’C,RBL(X )
|x∈ρapr’C,RBL(X )

(αi)}

(αi −αi+1),

where we have ranked the elements of Λapr’
C,RBL

(X ) as follows:

1= α1 > α2 > . . .> αm > αm+1 = 0.

The upper approximation operator apr’
C,RBL is obtained in a similar way, by taking

ρapr’
C,RBL(X )

(α) = co(ρapr’
C,RBL

(co(X )))
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for each α ∈ Λapr’
C,RBL

(X ).

It is clear that for a crisp set X and a crisp covering C, the pair of tight granule-

based approximation operators (apr’
C

, apr’
C) is obtained. Due to Proposition 5.4.1,

this model satisfies all properties.

Proposition 8.1.10. Let (U ,C) be a fuzzy covering approximation space with U
and C finite.

• The pair (apr’
C,RBL

, apr’
C,RBL) satisfies (D) with respect to an involutive nega-

tor N .

• The pair (apr’
C,RBL

, apr’
C,RBL) satisfies (INC), (SM), (ID), (CS) and (UE).

Proof. This follows immediately from Proposition 5.4.1.

8.1.5 Model of intuitive extension

The final model extending the tight covering-based approximation operators we

discuss is an intuitive extension of the crisp case. The lower approximation operator

is obtained by replacing the union by the supremum, and by taking the membership

degrees of x into account.

Definition 8.1.11. Let (U ,C) be a fuzzy covering approximation space and N an

involutive negator, then the pair of fuzzy covering-based approximation operators

(apr’
C,InEx

, apr’
C,InEx,N ) is defined as follows: let X ∈ F (U) and x ∈ U ,

(apr’
C,InEx

(X ))(x) = sup
K∈C
{K(x) | K ⊆ X },

(apr’
C,InEx,N (X ))(x) = (apr’

C,In,I
(XN ))N (x).

It is clear that for a crisp covering C and a crisp set X the tight granule-based

approximation operators (apr’
C

, apr’
C) are obtained. A drawback of this model is

that it is quite extreme: if for each K ∈ C it holds that K * X for a given X ∈ F (U),
then apr’

C,InEx
(X ) = ;. In the following proposition, we discuss the properties of

this model.
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Proposition 8.1.12. Let (U ,C) be a fuzzy covering approximation space and N
an involutive negator.

• The pair (apr’
C,InEx

, apr’
C,InEx,N ) satisfies (D) with respect to N .

• The pair (apr’
C,InEx

, apr’
C,InEx,N ) satisfies (INC), (SM), (ID) and (UE).

Proof. The duality property follows immediately by definition. Hence, we only

discuss the other properties for the lower fuzzy approximation operator apr’
C,InEx

. It

is clear that ∀X ∈ F (U) it holds that apr’
C,InEx

(X ) ⊆ X , thus, (INC) holds. Moreover,

for X , Y ∈ F (U) with X ⊆ Y , it holds that apr’
C,InEx

(X ) ⊆ apr’
C,InEx

(Y ). Hence, (SM)

is satisfied. In addition, (ID) is satisfied since for all K ∈ C and X ∈ F (U) it holds

that K ⊆ apr’
C,InEx

(X ) if and only if K ⊆ X . To end, for x ∈ U it holds that

• (apr’
C,InEx

(;))(x) = sup
K∈C
;= 0,

• (apr’
C,InEx

(U))(x) = sup
K∈C

K(x) = 1.

We conclude that the pair (apr’
C,InEx

, apr’
C,InEx,N ) satisfies (UE).

Note that this model does not satisfy (CS) as illustrated in the next example.

Example 8.1.13. Let U = {x , y} and C = {K1, K2} with K1 = 1/x + 0.3/y and

K2 = 0.3/x + 1/y , and let α= 0.4. The inclusions K1 ⊆ α̂ and K2 ⊆ α̂ do not hold.

Hence, (apr’
C,InEx

(α̂))(x) = 0. We conclude that the property (CS) is not satisfied.

8.2 Fuzzy extensions of loose granule-based approx-

imation operators

Before discussing different models extending the loose covering-based approxima-

tion operators defined in Eqs. (2.21) and (2.22), we recall Proposition 4.2.3: for

a crisp covering C it holds that the pair of approximation operators (apr”
C

, apr”
C)

equals the pair of operators (apr
NC4

, aprNC4
). This follows from a result concerning

crisp approximation operators which has been obtained by Yao in [179]. A similar

result for fuzzy approximation operators is given by Wu et al. [169].
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Proposition 8.2.1. [169] Let H : F (U) → F (U) be a mapping and T a left-

continuous t-norm. The operator H satisfies the following axioms:

(U1) ∀X ∈ F (U),∀α ∈ [0, 1]: H(α̂∩T X ) = α̂∩T H(X ),

(U2) ∀X j ∈ F (U), j ∈ J : H

�

⋃

j∈J

X j

�

=
⋃

j∈J

H(X j),

if and only if there exists a fuzzy relation R on U such that H = aprR,T .

Hence, if an operator on F (U) satisfies the axioms (U1) and (U2), then it is

equivalent to a fuzzy element-based upper approximation operator on U . Moreover,

the fuzzy relation R mentioned in the above proposition is defined by

∀x , y ∈ U : R(x , y) = (H(1x))(y). (8.1)

8.2.1 Model of Li et al.

Besides defining a fuzzy extension of the tight covering-based approximation oper-

ators, Li et al. defined a fuzzy extension of the loose covering-based approximation

operators.

Definition 8.2.2. [91] Let (U ,C) be a fuzzy covering approximation space, T a

t-norm and I an implicator, then the pair of fuzzy covering-based approximation

operators (apr”
C,Li,I

, apr”
C,Li,T ) is defined as follows: let X ∈ F (U) and x ∈ U ,

(apr”
C,Li,I

(X ))(x) = inf
K∈C
I (K(x), inf

y∈U
I (K(y), X (y))),

(apr”
C,Li,T (X ))(x) = sup

K∈C
T (K(x), sup

y∈U
T (K(y), X (y))).

We prove that the upper approximation operator of this model is equivalent to

an element-based one, when a left-continuous t-norm is taken into consideration.

Proposition 8.2.3. Let (U ,C) be a fuzzy covering approximation space and T a

left-continuous t-norm, then

apr”
C,Li,T = aprNC4 ,T ,

where NC4 is defined with respect to T .
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Proof. In [91] it is proven that apr”
C,Li,T satisfies axiom (U2). Moreover, we have

for α ∈ [0, 1], X ∈ F (U) and x ∈ U that

(apr”
C,Li,T (α̂∩T X ))(x) = sup

K∈C
T (K(x), sup

y∈U
T (K(y),T (α, X (y))))

= sup
K∈C

sup
y∈U
T (K(x),T (K(y),T (α, X (y))))

= sup
K∈C

sup
y∈U
T (α,T (K(x),T (K(y), X (y))))

= T (α, sup
K∈C
T (K(x), sup

y∈U
T (K(y), X (y))))

= T (α, (apr”
C,Li,T (X ))(x))

= (α̂∩T apr”
C,Li,T (X ))(x)

hence, apr”
C,Li,T satisfies axiom (U1). By Proposition 8.2.1, apr”

C,Li,T is equivalent

with a fuzzy relation-based upper approximation operator. This fuzzy relation R is

defined by, for x , y ∈ U ,

R(x , y) = (apr”
C,Li,T (1x))(y)

= sup
K∈C
T (K(y), sup

z∈U
T (K(z), 1x(z)))

= sup
K∈C
T (K(y), K(x))

= sup
K∈C
T (K(x), K(y))

= NC4 (x)(y)

thus, we conclude that apr”
C,Li,T = aprR,T = aprNC4 ,T .

The properties of (apr”
C,Li,I

, apr”
C,Li,T ) are given in the proposition below.

Proposition 8.2.4. Let (U ,C) be a fuzzy covering approximation space, T a t-norm

and I an implicator.

• The pair (apr”
C,Li,I

, apr”
C,Li,T ) satisfies (D) with respect to the involutive nega-

torN if T is an IMTL-t-norm, I is its R-implicator andN equals the negator

induced by I .

• The pair (apr”
C,Li,I

, apr”
C,Li,T ) satisfies (D) with respect to the involutive nega-

tor N if I is the S-implicator with respect to the t-conorm S and the

negator N , where S is the N -dual of T .
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• The pair (apr”
C,Li,I

, apr”
C,Li,T ) satisfies (INC) if I is a border implicator.

• The pair (apr”
C,Li,I

, apr”
C,Li,T ) satisfies (SM) and (IU).

• The pair (apr”
C,Li,I

, apr”
C,Li,T ) satisfies (CS) if I is a border implicator.

• The pair (apr”
C,Li,I

, apr”
C,Li,T ) satisfies (UE).

• The pair (apr”
C,Li,I

, apr”
C,Li,T ) satisfies (A) if T is a left-continuous t-norm

and I is its R-implicator.

• The pair (apr”
C,Li,I

, apr”
C,Li,T ) satisfies (CM).

Proof. To prove that (apr”
C,Li,I

, apr”
C,Li,T ) satisfies (A), let X and Y be fuzzy sets, T

a left-continuous t-norm and I its R-implicator. We have

apr”
C,Li,T (X ) ⊆ Y

⇔ ∀x ∈ U : sup
K∈C
T (K(x), sup

y∈U
T (K(y), X (y)))≤ Y (x)

⇔ ∀x ∈ U ,∀K ∈ C: T (sup
y∈U
T (K(y), X (y)), K(x))≤ Y (x)

⇔ ∀x ∈ U ,∀K ∈ C: sup
y∈U
T (K(y), X (y))≤ I (K(x), Y (x))

⇔ ∀x ∈ U ,∀K ∈ C,∀y ∈ U : T (K(y), X (y))≤ I (K(x), Y (x))

⇔ ∀K ∈ C,∀y ∈ U : T (X (y), K(y))≤ inf
x∈U
I (K(x), Y (x))

⇔ ∀K ∈ C,∀y ∈ U : X (y)≤ I (K(y), inf
x∈U
I (K(x), Y (x)))

⇔ ∀y ∈ U : X (y)≤ inf
K∈C
I (K(y), inf

x∈U
I (K(x), Y (x)))

⇔ X ⊆ apr”
C,Li,I

(Y ).

To prove (CM), let C,C′ be two fuzzy coverings of U such that C v C′. For

K ∈ C, denote LK ∈ C′ such that K ⊆ LK . We prove the monotonicity for the upper

approximation operator, for the lower approximation operator the proof is similar.

Let X ∈ F (U) and x ∈ U ,

(apr”
C,Li,T (X ))(x) = sup

K∈C
T (K(x), sup

y∈U
T (K(y), X (y)))

≤ sup
K∈C
T (LK(x), sup

y∈U
T (LK(y), X (y)))
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≤ sup
L∈C′
T (L(x), sup

y∈U
T (L(y), X (y)))

= (apr”
C’,Li,T (X ))(x)

The other properties are proven in [91].

From the above proposition, we obtain that the equality

apr”
C,Li,I

= apr
NC4 ,I

holds by duality if T is an IMTL-t-norm with I its R-implicator, or I is defined

using the N -dual t-conorm S of the left-continuous t-norm T . Moreover, note

the resemblance between Proposition 8.2.4 and the results obtained in Section 7.3,

as NC4 is a reflexive and symmetric fuzzy neighborhood operator.

8.2.2 Model induced by the theory of representation by levels

Another possible fuzzy extension of the loose covering-based approximation opera-

tors is constructed using representation by levels.

Definition 8.2.5. Let (U ,C) be a fuzzy covering approximation space with U
and C finite and X ∈ F (U). The fuzzy set apr”

C,RBL(X ) is represented by the RL

(Λapr”
C,RBL(X )

,ρapr”
C,RBL(X )

), with

Λapr”
C,RBL(X )

= ΛX ∪ΛC = {α1,α2, . . . ,αm}, m ∈ N \ {0},

ρapr”
C,RBL(X )

(α) =
⋃

{Kα | K ∈ C, Kα ∩ Xα 6= ;},

for all α ∈ Λapr”
C,RBL(X )

. To obtain the membership degree of x in apr”
C,RBL(X ), we

compute the fuzzy summary:

(apr”
C,RBL(X ))(x) =

∑

{αi∈Λapr”C,RBL(X )
|x∈ρapr”C,RBL(X )

(αi)}

(αi −αi+1),

where we have ranked the elements of Λapr”
C,RBL(X )

as follows:

1= α1 > α2 > . . .> αm > αm+1 = 0.
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The lower approximation operator apr”
C,RBL

is obtained in a similar way, by taking

ρapr”
C,RBL

(X )(α) = co(ρapr”
C,RBL(co(X ))(α))

for each α ∈ Λapr”
C,RBL(X )

.

Since the crisp representatives of the upper approximation operator are nested,

we have the following characterization for the fuzzy upper approximation operator

apr”
C,RBL:

Proposition 8.2.6. Let (U ,C) be a fuzzy covering approximation space with U
and C finite, X ∈ F (U) and x ∈ U . Let 1≤ k ≤ m such that

αk = max{α ∈ Λapr”
C,RBL(X )

| x ∈ ρapr”
C,RBL(X )

(α)},

then (apr”
C,RBL(X ))(x) = αk.

Proof. We first prove that apr”
C,RBL(X ) is represented by nested levels. Let β and γ

be levels in Λapr”
C,RBL(X )

with β ≥ γ and assume y ∈ ρapr”
C,RBL(X )

(β), then

y ∈
⋃

{Kβ | K ∈ C, Kβ ∩ Xβ 6= ;}.

Let K ∈ C be such that y ∈ Kβ and Kβ ∩ Xβ 6= ;. Since K(y) ≥ β ≥ γ, y ∈ Kγ.
Furthermore, Kγ ∩ Xγ ⊇ Kβ ∩ Xβ 6= ;. Hence, y ∈ ρapr”

C,RBL(X )
(γ) and thus, the crisp

representation of apr”
C,RBL(X ) are nested. Therefore, we obtain for x ∈ U that

(apr”
C,RBL(X ))(x)

= (αk −αk+1) + (αk+1 −αk+2) + . . .+ (αm−1 −αm) + (αm − 0)

= αk.

Similarly as with the fuzzy loose upper approximation operator of Li et al., the

upper approximation operator of this model is equivalent with an element-based

one, when the minimum t-norm is considered.
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Proposition 8.2.7. Let (U ,C) be a fuzzy covering approximation space with U
and C finite and TM the minimum t-norm, then

apr”
C,RBL = aprNC4,min,TM

,

where NC4,min denotes the fuzzy neighborhood operator NC4 defined using the mini-

mum t-norm.

Proof. By Proposition 5.4.1, apr”
C,RBL satisfies axiom (U1) with respect to TM and

axiom (U2), since for a crisp covering C, apr”
C satisfies the crisp equivalents of

axioms (U1) and (U2). Furthermore, by Proposition 8.2.6 it holds for x , y ∈ U that

R(x , y) = max{α ∈ Λapr”
C,RBL(1x )

| y ∈ ρapr”
C,RBL(1x )

(α)}

= max{α ∈ Λapr”
C,RBL(1x )

| ∃K ∈ C: K(y)≥ α∧ K(x)≥ α}

= max{α ∈ Λapr”
C,RBL(1x )

| sup
K∈C

min(K(y), K(x))≥ α}

= sup
K∈C

min(K(y), K(x))

= sup
K∈C

min(K(x), K(y))

= NC4,min(x)(y)

Thus, we conclude that apr”
C,RBL = aprR,TM

= aprNC4,min,TM
.

Corollary 8.2.8. When the minimum operator is used to define NC4 and apr”
C,Li,T ,

it holds that apr”
C,Li,T = apr”

C,RBL. If another left-continuous t-norm T is used, we

obtain that (apr”
C,Li,T (X ))(x)≤ (apr”

C,RBL(X ))(x) for each X ∈ F (U) and x ∈ U , as

the minimum operator is the largest t-norm.

Note that apr”
C,RBL does not satisfy axiom (U1) with respect to every left-

continuous t-norm, as illustrated in the next example.

Example 8.2.9. Let U = {x , y} and C = {K1, K2} with K1 = 1/x + 0.3/y and

K2 = 0.8/x + 1/y. Let X = 0.7/x + 0.8/y and Y = 0.8/x + 0.4/y be fuzzy sets

in U and let Tp be the product t-norm. Then

(apr”
C,RBL(X )∩Tp

apr”
C,RBL(Y ))(x) = 0.8 · 0.8= 0.64

and apr”
C,RBL(X ∩Tp

Y )(x) = 0.56.
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Let N be an involutive negator, from the above proposition and Proposi-

tion 7.3.1, we derive that apr”
C,RBL

= apr
N,I

, with N = NC4,min and

∀a, b ∈ [0,1]: I (a, b) =N (min(a,N (b))).

To end this section, we discuss the properties of this model.

Proposition 8.2.10. Let (U ,C) be a fuzzy covering approximation space with U
and C finite.

• The pair (apr”
C,RBL

, apr”
C,RBL) satisfies (D) with respect to an involutive nega-

tor N .

• The pair (apr”
C,RBL

, apr”
C,RBL) satisfies (INC), (SM), (IU), (CS), (UE), (A) and

(CM).

Proof. Follows immediately from Proposition 5.4.1.

In the next section, we study equalities and partial order relations with respect

to ≤ between the different fuzzy covering-based rough set models presented in

Sections 8.1 and 8.2 and the IC model defined with different fuzzy neighborhood

operators presented in Chapter 6.

8.3 Hasse diagram of fuzzy covering-based approxi-

mation operators

Let (U ,C) be a fuzzy covering approximation space with U and C finite, T an

IMTL-t-norm, I its R-implicator and N the induced negator of I . These parame-

ters will be used for all the fuzzy neighborhood operators and fuzzy covering-based

approximation operators we consider in this section. We will use an IMTL-t-norm

to guarantee the duality property such that we only need to discuss partial order

relations between the lower approximation operators. Moreover, since the fuzzy

covering C is finite, T is left-continuous and I is its R-implicator, the results ob-

tained in Figure 6.2 are valid. Furthermore, some results presented in this section

make use of the properties of an IMTL-t-norm, its R-implicator and the induced
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negator which is involutive.

First, we discuss possible equalities between different models. In Chapter 6, 17

groups of fuzzy neighborhood operators are discussed. It is trivial to see that two

equal fuzzy neighborhood operators yield the same pair of fuzzy neighborhoood-

based approximation operators, i.e.,

N = N′⇒ (apr
N,I

, aprN,T ) = (apr
N’,I

, aprN’,T ).

Moreover, the inverse implication holds:

Proposition 8.3.1. Let N and N′ be two fuzzy neighborhood operators on U , then

N = N′ if and only if (apr
N,I

, aprN,T ) = (apr
N’,I

, aprN’,T ).

Proof. If N = N′, then (apr
N,I

, aprN,T ) = (apr
N’,I

, aprN’,T ) holds trivially. On the

other hand, let (apr
N,I

, aprN,T ) = (apr
N’,I

, aprN’,T ) and let x , y ∈ U , then

(aprN,T (1y))(x) = (aprN’,T (1y))(x)

⇒ T (N(x)(y), 1) = T (N′(x)(y), 1)

⇒ N(x)(y) = N′(x)(y).

We conclude that N = N′.

Hence, the 17 groups of fuzzy neighborhood operators discussed in Chapter 6

induce 17 different pairs of fuzzy neighborhood-based approximation operators

(apr
N,I

, aprN,T ).

Next, given the IMTL-t-norm T and its R-implicator I , it holds that the tight

granule-based model of Inuiguichi et al. defined in Definition 8.1.4 coincides with

the tight granule-based model of Li et al. defined in Definition 8.1.1.

Proposition 8.3.2. Let (U ,C) be a fuzzy covering approximation space with U
and C finite, T an IMTL-t-norm and I its R-implicator, then

(apr’
C,Li,T ,I

, apr’
C,Li,T ,I ) = (apr’

C,In,I
, apr’
C,In,I ,N ).
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Proof. For every left-continuous t-norm T it holds that ξ[I ] = T when we con-

sider its R-implicator: let a, b ∈ [0,1], then

ξ[I ](a, b) = inf{c ∈ [0,1] | I (a, c)≥ b}

= inf{c ∈ [0,1] | T (a, b)≤ c}

= T (a, b),

by the residuation principle. Hence, apr’
C,Li,T ,I

= apr’
C,In,I

. The other equality

follows by duality with respect to the negator N induced by I .

Finally, recall that for an IMTL-t-norm T and its R-implicator I it holds

that (apr”
C,Li,I

, apr”
C,Li,T ) = (apr

NC4 ,I
, aprNC4 ,T ) (see Proposition 8.2.3). Proposi-

tion 8.2.10 for the pair (apr”
C,RBL

, apr”
C,RBL) is not applicable, as the minimum

operator is not an IMTL-t-norm. Hence, we will consider 22 different pairs of fuzzy

covering-based approximation operators, presented in Table 8.1.

Next, we want to establish the Hasse diagram of the 22 lower fuzzy covering-

based approximation operators with respect to the partial order≤ on approximation

operators. Since all pairs in Table 8.1 are dual, the Hasse diagram for the upper

fuzzy covering-based approximation operators with respect to ≤ is immediately

obtained from the Hasse diagram of the lower approximation operators.

The partial order relations of the first 17 lower approximation operators follows

immediately from the results obtained in Figure 6.2, since the following proposition

holds:

Proposition 8.3.3. Let N and N′ be two fuzzy neighborhood operators on U , then

N � N′ if and only if (apr
N’,I

, aprN’,T )≤ (apr
N,I

, aprN,T ).

Proof. Let N � N′, then (apr
N’,I

, aprN’,T ) ≤ (apr
N,I

, aprN,T ) since the neighbor-

hood monotonicity property is satisfied. On the other hand, if

(apr
N’,I

, aprN’,T )≤ (apr
N,I

, aprN,T ),

then for x , y ∈ U it holds that:

N(x)(y) = (aprN,T (1y))(x)≤ (aprN’,T (1y))(x) = N′(x)(y).
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Table 8.1: Fuzzy covering-based rough set models in the fuzzy covering approxi-

mation space (U ,C) with U and C finite, T an IMTL-t-norm, I its R-implicator

and N the induced negator

No. N Pairs No. N Pairs

1 a1 (apr
NC1 ,I

, aprNC1 ,T ), 11 i (apr
N
C4
1 ,I

, aprN
C4
1 ,T )

(apr
NC1

1 ,I
, aprNC1

1 ,T ), 12 j1 (apr
NC4 ,I

, aprNC4 ,T ),

(apr
NC3

1 ,I
, aprNC3

1 ,T ), (apr
NC2

4 ,I
, aprNC2

4 ,T ),

(apr
NC∩1 ,I

, aprNC∩1 ,T ) (apr
NC∩4 ,I

, aprNC∩4 ,T ),

2 a2 (apr
NC3

2 ,I
, aprNC3

2 ,T ) (apr”
C,Li,I

, apr”
C,Li,T )

3 b (apr
NC3

3 ,I
, aprNC3

3 ,T ) 13 j2 (apr
NC2

2 ,I
, aprNC2

2 ,T )

4 c (apr
NC2 ,I

, aprNC2 ,T ), 14 k (apr
N
C4
2 ,I

, aprN
C4
2 ,T )

(apr
NC1

2 ,I
, aprNC1

2 ,T ) 15 l (apr
N
C4
3 ,I

, aprN
C4
3 ,T )

5 d (apr
NC1

3 ,I
, aprNC1

3 ,T ) 16 m (apr
N
C4
4 ,I

, aprN
C4
4 ,T )

6 e (apr
NC∩2 ,I

, aprNC∩2 ,T ) 17 NC1,Ma (apr
NC1,Ma,I

, aprNC1,Ma,T )

7 f1 (apr
NC3 ,I

, aprNC3 ,T ), 18 (apr’
C,Li,T ,I

, apr’
C,Li,T ,I ),

(apr
NC2

3 ,I
, aprNC2

3 ,T ), (apr’
C,In,I

, apr’
C,In,I ,N )

(apr
NC∩3 ,I

, aprNC∩3 ,T ) 19 (apr’
C,Wu

, apr’
C,Wu)

8 f2 (apr
NC2

1 ,I
, aprNC2

1 ,T ) 20 (apr’
C,RBL

, apr’
C,RBL)

9 g (apr
NC3

4 ,I
, aprNC3

4 ,T ) 21 (apr’
C,InEx

, apr’
C,InEx,N )

10 h (apr
NC1

4 ,I
, aprNC1

4 ,T ) 22 (apr”
C,RBL

, apr”
C,RBL)
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We conclude that N � N′.

From the previous proposition we obtain that smaller fuzzy neighborhood

operators yield more accurate fuzzy neighborhood-based approximation operators,

i.e., they yield larger lower approximations and smaller upper approximations.

Hence, the Hasse diagram for the lower approximation operators of pairs 1 – 17 in

Table 8.1 can be found in Figure 8.1.

We now want to add the four fuzzy-covering based tight lower approximation

operators to Figure 8.1. First, note that the following partial order relations between

the four tight lower approximation operators hold:

Proposition 8.3.4. Let (U ,C) be a fuzzy covering approximation space with U
and C finite, then

(a) apr’
C,InEx

≤ apr’
C,RBL

,

(b) apr’
C,RBL

≤ apr’
C,Wu

,

(c) apr’
C,InEx

≤ apr’
C,Li,T ,I

for a left-continuous t-norm and its R-implicator,

(d) apr’
C,Li,T ,I

≤ apr’
C,Wu

for a left-continuous t-norm and its R-implicator.

Proof. Let X ∈ F (U) and x ∈ U .

(a) If there is no K ∈ C with K ⊆ X , then apr’
C,InEx

(X ) = ;, thus the inclusion

holds.

On the other hand, take K ∈ C with K ⊆ X , then for all α ∈ [0,1], Kα ⊆ Xα.

We need to prove that K(x)≤ (apr’
C,RBL

(X ))(x).

If K(x) = 0, then the inclusion holds, so assume K(x) = γ with γ 6= 0. For all

α≤ γ it holds that K(x)≥ α, hence x ∈ Kα. Since Kα ⊆ Xα, we obtain that

x ∈ ρapr’
C,RBL

(X )(α).

Let Λapr’
C,RBL

(X ) = {α1,α2, . . . ,αm} with αi > αi+1 for all 1 ≤ i ≤ m and

αm+1 = 0. Since K(x) = γ, γ ∈ Λapr’
C,RBL

(X ). Therefore, there exists a 1≤ i ≤ m
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1

8 4 25

9

11 10

6

12

15 14

16

7

3

13

17

Figure 8.1: Hasse diagram of the first 17 fuzzy covering-based lower approximation

operators presented in Table 8.1 for the fuzzy covering approximation space (U ,C)
with C finite, T an IMTL-t-norm and I its R-implicator
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such that γ = αi . By the fact that x ∈ ρapr’
C,RBL

(X )(α) for all α ≤ γ and the

definition of fuzzy summary, we obtain that

(apr’
C,RBL

(X ))(x)

≥ (αi −αi+1) + (αi+1 −αi+2) + . . .+ (αm −αm+1)

= αi

= γ.

Therefore, K(x)≤ (apr’
C,RBL

(X ))(x), and thus,

(apr’
C,InEx

(X ))(x)≤ (apr’
C,RBL

(X ))(x).

(b) If there is no α ∈ Λapr’
C,RBL

(X ) such that x ∈ ρapr’
C,RBL

(X )(α), then

(apr’
C,RBL

(X ))(x) = 0

and thus, (apr’
C,RBL

(X ))(x)≤ (apr’
C,Wu
(X ))(x).

On the other hand, let α∗ ∈ Λapr’
C,RBL

(X ) be the largest level such that x

belongs to ρapr’
C,RBL

(X )(α∗). We will prove that (apr’
C,RBL

(X ))(x) ≤ α∗ and

α∗ ≤ (apr’
C,Wu
(X ))(x).

For the first inequality, note that (apr’
C,RBL

(X ))(x) reaches its maximum if

x ∈ ρapr’
C,RBL

(X )(α) for all α ≤ α∗, i.e., if x is in all crisp representatives for

the levels α ≤ α∗. Denote Λapr’
C,RBL

(X ) = {α1,α2, . . . ,αm} with αi > αi+1 for

all 1≤ i ≤ m and αm+1 = 0. Then there exists a 1≤ i ≤ m such that α∗ = αi .

Hence,

(apr’
C,RBL

(X ))(x)

≤ (αi −αi+1) + (αi+1 −αi+2) + . . .+ (αm −αm+1)

= αi

= α∗.

For the second inequality, since x ∈ ρapr’
C,RBL

(X )(α∗), there exists a K∗ ∈ C
with K∗α∗ ⊆ Xα∗ and x ∈ K∗α∗ . Moreover, for every y ∈ U with K∗(y)≥ K∗(x),
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it holds that y ∈ K∗α∗ , and thus y ∈ Xα∗ . Therefore,

(apr’
C,Wu
(X ))(x) ≥ inf

y∈U
{X (y) | K∗(y)≥ K∗(x)}

≥ inf
y∈U
{α∗ | K∗(y)≥ K∗(x)}

= α∗.

We conclude that (apr’
C,RBL

(X ))(x)≤ (apr’
C,Wu
(X ))(x).

(c) Let T be left-continuous and I its R-implicator. Define the set

C′ = {K ∈ C | K ⊆ X } ⊆ C,

then for all K ∈ C′ it holds that inf
y∈U
I (K(y), X (y)) = 1 (see [158]). Therefore,

we obtain for x ∈ U that

(apr’
C,Li,T ,I

(X ))(x) ≥ sup
K∈C′
T (K(x), inf

y∈U
I (K(y), X (y)))

= sup
K∈C′
T (K(x), 1)

= sup{K(x) | K ∈ C′}

= sup{K(x) | K ∈ C, K ⊆ X }

= (apr’
C,InEx

(X ))(x).

We conclude that (apr’
C,InEx

(X ))(x)≤ (apr’
C,Li,T ,I

(X ))(x).

(d) Let T be left-continuous and I its R-implicator. Let K ∈ C and denote

KK(x) = {y ∈ U | K(y)≤ K(x)}. We have that

T (K(x), inf
y∈U
I (K(y), X (y))) ≤ T (K(x), inf

y∈KK(x)

I (K(y), X (y)))

≤ T (K(x), inf
y∈KK(x)

I (K(x), X (y)))

= T (K(x),I (K(x), inf
y∈KK(x)

X (y)))

≤ inf
y∈KK(x)

X (y),

where we have used various properties which hold for a left-continuous

t-norm and its R-implicator. As this holds for every K ∈ C, we obtain that

(apr’
C,Li,T ,I

(X ))(x)≤ (apr’
C,Wu
(X ))(x).
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As we assumed T to be an IMTL-t-norm, all partial order relations in Proposi-

tion 8.3.4 hold. Furthermore, by duality, we can obtain the partial order relations

for the four fuzzy covering-based tight upper approximation operators if necessary.

Proposition 8.3.4 contains the only partial order relations which hold between

these four fuzzy covering-based lower approximation operators as illustrated in

the next example.

Example 8.3.5. Let U = {x , y, z}, let T be the Łukasiewicz t-norm and I its

R-implicator. Consider the fuzzy covering C= {K1, K2, K3} with

K1 = 0.6/x + 0.6/y + 0.6/z,

K2 = 1/x + 1/y + 1/z,

K3 = 0.9/x + 0.8/y + 0.6/z/

Let X = 0.9/x + 0.7/y + 0.6/z, then

• apr’
C,InEx

(X ) = 0.6/x + 0.6/y + 0.6/z,

• apr’
C,RBL

(X ) = apr’
C,Li,T ,I

(X ) = 0.8/x + 0.7/y + 0.6/z,

• apr’
C,Wu
(X ) = 0.9/x + 0.7/y + 0.6/z.

To illustrate that the model of Li et al. and the model induced by the theory of

representation by levels are incomparable with each other, let C= {K1, K2} with

K1 = 1/x + 0/y + 0.6/z and K2 = 0/x + 1/y + 1/z, and X = 1/x + 0/y + 0.4/z,

then (apr’
C,RBL

(X ))(x) = 0.8 and (apr’
C,Li,T ,I

(X ))(x) = 0.4, when the nilpotent

minimum and its R-implicator is used. On the other hand, let C = {K1, K2} with

K1 = 1/x+0.7/y+0.7/z and K2 = 0/x+1/y+1/z, and X = 0.5/x+0.5/y+0.4/z,

then (apr’
C,RBL

(X ))(x) = 0.4 and (apr’
C,Li,T ,I

(X ))(x) = 0.5, when the Łukasiewicz

t-norm and implicator are used.

In order to add the four fuzzy covering-based tight approximation operators

to Figure 8.1, we discuss their comparability with respect to ≤ to the 17 fuzzy

neighborhood-based lower approximation operators. However, note that for a

crisp covering C, the approximation operator apr’
C

is incomparable to the ap-

proximation operators apr
N

with N ∈ {b, d, f1, f2, g, i, l}, hence, the four fuzzy
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covering-based tight approximation operators are incomparable with these seven

fuzzy neighborhood-based approximation operators. Moreover, we only need to

discuss the partial order relations which hold for a crisp covering. Thus, we need

to study the following partial order relations for

apr ∈ {apr’
C,Li,T ,I

, apr’
C,Wu

, apr’
C,RBL

, apr’
C,InEx

} :

• apr≤ apr
N,I

for N ∈ {a1, a2, NC1,Ma},

• apr
N,I
≤ apr for N ∈ {c, e, h, j1, j2, k, m, NC1,Ma}.

The following partial order relations hold:

Proposition 8.3.6. Let (U ,C) be a fuzzy covering approximation space with U
and C finite, T an IMTL-t-norm and I its R-implicator, then

(a) apr’
C,Li,T ,I

≤ apr
NC1 ,I

,

(b) apr
NC1,Ma,I

≤ apr’
C,Li,T ,I

.

Proof. Let X ∈ F (U) and x ∈ U .

(a) First note that ∀a, b, c ∈ [0, 1]: T (a,I (b, c))≤ I (I (a, b), c). We have that

(apr’
C,Li,T ,I

(X ))(x) = sup
K∈C
T (K(x), inf

y∈U
I (K(y), X (y)))

= sup
K∈C

inf
y∈U
T (K(x),I (K(y), X (y)))

≤ sup
K∈C

sup
y∈U
I (I (K(x), K(y)), X (y))

= sup
K∈C
I
�

inf
y∈U
I (K(x), K(y)), X (y)

�

= sup
K∈C
I
�

NC1 (x)(y), X (y)
�

= (apr
NC1 ,I
(X ))(x)

(b) It holds that

(apr’
C,Li,T ,I

(X ))(x) ≥ sup
K∈C,K(x)=1

T (K(x), inf
y∈U
I (K(y), X (y)))
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= sup
K∈C,K(x)=1

inf
y∈U
I (K(y), X (y))

= inf
y∈U
I
�

inf
K∈C,K(x)=1

K(y), X (y)
�

= inf
y∈U
I (NC1,Ma(x)(y), X (y))

= (apr
NC1,Ma,I

(X ))(x)

Note that Proposition 8.3.6 also holds for a left-continuous t-norm T and its

R-implicator I . By transitivity of the partial order relations ≤ we also have the

following results:

Corollary 8.3.7. Let (U ,C) be a fuzzy covering approximation space with U and

C finite, T an IMTL-t-norm and I its R-implicator, then

(a) apr’
C,InEx

≤ apr
NC1 ,I

,

(b) apr
N,I
≤ apr’

C,Li,T ,I
for N ∈ {c, e, h, j1, j2, k, m},

(c) apr
N,I
≤ apr’

C,Wu
for N ∈ {c, e, h, j1, j2, k, m, NC1,Ma}.

In the following example we illustrate that no other partial order relations hold.

Example 8.3.8. Let U = {x , y, z} and letC = {K1, K2}with K1 = 1/x+0/y+0.5/z
and K2 = 0/x+1/y+1/z. Let T be the Łukasiewicz t-norm and I the Łukasiewicz

implicator.

(a) Let X = 1/x + 0.5/y + 0/z, then

– (apr’
C,InEx

(X ))(x) = 0,

– (apr’
C,Wu
(X ))(x) = 1,

– (apr
N,I
(X ))(x) = 0.5 for N ∈ {a1, a2, c, e, h, j1, j2, k, m, NC1,Ma}.

We conclude that apr
N,I
≤ apr’

C,InEx
for N ∈ {c, e, h, j1, j2, k, m, NC1,Ma} and

apr’
C,Wu
≤ apr

N,I
for N ∈ {a1, a2, NC1,Ma} do not hold.
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(b) Let X = 1/x + 0/y + 0.7/z, then it holds that

– (apr’
C,InEx

(X ))(z) = (apr’
C,RBL

(X ))(z) = (apr’
C,Li,T ,I

(X ))(z) = 0.5,

– (apr
NC1,Ma,I

(X ))(z) = 0.

We conclude that the following partial order relations do not hold:

(i) apr’
C,InEx

≤ apr
NC1,Ma,I

,

(ii) apr’
C,RBL

≤ apr
NC1,Ma,I

,

(iii) apr’
C,Li,T ,I

≤ apr
NC1,Ma,I

Next, consider C= {K1, K2, K3} with

K1 = 1/x + 0.8/y + 0.6/z,

K2 = 0.2/x + 1/y + 0.6/z,

K3 = 0.2/x + 0.8/y + 1/z

and let T be the Łukasiewicz t-norm and I the Łukasiewicz implicator.

(a) Let X = 0.1/x + 0.5/y + 0.4/z, then we have that

– (apr’
C,RBL

(X ))(z) = 0.3,

– (apr
N,I
(X ))(z) = 0.4 for N ∈ {c, e, h, j1, j2, k, m, NC1,Ma}.

We conclude that apr
N,I
≤ apr’

C,RBL
does not hold for the fuzzy neighborhood

operators N ∈ {c, e, h, j1, j2, k, m, NC1,Ma}.

(b) Let X = 1/x + 1/y + 0.7/z, then it holds that

– (apr’
C,InEx

(X ))(y) = (apr’
C,RBL

(X ))(y) = (apr’
C,Li,T ,I

(X ))(y) = 1,

– (apr
NC3

2 ,I
(X ))(y) = 0.9.

We conclude that the following partial order relations do not hold:

(i) apr’
C,InEx

≤ apr
NC3

2 ,I
,

(ii) apr’
C,RBL

≤ apr
NC3

2 ,I
,
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(iii) apr’
C,Li,T ,I

≤ apr
NC3

2 ,I
.

Finally, let C = {K1, K2} with K1 = 1/x+0/y+0.6/z and K2 = 0/x+1/y+1/z.

Let T be the nilpotent minimum and I its R-implicator. Let X = 1/x+0/y+0.4/z,

then it holds that (apr’
C,RBL

(X ))(x) = 0.8 and (apr
NC1 ,I
(X ))(x) = 0.4. Hence,

apr’
C,RBL

≤ apr
NC1 ,I

does not hold.

To end, we only need to discuss the fuzzy covering-based loose lower approxi-

mation operator apr”
C,RBL

. Since for a crisp covering C it holds that apr”
C
≤ apr’

C
,

we have the following property:

Proposition 8.3.9. Let (U ,C) be a fuzzy covering approximation space with U
and C finite, T an IMTL-t-norm and I its R-implicator, then apr”

C,RBL
≤ apr’

C,RBL
.

Proof. Let X ∈ F (U), thenΛapr”
C,RBL

(X ) = Λapr’
C,RBL

(X ) and for every levelα ∈ Λapr”
C,RBL

(X )

it holds that ρapr”
C,RBL

(X )(α) ⊆ ρapr’
C,RBL

(X )(α).

By the transitivity of ≤, we also have the following result:

Corollary 8.3.10. Let (U ,C) be a fuzzy covering approximation space with U and

C finite, T an IMTL-t-norm and I its R-implicator, then apr”
C,RBL

≤ apr’
C,Wu

.

As illustrated in the next example, these are the only partial order relations

which hold:

Example 8.3.11. Let U = {x , y, z} and let C = {K1, K2, K3} be a fuzzy cov-

ering on U with K1 = 1/x + 0.8/y + 0.6/z, K2 = 0.2/x + 1/y + 0.6/z and

K3 = 0.2/x + 0.8/y + 1/z and let T be the Łukasiewicz t-norm and I the

Łukasiewicz implicator.

(a) Let X = 0.1/x + 0.5/y + 0.4/z, then we have that

– (apr”
C,RBL

(X ))(y) = 0.1,

– (apr’
C,RBL

(X ))(y) = (apr
N
C4
4 ,I
(X ))(y) = 0.3.

We conclude that apr≤ apr”
C,RBL

does not hold for any of the first 20 lower

approximation operators of Table 8.1.
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(b) Let X = 1/x + 1/y + 0.7/z, then it holds that

– apr’
C,InEx

(X ) = 1/x + 1/y + 0.6/z,

– apr”
C,RBL

= 1/x + 0.9/y + 0.7/z.

We conclude that apr’
C,InEx

and apr”
C,RBL

are incomparable.

Futhermore, letC = {K1, K2}with K1 = 1/x+0/y+0.6/z, K2 = 0/x+1/y+1/z.

Let T be the nilpotent minimum and I its R-implicator. Let X = 1/x+0/y+0.4/z,

then it holds that (apr
NC1 ,I
(X ))(x) = 0.4 and (apr”

C,RBL
(X ))(x) = 0.8. Hence,

apr”
C,RBL

≤ apr does not hold for any of the first 18 lower approximation oper-

ators of Table 8.1.

Hence, the Hasse diagram with respect to ≤ representing all fuzzy covering-

based lower approximation operators stated in Table 8.1 is given in Figure 8.2.

Minimal elements of the Hasse diagram are given by the fuzzy covering-based

lower approximation operators apr
N
C4
4 ,I

, apr’
C,InEx

and apr”
C,RBL

. The fuzzy covering-

based lower approximation operators apr
NC1 ,I

and apr’
C,Wu

are maximal elements

of the Hasse diagram. Therefore, these approximation operators provide the most

accurate approximations.

8.4 Conclusions and future work

In this chapter, we have studied fuzzy covering-based rough set models which

extend the tight and loose granule-based approximation operators. We have re-

called three existing models and introduced two new ones which extend the tight

approximation operators. Moreover, we recalled one model and introduced one

model which extend the loose approximation operators. Both models are equiva-

lent to fuzzy neighborhood-based models. For each of the seven models, we have

discussed its properties. All models maintain the properties of the tight, respectively

loose, approximation operators given some conditions on the used t-norm and

implicator. Only the intuitive extension of the tight approximation operators does

not satisfy the (CS) property.
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Figure 8.2: Hasse diagram of the fuzzy covering-based lower approximation opera-

tors presented in Table 8.1 for the fuzzy covering approximation space (U ,C) with

C finite, T an IMTL-t-norm and I its R-implicator
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Secondly, we have discussed partial order relations with respect to ≤ for a finite

universe U , a finite fuzzy covering C on U , an IMTL-t-norm T , its R-implicator I
and its induced negator N . We have studied 22 pairs of fuzzy covering-based

rough set models, of which 17 pairs are based on a fuzzy neighborhood operator.

The Hasse diagram of the lower approximation operators is presented in Figure 8.2.

By duality, the Hasse diagram of the upper approximation operators is obtained

by inverting Figure 8.2. Hence, we conclude that the pairs (apr
NC1 ,I

, aprNC1 ,T ) and

(apr’
C,Wu

, apr’
C,Wu) provide the most accurate approximations.

Future work includes the study of fuzzy extensions of other pairs of covering-

based rough set approximation operators, e.g., the approximation operators of

the framework of Yang and Li. In addition, we want to study the comparability

between the approximation operators studied in this chapter and other fuzzy rough

set approximation operators, such as the noise-tolerant approximation operators

presented in Chapter 9. Finally, a future research direction is the application of

fuzzy covering-based rough set models in feature and instance selection.



CHAPTER9

Noise-tolerant fuzzy rough set models

The implicator-conjunctor-based fuzzy rough set model allows for a lot of flexibility

in terms of the choice of the fuzzy logical connectives and the fuzzy relation or

fuzzy neighborhood operator. However, the use of the infimum and supremum

in Eqs. (7.1) and (7.2) limits their practical use, in a similar way as the ∀- and

∃-quantifiers restrict the application potential of Pawlak’s original rough set model.

The core of the problem is that the result of the approximations is determined

by a single best (sup) or worst (inf) element. This can be a disadvantage in a data

analysis context, since data samples may be erroneous. Such noisy data can perturb

the approximations and therefore weaken the machine learning algorithms which

invoke them [72].
To address this problem, many authors have defined robust alternatives for the

lower and upper approximation operators in fuzzy rough set theory, in a similar

way as the VPRS model defined in Section 2.3 provides a noise-tolerant alternative

for Pawlak’s rough set definition.

In this chapter we discuss different robust fuzzy rough set models which have

245
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been proposed in literature. In Section 9.1, we study models which are frequency-

based [16,69,70,115,116,178], analogous to the VPRS model of Ziarko [203].
Another model adjusts the set which is approximated [196], which we discuss in

Section 9.2. Moreover, in Section 9.3 we study models which use other aggregation

operators than the infimum and supremum operators [19,47]. For each considered

model we discuss the specific criteria it uses for harnessing the approximations

against noise. We generalize, correct or simplify its definition, without harming

the original ideas it is based on. We study relationships which exist between the

models, and also evaluate which properties of Pawlak’s rough set model can be

maintained. Similarly as for the VPRS model, making the models more flexible

towards noise typically involves sacrificing some of the desirable properties they

satisfy. Additionally, in Section 9.4 we will evaluate the claim whether the noise-

tolerant models are more robust than the IC model from a practical perspective, by

examining how stable their approximations are when the data are contaminated

by noise. We conclude and state future work in Section 9.5.

Note that in this chapter we will consider the IC model based on a general fuzzy

relation R, as the noise-tolerant models discussed here are defined with respect to

a fuzzy relation. Moreover, we will assume the universe U to be finite, since the

number of data samples, i.e., objects in U , in a real information system is always

finite.

9.1 Noise-tolerant models based on frequency

We start with discussing frequency-based fuzzy rough set models. Models of this

type are the variable precision fuzzy rough set model of Mieskowicz-Rolka and

Rolka [115, 116], the vaguely quantified fuzzy rough set model of Cornelis et

al. [16], the soft fuzzy rough set model of Hu et al. [69, 70] and the variable

precision fuzzy rough set model based on fuzzy granules of Yao et al. [178]. The

idea behind this type of robust models is that only a subset of the fuzzy set of

predecessors Rp(x) of an object x ∈ U is taken into account when computing the

lower and upper approximation in x , which is the same objective as the variable

precision rough set model of Ziarko [203].
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We start with the model of Mieszkowicz-Rolka and Rolka.

9.1.1 Variable precision fuzzy rough set model

Mieszkowicz-Rolka and Rolka [115] proposed the Variable Precision Fuzzy Rough

Set (VPFRS) model in 2004, and later appeared in slightly revised form in [116].
They intended to design a robust fuzzy rough set model that covers both the seminal

fuzzy rough set approach of Dubois and Prade [41, 42] and the VPRS model of

Ziarko [84,203].
We start by recalling some preliminary notions introduced by the authors, in

order to define the VPFRS model.

Definition 9.1.1. [116] Given a WCP-implicator I , a t-norm T and fuzzy sets

X , Y in U , the implication-based inclusion set InclI (X , Y ) of X in Y is defined by

∀x ∈ U : InclI (X , Y )(x) = I (X (x), Y (x)) (9.1)

and the t-norm-based inclusion set InclT (X , Y ) of X in Y is defined by

∀x ∈ U : InclT (X , Y )(x) = T (X (x), Y (x)). (9.2)

Note that the name ‘t-norm-based inclusion set’ is slightly misleading because

this definition is not actually related to fuzzy inclusion. However, we adopt the

terminology of [116]. Moreover, in [116], the authors defined InclI as follows: let

X , Y ∈ F (U) and x ∈ U , then

InclI (X , Y )(x) =

(

I (X (x), Y (x)) X (x)> 0

0 X (x) = 0.

However, the special treatment of the case X (x) = 0 is not necessary to properly

define the VPFRS model, hence our simplified definition of InclI in Eq. (9.1). Next,

we recall two types of inclusion errors.

Definition 9.1.2. [116] Given a WCP-implicator I , a t-norm T , a non-empty

fuzzy set X , a fuzzy set Y in U , and α ∈ [0, 1]. The lower α-inclusion error eα of X
in Y is given by

eα(X , Y ) = 1−
|X ∩ (InclI (X , Y ))α|

|X |
(9.3)
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and the upper α-inclusion error ēα of X in Y is given by

ēα(X , Y ) = 1−
|X ∩ ((InclT (X , Y ))NS )α|

|X |
, (9.4)

where we have used the standard negator NS . For the empty set ;, we define the

inclusion errors by

eα(;, Y ) = ēα(;, Y ) = 0. (9.5)

In [116], Mieszkowicz-Rolka and Rolka only defined the inclusion errors for a

non-empty fuzzy set X . We extend their definition to include the empty set, in order

to allow the use of a general binary fuzzy relation R instead of a fuzzy T -similarity

relation in the definition of the VPFRS model:

Definition 9.1.3. [116] Let (U , R) be a fuzzy relation approximation space with U
finite, I a WCP-implicator, T a t-norm and 0≤ l < u≤ 1. The (u, l)-fuzzy rough
approximation operators (apr

R,I ,u
, aprR,T ,l) are defined as follows: let X ∈ F (U)

and x ∈ U , then

(apr
R,I ,u
(X ))(x) = inf

y∈Sx ,u,X

InclI (R
p(x), X )(y),

(aprR,T ,l(X ))(x) = sup
y∈Tx ,l,X

InclT (R
p(x), X )(y),

with

Sx ,u,X = supp(Rp(x))∩
�

(InclI (R
p(x), X ))αx ,u,X

�

= {y ∈ U | R(y, x)> 0 and InclI (R
p(x), X )(y)≥ αx ,u,X },

αx ,u,X = sup{α ∈ [0,1] | eα(Rp(x), X )≤ 1− u},

Tx ,l,X = supp(Rp(x))∩
�

((InclT (R
p(x), X ))NS )βx ,l,X

�

= {y ∈ U | R(y, x)> 0 and InclT (R
p(x), X )(y)≤ 1− βx ,l,X },

βx ,l,X = sup{α ∈ [0,1] | ēα(Rp(x), X )≤ l}.

Note that for x ∈ U with Rp(x) = ;, it holds that Sx ,u,X and Tx ,l,X are empty and

αx ,u,X = βx ,l,X = 1 for all u and l. In this case, we obtain that (apr
R,I ,u

(X ))(x) = 1

and (aprR,T ,l(X ))(x) = 0.
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In order to get more insight in this element exclusion process, we show that

the approximations of Definition 9.1.3 can be simplified. To do this, we first obtain

a simpler expression for αx ,u,X and βx ,l,X .

Proposition 9.1.4. Let (U , R) be a fuzzy relation approximation space with U
finite, I a WCP-implicator, T a t-norm and 0 ≤ l < u ≤ 1. For x ∈ U such that

Rp(x) 6= ;, it holds for X ∈ F (U) that

αx ,u,X = sup
�

α ∈ {I (R(y, x), X (y)) | y ∈ U} | Fx ,X (α)≥ u
	

,

with Fx ,X (α) =
|Rp(x)∩ (InclI (Rp(x), X ))α|

|Rp(x)|
,

βx ,l,X = sup
�

α ∈ {1−T (R(y, x), X (y)) | y ∈ U} | Gx ,X (α)≥ 1− l
	

,

with Gx ,X (α) =
|Rp(x)∩ ((InclT (Rp(x), X ))NS )α|

|Rp(x)|
.

Proof. Take x in U such that Rp(x) is not empty and X ∈ F (U). Since U is finite,

we can number and rename its elements such that U = {z1, z2, . . . , zn} and

InclI (R
p(x), X )(z1)≥ InclI (R

p(x), X )(z2)≥ . . .≥ InclI (R
p(x), X )(zn).

Define Fx ,X : [0,1]→ [0,1] such that, for α ∈ [0,1],

Fx ,X (α) = 1− eα(R
p(x), X ) =

|Rp(x)∩ (InclI (Rp(x), X ))α|
|Rp(x)|

,

then Fx ,X is a decreasing mapping in α. We have the following expression for αx ,u,X :

αx ,u,X = sup{α ∈ [0, 1] | Fx ,X (α)≥ u}. We prove that we only need to consider the

values InclI (Rp(x), X )(y) to compute αx ,u,X , that is,

αx ,u,X = sup{α ∈ {I (R(y, x), X (y)) | y ∈ U} | Fx ,X (α)≥ u}.

Take α∗ ∈ [0,1] such that α∗ /∈ {I (R(y, x), X (y)) | y ∈ U}. We prove that

this α∗ does not influence the supremum. First, assume that α∗ is such that

InclI (Rp(x), X )(zi)> α∗ for i ∈ {1, 2, . . . , n}, then

Fx ,X (α
∗) = Fx ,X (InclI (R

p(x), X )(zi)).

Since InclI (Rp(x), X )(zi)> α∗, we do not need to take α∗ into account when we

compute αx ,u,X . On the other hand, if α∗ > InclI (Rp(x), X )(z1), then it holds that
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(InclI (Rp(x), X ))α∗ = ;, hence Fx ,X (α∗) = 0. Since we assume u> 0, it holds that

α∗ /∈ {α ∈ [0,1] | Fx ,X (α)≥ u}.

In both cases we conclude that α∗ will not influence the supremum. Hence, we

obtain that

αx ,u,X = sup{α ∈ [0, 1] | Fx ,X (α)≥ u}

= sup{α ∈ {I (R(y, x), X (y)) | y ∈ U} | Fx ,X (α)≥ u}.

The proof for βx ,l,X is analogous.

Given previous proposition, we obtain a simplification of the VPFRS model:

Proposition 9.1.5. Let (U , R) be a fuzzy relation approximation space with U
finite, I a WCP-implicator, T a t-norm and 0≤ l < u≤ 1, then for X ∈ F (U) and

x ∈ U ,

(apr
R,I ,u
(X ))(x) = αx ,u,X ,

(aprR,T ,l(X ))(x) = 1− βx ,l,X .

Proof. By definition of Sx ,u,X it holds that

(apr
R,I ,u
(X ))(x) = inf

y∈Sx ,u,X

I (R(y, x), X (y))≥ αx ,u,X .

By Proposition 9.1.4, let y∗ be the element in U such that supremum is reached,

i.e., αx ,u,X = I (R(y∗, x), X (y∗)).

• If R(y∗, x)> 0, then y∗ ∈ Sx ,u,X and hence,

(apr
R,I ,u
(X ))(x)≤ I (R(y∗, x), X (y∗)) = αx ,u,X .

• If R(y∗, x) = 0, then it holds that αx ,u,X = I (0, X (y∗)) = 1 and thus,

(apr
R,I ,u
(X ))(x) = 1.

In both cases, we conclude that (apr
R,I ,u
(X ))(x) = αx ,u,X .
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In an analogous way, by definition of Tx ,l,X we know that

(aprR,T ,l(X ))(x)≤ 1− βx ,l,X .

By Proposition 9.1.4, let z∗ be the element in U such that the supremum is reached,

i.e., βx ,l,X = 1−T (R(z∗, x), X (z∗)).

• If R(z∗, x)> 0, then z∗ ∈ Tx ,l,X and hence,

(apr
R,I ,u
(X ))(x)≥ T (R(z∗, x), X (z∗)) = 1− βx ,l,X .

• If R(z∗, x) = 0, then it holds that βx ,l,X = 1 − T (0, X (z∗)) = 1 and thus,

(aprR,T ,l(X ))(x) = 0.

Hence, we conclude that (aprR,T ,l(X ))(x) = 1− βx ,l,X .

The above results give more insight into how the VPFRS model operates. The

fuzzy set
�

Rp(x)∩ (InclI (Rp(x), X ))InclI (Rp(x),X )(y)

�

can be seen as the fuzzy set of

predecessors of x with those elements z excluded, for which

I (R(z, x), X (z))< I (R(y, x), X (y)).

If the cardinality of this restricted fuzzy set of predecessors is at least a fraction u of

that of the entire fuzzy set Rp(x), and there is no smaller such fuzzy set satisfying

this condition, then the VPFRS lower approximation equals I (R(y, x), X (y)). An

analogous interpretation can be given for the VPFRS upper approximation.

Furthermore, the (u, l)-fuzzy rough approximations operators are very similar

to the IC model with respect to the WCP-implicator I and t-norm T when the fuzzy

neighborhood operator N is considered, with N(x)(y) = (Rp(x))(y) = R(y, x) for

all x , y ∈ U . The only difference is that the infimum and supremum are taken over

Sx ,u,X , respectively, Tx ,l,X , instead of the whole universe U . Hence, we obtain that

(apr
R,I

, aprR,T )≤ (apr
R,I ,u

, aprR,T ,l).

Moreover, the two pairs coincide when (u, l) = (1,0).
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Proposition 9.1.6. Let (U , R) be a fuzzy relation approximation space with U
finite, I a WCP-implicator, T a t-norm and 0≤ l < u≤ 1, then

(apr
R,I

, aprR,T )≤ (apr
R,I ,u

, aprR,T ,l).

Moreover, when (u, l) = (1, 0) it holds that

(apr
R,I

, aprR,T ) = (apr
R,I ,1

, aprR,T ,0).

Proof. Let X ∈ F (U) and x ∈ U . The inequality follows immediately from Sx ,u,X ⊆ U
and Tx ,l,X ⊆ U for all u and l.

Next, let u= 1 and l = 0. First, if Rp(x) = ; is empty, then

(apr
R,I ,1
(X ))(x) = 1= inf

y∈U
I (0, X (y)) = (apr

R,I
(X ))(x),

(aprR,T ,0(X ))(x) = 0= sup
y∈U
T (0, X (y)) = (aprR,T (X ))(x),

i.e., both pairs coincide. If Rp(x) is not empty, then

αx ,1,X = sup{α ∈ [0,1] | ∀y ∈ U : R(y, x)> 0⇒I (R(y, x), X (y))≥ α}.

If R(y, x) = 0, then I (R(y, x), X (y)) = 1≥ α for any α ∈ [0, 1], so we obtain that

αx ,1,X = inf
y∈U
I (R(y, x), X (y)) = (apr

R,I
(X ))(x). By Proposition 9.1.5, we obtain

that (apr
R,I ,1
(X ))(x) = (apr

R,I
(X ))(x). For l = 0, we derive that

βx ,0,X = sup{α ∈ [0, 1] | ∀y ∈ U : R(y, x)> 0⇒ 1−T (R(y, x), X (y))≥ α}.

If R(y, x) = 0, then 1−T (R(y, x), X (y)) = 1 ≥ α for any α ∈ [0,1], so it holds

that

βx ,0,X = inf
y∈U
(1−T (R(y, x), X (y)))

= 1− sup
y∈U
T (R(y, x), X (y))

= 1− (aprR,T (X ))(x).

By Proposition 9.1.5, we obtain that (aprR,T ,0(X ))(x) = (aprR,T (X ))(x).
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Since the IC model encapsulates the model of Dubois and Prade [41,42], we

obtain for the Kleene-Dienes implicator, the minimum operator, a fuzzy similarity

relation and (u, l) = (1, 0) that the VPFRS model equals the model of Dubois and

Prade. Furthermore, when the set X is a crisp set and R is a crisp equivalence

relation, the VPFRS model coincides with the VPRS model of Ziarko.

Proposition 9.1.7. Let (U , E) be a Pawlak approximation space with U finite, I a

WCP-implicator, T a t-norm and 0≤ l < u≤ 1, then

(apr
E,I ,u

, aprE,T ,l) = (apr
E,u

, aprE,l).

Proof. Let x ∈ U . Since X and E are crisp, αx ,u,X and βx ,l,X are either 1 or 0. First,

note that, for y ∈ U ,

y ∈ [x]E ∩ (InclI ([x]E , X ))1 ⇔ E(y, x) = 1 and X (y) = 1

⇔ y ∈ [x]E ∩ X .

For αx ,u,X we derive that

αx ,u,X = 1 ⇔
|[x]E ∩ (InclI ([x]E , X ))1|

|[x]E |
≥ u

⇔
|[x]E ∩ X |
|[x]E |

≥ u

⇔ x ∈ apr
E,u
(X ).

Moreover, since

y ∈ [x]E ∩ ((InclT ([x]E , X ))NS )1 ⇔ E(y, x) = 1 and X (y) = 0

⇔ y ∈ [x]E ∩ X c,

hence, we obtain for βx ,l,X that

βx ,l,X = 1 ⇔
|[x]E ∩ ((InclT ([x]E , X ))NS )1|

|[x]E |
≥ 1− l

⇔
|[x]E ∩ X c|
|[x]E |

≥ 1− l

⇔
|[x]E ∩ X |
|[x]E |

≤ l
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⇔ x /∈ aprE,l(X ).

The proof now follows from Proposition 9.1.5.

To end, we want to discuss the properties of the VPFRS model. By the above

proposition, we only need to discuss the properties (D) for u = 1 − l, (SM),

(UE) and (CS), since the VPRS model of Ziarko does not satisfy any of the other

properties.

Proposition 9.1.8. Let (U , R) be a fuzzy relation approximation space with U
finite, I a WCP-implicator, T a t-norm and 0≤ l < u≤ 1.

• The pair (apr
R,I ,u

, aprR,T ,l) satisfies (D) with respect toNS if T is the induced

t-norm of I and NS and u= 1− l.

• The pair (apr
R,I ,u

, aprR,T ,l) satisfies (SM).

Proof. • Let X ∈ F (U) and x ∈ U . If Rp(x) = ;, then

(apr
R,I ,u
(XNS ))NS (x) =NS(1) = 0= (aprR,T ,l(X ))(x).

If Rp(x) 6= ;, let α ∈ [0, 1] and y ∈ U , then

y ∈ (InclI (R
p(x), XNS ))α ⇔ I (Rp(x)(y), 1− X (y))≥ α

⇔ 1−T (Rp(x)(y), X (y))≥ α

⇔ y ∈ ((InclT (R
p(x), X ))NS )α.

Therefore, we obtain that Fx ,XNS (α)≥ u⇔ Gx ,X (α)≥ u= 1− l and thus,

βx ,l,X = sup{α ∈ {1−T (R(y, x), X (y)) | y ∈ U} | Gx ,X (α)≥ 1− l}

= sup{α ∈ {I (R(y, x), 1− X (y)) | y ∈ U} | Fx ,XNS (α)≥ u}

= αx ,u,XNS .

By Proposition 9.1.5, we derive that

(apr
R,I ,u
(XNS )NS )(x) = 1−αx ,u,XNS = 1− βx ,l,X = (aprR,T ,l(X ))(x).

We conclude that the pair (apr
R,I ,u

, aprR,T ,l) satisfies (D) with respect to the

standard negator.
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• Let X , Y be fuzzy sets in U such that X ⊆ Y and x ∈ U . If Rp(x) = ;, then

(apr
R,I ,u
(X ))(x) = 1= (apr

R,I ,u
(Y ))(x),

(aprR,T ,l(X ))(x) = 0= (aprR,T ,l(Y ))(x).

Now, assume Rp(x) 6= ;. Due to Proposition 9.1.5, we have to prove that

αx ,u,X ≤ αx ,u,Y and βx ,l,X ≥ βx ,l,Y . First, we reorder the elements of U such

that U = {z1, z2, . . . , zn} and

I (R(z1, x), X (z1))≥ I (R(z2, x), X (z2))≥ . . .≥ I (R(zn, x), X (zn)).

By Proposition 9.1.4, there exists an m ∈ {1, 2, . . . , n} such that

αx ,u,X = I (R(zm, x), X (zm)).

Now, for every i ∈ {1, 2, . . . , n} it holds that

I (R(zi , x), Y (zi))≥ I (R(zi , x), X (zi))

and thus for all i ∈ {1, 2, . . . , m},

I (R(zi , x), Y (zi))≥ αx ,u,X .

By definition of αx ,u,X , it holds that
∑

z∈U :
I (R(z,x),X (z))≥αx ,u,X

R(z, x)≥ u ·
∑

z∈U

R(z, x)

and thus it also holds that
∑

z∈U :
I (R(z,x),Y (z))≥αx ,u,X

R(z, x)≥ u ·
∑

z∈U

R(z, x).

In other words,

αx ,u,X ∈
�

α ∈ [0,1] | eα(Rp(x), Y )≤ 1− u
	

Hence, αx ,u,X ≤ αx ,u,Y . In an analogous way, we obtain that

βx ,l,Y ∈ {α ∈ [0, 1] | ēα(Rp(x), X )≤ l} ,

and thus, βx ,l,Y ≤ βx ,l,X .
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Note that the duality property is limited to the standard negator, since NS is

used in the definition of Tx ,l,X and βx ,l,X for X ∈ F (U) and x ∈ U . The VPFRS

model does not satisfy (UE) and (CS) as illustrated in the next example.

Example 9.1.9. Let U = {x , y, z},T the Łukasiewicz t-norm andI the Łukasiewicz

implicator and let R be the fuzzy T -similarity relation defined by R(x , y) = 0.7,

R(x , z) = 0.8 and R(y, z) = 0.8. Let l = 0.4 and u = 0.6, then (apr
R,I ,u

(;))(y) = 0.2

and (aprR,T ,l(U))(y) = 0.8. We conclude that the properties (UE) and (CS) are not

satisfied.

We continue with Cornelis et al.’s vaguely quantified fuzzy rough set model.

9.1.2 Vaguely quantified fuzzy rough set model

In 2007, Cornelis et al. [16] introduced the Vaguely Quantified Fuzzy Rough Set

(VQFRS) model. In contrast to the other fuzzy rough set approaches, they did not

make use of implicators and conjunctors, but they worked with fuzzy quantifiers

to extend Ziarko’s VPRS model.

Definition 9.1.10. [16] A regularly increasing fuzzy quantifier is an increasing

mapping Q : [0, 1]→ [0,1] which satisfies Q(0) = 0 and Q(1) = 1.

The VQFRS model is then defined based on two such regularly increasing fuzzy

quantifiers.

Definition 9.1.11. [16] Let (U , R) be a fuzzy relation approximation space with U
finite and let (Qu,Q l) be a pair of regularly increasing fuzzy quantifiers. The pair

of (Qu,Q l)-vaguely quantified fuzzy rough approximation operators (apr
R,Qu

, aprR,Ql
)

is defined as follows: let X ∈ F (U) and x ∈ U , then

(apr
R,Qu
(X ))(x) =

(

Qu

�

|Rp(x)∩X |
|Rp(x)|

�

Rp(x) 6= ;

1 Rp(x) = ;,

(aprR,Ql
(X ))(x) =

(

Q l

�

|Rp(x)∩X |
|Rp(x)|

�

Rp(x) 6= ;

1 Rp(x) = ;.
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In [16], the interpretation of this model is as follows: x belongs to the lower

approximation of X if ‘most’ of the elements related to x belong to X and x belongs

to the upper approximation of X if ‘at least some’ elements related to x belong

to X . The linguistic quantifiers ‘most’ and ‘at least some’ generalize the crisp ∀-

and ∃-quantifiers, and are modeled by means of the fuzzy quantifiers Qu and Q l ,

respectively. In [16], as a specific example, the authors put Qu = Q(0.2,1) and

Q l =Q(0.1,0.6), where Q(a,b) with a, b ∈ [0,1] is defined by

∀c ∈ [0,1]: Q(a,b)(c) =























0 c ≤ a
2(c−a)2

(b−a)2 a ≤ c ≤ a+b
2

1− 2(c−b)2

(b−a)2
a+b

2 ≤ c ≤ b

1 b ≤ c.

As pointed out in [16], the VQFRS model has Pawlak’s model and Ziarko’s

VPRS model as specific cases when X is a crisp set and R is a crisp equivalence

relation. In the former case, let Qu =Q∀ and Q l =Q∃, where

∀c ∈ [0,1]: Q∀(c) =

(

0 c < 1

1 c = 1,

∀c ∈ [0,1]: Q∃(c) =

(

0 c = 0

1 c > 0.

In the case of the VPRS model, let Qu =Q≥u and Q l =Q>l , where

∀c ∈ [0,1]: Q≥u(c) =

(

0 c < u

1 c ≥ u,

∀c ∈ [0, 1]: Q>l(c) =

(

0 c ≤ l

1 c > l.

There is no connection between the VQFRS model and the IC model, i.e., in

general, we cannot find fuzzy quantifiers Qu and Q l such that

(apr
R,Qu

, aprR,Ql
) = (apr

R,I
, aprR,C )
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for a certain implicator I and conjunctor C .

To end, we discuss the properties of the VQFRS model. Since the VPRS model

of Ziarko is a special case of the VQFRS model, we only discuss (D), (SM), (UE)

and (CS). It can be verified that the property (SM) is satisfied and the property

(UE) is satisfied if R is inverse serial.

Proposition 9.1.12. Let (U , R) be a fuzzy relation approximation space with U
finite and let (Qu,Q l) be a pair of regularly increasing fuzzy quantifiers.

• The pair (apr
R,Qu

, aprR,Ql
) satisfies (SM).

• The pair (apr
R,Qu

, aprR,Ql
) satisfies (UE) if R is a inverse serial6 fuzzy relation.

Proof. The property (SM) follows from the monotonicity of regularly increasing

fuzzy quantifiers. Next, let R be a fuzzy serial relation, then for all x ∈ U it holds

that

Qu

�

|Rp(x)∩ ;|
|Rp(x)|

�

=Q l

�

|Rp(x)∩ ;|
|Rp(x)|

�

= 0

and

Qu

�

|Rp(x)∩ U |
|Rp(x)|

�

=Q l

�

|Rp(x)∩ U |
|Rp(x)|

�

= 1.

It is very easy to see that the condition on R is necessary for the property (UE):

let Rp(x) = ; for x ∈ U , then (apr
R,Qu
(;))(x) = 1. The properties (D) and (CS) are

not satisfied, as illustrated in the next example:

Example 9.1.13. Let U = {x , y, z} and R the fuzzy set U × U . Let α = 0.3,

Qu = Q(0.2,1) and Q l = Q(0.1,0.6), then (apr
R,Qu
(α̂))(x) = Qu(0.3) = 1

32 . Thus,

(CS) is not satisfied. Moreover, consider the standard negator NS . We derive that

(aprR,Ql
(α̂NS ))NS (x) = 1−Q l(0.7) = 0. Hence, the duality property is not satisfied.

Next, we discuss Hu et al.’s soft fuzzy rough set model.

6If U is infinite, the fuzzy relation R should be strongly inverse serial.
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9.1.3 Soft fuzzy rough set model

Inspired by soft margin support vector machines [20], Hu et al. [69] proposed

in 2010 the Soft Fuzzy Rough Set (SFRS) model as a new robust fuzzy rough set

model. An important ingredient of the model is the so-called soft distance between

an element x ∈ U and a crisp set X ⊆ U , defined as follows in [70]:

SD(x , X ) = argd(x ,y) sup{d(x , y)−δ ·mx ,y | y ∈ X },

where d is a distance funtion, δ > 0 is a penalty factor and

mx ,y = |{z ∈ U | d(x , z)< d(x , y)}|.

However, we may encounter a problem with this definition due to the use of the

function argd(x ,y): when the value of the supremum is reached for different values

of y, it is not clear which y should generate the soft distance. The following

example illustrates this.

Example 9.1.14. Let U = {x , y1, y2, y3}, X = {y1, y2, y3}, δ = 0.1 and

d(x , x) = 0, d(x , y1) = 0.2, d(x , y2) = 0.3, d(x , y3) = 0.4.

Because d(x , y1) − δ · mx ,y1
= d(x , y2) − δ · mx ,y2

= d(x , y3) − δ · mx ,y3
= 0.1,

SD(x , X ) could be either 0.2, 0.3 or 0.4.

Based on the soft distance, the authors defined the SFRS model with a distance

function d determined by d(x , y) = 1 − R(y, x) for all x , y ∈ U and R a fuzzy

relation. However, since the use of the arg function leads to ambiguity as illustrated

above, we introduce a slightly adapted definition of the model.

Definition 9.1.15. Let (U , R) be a fuzzy relation approximation space with U , I
an implicator, C a conjunctor and δ > 0 a penalty factor. The soft fuzzy rough
approximation operators (apr

R,I ,δ
, aprR,C ,δ) are defined by, for X ∈ F (U), x ∈ U ,

(apr
R,I ,δ

(X ))(x) = NI
�

inf
y∈Ωx

R(y, x)
�

,

(aprR,C ,δ(X ))(x) = inf
y∈Πx

R(y, x),
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with

Ωx =
�

z ∈ U | X (z)≤ µx and (∀z′ ∈ U)(X (z′)≤ µx

⇒ R(z′, x) +δ ·mx ,z′ ≥ R(z, x) +δ ·mx ,z)
	

,

µx = sup{X (z) | z ∈ U and I (R(z, x), X (z)) = σx},

σx = inf
z∈U
I (R(z, x), X (z)),

mx ,z = |{w ∈ U | X (w)≤ µx and R(w, x)> R(z, x)}|

and

Πx =
�

z ∈ U | X (z)≥ νx and (∀z′ ∈ U)(X (z′)≥ νx

⇒ R(z′, x) +δ · nx ,z′ ≥ R(z, x) +δ · nx ,z)
	

,

νx = inf{X (z) | z ∈ U and C (R(z, x), X (z)) = τx},

τx = sup
z∈U
C (R(z, x), X (z)),

nx ,z = |{w ∈ U | X (w)≥ νx and R(w, x)> R(z, x)}|.

We briefly explain the intuition behind the lower approximation, the explanation

for the upper approximation is analogous. First, we identify those elements z in U
for which the value of the infimum considered in the IC lower approximation,

σx = (apr
R,I
(X ))(x), is reached. As there may be several of them, we consider

the one that has the highest membership to X , we denote this membership degree

by µx . To obtain Ωx , we look for z in U such that X (z)≤ µx and R(z, x) +δ ·mx ,z

is minimal, where mx ,z counts the number of elements w in U such that X (w)≤ µx

and R(w, x) > R(z, x). Among all the y ∈ Ωx , we choose the one that has the

smallest value of R(y, x). Finally, to compute the lower approximation in x , we

take the negation of that value R(y, x).
By tuning the penalty factor δ, we may allow for more or less noise tolerance.

If δ is sufficiently large, the result will be determined by the largest value of R(z, x)
(or equivalently, the smallest value of mx ,z) among the considered z, since other

elements will not satisfy the minimality condition. For small values of δ, more

noise tolerance is allowed. In this case, the largest values of R(z, x) are overlooked,

and consequently the membership degree to the lower approximation gets larger.
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To see the connection with the soft distance, note that taking z such that

R(z, x)+δ ·mx ,z is minimal is equivalent by taking z such that 1−R(z, x)−δ ·mx ,z

is maximal. In other words, we consider the soft distance SD(z, Rp(x)).

In general, there is no relationship between the SFRS model and the IC model.

To end, we discuss the properties of the SFRS model. The fuzzy approximation

operators satisfy the duality with respect to the considered involutive negator.

Proposition 9.1.16. Let (U , R) be a fuzzy relation approximation space with U , I
an implicator and δ > 0 a penalty factor. If the induced negator NI is involutive

and C is the induced conjunctor of I and NI , then the pair (apr
R,I ,δ

, aprR,C ,δ)
satisfies (D) with respect to NI .

Proof. Let X ∈ F (U) and x ∈ U . Since NI is involutive, it is continuous. For the

lower approximation of XNI in x and the upper approximation of X in x we obtain

that:

σx = inf
z∈U
I (R(z, x),NI (X (z)))

= inf
z∈U
NI (C (R(z, x), X (z)))

= NI
�

sup
z∈U
C (R(z, x), X (z))

�

= NI (τx),

µx = sup{NI (X (z)) | z ∈ U and I (R(z, x),NI (X (z))) = σx}

= NI (inf{X (z) | z ∈ U and NI (C (R(z, x), X (z))) =NI (τx)})

= NI (inf{X (z) | z ∈ U and C (R(z, x), X (z)) = τx})

= NI (νx).

Furthermore, we have for every z ∈ U that

mx ,z = |{w ∈ U | NI (X (w))≤ µx ∧ R(w, x)> R(z, x)}|

= |{w ∈ U | X (w)≥NI (µx)∧ R(w, x)> R(z, x)}|

= |{w ∈ U | X (w)≥ νx ∧ R(w, x)> R(z, x)}|

= nx ,z .
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Hence,

Ωx =
�

z ∈ U | NI (X (z))≤ µx and (∀z′ ∈ U)(NI (X (z′))≤ µx

⇒ R(z′, x) +δ ·mx ,z′ ≥ R(z, x) +δ ·mx ,z)
	

,

=
�

z ∈ U | X (z)≥ νx and (∀z′ ∈ U)(X (z′)≥ νx

⇒ R(z′, x) +δ · nx ,z′ ≥ R(z, x) +δ · nx ,z)
	

,

= Πx .

We conclude that

(apr
R,I ,δ

(XNI ))NI (x) = inf
y∈Ωx

R(y, x)

= inf
y∈Πx

R(y, x)

= (aprR,C ,δ(X ))(x).

In particular, Proposition 9.1.16 holds if the pair (I ,T ) consists of an S-

implicator based on a t-conorm S and NI with S the NI -dual of T , or if it

consists of an IMTL-t-norm and its R-implicator.

Other properties do not hold for the pair (apr
R,I ,δ

, aprR,C ,δ), although in [69]
the authors claimed that (IU) is satisfied for the Kleene-Dienes implicator, the

minimum operator and a fuzzy similarity relation. However, below we show that

this claim is false.

Example 9.1.17. Let U = {x , y, z}, I the Kleene-Dienes implicator, T the mini-

mum operator and δ = 0.1. Note that the induced negator ofI is the standard nega-

tor. Let R be a fuzzy similarity relation with R(x , y) = 0.8, R(x , z) = R(y, z) = 0.4.

Let X = 0.4/x + 0.5/y + 0.2/z and Y = 0.8/x + 0.5/y + 0.8/z, then X ⊆ Y , and

thus X ∩ Y = X . We obtain that

(a) (apr
R,I ,δ

(X ))(x) = (apr
R,I ,δ

(X ∩ Y ))(x) = 1− R(z, x) = 0.6,

(b) (apr
R,I ,δ

(Y ))(x) = 1− R(y, x) = 0.2,
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hence, apr
R,I ,δ

(X ∩ Y ) 6= apr
R,I ,δ

(X )∩ apr
R,I ,δ

(Y ), thus, the property (IU) is not

satisfied. Moreover, the properties (INC) and (SM)7 are not satisfied, since

(a) (apr
R,I ,δ

(X ))(x) = 0.6> 0.4= X (x),

(b) (apr
R,I ,δ

(X ))(x) = 0.6> 0.2= (apr
R,I ,δ

(Y ))(x).

In addition, we have that

(a) apr
R,I ,δ

(X ) = 0̂.6= apr
R,I ,δ

(apr
R,I ,δ

(X )),

(b) aprR,C ,δ(apr
R,I ,δ

(X )) = 0.8/x + 0.8/y + 0.4/z.

Hence, as (aprR,C ,δ(apr
R,I ,δ

(X )))(x) = 0.8 > 0.6 = (apr
R,I ,δ

(X ))(x), the prop-

erties (CS) and (LU) do not hold. The property (A) does not hold either, since

apr
R,I ,δ

(0̂.6) ⊆ 0̂.6, but 0̂.6 6⊆ aprR,C ,δ(0̂.6). The property (UE) is not satisfied,

since (apr
R,I ,δ

(;))(x) = 0.6. Furthermore, since

(a) apr
R,I ,δ

(Y ) = 0.2/x + 0.6/y + 0.6/z,

(b) apr
R,I ,δ

(apr
R,I ,δ

(Y )) = 0.2/x + 0.2/y + 0.6/z,

the property (ID) is not satisfied for a left-continuous t-norm T and an S-implicator

based on the N -dual of T and N .

The property (ID) does not hold for a left-continuous t-norm and its R-implicator

either. Consider the minimum operator and the Gödel implicator. Note that the

induced negator is the Gödel negator. Let R be the fuzzy similarity relation with

R(x , y) = 0.1 and R(x , z) = R(y, z) = 0. Let δ = 0.2, then for the fuzzy set

X = 0.7/x + 0.2/y + 0.1/z, it holds that apr
R,I ,δ

(X ) = 0/x + 1/y + 0/z. However,

(apr
R,I ,δ

(apr
R,I ,δ

(X )))(y) = 0,

thus, the (ID) property is not satisfied.

Finally, let U = {x , y, z} and let R1 and R2 be fuzzy similarity relations with

R1(x , y) = 0.4, R2(x , y) = 0.9 and R1(x , z) = R1(y, z) = R2(x , z) = R2(y, z) = 0.3,

then R1 ⊆ R2. Consider the Łukasiewicz implicator and δ = 0.2, then we obtain for

X = 0.6/x + 0.6/y + 0.2/z,

7In [35], it was shown that (SM) is not satisfied for crisp subsets of U .
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(a) (apr
R1,I ,δ

(X ))(x) = 1− R1(y, x) = 0.6,

(b) (apr
R2,I ,δ

(X ))(x) = 1− R2(z, x) = 0.7,

thus (apr
R1,I ,δ

(X ))(x)< (apr
R2,I ,δ

(X ))(x). We conclude that (RM) is not satisfied.

The final noise-tolerant model based on frequency we discuss is Yao et al.’s

variable precision fuzzy rough set model based on fuzzy granules.

9.1.4 Variable precision fuzzy rough set model based on fuzzy
granules

The last model we discuss based on frequency was proposed in 2014 by Yao et

al. [178] and is a granule-based fuzzy rough set model instead of an element-

based one. In this approach, called FG model henceforth, the authors work with

a left-continuous t-norm T , its NS-dual t-conorm S and a fuzzy T -similarity

relation R.

The relationship between fuzzy granules and fuzzy rough set theory was dis-

cussed for the first time by Chen et al. in [13]. In traditional set theory, a set is

determined by the elements it contains. In fuzzy set theory, a fuzzy point plays

a similar role: a non-empty fuzzy set is the union of certain fuzzy points. Fuzzy

granules can then be constructed around these fuzzy points.

Definition 9.1.18. [13] Let x ∈ U and λ ∈ (0,1]. A fuzzy point is a fuzzy set xλ
in U defined by

∀y ∈ U : xλ(y) =

(

λ y = x

0 y 6= x .

Note that the fuzzy point x1 was previous denoted by the fuzzy set 1x .

Definition 9.1.19. [13] Let (U , R) be a fuzzy relation approximation space with U
finite, x ∈ U and λ ∈ [0, 1]. Let T be a left-continuous t-norm and S its NS-dual

t-conorm. The fuzzy information granules [xλ]TR and [xλ]SR are defined by:

∀y ∈ U : [xλ]
T
R (y) = T (R(y, x),λ),

∀y ∈ U : [xλ]
S
R (y) = S (1− R(y, x), 1−λ)
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= 1−T (R(y, x),λ).

Note that [xλ]TR and [xλ]SR can be seen as fuzzy neighborhoods of the object

x ∈ U . However, the membership degree in x depends on the value of λ.

Given the fuzzy information granules, we have the following characterization

for the IC approximation operators apr
R,I

en aprR,T .

Proposition 9.1.20. [178] Let (U , R) be a fuzzy relation approximation space

with U finite and R a fuzzy T -similarity relation for T a left-continuous t-norm

and I its R-implicator, then for X ∈ F (U) we have

apr
R,I
(X ) =

⋃
�

[xλ]
T
R | x ∈ U ,λ ∈ [0,1], [xλ]

T
R ⊆ X

	

.

Moreover, if T is an IMTL-t-norm and I is its R-implicator such that the involutive

negator of I is the standard negator, it holds that

aprR,T (X ) =
⋂
�

[xλ]
S
R | x ∈ U ,λ ∈ [0, 1], X ⊆ [xλ]SR

	

,

with S the NI -dual of T .

Note that the result in the previous proposition can be extended to any involu-

tive negator N if the fuzzy granules in Definition 9.1.19 would be defined with

respect to this negator N .

Now, instead of considering the fuzzy granules [xλ]TR and [xλ]SR such that

[xλ]TR (y) ≤ X (y), respectively X (y) ≤ [xλ]SR (y), holds for all y ∈ U , Yao et al.

considered the fuzzy granules such that for ‘many’ elements y these inequalities

hold. This is controlled by a parameter γ≤ 1 which is recommended to be chosen

very close to 1. In [178] the relation R is a T -similarity relation, we consider the

model for arbitrary binary fuzzy relations, as was also done simultaneously in a

paper by Wang and Hu [164].

Definition 9.1.21. [164,178] Let (U , R) be a fuzzy relation approximation space

with U finite, T a left-continuous t-norm, S the NS-dual t-conorm of T and
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γ ∈ [0,1]. The fuzzy rough approximation operators based on fuzzy granules
(apr

R,T ,γ
, aprR,S ,γ) are defined by, for X ∈ F (U) and x ∈ U ,

(apr
R,T ,γ

(X ))(x)

= sup

�

[zλ]
T
R (x) | z ∈ U ,λ ∈ [0,1],

|{y ∈ U | [zλ]TR (y)≤ X (y)}|
|U |

≥ γ
�

,

(aprR,S ,γ(X ))(x)

= inf

�

[zλ]
S
R (x) | z ∈ U ,λ ∈ [0,1],

|{y ∈ U | X (y)≤ [zλ]SR (y)}|
|U |

≥ γ
�

.

If γ = 1, R is a fuzzy T -similarity relation, T is an IMTL-t-norm and I its

R-implicator such that NI = NS this model coincides with the IC model. For

general γ ∈ [0, 1), it holds that (apr
R,I

, aprR,T )≤ (apr
R,T ,γ

, aprR,S ,γ).

In [178], another characterization of the FG model was proposed. It is proven

that for a fuzzy T -similarity relation R, the supremum, respectively the infimum,

is reached in x , when computing the lower, respectively the upper, approximation

in x ∈ U .

Proposition 9.1.22. [178] Let (U , R) be a fuzzy relation approximation space

with U finite, T a left-continuous t-norm, S the NS-dual t-conorm of T and

γ ∈ [0,1]. It holds, for X ∈ F (U) and x ∈ U , that

(apr
R,T ,γ

(X ))(x)

= sup

�

[xλ]
T
R (x) | λ ∈ [0, 1],

|{y ∈ U | [xλ]TR (y)≤ X (y)}|
|U |

≥ γ
�

,

(aprR,S ,γ(X ))(x)

= inf

�

[xλ]
S
R (x) | λ ∈ [0,1],

|{y ∈ U | X (y)≤ [xλ]SR (y)}|
|U |

≥ γ
�

.

Note that it suffices that R is reflexive and T -transitive for Proposition 9.1.22 to

hold. Next, we discuss the properties of the FG model.

Proposition 9.1.23. Let (U , R) be a fuzzy relation approximation space with U
finite, T a left-continuous t-norm, S the NS-dual t-conorm of T and γ ∈ [0,1].
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• The pair (apr
R,T ,γ

, aprR,S ,γ) satisfies (D) with respect to the standard negator.

• The pair (apr
R,T ,γ

, aprR,S ,γ) satisfies (SM).

• The pair (apr
R,T ,γ

, aprR,S ,γ) satisfies (RM), when the considered fuzzy rela-

tions are reflexive and T -transitive.

Proof. Properties (D) and (SM) were proven in [178]. Let R1 ⊆ R2 be reflexive and

T -transitive relations and let X ∈ F (U). We introduce the notation λi
x for x ∈ U

and i = 1, 2:

λi
x = sup

¨

λ ∈ [0, 1] |
|{y ∈ U | [xλ]TRi

(y)≤ X (y)}|

|U |
≥ γ

«

.

Due to Proposition 9.1.22 and the left-continuity of T , we have for x ∈ U and

i = 1,2:

(apr
Ri ,T ,γ

(X ))(x)

= sup

¨

[xλ]
T
Ri
(x) | λ ∈ [0,1],

|{y ∈ U | [xλ]TRi
(y)≤ X (y)}|

|U |
≥ γ

«

= [xλi
x
]TRi
(x)

= T (Ri(x , x),λi
x)

= λi
x .

Now, since R1 ⊆ R2, it holds for all x ∈ U and λ ∈ [0,1] that

[xλ]
T
R1
⊆ [xλ]TR2

.

Hence λ2
x ≤ λ

1
x for all x ∈ U and thus, apr

R2,T ,γ
(X ) ⊆ apr

R1,T ,γ
(X ). The inclusion

aprR1,S ,γ(X ) ⊆ aprR2,S ,γ(X ) follows by duality. We conclude that (RM) is satisfied.

The other properties are not satisfied, as illustrated in the next example.

Example 9.1.24. Let U = {x1, x2, . . . , x100} and let R be the fuzzy similarity rela-

tion with R(x i , x j) = 0.7 for i 6= j. Consider the Łukasiewicz t-norm and t-conorm,

then (apr
R,T ,γ
(;))(x) = 0.3 for all x ∈ U , hence, the properties (INC), (CS) and
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(UE) do not hold. Since (aprR,S ,γ(apr
R,T ,γ

(;)))(x) = 1 for all x ∈ U , the property

(LU) is not satisfied. The property (A) is not satisfied either, since ; ⊆ apr
R,T ,γ

(;),
but aprR,S ,γ(;) = U 6⊆ ;. Property (ID) is not satisfied, since (aprR,S ,γ(U))(x) = 0.3

and (aprR,S ,γ(aprR,S ,γ(U)))(x) = 1.

On the other hand, let U = {x , y, z}, R a fuzzy similarity relation such that

R(x , y) = R(x , z) = 0.4 and R(y, z) = 0.5 and γ= 0.6. Consider the Łukasiewicz

t-norm and t-conorm. Let X = 0.6/x +0.6/y +0.2/z and Y = 0.6/x +0/y +0.7/z,

then (apr
R,T ,γ

(X ))(z) = 1, (apr
R,T ,γ

(Y ))(z) = 0.7 and

(apr
R,T ,γ

(apr
R,T ,γ

(X ∩ Y )))(z) = 0.5.

Hence, the property (IU) is not satisfied.

Next, we discuss the fuzzy variable precision rough set model proposed by

Zhao et al., where a level of uncertainty is introduced in the approximated set.

9.2 Fuzzy variable precision rough set model

Another model designed to make approximation operators more robust, is the

Fuzzy Variable Precision Rough Set (FVPRS) model, proposed by Zhao et al. [196]
in 2009. It introduces a level α of uncertainty into the IC model. Below, we recall

the definition of the approximation operators in this model.

Definition 9.2.1. [196] Let (U , R) be a fuzzy relation approximation space, I an

implicator, C a conjunctor, N an involutive negator, D a disjunctor and α ∈ [0, 1).
The α-variable precision fuzzy rough approximation operators (apr

R,I ,α
, aprR,C ,α)

are defined by, for X ∈ F (U) and x ∈ U ,

(apr
R,I ,α

(X ))(x) = inf
y∈U
I (R(y, x),D(α, X (y))),

(aprR,C ,α(X ))(x) = sup
y∈U
C (R(y, x),CD,N (N (α), X (y))).

In [196], the following fuzzy logical connectives were considered: let T be

a lower semi-continuous t-norm, N an involutive negator and D the maximum

operator, then the implicator I and the conjunctor C are either the R-implicator

of T and the induced conjunctor of I and N or the S-implicator based on the
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N -dual of T and N and the t-norm T .

In the model of Zhao, elements with very small membership degrees to X are

smoothed with an uncertainty level α to limit their impact on the lower approxi-

mation, while the opposite happens for the upper approximation. For this reason,

it is clear that the pair (apr
R,I

, aprR,T )≤ (apr
R,I ,α

, aprR,C ,α). In general, α will be

chosen close to 0. Note that if α is equal to 0 and D is a border disjunctor, we

derive the IC model as a special case of the FVPRS model.

On the other hand, we can also interpret the FVPRS model as a specific instance

of the IC model. Indeed, let X ∈ F (U), then we define the fuzzy sets Y1 and Y2

in U by, for x ∈ U ,

Y1(x) = D(α, X (x)),

Y2(x) = CD,N (N (α), X (x)),

then it is clear that apr
R,I ,α

(Y1) = apr
R,I
(X ) and aprR,C ,α(Y2) = aprR,C ,α(X ). Based

on this relationship, it is now easy to see that (SM), (RM) and (IU) always hold for

the FVPRS model, and that (D), (ID) and (LU) hold under the same conditions as

for the IC model. It also satisfies (A), but under stricter conditions than compared

to the ones used in the IC model.

Proposition 9.2.2. Let (U , R) be a fuzzy relation approximation space, I an

implicator, C a conjunctor, N an involutive negator, D a disjunctor and α ∈ [0, 1).

• The pair (apr
R,I ,α

, aprR,C ,α) satisfies (D) with respect to the involutive nega-

tor N if C is the induced conjunctor of I and N .

• The pair (apr
R,I ,α

, aprR,C ,α) satisfies (SM).

• The pair (apr
R,I ,α

, aprR,C ,α) satisfies (IU) if D is the maximum operator.

• The pair (apr
R,I ,α

, aprR,C ,α) satisfies (ID) if C is a left-continuous t-norm T ,

I is its R-implicator and R is T -transitive.

• The pair (apr
R,I ,α

, aprR,C ,α) satisfies (ID) if C is a left-continuous t-norm T ,

I is the S-implicator based on theN -dual of T andN and R is T -transitive.
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• The pair (apr
R,I ,α

, aprR,C ,α) satisfies (LU) if C is a left-continuous t-norm T ,

I is its R-implicator and R is symmetric and T -transitive.

• The pair (apr
R,I ,α

, aprR,C ,α) satisfies (A) if C is an IMTL-t-norm T , I is its

R-implicator,N is the induced negator of I , D is the dual of T with respect

to the induced negator of I and R is symmetric.

• The pair (apr
R,I ,α

, aprR,C ,α) satisfies (RM).

Proof. • The proof of (D) is similar to the proof of Proposition 7.3.1.

• The property (SM) holds, since every implicator, conjunctor and disjunctor

is increasing in the second parameter.

• For (IU), let X1, X2 ∈ F (U) and define Y1 and Y2 by, for i = 1, 2,

∀x ∈ U : Yi(x) =max(α, X i(x)),

then

(apr
R,I ,α

(X1 ∩ X2))(x)

= inf
y∈U
I (R(y, x),max(α,min(X1(y), X2(y))))

= inf
y∈U
I (R(y, x),min(max(α, X1(y)), max(α, X2(y))))

= inf
y∈U
I (R(y, x),min(Y1(y), Y2(y)))

= (apr
R,I
(Y1 ∩ Y2))(x)

= (apr
R,I
(Y1)∩ apr

R,I
(Y2))(x)

= (apr
R,I ,α

(X1)∩ apr
R,I ,α

(X2))(x).

The proof for the upper approximation is similar, since CSM ,N = TM holds

for every involutive negator N .

• The proof of (ID) is similar to the proof of Proposition 7.3.5.

• The proof of (LU) is similar to the proof of Proposition 7.3.6.
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• Note that for a, b ∈ [0, 1]: CD,N (a, b) = T (a, b) and I (N (a), b) = D(a, b)
(see [138]). Let X , Y ∈ F (U), then

aprR,T ,α(X ) ⊆ Y

⇔ ∀x , y ∈ U : T (R(y, x),T (N (α), X (y)))≤ Y (x)

⇔ ∀x , y ∈ U : T (T (R(y, x),N (α)), X (y))≤ Y (x)

⇔ ∀x , y ∈ U : X (y)≤ I (T (R(y, x),N (α)), Y (x))

⇔ ∀x , y ∈ U : X (y)≤ I (R(y, x),I (N (α), Y (x)))

⇔ ∀x , y ∈ U : X (y)≤ I (R(x , y),D(α, Y (x)))

⇔ X ⊆ apr
R,I ,α

(Y ).

• The property (RM) holds, since every implicator is decreasing in the first

parameter and every conjunctor is increasing in the first parameter.

Other properties do not hold for the FVPRS model, as illustrated in the next

example.

Example 9.2.3. Let U = {x , y, z} and R = U × U . Consider the Łukasiewicz

implicator and conjunctor, the standard negator and the maximum operator, then

(apr
R,I ,α

(;))(x) = 0.1 for all x ∈ U . Hence, the properties (INC), (CS) and (UE)

are not satisfied.

In the following section, we discuss robust fuzzy rough set models which make

use of other aggregation operators then the infimum and supremum operators.

9.3 Noise-tolerant models based on aggregation op-

erators

A drawback of the IC model is its use of the infimum and supremum operators.

The lower, respectively upper, approximation is fully determined by the worst,

respectively best, value. To overcome this problem, fuzzy rough set models based

on other aggregation operators have been defined. Models of this type are the
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β-precision fuzzy rough set model of Fernández-Salido and Murakami [47] and

the ordered weighted average based fuzzy rough set model proposed by Cornelis

et al. [19]. We start with the former one.

9.3.1 β-precision fuzzy rough set model

The oldest noise-tolerant fuzzy rough set model is due to Fernández-Salido and

Murakami [47], who proposed the β-Precision Fuzzy Rough Set (β-PREC) model

in 2003. They tackle the noise problem by replacing the infimum and supremum

operators by a β-precision quasi t-norm and t-conorm:

Definition 9.3.1. [47] Let (U , R) be a fuzzy relation approximation space with U
finite, T a t-norm, S a t-conorm and β ∈ [0, 1]. Given an implicator I and a con-

junctorC , the β -precision fuzzy rough approximation operators (apr
R,I ,Tβ

, aprR,C ,Sβ )

are defined by, for X ∈ F (U) and x ∈ U ,

(apr
R,I ,Tβ

(X ))(x) = Tβ
y∈U
(I (R(y, x), X (y))) ,

(aprR,C ,Sβ (X ))(x) = Sβ
y∈U
(C (R(y, x), X (y))) .

Controlled by β , the smallest elements are omitted in the calculation of the

lower approximation. Analogously, the largest elements will not influence the

upper approximation. Therefore, when we consider the minimum and maximum

operator for T and S , the approximation operators of the β-PREC model satisfy

(apr
R,I

, aprR,C )≤ (apr
R,I ,Tβ

, aprR,C ,Sβ ).

On the other hand, the use of t-norms and t-conorms other than the minimum

and maximum operator allows for more interaction among the arguments to be

aggregated. When β = 0, all elements smaller than the average I (R(y, x), X (y))
value (respectively, higher than the average C (R(y, x), X (y)) value) are ignored.

If β = 1, T = TM and S = SM , we derive the IC model. Fernández-Salido and

Murakami recommended to choose β very close to 1.

Next, we study the properties of the β-PREC model.
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Proposition 9.3.2. Let (U , R) be a fuzzy relation approximation space with U
finite, T a t-norm, S a t-conorm , I an implicator and C a conjunctor.

• The pair (apr
R,I ,Tβ

, aprR,C ,Sβ ) satisfies (D) with respect to the standard nega-

tor, if S is theNS-dual of T and if C is the induced conjunctor of I andNS .

• The pair (apr
R,I ,Tβ

, aprR,C ,Sβ ) satisfies (SM) and (RM).

Proof. Since T and S are dual with respect to NS , it holds for all k ∈ N \ {0,1}
that T k and S k are dual with respect to NS . We will prove that Tβ and Sβ are

dual with respect to NS . Let |U | = n, (a1, a2, . . . , an) a n-tuple in [0,1] and let σ

be a permutation on {1,2, . . . , n} such that aσ(i) is the ith largest element of the

tuple. Define m such that:

m=max

(

i ∈ {0, . . . , n} | i ≤ (1− β) ·
n
∑

j=1

a j

)

.

Now, since

m≤ (1− β) ·
n
∑

j=1

a j ⇔ m≤ (1− β) ·
n
∑

j=1

1− (1− a j),

we omit m values to calculate Tβ and we omit m values to calculate Sβ . Hence,

NS(Tβ (a1, a2, . . . , an)) = 1−T n−m(aσ(1), aσ(2), . . . , aσ(n−m))

= S n−m(1− aσ(1), 1− aσ(2), . . . , 1− aσ(n−m))

= Sβ (1− a1, 1− a2, . . . , 1− an)

= Sβ (NS(a1),NS(a2), . . . ,NS(an)).

We obtain for X ∈ F (U) and x ∈ U

(apr
R,I ,Tβ

(XNS ))NS (x) = NS

�

Tβ
y∈U
(I (R(y, x),NS(X (y))))

�

= Sβ
y∈U
NS (I (R(y, x),NS(X (y))))

= Sβ
y∈U
(C (R(y, x), X (y)))
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= (aprR,C ,Sβ (X ))(x).

It is very easy to see that (SM) and (RM) are satisfied by the monotonicity of

the fuzzy logical connectives.

In particular, the duality property holds if the pair (I ,C ) consists of an S-

implicator based on a t-conorm S and NS and the NS-dual t-norm of S , or if

it consists of an IMTL-t-norm T and its R-implicator, assuming that the induced

negator of I is the standard negator. Note that duality only holds with respect to

the standard negator NS . Indeed, if S is the N -dual t-conorm of a t-norm T for

an involutive negatorN 6=NS , thenN (Tβ (a1, a2, . . . , an)) is not necessarily equal

to Sβ (N (a1),N (a2), . . . ,N (an)).

None of the other properties is satisfied, as illustrated in the next example.

Example 9.3.3. Let U = {x1, x2, . . . , x100} and R a fuzzy similarity relation with

R(x i , x j) = 0.7 if i 6= j. Consider the Łukasiewicz implicator and t-norm, the

minimum and maximum operator for the aggregation and β = 0.95. Then

(apr
R,I ,Tβ

(;))(x1) = 0.3,

hence, the properties (INC), (CS) and (UE) do not hold.

On the other hand, let U = {x , x1, x2, . . . , x10} and R = U × U . Consider a

border implicator and border conjunctor, the minimum and maximum operator

and β = 0.8. Let X , Y ∈ F (U) with

X = 1/x + 0.1/x1 + 1/x2 + 0.3/x3 + 1/x4 + 0.5/x5

+1/x6 + 0.7/x7 + 1/x8 + 0.9/x9 + 1/x10,

Y = 0/x + 1/x1 + 0.2/x2 + 1/x3 + 0.4/x4 + 1/x5

+0.6/x6 + 1/x7 + 0.8/x8 + 1/x9 + 1/x10,

then (apr
R,I ,Tβ

(X ))(x) = 0.3, (apr
R,I ,Tβ

(Y ))(x) = 0.2, but for the intersection

X ∩ Y we have (apr
R,I ,Tβ

(X ∩ Y ))(x) = 0.1. Hence, (IU) is not satisfied.

Moreover, let U = {x , y, z} and R a fuzzy T -similarity relation defined by

R(x , y) = 0.3, R(x , z) = 0.6 and R(y, z) = 0.7 with T the Łukasiewicz t-norm.
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Consider the Łukasiewicz implicator, t-norm and t-conorm and β = 0.9. Let

X = 0.5/x + 0.8/y + 0.3/z and Y = 0.5/x + 0.9/y + 0.7/z, then

apr
R,I ,Tβ

(Y ) = 0.5/x + 0.9/y + 0.6/z,

and thus X ⊆ apr
R,I ,Tβ

(Y ). However, since (aprR,T ,Sβ (X ))(x) = 0.6, it does not

hold that aprR,T ,Sβ (X ) ⊆ Y . Thus, the property (A) is not satisfied. Moreover, since

(apr
R,I ,Tβ

(apr
R,I ,Tβ

(Y )))(y) = 0.8,

(aprR,T ,Sβ (apr
R,I ,Tβ

(Y )))(y) = 1,

the properties (ID) and (LU) are not satisfied either.

Next, we discuss Cornelis et al.’s ordered weighted average based fuzzy rough

set model.

9.3.2 Ordered weighted average based fuzzy rough set model

In 2010, Cornelis et al. [19] constructed a fuzzy rough set model in which they re-

placed the infimum and supremum operators of the IC model by Ordered Weighted

Average (OWA) aggregation operators:

Definition 9.3.4. [19] Let (U , R) be a fuzzy relation approximation space with U
finite, I an implicator, C a conjunctor and OWA weight vectors W1 and W2 of

length n, with n = |U | and such that andness(W1)> 0.5 and orness(W2)> 0.5. The

(W1, W2)-fuzzy rough approximation operators (apr
R,I ,W1

, aprR,C ,W2
) are defined by,

for X ∈ F (U) and x ∈ U ,

(apr
R,I ,W1

(X ))(x) = OWAW1
y∈U

〈I (R(y, x), X (y))〉,

(aprR,C ,W2
(X ))(x) = OWAW2

y∈U
〈C (R(y, x), X (y))〉.

By varying the OWA weight vectors, different fuzzy rough set models can be

maintained. Clearly, for the weight vectors W1 = 〈0, . . . , 0, 1〉 and W2 = 〈1, 0, . . . , 0〉,
we obtain the IC model. If other OWA weight vectors are used, more weight will

be given to higher, respectively lower values, so it always holds that

(apr
R,I

, aprR,C )≤ (apr
R,I ,W1

, aprR,C ,W2
).
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A special case of the OWA model is the robust nearest neighbor fuzzy rough

model, proposed in 2012 by Hu et al. [72]. For instance, with the k-trimmed min-
imum operator, the authors consider a variation on the IC lower approximation,

in which the k smallest implication values I (R(y, x), X (y)) are omitted in the

infimum computation. Clearly, this approach can be modeled by using the OWA

weight vector in which the element on position n−k is equal to 1 and the remaining

values are 0. In Table 9.1, we show for each robust nearest neighbor fuzzy rough

approximation proposed in [72] its corresponding OWA weight vector. Note that

the first three correspond to lower approximations, and the last three to upper

approximations.

Next, we consider the properties of the OWA model. Duality holds under

conditions on the weight vectors W1 and W2 which we discuss first. Let W1 be a

weight vector such that andness(W1)> 0.5, then it holds that

1−
n

n− 1
· 1+

1
n− 1

n
∑

i=1

i · (W1)i > 0.5

and thus
1

n− 1

n
∑

i=1

i · (W1)i >
n

n− 1
− 0.5.

If we define W2 as (W2)i = (W1)n−i+1 for i ∈ {1, 2, . . . , n}, then it holds that

orness(W2) =
1

n− 1

n
∑

i=1

(n− i).(W2)i

=
1

n− 1

n
∑

i=1

(n− i).(W1)n−i+1

=
1

n− 1

n
∑

j=1

(n− (n− j + 1)).(W1) j

=
1

n− 1

n
∑

j=1

( j − 1).(W1) j

=
1

n− 1

n
∑

j=1

j.(W1) j −
1

n− 1
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Table 9.1: Correspondence between robust nearest neighbor fuzzy rough approxi-

mation operators and OWA weight vectors

Operator OWA weight vector

k-trimmed minimum wi =

¨

1 if i = n− k
0 otherwise

k-mean minimum wi =

¨

1
k if i > n− k
0 otherwise

k-median minimum wi =







1 if k odd, i = n− k−1
2

1
2 if k even, i = n− k

2 or i = n− k−2
2

0 otherwise

k-trimmed maximum wi =

¨

1 if i = k+ 1

0 otherwise

k-mean maximum wi =

¨

1
k if i < k+ 1

0 otherwise

k-median maximum wi =







1 if k odd, i = k+1
2

1
2 if k even, i = k

2 or i = k
2 + 1

0 otherwise
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>
n

n− 1
− 0.5−

1
n− 1

= 1− 0.5

= 0.5.

Hence, if andness(W1)> 0.5, then orness(W2)> 0.5.

Proposition 9.3.5. Let (U , R) be a fuzzy relation approximation space with U
finite, I an implicator and C a conjuctor. Let W1 be a weight vector such that

andness(W1)> 0.5 and W2 be a weight vector such that orness(W2)> 0.5.

• The pair (apr
R,I ,W1

, aprR,C ,W2
) satisfies (D) with respect to the standard

negator, if (W2)i = (W1)n−i+1 for i ∈ {1,2, . . . , n} with |U |= n and C is the

induced conjunctor of I and NS .

• The pair (apr
R,I ,W1

, aprR,C ,W2
) satisfies (SM) and (RM).

Proof. Let X ∈ F (U) and x ∈ U . Since U is finite, we can rename the elements

of U such that U = {z1, z2, . . . , zn} and

C (R(z1, x), X (z1))≥C (R(z2, x), X (z2))≥ . . .≥C (R(zn, x), X (zn)).

As C is the induced conjunctor of I and NS , it holds for every zi ∈ U that

C (R(zi , x), X (zi)) = 1−I (R(zi , x), 1− X (zi)).

Hence,

I (R(z1, x), 1− X (z1))≤ I (R(z2, x), 1− X (z2))≤ . . .≤ I (R(zn, x), 1− X (zn)).

Thus, for each zi , I (R(zi , x), 1− X (zi)) is multiplied with weight (W1)n−i+1 when

computing the OWAW1
value. We obtain that

(apr
R,I ,W1

(XNS ))NS (x)

= 1−

�

n
∑

i=1

(W1)n−i+1 · I (R(zi , x), 1− X (zi))

�

=

�

n
∑

i=1

(W1)n−i+1 · (1−I (R(zi , x), 1− X (zi)))

�
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=

�

n
∑

i=1

(W2)i · C (R(zi , x), X (zi))

�

= (aprR,C ,W2
(X ))(x).

The properties (SM) and (RM) were proven in [19].

In particular, duality holds if the pair (I ,C ) consists of an S-implicator based

on the t-conorm S and standard negator NS and the NS-dual t-norm of S , or if

it consists of an IMTL-t-norm T and its R-implicator, assuming that the induced

negator of the implicator equals the standard negator. None of the other properties

is satisfied, as illustrated in the next example.

Example 9.3.6. Let U = {x , y} with R a fuzzy similarity relation defined by

R(x , y) = 0.5. Consider the Łukasiewicz implicator and t-norm and let W1 = 〈
1
3 , 2

3 〉
and W2 = 〈

2
3 , 1

3 〉, then (apr
R,I ,W1

(;))(x) = 1
6 . The properties (INC), (CS) and (UE)

are not satisfied.

On the other hand, let U = {x , x1, x2, . . . , x10} and R = U × U . Consider a

border implicator and border conjunctor and

W1 = 〈0.10, 0.09,0.08, 0.07,0.06, 0.05,0.04, 0.03,0.02, 0.01,0.45〉,

W2 = 〈0.45, 0.10,0.09, 0.08,0.07, 0.06,0.05, 0.04,0.03, 0.02,0.01〉.

Let X , Y ∈ F (U) with

X = 1/x + 0.1/x1 + 1/x2 + 0.3/x3 + 1/x4 + 0.5/x5

+1/x6 + 0.7/x7 + 1/x8 + 0.9/x9 + 1/x10,

Y = 0/x + 1/x1 + 0.2/x2 + 1/x3 + 0.4/x4 + 1/x5

+0.6/x6 + 1/x7 + 0.8/x8 + 1/x9 + 1/x10,

then (apr
R,I ,W1

(X ))(x) = 0.565, (apr
R,I ,W1

(Y ))(x) = 0.51, but for the intersection

X ∩ Y we have (apr
R,I ,W1

(X ∩ Y ))(x) = 0.385. Hence, (IU) is not satisfied.

Next, let U = {x , y, z} and R a fuzzy similarity relation with R(x , y) = 0.8,

R(x , z) = R(y, z) = 0.2. LetI be the Gödel implicator andC the minimum operator

and W1 = 〈0.05, 0.05, 0.9〉 and W2 = 〈0.9, 0.05, 0.05〉. Let X = 0.7/x+0.2/y+0.1/z,

then apr
R,I ,W1

(X ) = 0.135/x + 0.135/y + 0.19/z. Since

(apr
R,I ,W1

(apr
R,I ,W1

(X )))(z) = 0.13775,
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(ID) does not hold for a left-continuous t-norm and its implicator. Since

(aprR,T ,W2
(apr

R,I ,W1
(X )))(x) = 0.1845,

(LU) does not hold. Let R be the fuzzy similarity relation with R(x , y) = 1 and

R(x , z) = R(y, z) = 0.8 and consider the Kleene-Dienes implicator, then for the

same fuzzy set X we obtain apr
R,I ,W1

(X ) = 0.255/x + 0.255/y + 0.135/z. How-

ever, (apr
R,I ,W1

(apr
R,I ,W1

(X )))(x) = 0.2055, hence, (ID) is not satisfied for an

S-implicator based on a t-conorm S and a negator N and the N -dual of S .

Finally, let U = {x , y, z} and R a fuzzy T -similarity relation with R(x , y) = 0.8,

R(x , z) = 0.3 and R(y, z) = 0.2, with T the Łukasiewicz t-norm. Let I be the

Łukasiewicz implicator and W1 = 〈
1
6 , 2

6 , 3
6 〉 and W2 = 〈

3
6 , 2

6 , 1
6 〉. Consider the fuzzy

sets X = 0.7/x + 0/y + 0.1/z and Y = 0.8/x + 0.3/y + 0.7/z, then

aprR,C ,W2
(X ) = 0.35/x + 0.25/y + 0.05/z,

hence, aprR,C ,W2
(X ) ⊆ Y . Since (apr

R,I ,W1
(Y ))(x) = 41

60 , it does not hold that

X ⊆ apr
R,I ,W1

(Y ), hence, the property (A) is not satisfied.

In the following section, we empirically analyze the robustness of the different

models considered in this chapter.

9.4 Experimental evaluation on robustness

To evaluate the robustness of the previously discussed fuzzy rough set models and

the IC model, we conduct an experiment involving four real-world data sets. Each

data set can be considered as a complete decision table

T = (U , At = C ∪ {d}, {Va | a ∈ At}, {Ia | a ∈ At})

where U is the finite set of objects which are described by the conditional attributes

in C and one decision attribute d /∈ C .

A common task in machine learning is to predict the value of the decision

attribute of an object, given the other attributes of that object and previously

labeled training data. To this end, many fuzzy rough set applications of machine
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learning (see e.g. [18, 159]) use the so-called positive region, a fuzzy set in U
defined as follows:

∀x ∈ U : POSA(x) = sup
y∈U
(apr

A
(Rp

d(y)))(x),

with apr
A

a fuzzy lower approximation operator in the fuzzy relation approximation

space (U , RA), with RA a fuzzy relation based on the set of conditional attributes

A⊆ C and Rd a fuzzy relation based on the decision attribute d. The fuzzy relations

RA and Rd represent approximate equality between objects based on the conditional

attributes, and on the decision attribute, respectively. They are assumed to be (at

least) reflexive and symmetric. Note that for a crisp equivalence relation Ed and a

crisp equivalence relation EA, we obtain the positive region defined in Eq. (2.3):

since Ed and EA are crisp, POSA(x) is either 0 or 1 and thus,

∀x ∈ U : POSA(x) = 1 ⇔ x ∈ POSEA
([x]Ed

).

In this work, we use the following definition for RA, A⊆ C:

∀x , y ∈ U : RA(x , y) =

∑

a∈A
1− |Ia(x)−Ia(y)|

range(a)

|A|

where range(a) equals the difference between the maximum value of the attribute

a and its minimum value. The fuzzy relation Rd is defined as follows when d is a

categorical (discrete) decision attribute:

∀x , y ∈ U : Rd(x , y) =

¨

1 Id(x) = Id(y)
0 otherwise

and as follows for a continuous decision attribute:

∀x , y ∈ U : Rd(x , y) = 1−
|Id(x)− Id(y)|

range(d)
.

For a robust fuzzy rough set model, we would like the positive region not to

change drastically when small changes in the data occur. This should hold both

when the conditional attributes are affected by noise (attribute noise), as well as

when the decision attribute contains errors (class noise). Given a certain noise
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level n ∈ [0, 100], we define an altered decision system with Atn = Cn ∪ {d}: each

attribute a has a n% chance of having their values altered to other attribute values

in the range of a. To that end, the attribute values of all objects in the decision

system are considered separately. For each attribute and each object, a random

number r ∈ [0,1] is generated. If this number r is lower than n%, the attribute

value of the object is changed to a random value in the range of a. This means that

in the asymptotic case of an infinite amount of data, n% of the attribute values is

altered. Analogously, we can define an altered decision system with Atn = C ∪{dn}:
each decision value has an n% chance of being altered to a value in the range of d.

That is, for each x ∈ U , we generate a random number r ∈ [0, 1] and if this value

is lower than n%, the value Id(x) is altered to a random value in the range of d.

In order to evaluate the robustness of the fuzzy rough models, we therefore

carry out the following procedure for each data set:

1. Calculate the positive regions POSC (x) of all objects x ∈ U using the specified

fuzzy rough set model.

2. For the noise levels n = 1,2, . . . , 30, calculate for each x ∈ U the positive

region POSa,n
C (x), now on the altered decision system with Atn where each

attribute value Ia(x) has an n% chance of being altered to an attribute value

in the range of a.

3. For the noise levels n = 1,2, . . . , 30, calculate for each x ∈ U the positive

region POSd,n
C (x), now on the altered decision system with Atn where each

decision value Id(x) has an n% chance of being altered to an attribute value

in the range of d.

4. For each noise level, calculate the average distances between the original

positive regions and the altered positive regions:

errora,n =

∑

x∈U
|POSC(x)− POSa,n

C (x)|

|U |
,

errord,n =

∑

x∈U
|POSC(x)− POSd,n

C (x)|

|U |
.
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5. Repeat steps 1 through 4 ten times and report the average errors over ten

runs.

These errors express to what extent the fuzzy rough set model changes when a

certain level of attribute or class noise is imposed on the data.

We carry out this procedure for four data sets from the KEEL8 data set repository.

Their properties are listed in Table 9.2. Note that the first two data sets, ‘Appendici-

tis’ and ‘Iris’9, have a categorical decision attribute (classification problems), while

the last two, ‘Diabetes’ and ‘machineCPU’, have a continuous decision attribute

(regression problems).

Table 9.2: Data sets used in the experimental evaluation

|U | |C |

Appendicitis 106 7

Iris 150 4

Diabetes 43 2

machineCPU 209 6

The specific parameters which we used for the different fuzzy rough set models

are described in Table 9.3. We followed the parameter suggestions of the authors

for their models in the corresponding papers. In some cases, multiple parameter

settings were suggested, in which case we tested all of them and report the re-

sults of the models with the most stable parameter setting, highlighted in bold in

Table 9.3. For the IC model, we use the Łukasiewicz implicator to calculate the

lower approximation, and we maintain this choice for the other models to make

the evaluation implicator independent.

In Figures 9.1 and 9.2, we show the results of the experiment. In each case,

the X -axis shows the noise level, while the corresponding error can be seen on the

8www.keel.es
9Also available at the UCI Machine Learning Repository [3], http://archive.ics.uci.edu/ml

www.keel.es
http://archive.ics.uci.edu/ml


284 Chapter 9. Noise-tolerant fuzzy rough set models

0 10 20 30

0

0.02

0.04

0.06

Noise on attribute level

Er
ro

r

(a) Appendicitis

0 10 20 30
0

0.02

0.04

0.06

Noise on attribute level

Er
ro

r
(b) Iris

0 10 20 30

0

0.05

0.1

Noise on attribute level

Er
ro

r

(c) Diabetes

0 10 20 30

0

0.05

0.1

0.15

Noise on attribute level

Er
ro

r

(d) machineCPU

IC VPFRS VQFRS SFRS
FG FVPRS β-PREC OWA

Figure 9.1: Robustness of the fuzzy rough set models to attribute noise
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Figure 9.2: Robustness of the fuzzy rough set models to class noise
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Table 9.3: Parameter settings for the fuzzy rough set models

Model Parameters

IC -

VPFRS u : 0.80,0.85, 0.90

VQFRS Q(0.2,1)

SFRS δ : 0.10,0.15, 0.20

FG γ : 0.80, 0.85, 0.90

FVPRS α : 0.10,0.15, 0.20

β-PREC β : 0.97, 0.98, 0.99

Aggregation: minimum operator

OWA Exponential weights,

Yager weights [176] based on Q(0.2,1)

Y -axis. Therefore, the less the increase of a curve, the better the corresponding

model performs. It can be seen that the OWA model always outperforms the IC

model and is in most cases the most robust model, for both attribute and class

noise. The VQFRS model also performs well for most of the data sets, but it is

mostly outperformed by the OWA model. The VPFRS model performs remarkably

bad for the Appendicitis data set, where it is even less robust than the IC model.

On the other hand, the VPFRS model is one of the most robust models for the Iris

and machineCPU data sets. For all data sets, the FVPRS model and the FG model

are more or less equally robust as the IC model. The β -PREC model is more robust

than the IC model but is mostly outperformed by other models such as the OWA

model or VQFRS. Finally, the SFRS model performs better than the OWA model

for the Iris data set, but performs badly for the other data sets. Overall, the OWA

model is the most robust against attribute and class noise.

9.5 Conclusions and future work

In this chapter, we have discussed seven noise-tolerant fuzzy rough set models

for a fuzzy relation approximation space (U , R) with U finite. We recalled the
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definitions of the approximation operators and generalized, corrected or simplified

them when necessary. Four models follow the objective of Ziarko’s VPRS model,

and only take a portion of the fuzzy set of predecessors Rp(x) into account when

computing the lower and upper appoximation of a fuzzy set X in the object x ∈ U .

Another model adjusts the set X which we want to approximate: when computing

the lower approximation operator of X , the smallest membership degrees of X are

not taken into account. In machine learning techniques such as feature selection,

the approximated set X is often obtained by a decision attribute d. When using the

FVPRS model, we do not take objects into account with a very small membership

degree to such a decision class X . Finally, we discussed two models which use other

aggregation operators than the infimum and supremum operator.

For all models, we have verified which properties of Pawlak’s rough set model

are maintained. Besides the properties stated in Table 7.2, we discussed the (RM)

property. We list an overview of the properties in Table 9.4. For the purpose of

summarizing in an efficient way, we neglect potential conditions for the properties

to hold in Table 9.4, since all conditions are rather reasonable when the models

are used in applications.

We immediately conclude that none of the noise-tolerant models is able to retain

all the properties of Pawlak’s original model and its implicator-conjunctor-based

extension. The FVPRS model satisfies most theoretical properties, incidentally, this

is also the model that adheres most closely to the IC model.

The VQFRS model is the only model which does not satisfy (D). However,

this is not necessarily a disadvantage, since in many applications only the lower

approximation operator is considered.

Note that none of the noise-tolerant models satisfies (INC), a defect they share

with the crisp VPRS model. This is quite remarkable, since intuitively one would

expect the lower and upper approximations to be positioned on either side of the

fuzzy set they are supposed to approximate. Throughout the chapter, we noticed

that most noise-tolerant models provide larger lower approximations and smaller

upper approximations than the IC approximation operators. However, as they do not

satisfy the (INC) property, we cannot necessarily conclude that the approximations

of the noise-tolerant models are more accurate than the ones of the IC model.
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Table 9.4: Overview of properties for the noise-tolerant fuzzy rough set models

presented in Chapter 9

Property Satisfied by the following models:

(D) VPFRS, SFRS, FG, FVPRS, β-PREC, OWA

(INC) none of the models

(SM) VPFRS, VQFRS, FG, FVPRS, β-PREC, OWA

(IU) FVPRS

(ID) FVPRS

(LU) FVPRS

(CS) none of the models

(UE) VQFRS

(A) FVPRS

(RM) FG, FVPRS, β-PREC, OWA

Furthermore, the properties (SM) and (RM) are important from the application

perspective. The fact that SFRS does not satisfy (SM), not even for crisp subsets

of U (see [35]), makes its practical application very problematic. For instance, in

a classification problem, one would expect that when a decision class gets larger,

so do its approximations. On the other hand, the violation of (RM) has its own

consequences for applications, like attribute selection, which consider different

levels of granulation of data: indeed, when the granulation of the data imposed

by the fuzzy relations R becomes finer, we expect the lower approximation not to

shrink. Some attribute selection methods even rely on (RM), e.g., the QuickReduct

algorithm [18] assumes that the lower approximation of classes increases when

attributes are added, since adding attributes means that the membership values of

the fuzzy relation increase. In this sense, the fuzzy rough set models of FG, FVPRS,

β-PREC and OWA are prefered over the other ones.

The properties (IU), (ID), (LU), (CS), (UE) and (A) are less important for
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practical applications, and are mainly interesting from a theoretical perspective.

Next, we analyzed the robustness of the noise-tolerant fuzzy rough set models

and the IC model with respect to attribute and class noise. Of the four models

FG, FVPRS, β-PREC and OWA which are interesting from a theoretical point of

view, we see that the models FG and FVPRS perfom more or less equally to the IC

model. Hence, the lack of properties of both models is not compensated with better

performance quality. The β -PREC model is more robust than the IC model, however,

it is mostly outperformed by the OWA model. We can conclude that overall, the

OWA model is the most robust model against class and attribute noise.

When taking both theoretical properties and experimental analysis into con-

sideration, we would suggest that the β-PREC and OWA model are preferable

when choosing a robust fuzzy rough set model. However, they still lack the

(INC) property. In [32], we introduced adaptations for the β-PREC and OWA

model by taking the membership degree X (x) into account when computing

the lower and upper approximation of X in x . The adapted β-PREC approxima-

tion operators (apra
R,I ,Tβ

, apra
R,C ,Sβ

) and adapted OWA approximation operators

(apra
R,I ,W1

, apra
R,C ,W2

) are defined as follows: let X ∈ F (U) and x ∈ U ,

(apra
R,I ,Tβ

(X ))(x) = min

�

X (x), Tβ
y∈U
(I (R(y, x), X (y)))

�

,

(apra
R,C ,Sβ

(X ))(x) = max

�

X (x), Sβ
y∈U
(C (R(y, x), X (y)))

�

,

(apra
R,I ,W1

(X ))(x) = min

�

X (x),OWAW1
y∈U

〈I (R(y, x), X (y))〉

�

,

(apra
R,C ,W2

(X ))(x) = max

�

X (x),OWAW2
y∈U

〈C (R(y, x), X (y))〉

�

.

Both adapted models satisfy more properties than their original models:

• The adapted β -PREC model satisfies (D), (SM) and (RM) such as the original

β-PREC model, but also satisfies the properties (INC) and (UE).
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• The adapted OWA model satisfies (D), (SM) and (RM) such as the original

OWA model, but also satisfies the properties (INC) and (UE). Moreover, it

satisfies (CS) when we consider a border implicator and a border conjunctor.

Additionally, we performed a similar experimental analysis on robustness. For

both attribute and class noise, the adapted models perform quite equally to the

original models, without a higher complexity, and they outperform the IC model.

We conclude that the benefits of the original models are not lost by the adaptations

which provide better theoretical properties.

A future research objective is the fusion of the results presented in Chapters 8

and 9 to a unified framework of fuzzy rough set models. More specifically, we

would like to study the following topics:

• An experimental analysis on the robustness of fuzzy covering-based rough

set models presented in Chapter 8 to attribute and class noise.

• Generalizing some noise-tolerant fuzzy rough set models from theoretical

perspective. For instance, we could define the FG model with a general

involutive negator instead of the standard negator. Moreover, we could study

the models with other fuzzy neighborhoods N(x) than the fuzzy sets of

predecessors Rp(x), for x ∈ U . For example, we could study the OWA model

with the fuzzy neighborhood operator NC1 , given a fuzzy covering C.

• The study of partial order relations between different fuzzy covering-based

rough set models and noise-tolerant fuzzy rough set models. For example,

the FG model is a granule-based fuzzy rough set model. Therefore, we can

study this model as a fuzzy covering-based rough set model.

Additionally, an important future research direction is the application of different

fuzzy rough set models in machine learning, and more specifically, in applications

considering feature and instance selection.
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Conclusions and future research directions

In this work, we have provided a systematic, theoretical study of rough set theory

and fuzzy rough set theory from a semantical, a constructive and a practical point of

view. As the research on rough set theory was very scattered, we have constructed

a general framework of (fuzzy) rough set models. Within this framework, we

have presented systematic investigations, providing other researchers the ability to

choose between different models based on their needs.

The semantical point of view ensures us a proper and correct use of rough set

theory, and it prevents potential misuses of the theory. The constructive point of

view allowed us to correct mistakes in existing models, which we often generalized.

Moreover, we introduced new (fuzzy) rough set models. Since rough set theory was

originally introduced in order to obtain information from data, we also compared

(fuzzy) rough set models with applications in mind.

Each chapter has its own contribution and can therefore be considered indepen-

dently. For each topic we have stated conclusions and, if applicable, future research

directions. In this chapter, we provide an overview of the most important con-

clusions of our research and in addition, we state different challenges for the future.
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First, in Chapter 3, we have discussed three semantically sound approaches

to rough set models. We have revised a semantically sound approach to Pawlak’s

rough set model for complete decision tables. To this aim, we constructed a descrip-

tive language in two parts. In addition, we have introduced a semantically sound

approach to covering-based rough sets. In this approach, the set of definable sets

is no longer given by a Boolean algebra over a partition, which was the case for

Pawlak’s rough set model, but by the union-closure over a covering which is a join-

semilattice. We have studied that the lower approximation operator obtained in this

semantical approach coincides with the tight covering-based lower approximation

operator. However, the derived upper approximation operator does not provide a

definable set, but a set of definable sets. We have illustrated how this approach

may lead to certain rules given a complete decision table with added semantics.

Moreover, we have applied this approach to the theory of dominance-based rough

set theory in which it is shown that the conceptual lower approximation operator

coincides with an element-based approximation operator for a reflexive and tran-

sitive neighborhood operator. Finally, we have introduced a semantically sound

approach to decision tables with missing values considering Pawlak’s rough set

model. We considered three types of missing values: lost values, do-not-care values

and attribute-concept values. Although only the equality relation was considered,

the set of definable sets is given by the union-closure over a covering. The aim of

this chapter was to derive more insight in the concepts of rough set theory.

In Chapter 4, we have constructed a unified framework of dual covering-based

approximation operators. We have recalled many operators studied in literature

and introduced some other pairs of dual covering-based approximation operators.

We have discussed equalities and partial order relations between different approxi-

mation operators in order to obtain conclusions on the accuracy ability for each pair

of dual approximation operators. From a practical perspective, it is reasonable to

consider the most accurate pair of approximation operators, as the lower and upper

approximations of a set will be the closest to the original set. However, accuracy is

not the only property to be taken into consideration. To this aim, we studied the

theoretical properties for each pair of approximation operators. For applications, it
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is suitable to choose approximation operators which satisfy the inclusion property

and the set monotonicity property. Combining both the results on accuracy and the

theoretical properties, the pairs (apr
NC1

, aprNC1
), (apr

(NC1 )−1
, apr(NC1 )−1), (s−, s+) and

(apr
NCP4

, aprNCP4
) are preferable to use in applications.

In Chapter 6, we have introduced the definitions of a fuzzy covering, the fuzzy

neighborhood system of an object, the fuzzy minimal description of an object

and the fuzzy maximal description of an object of the universe. In addition, four

crisp neighborhood operators and six crisp coverings studied in [189] have been

extended to the fuzzy setting. For a finite fuzzy covering, four fuzzy neighborhood

operators and six fuzzy coverings, one original and five derived ones, have been

combined, resulting in 24 combinations of fuzzy neighborhood operators. How-

ever, we have proven that for a left-continuous t-norm and its residual implicator

the obtained 24 combinations can be reduced to 16 different groups of fuzzy

neighborhood operators. In this setting, we have derived the Hasse diagram of

these 16 groups, which expresses which operators yield larger or smaller fuzzy

neighborhoods. We have discussed the properties for each of the 16 groups of

fuzzy neighborhood operators. Finally, we have discussed a family of fuzzy neigh-

borhood operators introduced by Ma in [107]. We have shown that only for the

parameter β = 1 the fuzzy neighborhood operator is reflexive. We have discussed

the properties of this fuzzy neighborhood operator and studied the partial order

relations with the 16 fuzzy neighborhood operators discussed above.

Besides the study of rough set models, we have studied many fuzzy rough set

models in the second part of this dissertation. In Chapter 7, we have presented

a historical overview of fuzzy rough set theory since the late 1980s. Moreover,

we have introduced an implicator-conjunctor-based fuzzy rough set model which

encapsulates many fuzzy rough set models described in literature and we have

studied the properties of this model when a fuzzy neighborhood operator is con-

sidered.

In Chapter 8, we have studied fuzzy covering-based rough set models which ex-

tend the tight and loose granule-based approximation operators. We have recalled
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three existing models and introduced two new ones which extend the tight approx-

imation operators. Moreover, we recalled one model and introduced one model

which extend the loose approximation operators. Both models are equivalent to

fuzzy neighborhood-based models. For each of the seven models, we have discussed

its properties. All models maintain the properties of the tight, respectively loose,

approximation operators given some conditions on the used t-norm and implicator.

Only the intuitive extension of the tight approximation operators does not satisfy

the (CS) property. Secondly, we have discussed partial order relations with respect

to ≤ for a finite universe U , a finite fuzzy covering C on U , an IMTL-t-norm T ,

its R-implicator I and its induced negator N . We have studied 22 pairs of fuzzy

covering-based rough set models, of which 17 pairs are based on a fuzzy neighbor-

hood operator. From this, we can conclude that the pairs (apr
NC1 ,I

, aprNC1 ,T ) and

(apr’
C,Wu

, apr’
C,Wu) provide the most accurate approximations.

Finally, in Chapter 9, we have discussed seven noise-tolerant fuzzy rough set

models for a fuzzy relation approximation space (U , R)with U finite. We recalled the

definitions of the approximation operators and generalized, corrected or simplified

them when necessary. Four models follow the objective of Ziarko’s VPRS model,

and only take a portion of the fuzzy set of predecessors Rp(x) into account when

computing the lower and upper appoximation of a fuzzy set X in the object x ∈ U .

Another model adjusts the set X which we want to approximate: when computing

the lower approximation operator of X , the smallest membership degrees of X are

not taken into account. To end, we have discussed two models which use other

aggregation operators than the infimum and supremum operator.

For all noise-tolerant fuzzy rough set models, we have verified which properties

of Pawlak’s rough set model are maintained. We immediately conclude that none

of the noise-tolerant models is able to retain all the properties of Pawlak’s original

model and its implicator-conjunctor-based extension. The FVPRS model satisfies

most theoretical properties, incidentally, this is also the model that adheres most

closely to the IC model.

Next, we analyzed the robustness of the noise-tolerant fuzzy rough set models

and the IC model with respect to attribute and class noise. Of the four models

FG, FVPRS, β-PREC and OWA which are interesting from a theoretical point of
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view, we see that the models FG and FVPRS perfom more or less equally to the

IC model. Hence, the lack of properties of both models is not compensated with

better performance quality. The β-PREC model is more robust than the IC model,

however, it is mostly outperformed by the OWA model.

When taking both theoretical properties and experimental analysis into consid-

eration, we would suggest that the β-PREC and OWA model are preferable when

choosing a robust fuzzy rough set model. However, they still lack the inclusion

property. In [32], we introduced adaptations for the both models by taking the

membership degree X (x) into account when computing the lower and upper ap-

proximation of X in x . We have discussed that the adapted models satisfy more

theoretical properties than the original models, without a higher complexity, and

they outperform the IC model. Hence, the benefits of the original models are not

lost by the adaptations which provide better theoretical properties.

There are still many challenges left. From a semantical point of view, the

most important future research directions are the study of semantically sound

approaches to covering-based rough set models for incomplete decision tables and

to different fuzzy rough set models for both complete and incomplete decision

tables. Moreover, we want to study rule induction based on upper approximation

operators in order to obtain possible rules.

Next, as discussed in Chapter 4, there are many future research directions in

the study of covering-based rough set theory from a computational point of view.

However, the main challenge in the study of (covering-based) rough set models

is their application in machine learning techniques such as feature and instance

selection.

To this aim, we need to study reduction for covering-based rough set models.

In [114], Miao et al. discussed relative reducts in consistent and inconsistent

decision tables for Pawlak’s rough set model. They considered three types of relative

reducts: region preservation reducts, decision preservation reducts and relationship

preservation reducts. All three are equivalent for consistent decision tables, but

this statement is not maintained for an inconsistent decision table. Therefore,

future work will include the study of these three types of relative reducts for
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covering-based rough set models.

Moreover, we will study bireducts for covering-based rough set models. Ślȩzak

and Janusz [148] introduced the notion of decision bireducts for Pawlak’ s rough

set model inspired on the methodology of biclustering [117]. In this approach,

both a subset of conditional attributes which describes the decision classes and a

subset of objects of the universe for which such a description is valid are selected.

In addition, we want to study which pairs of covering-based rough set models

are robust against noise in the data, and how we can improve covering-based rough

set models with this property in mind.

Future work regarding fuzzy rough set models includes the fusion of the results

presented in Chapters 8 and 9 to a unified framework of fuzzy rough set models.

First, we want to study the comparability between the approximation operators

studied in Chapters 8 and 9. Next, we want to perform an experimental analysis on

the robustness of fuzzy covering-based rough set models presented in Chapters 8

and 9 to attribute and class noise.

Other future research directions include the study of fuzzy extensions of other

pairs of covering-based rough set approximation operators, e.g., the approximation

operators of the framework of Yang and Li. Moreover, we want to generalize some

noise-tolerant fuzzy rough set models from theoretical perspective. For instance,

we could define the FG model with a general involutive negator instead of the

standard negator. Moreover, we could study the models with other fuzzy neighbor-

hoods N(x) than the fuzzy sets of predecessors Rp(x), for x ∈ U . For example, we

could study the OWA model with the fuzzy neighborhood operator NC1 , given a

fuzzy covering C.

Additionally, an important future research objective is the application of dif-

ferent fuzzy rough set models in machine learning, and more specifically, in ap-

plications considering feature and instance selection. Finally, a major topic in

the machine learning community is the scaling of techniques to big data [204].
Recently, a first distributed approach to calculate fuzzy rough lower and upper

approximations was presented in [2].
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APPENDIXA

Counterexamples for Chapter 4

Counterexample 1

Let (U ,C)1 be a covering approximation space with U = {1,2, 3,4} and

C= {1,12, 13,24, 34,123, 234}.

The neighborhoods of the elements of U for the different neighborhood operators

is presented in Table A.1. Note that we use the abbreviation, i.e., NC1 (1) = {1} is

denoted by ‘1’ in the table.
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Table A.1: Neighborhoods for (U ,C)1

N 1 2 3 4

a 1 2 3 4

b 1 2 3 4

c 1 124 134 234

d 1 2 3 4

e 123 124 134 234

f 123 23 23 234

g 1 2 3 4

h 123 124 134 234

i 123 23 23 234

j 123 1234 1234 234

k 123 1234 1234 234

l 1234 1234 1234 1234

m 1234 1234 1234 1234

a−1 1 2 3 4

b−1 1 2 3 4

c−1 123 24 34 234

d−1 1 2 3 4

e−1 123 124 134 234

f −1 1 1234 1234 4

i−1 1 1234 1234 4

k−1 123 1234 1234 234

l−1 1234 1234 1234 1234
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Counterexample 2

Let (U ,C)2 be a covering approximation space with U = {1,2, 3,4} and

C= {12,23, 14}.

The neighborhoods of the elements of U for the different neighborhood operators

is presented in Table A.2. Note that we use the abbreviation, i.e., NC1 (1) = {1} is

denoted by ‘1’ in the table.

Table A.2: Neighborhoods for (U ,C)2

N 1 2 3 4 N 1 2 3 4

a 1 2 23 14 a−1 14 23 3 4

b 14 23 23 14 b−1 14 23 23 14

c 124 123 23 14 c−1 124 123 23 14

d 1 2 23 14 d−1 14 23 3 4

e 124 123 23 14 e−1 124 123 23 14

f 1 2 23 14 f −1 14 23 3 4

g 14 23 23 14

h 124 123 23 14

i 1 2 23 14 i−1 14 23 3 4

j 124 123 23 14

k 1234 1234 23 14 k−1 124 123 123 124

l 12 12 123 124 l−1 1234 1234 3 4

m 1234 1234 123 124



302 Chapter A. Counterexamples for Chapter 4

Counterexample 3

Let (U ,C)3 be a covering approximation space with U = {1, 2,3, 4} and

C= {1, 2,12, 23,14}.

The neighborhoods of the elements of U for the different neighborhood operators

is presented in Table A.3. Note that we use the abbreviation, i.e., NC1 (1) = {1} is

denoted by ‘1’ in the table.

Table A.3: Neighborhoods for (U ,C)3

N 1 2 3 4 N 1 2 3 4

a 1 2 23 14 a−1 14 23 3 4

b 14 23 23 14 b−1 14 23 23 14

c 1 2 23 14 c−1 14 23 3 4

d 14 23 23 14 d−1 14 23 23 14

e 124 123 23 14 e−1 124 123 23 14

f 1 2 23 14 f −1 14 23 3 4

g 14 23 23 14

h 14 23 23 14

i 1 2 23 14 i−1 14 23 3 4

j 124 123 23 14

k 1234 1234 23 14 k−1 124 123 123 124

l 12 12 123 124 l−1 1234 1234 3 4

m 1234 1234 123 124
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Counterexample 4

Let (U ,C)4 be a covering approximation space with U = {1,2, 3} and

C= {1, 2,123}.

The neighborhoods of the elements of U for the different neighborhood operators

is presented in Table A.4. Note that we use the abbreviation, i.e., NC1 (1) = {1} is

denoted by ‘1’ in the table.

Table A.4: Neighborhoods for (U ,C)4

N 1 2 3 N 1 2 3

a 1 2 123 a−1 13 23 3

b 123 123 123 b−1 123 123 123

c 1 2 123 c−1 13 23 3

d 123 123 123 d−1 123 123 123

e 1 2 123 e−1 13 23 3

f 123 123 123 f −1 123 123 123

g 123 123 123

h 123 123 123

i 123 123 123 i−1 123 123 123

j 123 123 123

k 123 123 123 k−1 123 123 123

l 123 123 123 l−1 123 123 123

m 123 123 123
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Counterexample 5

Let (U ,C)5 be a covering approximation space with U = {1, 2,3, 4} and

C= {1, 3,13, 24,34, 14,234}.

The upper approximations, referred to by the numbers of the pairs, of the set X
with X ∈ {1, 2, 3, 4, 12, 34, 123} are presented in Tables A.5 and A.6. Note that we

use the abbreviation, i.e., apra({1}) = {1} is denoted by ‘1’. Moreover, the topology

induced by C is given by

T = {;, 1234,1, 3,13, 24,34,14, 234,4, 124,134}.
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Table A.5: Approximations for (U ,C)5 and different X ⊆ U

Pair {1} {2} {3} {4} {1, 2} {3,4} {1,2, 3}

1 1 2 3 24 12 234 123

2 1 24 3 4 124 34 1234

3 1 24 3 24 124 234 1234

4 1 24 3 24 124 234 1234

5 14 24 34 24 124 234 1234

6 1 24 3 1234 124 1234 1234

7 1 2 3 1234 12 1234 123

8 14 24 34 4 124 34 1234

9 134 24 134 1234 1234 1234 1234

10 134 24 134 1234 1234 1234 1234

11 1 2 23 24 12 234 123

12 1 234 3 4 1234 34 1234

13 1 24 3 24 124 234 1234

14 14 24 34 1234 124 1234 1234

15 1 2 1234 1234 12 1234 1234

16 134 234 34 34 1234 34 1234

17 134 234 1234 1234 1234 1234 1234

18 134 234 1234 1234 1234 1234 1234

19 134 234 1234 1234 1234 1234 1234

20 1234 1234 1234 1234 1234 1234 1234

21 1234 1234 1234 1234 1234 1234 1234

22 1234 1234 1234 1234 1234 1234 1234
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Table A.6: Approximations for (U ,C)5 and different X ⊆ U

Pair {1} {2} {3} {4} {1,2} {3,4} {1, 2,3}

23 1 2 3 24 12 234 1234

24 1 2 3 24 12 1234 1234

25 1 2 23 24 1234 1234 1234

26 1 2 1234 1234 1234 1234 1234

27 1 24 3 4 1234 34 1234

28 1 24 3 1234 124 34 1234

29 1 234 3 1234 1234 34 1234

30 1 2 3 4 12 34 123

31 1 2 3 4 12 34 123

32 1 24 3 24 124 234 1234

33 1 24 3 24 124 234 1234

34 1 24 3 24 124 234 1234

35 1 ; 3 24 1 234 13

36 1 2 3 1234 12 34 123



307

Counterexample 6

Let (U ,C)6 be a covering approximation space with U = {1,2, 3,4, 5} and

C= {12,234, 45}.

The upper approximations, referred to by the numbers of the pairs, of the set X
with X ∈ {1, 2} are presented in Tables A.7. Note that we use the abbreviation, i.e.,

apra({1}) = {1} is denoted by ‘1’ in the table. Moreover, the topology induced by

C is given by

T = {;, 12345, 12,234, 45,2, 4,1234, 1245,2345, 124,245}.

Table A.7: Approximations for (U ,C)6 and different X ⊆ U

Pair 1 2 Pair 1 2

1 1 123 12 12 2

2 12 2 13 12 1234

3 1 123 14 12 1234

4 12 2 15 1 123

5 12 1234 16 12 2

6 12 1234 17 12 1234

7 1 123 18 12 1234

8 12 2 19 12 1234

9 12 1234 20 1 12345

10 12 1234 21 1234 234

11 1 123 22 1234 12345

32 12 123

33 123 123

34 12345 12345
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APPENDIXB

Properties of (apr
N
, aprN)

Let N be a neighborhood operator on the universe U . We discuss the properties of

the element-based pair of approximation operators (apr
N

, aprN).

• The pair (apr
N

, aprN) satisfies (D).

Proof. Let X ⊆ U , then

(apr
N
(X c))c = {x ∈ U | N(x) 6⊆ X c}

= {x ∈ U | N(x)∩ X 6= ;}

= aprN(X ).

We conclude that the pair (apr
N

, aprN) satisfies (D).

• The pair (apr
N

, aprN) satisfies (INC) if and only if N is reflexive.

Proof. Assume (apr
N

, aprN) satisfies (INC), then for x ∈ U it holds that

{x} ⊆ aprN({x}), hence N(x)∩ {x} 6= ;. We conclude that x ∈ N(x) for all

x ∈ U , i.e., N is reflexive.
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On the other hand, assume N is reflexive and let X ⊆ U . For x ∈ X it holds

that x ∈ N(x) ∩ X , hence, x ∈ aprN(X ). Thus, X ⊆ aprN(X ). The inclusion

apr
N
(X ) ⊆ X holds by duality. We conclude that the pair (apr

N
, aprN) satisfies

(INC).

• The pair (apr
N

, aprN) satisfies (SM).

Proof. Immediately from the definition.

• The pair (apr
N

, aprN) satisfies (IU).

Proof. Let X , Y ⊆ U , then

apr
N
(X ∩ Y ) = {x ∈ U | N(x) ⊆ X ∩ Y }

= {x ∈ U | N(x) ⊆ X ∧N(x) ⊆ Y }

= {x ∈ U | N(x) ⊆ X } ∩ {x ∈ U | N(x) ⊆ Y }

= apr
N
(X )∩ apr

N
(Y ).

The equality aprN(X ∪ Y ) = aprN(X )∪ aprN(Y ) can be proven similarly. We

conclude that the pair (apr
N

, aprN) satisfies (IU).

• The pair (apr
N

, aprN) satisfies (ID) if and only if N is transitive.

Proof. Assume (apr
N

, aprN) satisfies the property (ID) and let x , y, z ∈ U
such that x ∈ N(y) and y ∈ N(z). Then y ∈ aprN({x}), and therefore

N(z) ∩ aprN({x}) 6= ;. Thus, z ∈ aprN(aprN({x})) ⊆ aprN({x}). Hence,

x ∈ N(z). We conclude that N is transitive.

On the other hand, assume N is transitive and X ⊆ U . Let x ∈ U such

that x ∈ aprN(aprN(X )), then there exists y ∈ N(x) such that y ∈ aprN(X ).
As N(y) ∩ X 6= ;, there exists z ∈ N(y) such that z ∈ X . As N is tran-

sitive, it holds that z ∈ N(x). Therefore, x ∈ aprN(X ). The other inclu-

sion apr
N
(X ) ⊆ apr

N
(apr

N
(X )) holds by duality. We conlude that the pair

(apr
N

, aprN) satisfies (ID).
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• If N is symmetric, then the pair (apr
N

, aprN) satisfies (LU) if and only if N is

transitive.

Proof. Assume N symmetric and the pair (apr
N

, aprN) satisfies (LU). Let

x , y, z ∈ U with x ∈ N(y) and y ∈ N(z). For {x} ⊆ U it holds that

aprN({x}) ⊆ apr
N
(aprN({x})).

As N(y)∩ {x} 6= ;, it holds that y ∈ aprN({x}), thus, y ∈ apr
N
(aprN({x})).

Hence, N(y) ⊆ aprN({x}). As N is symmetric, it holds that z ∈ N(y). There-

fore, z ∈ aprN({x}), i.e., x ∈ N(z). We conclude that N is transitive.

On the other hand, assume N symmetric and transitive and let X ⊆ U . Take

x ∈ U such that x ∈ aprN(X ). We need to prove that x ∈ apr
N
(aprN(X )), i.e.,

N(x) ⊆ aprN(X ). Take y ∈ N(x). As x ∈ aprN(X ), there exists a z ∈ N(x)
such that z ∈ X . As N is symmetric, x ∈ N(z) and as N is transitive, y ∈ N(z).
Thus, z ∈ N(y) and y ∈ aprN(X ). Therefore, aprN(X ) ⊆ apr

N
(aprN(X )). The

inclusion aprN(apr
N
(X )) ⊆ apr

N
(X ) follows by duality. We conclude that the

pair (apr
N

, aprN) satisfies (LU).

• The pair (apr
N

, aprN) satisfies (UE).

Proof. Immediately from the definition.

• The pair (apr
N

, aprN) satisfies (A) if and only if N is symmetric.

Proof. Assume that the pair (apr
N

, aprN) satisfies (A). Let x , y ∈ U with

x ∈ N(y). For X = {x} and Y = N(x), we obtain that

aprN({x}) ⊆ N(x)⇔{x} ⊆ apr
N
(N(x)),

i.e.,

aprN({x}) ⊆ N(x)⇔ N(x) ⊆ N(x).

As the right-hand-side of that equivalence is always true, it holds that

aprN({x}) ⊆ N(x), i.e., {z ∈ U | x ∈ N(z)} ⊆ N(x). Since x ∈ N(y), it

holds that y ∈ N(x). We conclude that N is symmetric.

On the other hand, assume N symmetric and let X , Y ⊆ U .



312 Chapter B. Properties of (apr
N

, aprN)

– Assume aprN(X ) ⊆ Y and let x ∈ X . For y ∈ N(x) it holds that x ∈ N(y)
since N is symmetric, and thus, y ∈ aprN(X ). Hence, y ∈ Y . Therefore,

X ⊆ apr
N
(Y ).

– Assume X ⊆ apr
N
(Y ) and let x ∈ aprN(X ). Thus, there exists y ∈ X

with y ∈ N(x). As y ∈ X , y ∈ apr
N
(Y ), i.e., N(y) ⊆ Y . By symmetry,

x ∈ N(y) and thus x ∈ Y . Therefore, aprN(X ) ⊆ Y .

We conclude that

aprN(X ) ⊆ Y ⇔ X ⊆ apr
N
(Y ),

i.e., the pair (apr
N

, aprN) satisfies (A).



Samenvatting

De manier waarmee we met data omgaan is recent veranderd. Vanwege de techno-

logische evolutie zijn we in staat steeds meer en meer data te verwerken, en dit

vaak in real time. Data is zelf een product geworden. Denk maar aan de aanbe-

velingen die je krijgt op streamingwebsites zoals Spotify en Netflix of op sociale

media zoals Facebook en Twitter. Maar ook in de medische wereld, de banksector

en door de overheid wordt data gebruikt om beslissingen te nemen.

In deze thesis presenteren we een systematische, theoretische studie rond ruw-

verzamelingen en vaagruwverzamelingen. We beschouwen zowel een semantisch,

een computationeel, als een praktisch standpunt.

Ruwverzamelingenleer is geïntroduceerd door Pawlak [128] en heeft als doel

informatie en kennis te halen uit data. Het basisidee is het benaderen van een

onvolledig gekend concept door middel van een onder- en bovenbenaderingsope-

rator gebaseerd op een relatie die de mate waarin objecten niet te onderscheiden

zijn beschrijft. De onderbenadering bevat deze objecten die zeker tot het concept

behoren, terwijl de bovenbenadering deze objecten bevat die mogelijk tot het

concept behoren. Vermits ruwverzamelingenleer ontworpen is om kwalitatieve of

313
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discrete data te verwerken, heeft het een beperkte toepasbaarheid voor data met

reële waarden. Daarom is het zinvol om vaagruwverzamelingenleer te beschouwen.

Dit is een hybride theorie van ruwverzamelingenleer en vaagverzamelingenleer.

Dit laatste is geïntroduceerd door Zadeh [193] met als doel om vage concepten

te beschrijven. Inleidende begrippen omtrent ruw- en vaagruwverzamelingenleer

worden respectievelijk besproken in Hoofdstuk 2 en Hoofdstuk 5.

In Hoofdstuk 3 bespreken we drie benaderingen van ruwverzamelingmodellen

vanuit semantisch oogpunt. We beschrijven eerst het ruwverzamelingmodel van

Pawlak voor een volledige beslissingstabel. Hiervoor stellen we een beschrijvende

taal op in twee delen. Daarnaast introduceren we een semantische benadering

voor coveringgebaseerde ruwverzamelingen. We besluiten dat de verzameling

van ‘definable sets’ niet langer gegeven wordt door een boolse algebra gebaseerd

op een partitie, maar door de uniesluiting van een covering. We illustreren dit

door deze semantische aanpak toe te passen op dominantiegebaseerde ruwver-

zamelingen. Ten slotte bespreken we een semantische benadering van het model

van Pawlak voor een beslissingstabel met ontbrekende waarden. Ondanks het

gebruik van de gelijkheidsrelatie besluiten we dat de verzameling van ‘definable

sets’ gegeven wordt door de uniesluiting van een covering. Het doel van dit hoofd-

stuk is om meer inzicht te verwerven in de concepten van de ruwverzamelingenleer.

In Hoofdstuk 4 bouwen we een uniform kader op voor paren van duale covering-

gebaseerde benaderingsoperatoren. We beschrijven verschillende operatoren uit

de literatuur en introduceren zelf enkele operatoren. We bespreken gelijkheden en

orderelaties tussen benaderingsoperatoren. Uit dit framework kunnen we besluiten

trekken in verband met de accuraatheid van paren van duale benaderingsopera-

toren. Vanuit praktisch oogpunt is het aanbevolen om benaderingsoperatoren te

beschouwen met een hoge accuraatheid, vermits deze operatoren benaderingen

opleveren die dicht bij het oorspronkelijke concept liggen. Accuraatheid is echter

niet de enige karakteristiek die in acht dient genomen te worden. Daarom be-

studeren we ook de theoretische eigenschappen van de benaderingsoperatoren.

Zo zijn de eigenschappen van inclusie en verzamelingmonotoniciteit belangrijk

voor toepassingen. Wanneer we de resultaten omtrent de accuraatheid en de the-
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oretische eigenschappen combineren, besluiten we dat de paren (apr
NC1

, aprNC1
),

(apr
(NC1 )−1

, apr(NC1 )−1), (s−, s+) en (apr
NCP4

, aprNCP4
) het meest geschikt zijn voor toe-

passingen.

In Hoofdstuk 6 introduceren we de definities van een vaagcovering, het vaagom-

gevingssysteem van een element, de vage minimale beschrijving van een element

en de vage maximale beschrijving van een object. Daarnaast breiden we vier om-

gevingsoperatoren en zes coverings besproken in [189] uit naar de vaagverzame-

lingenleer. Gegeven een eindige vaagcovering combineren we vier vaagomgevings-

operatoren en zes vaagcoverings, de oorspronkelijke vaagcovering en vijf afgeleide

vaagcoverings. De 24 vaagomgevingsoperatoren kunnen we terugbrengen tot 16

groepen van vaagomgevingsoperatoren als we een linkscontinue t-norm en de

residuele implicator beschouwen. We bestuderen orderelaties tussen deze 16 groe-

pen en bespreken de theoretische eigenschappen van vaagomgevingsoperatoren

voor elke groep. Ten slotte bespreken we een familie van vaagomgevingsopera-

toren die geïntroduceerd is in [107]. Echter, enkel voor β = 1 bekomen we een

reflexieve vaagomgevingsoperator. We bestuderen de eigenschappen van deze

vaagomgevingsoperator en onderzoeken orderelaties met de 16 groepen van vaag-

omgevingsoperatoren die we hierboven bespraken.

In het tweede deel van de thesis bespreken we verschillende vaagruwver-

zamelingmodellen. In Hoofstuk 7 geven we een historisch overzicht van vaag-

ruwverzamelingenleer sinds de jaren ‘80. Verder introduceren we het implicator-

conjunctorgebaseerde (IC) vaagruwverzamelingmodel. Dit model omvat verschil-

lende modellen die beschreven zijn in de literatuur. Daarnaast bestuderen we de

theoretische eigenschappen van het IC-model.

In Hoofdstuk 8 bestuderen we vaagcoveringgebaseerde ruwverzamelingmodel-

len die een uitbreiding zijn van de ‘tight’ en ‘loose’ coveringgebaseerde benaderings-

operatoren. We bespreken drie bestaande modellen en introduceren twee nieuwe

modellen die de ‘tight’ benaderingsoperatoren uitbreiden. Verder bespreken we één

bestaand en introduceren we één nieuw model die de ‘loose’ benaderingsoperato-

ren uitbreiden. Beide modellen zijn equivalent aan vaagruwverzamelingmodellen
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die gebruik maken van een vaagomgevingsoperator. We bestuderen de theoreti-

sche eigenschappen voor elk van de zeven modellen. Daarnaast bespreken we

orderelaties tussen 22 verschillende vaagruwverzamelingmodellen die gebaseerd

zijn op een eindige vaagcovering, een IMTL-t-norm, de residuele implicator en de

geïnduceerde negator. We besluiten dat de paren van duale benaderingsoperatoren

(apr
NC1 ,I

, aprNC1 ,T ) en (apr’
C,Wu

, apr’
C,Wu) de meest accurate benaderingen opleveren.

In Hoofdstuk 9 bestuderen we enkele vaagruwverzamelingmodellen die geïn-

troduceerd zijn in de literatuur om met ruis in data om te gaan. Voor elk model

bespreken we de benaderingsoperatoren en veralgemenen, corrigeren of vereen-

voudigen we het indien nodig. Vier modellen gebruiken hetzelfde idee als Ziarko

gebruikte voor het VPRS-model [203] en nemen enkel een fractie van de vaag-

verzameling Rp(x), x ∈ U , in beschouwing bij het bepalen van de onder- en

bovenbenadering in x . Een ander model past de vaagverzameling aan die bena-

derd wordt. Verder bespreken we twee modellen die andere aggregatieoperatoren

gebruiken dan het infimum en het supremum.

Voor elk model bestuderen we de theoretische eigenschappen. Geen enkel

model voldoet aan alle eigenschappen die voldaan zijn door het IC-model. Het

FVPRS-model dat het dichtst aanleunt tegen het IC-model voldoet aan de meeste

eigenschappen. Daarnaast zijn de modellen FG, β -PREC en OWA interessant vanuit

computationeel oogpunt.

Bovendien analyseren we de robuustheid van de zeven modellen en het IC-

model ten opzicht van ruis in de data. De robuustheid van de modellen FG en

FVPRS is vergelijkbaar met dat van het IC-model. Het gebrek aan theoretische

eigenschappen wordt dus niet gecompenseerd door een betere prestatie in de expe-

rimenten. Het β -PREC-model is robuuster dan het IC-model, maar het OWA-model

overtreft meestal de prestatie van het β-PREC-model en is in het algemeen het

best bestand tegen ruis.

Tot slot bespreken we in Hoofdstuk 10 de belangrijkste conclusies van deze

thesis en enkele toekomstige onderzoeksvragen.
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