

Fonds Wetenschappelijk Onderzoek Research Foundation – Flanders Kim Bauters Steven Schockaert, Martine De Cock, Dirk Vermeir

University of Ghent, Belgium

Department of Applied Mathematics and Computer Science

May 18,2011

overview

overview of this talk:

- background what are communicating programs?
- multi-focused answer sets means for local minimality
- semantics
- expressiveness

Communicating ASP and the Polynomial Hierarchy background

 communicating ASP defined as:
 many individual ASP programs ...
 name each component program e.g. Q, R, ...

that can communicate with each other
 situated literals
 e.g. Q:a, ...
 ""
 "ask to Q whether it believes that the atom a is true"

Communicating ASP and the Polynomial Hierarchy background

communicating ASP is:

- ... not a new idea used by Roelofsen, Brewka, Eiter ... also known as bridge rules
- ... open for interpretation?

$$Q: b \leftarrow Q: a$$

$$Q: a \leftarrow Q: b$$

$$\{Q: a, Q: b\}$$

$$(a \leftarrow b)$$

$$b \leftarrow a$$

$$(a \leftarrow b)$$

$$b \leftarrow a$$

$$(a \leftarrow b)$$

$$(a \leftarrow$$

background

communicating ASP is:

 ... not a new idea used by Roelofsen, Brewka, Eiter ... also known as bridge rules

• ... open for interpretation!

this circularity identified as being essential to represent social reasoning e.g. Buccafurri2008

more expressive induces a guess
 NP-complete for definite component programs

 $\{Q:a,R:a\}$

2 of 1 l

Communicating ASP and the Polynomial Hierarchy what is this talk about?

this talk : extension to multi-focused answer sets

basic idea: communicating programs are individual agents, where a single agent is the leader; one program is the main programs and the others are auxiliary programs (recursive idea!)

e.g. ''I am only interested in what Q has to say''

more generally: minimize over the information from \boldsymbol{Q}

multi-focused answer sets (example)

example office needs a new printer (stylish/dull ; silent/loud) E does not want one that is dull or loud M does not want one that loud B does not want one that is expensive (*i.e.* stylish and silent)

generate all 4 printer combinations, e.g. P: dull, P: silent

add additional rules (information) about undesirability, e.g. $M: undesired \leftarrow P: loud$ $B: expensive \leftarrow P: stylish, P: silent$

multi-focused answer sets (example)

example (continued) we have 4 communicating answer set programs

{P:stylish, P:silent, B:expensive}
{P:stylish, P:loud, E:undesired, M:undesired}
{P:dull, P:silent, E:undesired}
{P:dull, P:loud, E:undesired, M:undesired}

multi-focused answer sets (example)

example (continued) we had 4 communicating answer set programs

{P:stylish, P:silent, B:expensive}
{P:stylish, P:loud, E:undesired, M:undesired}
{P:dull, P:silent, E:undesired}
{P:dull, P:loud, E:undesired, M:undesired}

B is the boss; remove those communicating answer sets that are not subset minimal *w.r.t.* information from B

multi-focused answer sets (example)

example (continued) we had 4 communicating answer set programs

{P:stylish, P:loud, E:undesired, M:undesired}
{P:dull, P:silent, E:undesired}
{P:dull, P:loud, E:undesired, M:undesired}

 $M \mbox{is the manager of } E \mbox{; remove those comm. answer sets} that are not subset minimal w.r.t. information from <math display="inline">M$

multi-focused answer sets (example)

example (continued) we had 4 communicating answer set programs, of which

 $\{P: dull, P: silent, E: undesired\}$

is the unique $\{B, M(, E)\}$ -focused answer set the order in which we focus matters and affects the complexity

semantics

a component program Q is

- a (definite/normal/disjunctive) program ...
- that uses situated literals instead of normal literals.

a communicating program \mathcal{P} is a set of component programs

for \mathcal{P} a communicating program and I a set of situated literals, the reduct \mathcal{P}^{I} is defined as the set of reducts Q^{I} of each component program $Q \in \mathcal{P}$.

for Q a component program and I a set of situated literals, the reduct Q^{I} is obtained by deleting:

- each rule with $not \ R:a$ and $R:a \in I$;
- each remaining literal of the form $not \ R:a$;
- each rule with R:a such that
 - $R\!:\!a
 ot\in I$; and
 - R:a is not Q-local.

e.g. $Q: a \leftarrow R: b, Q: c$ in component program Q in Q-local situated literal not Q-local

for Q a component program and I a set of situated literals, the reduct Q^{I} is obtained by deleting:

- each rule with $not \ R:a$ and $R:a \in I$;
- each remaining literal of the form $not \ R:a$;
- each rule with R:a such that
 - $R\!:\!a
 ot\in I$; and
 - R:a is not Q-local.
- each remaining R:a and R:a is not Q-local.

for Q a component program and I a set of situated literals, the reduct Q^I is obtained by deleting:

- each rule with $not \ R:a$ and $R:a \in I$;
- 2 each remaining literal of the form not R:a;
 - each rule with R:a such that
 - $R\!:\!a
 ot\in I$; and
 - R:a is not Q-local.
 - each remaining R:a and R:a is not Q-local.

$$I = \{Q:b, R:b\} \qquad \begin{array}{c} \blacksquare Q:a \leftarrow not \ Q:b \\ Q:b \leftarrow not \ R:a \\ Q:b \leftarrow Q:b \end{array} \qquad \begin{array}{c} R:a \leftarrow Q:a \\ R:b \leftarrow Q:b \\ \end{array}$$

for Q a component program and I a set of situated literals, the reduct Q^{I} is obtained by deleting:

for \mathcal{P} a communicating program and \mathcal{P}^{I} the reduct, communicating answer sets are defined in the classical way notice that all remaining programs are Q-local and thus correspond with a classical program for which we know the answer sets

a (Q_1, Q_2, \ldots, Q_n) -focused answer set M of \mathcal{P} is defined recursively as:

• M is a $(Q_1, Q_2, \ldots, Q_{n-1})$ -focused answer set of \mathcal{P} and there is no other $(Q_1, Q_2, \ldots, Q_{n-1})$ -focused answer set M' with $M'_{\downarrow Q_n} \subset M_{\downarrow Q_n}$

a ()-focused answer set is any comm. answer set of \mathcal{P}

expressiveness

with normal component programs we can use $(Q_1, Q_2, ..., Q_{n-1})$ -focused answer sets to verify whether a Quantified Boolean Formula of the form $\exists X_1 \forall X_2 ... \Theta X_n \cdot p(X_1, X_2, ..., X_n)$ is satisfiable

brave reasoning with $(Q_1, Q_2, ..., Q_{n-1})$ -focused answer sets is Σ_n^P -hard as it turns out, the task is Σ_n^P -complete

Communicating ASP and the Polynomial Hierarchy encoding example

encoding
$$\exists x \forall y \exists z \cdot (x \land y) \lor (\neg x \land y \land z) \lor (\neg x \land \neg y \land \neg z)$$
:

(generate)	$Q_0: x \leftarrow not \ \neg x Q_0: \neg x \leftarrow not \ x$	$Q_0: y \leftarrow not \ \neg y \\ Q_0: \neg y \leftarrow not \ y$	$Q_0: z \leftarrow not \ \neg z Q_0: \neg z \leftarrow not \ z$
(encode QBF)	$Q_0: sat \leftarrow x, y$	$Q_0: sat \leftarrow \neg x, y, z$	$Q_0: sat \leftarrow \neg x, \neg y, \neg z$
(technical)	$Q_0: \neg sat \leftarrow not \ sat$		
(ensure∃ <i>z</i>)	$Q_1: \neg x \leftarrow Q_0: \neg x \\ Q_1: x \leftarrow Q_0: x$	$Q_1 : y \leftarrow Q_0 : y$ $Q_1 : \neg y \leftarrow Q_0 : \neg y$	$Q_1: \neg sat \leftarrow Q_0: \neg sat$
(ensure $\forall y$)	$Q_2: \neg x \leftarrow Q_0: \neg x \\ Q_2: x \leftarrow Q_0: x$		$Q_2: sat \leftarrow Q_0: sat$

satisfiable iff Q_0 : $sat \in M$ with M a (Q_1, Q_2) -focused answer set

10 of 11

conclusion

conclusions:

- communication critically influences the expressiveness/complexity indeed, captures entire polynomial hierarchy
- idea is that of leaders and followers they can successively apply their preferences by eliminating answer sets
- on a technical level, multi-focused answer sets correspond with determining local minimality
- choice of communication mechanism is paramount w.r.t expressiveness of the overall system, irrespective of expressiveness of individual agents.

Questions?