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For any electric power system, it is crucial to guarantee a reliable performance of its High Voltage Circuit
Breaker (HCVB). Determining when the HCVB needs maintenance is an important and non-trivial pro-
blem, since these devices are used over extensive periods of time. In this paper, we propose the use of
data mining techniques in order to predict the need of maintenance. In the corresponding data, one class
(minority, or positive class) is significantly less represented than the other (majority, or negative class).
For this reason, we introduce a new imbalanced learning preprocessing algorithm, called SMOTE-FRST-
2T. It combines the well-known Synthetic Minority Oversampling Technique (SMOTE) with a strategy of
instance selection based on fuzzy rough set theory (FRST), using two different thresholds for cleaning
synthetic minority instances introduced by SMOTE, as well as real majority instances. Our experimental
analysis shows that we obtain better results than a range of state-of-the-art algorithms.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

A High Voltage Circuit Breaker (HVCB) is a device designed to
open or close an electric circuit. It should be able to open circuits
that operate on a wide range of capacities, varying from capacitive
currents of a few hundred Amperes to inductive currents of many
kA. This is the main reason why it is crucial for any electric power
system to ensure a reliable performance of its breakers (ANSI,
2000).

Maintaining the HVCB is a very important task to improve its
operational reliability. This maintenance is performed in time
intervals dictated by the manufacturer. Nevertheless, very often
these intervals are not workable in practice (AREVA, 2005). This
difference between the predicted and real times occurs because
there are some important variables that are not taken into account
in the prediction (Lindquist et al., 2008; Rudd et al., 2011; Fan and
Xiaoguang, 2012; Fnineche and Aitken, 2012; Runde et al., 2012).

Therefore, we need a reliable tool to predict when maintenance
is necessary for an HVCB, avoiding undesired electric system faults.
l),
uc.edu.cu (S. Lajes),
aballero),
.es (F. Herrera).
This problem can be considered as a classification task since given
some input variables, the system should decide on two possible
outputs: “maintenance needed” (positive class) or “maintenance
not needed” (negative class).

To obtain the data for this problem, several measurements over
different HVCBs have been taken and for each of them a team of
experts evaluates whether maintenance is necessary or not. In the
majority of cases, the answer is “maintenance not needed”. In
other words, the class distribution in the resulting dataset is
imbalanced; this characteristic is well-known and can be solved by
imbalanced classification techniques (He and García, 2009; López
et al., 2013; Sun et al., 2009).

A successful strategy to tackle imbalanced classification uses
resampling methods that preprocess the data prior to classifica-
tion (García et al., 2009). Many state-of-the-art resampling
methods are based on the Synthetic Minority Oversampling
Technique (SMOTE, (Chawla et al., 2002), an oversampling method
that creates artificial minority class examples by interpolating
between real minority examples and their nearest neighbors.
SMOTE is often used in conjunction with a data cleaning method
that eliminates examples (artificial minority ones, or majority
ones) that are considered harmful for classification. Prominent
methods include SMOTE-Tomek links and SMOTE-ENN (Batista
et al., 2004), Borderline-SMOTE1 and Borderline-SMOTE2 (Han
et al., 2005), Safe-Level-SMOTE (Bunkhumpornpat et al., 2009),
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SPIDER2 (Napierala et al., 2010), SMOTE-RSB* (Ramentol et al.,
2012a) and SMOTE-FRST (Ramentol et al., 2012b).

In this paper, we propose a modification of the SMOTE-FRST
algorithm in order to improve it for solving the HVCB maintenance
problem. SMOTE-FRST uses fuzzy rough set theory (FRST, Dubois
and Prade, 1990) in order to remove data points (instances) that do
not sufficiently belong to the fuzzy rough positive region. An
important drawback of the method is that to use a high threshold
for instance removal usually ends up in eliminating too many
original majority examples, causing a reduction in classification
performance. On the other hand, choosing the threshold too low
undermines the method's data cleaning purpose. In this paper, we
deal with this dilemma by cleaning/reducing the training data
using a double threshold for eliminating original majority data on
the one hand, and synthetic minority data on the other hand. The
resulting method is called SMOTE-FRST-2T.

We set up an experimental study to compare our proposal with
SMOTE-FRST, as well as with the eight previously mentioned
resampling algorithms. As we will see, SMOTE-FRST-2T outper-
forms all selected methods, demonstrating its competitiveness,
and in particular is able to strike a balance between a low number
of false negatives (that is, a failure to predict maintenance in the
HVCB when it is actually necessary) and false positives (predicting
an unnecessary maintenance step).

The remainder of the paper is structured as follows. In
Section 2, we recall the HVCB maintenance problem and introduce
the dataset used in our research. In Section 3, we present the
details of our new proposal, while in Section 4 it is evaluated
experimentally. Finally, in Section 5 we conclude.
Table 1
Descriptive variables.

Variable names Type

Insulation chamber Real
Insulation support Real
Total insulation Real
Contact resistance Real
Gas pressure SF6 Real
Resistance coils Real
Number of operations Integer
Principal terminals Nominal {1–10}
Porcelain Nominal {1–10}
Temperature-compensated Nominal {1–10}
Cabinets Nominal {1–10}
Grounding Nominal {1–10}
Connections Nominal {1–10}
General control Nominal {1–10}
Operational criticality Nominal {high, normal, low}
Electrical wear Nominal {high, normal, low}
Breaker wear Nominal {high, normal, low}
2. Diagnosis of High Voltage Circuit Breaker maintenance

In this section, we describe in detail the problem of HCVB
maintenance. HVCBs are mechanical switching devices that carry
and disrupt electrical current in a circuit. Circuit breakers must
function in normal and abnormal conditions, and must accom-
modate short circuits and outages. Circuit breakers are used with
switching generators, power stations, cable feeders, transformers,
and overhead lines in power distribution systems (Garzon, 2002).

2.1. The HVCB problem

The primary functions of a High Voltage Circuit Breaker include
carrying rated current at rated voltage and power frequency when
in closed position; interrupting rated currents at rated voltage and
power frequency on command; and maintaining rated dielectric
(power frequency and impulse) withstand levels when in open
position. Sometimes the breaker may not open or close on com-
mand, allowing the fault to exist for a longer duration than the
system can sustain while functioning normally (Garzon, 2002).
Unless a breaker failure initiate action is taken, faults of breakers
can lead to undesired changes in system functioning that may
result in the system going into an abnormal state, potentially
causing major system-wide power outage. This is the reason why
it is so important to timely predict when maintenance is necessary
for an HVCB.

To decide whether an HVCB needs maintenance is not obvious
in many cases for they are used, open or close, for extensive per-
iods of time. The need for a correct prediction of their performance
grows in time with the expansion of the transmission systems
since they transport more energy in wider regions. Hence pre-
ventive or time based maintenance is used. This means that
maintenance to the HVCB is scheduled regularly on preset time-
slots independent of its state. Nevertheless with the development
of the technologies, new approaches for this scheduling have also
been derived (ANSI, 2000). Predictive maintenance bases the
decision on the inspection of the equipment on regular time-slots.
It includes the objective (with the adequate tools) and subjective
(with human senses) inspection as well as the reparation of the
problem (potential fault). The goal is to accurately predict the
condition of the breaker without opening it for inspection, aug-
menting its efficiency and significantly dropping its maintenance
cost. This technique is normally performed by tests, statistical
analysis or condition monitoring.

The effectiveness of the predictive maintenance depends on the
accuracy of the analysis of the visual revision, tests and statistics to
determine the level of the damage. In practice, there are several
variables to be included in such an analysis which is often affected
by the expertise of the specialist. In this paper, we use data mining
techniques to perform such a prediction and the task is divided
into the following steps:

1. Making-up the data-set, i.e.,
(a) determining the variables;
(b) measurements of each variable;
(c) labeling each observation as maintenance needed or not by a

human expert.
2. Determining the data-set characteristics given the amount of

instances on each class.
3. Choosing the classifier to be used in the application.
4. Choosing the preprocessing techniques to be used in the

application.
5. Evaluating the performance of the system in an experimental

study.

2.2. Construction of the dataset

The variables used in our data were previously determined
from international studies, rules and procedures according to
approaches of several specialists of the electric company. The
Delphi method was used to consult several experts to validate the
feasibility and relevance of the variables used in the training set.
This consult was applied to 35 renowned specialists, including 25
locals and 10 foreigners. For creating the dataset, the variables
chosen were those that had more effect on the class. This proce-
dure resulted in 17 variables that demonstrated to have a high
impact on the decision associated to maintenance. These variables
are shown in Table 1.

After deciding on the variables, we proceed with the mea-
surements. In this process, experts provided important informa-
tion related to the state of the breakers. All measurements were
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labeled with their corresponding class (positive/ negative)
assigned by the experts. The resulting dataset is composed of 369
examples; 120 belong to the positive or minority class (main-
tenance needed), while the 249 remaining examples represent the
negative or majority class (maintenance not needed). In other
words, there are more than two negative examples for each
positive one.
Re
3. Fuzzy-rough imbalanced learning with double threshold for
the HCVB problem

In this section, we introduce our method SMOTE-FRST-2T
designed to solve the HCVB problem. The method is a variation
on SMOTE-FRST (Ramentol et al., 2012b), a preprocessing method
that evaluates each synthetic and majority instance using a mea-
sure based on fuzzy rough set theory (Dubois and Prade, 1990)
(FRST), and deletes those instances for which the value does not
exceed a given threshold. As we will see, this proposal results
unsuitably in the context of diagnosis of HVCB maintenance,
because it eliminates many important original examples. Our
proposal is described in detail in Section 3.2. In the next subsec-
tion, we first recall the necessary concepts from fuzzy rough set
theory.

3.1. Fuzzy Rough Set Theory (FRST)

Rough Set Theory (RST) was introduced by Pawlak (1982), and
has evolved into a popular methodology for dealing with uncer-
tainty produced by inconsistencies in data (Bello, 2008). The the-
ory revolves around the notion of (in)discernibility: the ability to
distinguish between instances, based on their attribute values.
Rough sets are often hybridized with fuzzy sets (Zadeh, 1965)
which model gradual transitions in the satisfaction of a concept or
relation. In the resulting FRST (Dubois and Prade, 1990), indis-
cernibility is typically modeled by means of a fuzzy relation R that
expresses how similar two instances are on a scale from 0 (totally
dissimilar) to 1 (completely indiscernible).

In this paper, we assume the following definitions, as proposed
also in Ramentol et al. (2012b). Let x be the set of data instances
and A the set of attributes. Given a real attribute a in A, and two
instances x and y in X, such that a(x) and a(y) represent the values
of x and y for a, respectively, we define

Raða; bÞ ¼max 1�jaðyÞ�aðxÞj
rangeðaÞ ;0

� �
ð1Þ

where Raðx; yÞ is a value between 0 and 1 which evaluates the
indiscernibility between x and y: the higher Raðx; yÞ the closer
(more similar) x and y are. On the other hand, if a is a nominal
attribute, we define

Raðx; yÞ ¼
1 if aðxÞ ¼ aðyÞ
0 otherwise

�
ð2Þ

In this case, the indiscernibility with respect to a is two-valued;
if two instances have different values for a, they can be discerned
Raðx; yÞ ¼ 0, while in the opposite case they cannot Raðx; yÞ ¼ 1. In
order to compare x and y w.r.t. the entire set of attributes A, we
calculate the following aggregated value:

Rðx; yÞ ¼ TLðRaðx; yÞÞ|fflfflfflfflffl{zfflfflfflfflffl}
aAA

ð3Þ

where TL represents the so-called Lukasiewicz t-norm given by
TLðv1;…; vnÞ ¼maxð0; v1þ…þvn�nþ1Þ for v1;…; vnA ½0;1�,
where n¼ jAj . R is called the fuzzy-rough indiscernibility relation.

Using R, we can evaluate, for each data instance x, its mem-
bership to the positive region POS, by looking at the most similar
instance y which has a different class label:

POSðxÞ ¼ min
classðyÞa classðxÞ

1�Rðx; yÞÞ ð4Þ

The idea of the positive region is that instances x on the border
of a class (i.e., for which there exists a similar instance in another
class) will have a small POS(x) value compared to instances in the
center of a class. This makes the positive region suitable to mea-
sure the quality of an instance as a typical representative of
its class.

3.2. Using two thresholds: SMOTE-FRST-2T algorithm

In Ramentol et al. (2012b), we introduced a hybrid method for
preprocessing imbalanced data called SMOTE-FRST. This method
consists of two stages: first, it generates synthetic minority
examples and then it evaluates the dataset using a cleaning
method based on FRST. These stages are repeated until the training
data is balanced, or until a maximum number of iterations T is
reached.

The hypothesis of SMOTE-FRST is that some of the introduced
synthetic minority class instances may not be suitable for use in
the learning phase, and hence should be eliminated. Similarly,
majority class instances in the original training data that do not
sufficiently belong to the positive region are removed. Note that
we do not apply this procedure to the original minority class
instances, since they are relatively sparse and are better left
untouched. The algorithm needs two parameters: the number of
iterations and the positive region threshold. In Ramentol et al.
(2012b), T¼10 and γ ¼ 0:8 were proposed.

In this paper, we modify this algorithm as the use of a single
threshold proves inadequate. For instance, when using γ ¼ 0:8 in
the HCVB problem, all majority examples are eliminated, which is
clearly undesirable. On the other hand, if we lower the threshold
to retain more majority examples, the quality of the synthetic
examples also gets poorer, which has a negative effect because
synthetic minority instances should represent a real occurrence of
an uncommon event.

For these reasons, we propose a new method called SMOTE-
FRST-2T that uses two different thresholds to evaluate the
instances using FRST. Algorithm 1 shows the detailed steps of our
method. In particular, SMOTE-FRST-2T consists of three stages:

1. Apply SMOTE (Chawla et al., 2002) to introduce new synthetic
minority class instances to the training set (line 6).

2. Insert synthetic instances xsð Þ for which the membership degree
POS xsð Þ to the positive region of the training set is higher than a
given threshold γS (lines 7–13).

3. Insert majority class instances xmð Þ for which the membership
degree POSðxmÞ to the positive region of the training set is
higher than a given threshold γM (lines 14–20).

Steps 2 and 3 are repeated until a predetermined number T of
executions are reached, or the resulting dataset is balanced, i.e.,
contains an equal number of examples of each class (line 5).

The membership degree POS is computed in each step of the
algorithm with respect to all instances in the training set (original
þ synthetic). In every step of the algorithm the original majority
instances are the resulting instance of the pervious step.

Algorithm 1. SMOTE-FRST-2T algorithm.
quire: threshold for synthetic examples γS
threshold for majority class γM
maximum number of iterations T
array of majority examples maj½ �
array of minority examples min½ �
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sure: resultSet
: resultSet¼min½ �
: executionNumber¼0
: nsynt ¼ nmaj¼ 0
: isbalance¼ false
: while ðexecutionNumbero ¼ TÞ& !ðisbalanceÞ do
: Apply SMOTE to create an array syntInst½ � of synthetic
minority examples
: for i’1 to ðsyntInst½ �:lengthÞ do
: Compute POSðsyntInst½i�Þ
: if POSðsyntInst½i�Þ4 ¼ γS then
0: resultSet¼resultSet[syntInst½i�
1: nsyntþþ
2: end if
3: end for
4: for j’1 to maj½ �:lenght do
5: Compute POSðmaj½j�Þ
6: if POSðmaj½j�Þ4 ¼ γM then
7: resultSet¼resultSet[maj½j�
8: nmajþþ
9: end if
0: end for
1: balance¼ nmaj¼ ¼ nsyntþnmin½ �:lenghtð Þð Þ
2: executionNumberþþ
3: end while
2

The underlying idea of SMOTE-FRST-2T is, on the one hand, to
use a very low threshold γM for the original majority examples in
order to eliminate only a few of them, namely those with a very
weak membership to the positive region. Indeed, in a real-world
application like the HVCB dataset, every original instance repre-
sents one real occurrence, so we need to be very careful with every
instance that we decide to eliminate. On the other hand, we pro-
pose to use a very high value for the synthetic examples; this helps
us to insert only synthetic examples with a very high membership
to the positive region to the training set. In the next section, we
will validate this hypothesis experimentally on the HCVB dataset.
4. Experimental study

In this section, we experimentally evaluate the proposed
SMOTE-FRST-2T algorithm on the HCVB dataset described in
Section 2, comparing our proposal to the original SMOTE-FRST
method, as well as to the state-of-the-art resampling techniques
listed in Section 1.

In Section 4.1, we describe the setup of our experiments and
the selection of the parameters associated with our method, while
in Section 4.2, we give the results and analyze them.

4.1. Setup and parameter selection

The general outline of our experiments1 is as follows: the HCVB
dataset is divided into five parts in order to perform a 5-fold cross-
validation (5FCV) procedure. Each fold is first preprocessed using
one of the resampling methods listed below, and then it is trans-
ferred to the base classifier (learning algorithm), which in our case
is C4.5 (Quinlan, 1993). Classification performance is then eval-
uated using the Area Under the Curve (AUC) metric (Huang and
Ling, 2005). Moreover, the 5FCV procedure is repeated 5 times
using different partitions of the data, in order to increase the
Our experiments were executed using the KEEL software tool (Alcalá et al.,
; all the methods referenced below are implemented in it.
reliability of the obtained results and the conclusions derived
from them.

Our choice of C4.5 as learning algorithm is motivated by the
fact that it has been identified as one of the 10 top algorithms in
data mining (Wu et al., 2008), and has been widely used in
imbalanced problems (Batista et al., 2004). We used the para-
meters recommended by its author: we set a confidence level of
0.25, the minimum number of itemsets per leaf was set to 2 and
the application of pruning was used to obtain the final
decision tree.

In order to evaluate SMOTE-FRST-2T, we compare it to nine
existing resampling algorithms: SMOTE (Chawla et al., 2002),
SMOTE-TL (Batista et al., 2004), SMOTE-ENN (Batista et al., 2004),
Borderline-SMOTE1 (Han et al., 2005), Borderline- SMOTE2 (Han
et al., 2005), Safe-Level-SMOTE (Bunkhumpornpat et al., 2009),
SPIDER2 (Napierala et al., 2010), SMOTERSB* (Ramentol et al.,
2012a) and SMOTE-FRST (Ramentol et al., 2012b). The parameter
values used for these methods are those recommended by their
authors. Only the algorithm SMOTE-FRST was modified slightly in
order to be able to apply it meaningfully here. As indicated in
Section 3, the original version of SMOTE-FRST eliminates all
majority examples for the HCVB dataset. For this reason, we
decided to leave the majority instances unchanged when using
SMOTE-FRST, and to eliminate only synthetic minority instances
according to the threshold γs. We denote this modified version as
SMOTE-FRST- S, pointing out its action on the synthetic instances
(examples). Both γs ¼ 0:8 and γs ¼ 1 were tried.

As mentioned in Section 3.2, SMOTE-FRST-2T needs three
parameters: the number of iterations T, the threshold γM to eval-
uate original majority instances using the positive region POS and
the threshold γs to evaluate synthetic instances, also using POS.

In Ramentol et al. (2012b), we proposed the use of 10 iterations,
while in this research we used 5; γs for the synthetic examples is
fixed as 1 and γM for the original majority examples is fixed as
0.03. These parameters were selected using the following
assumptions:

� We limit ourselves to 5 iterations, because given the number of
examples to generate and the quality of the synthetic examples
that are demanded with our evaluation method, 5 iterations
should be sufficient to reach convergence.

� An instance that belongs to degree 1 to the positive region is
absolutely certain to be a good representative of its class. Since
we work with a real world application in which every synthetic
example represents a need for maintenance state of the HVCB,
such synthetic examples need to be carefully introduced, since
they have not been observed in a real observation. This is the
reason why only very good representative synthetic examples
are introduced, meaning that the threshold for the membership
degree to the class of such examples has to be the maximum
possible (1).

� Each original example in the dataset represents a real obser-
vation of the engineers on the HVCB, hence removing any of
these examples has to be considered with great care as it may
lead to losing important knowledge. A membership degree very
close to zero represents an example that is very close to the
opposite class: these examples greatly affect the separability of
the classes in a classification process, or can even be considered
as noise. In this work, it was decided to eliminate all those
majority instances with a positive region membership degree
below 0.03.

4.2. Results

In Table 2, we report the average AUC values and standard
deviations obtained over 5 independent runs of the 5FCV



Table 2
Comparison of the AUC results for training and test data, averaged over 5 inde-
pendent runs of 5-fold cross validation, along with their standard deviation.

Nr Resampling method tra tst

1 Original 0.971570.0073 0.934070.0123
2 SMOTE 0.977970.0051 0.934170.0100
3 SMOTE-TL 0.952270.0063 0.914070.0065
4 SMOTE-ENN 0.958670.0042 0.920270.0055
5 Borderline-SMOTE1 0.969270.0055 0.921470.0178
6 Borderline-SMOTE2 0.965770.0083 0.923470.0138
7 Safe-Level-SMOTE 0.958170.0054 0.930970.0114
8 SPIDER2 0.953170.0064 0.926470.0087
9 SMOTE-RSBn 0.973970.0059 0.942770.0058
10 SMOTE-FRST-S

ðγS ¼ 0:8Þ
0.977370.0039 0.940070.0146

11 SMOTE-FRST-S ðγS ¼ 1Þ 0.977370.0044 0.939470.0098
12 SMOTE-FRST-2T 0.972570.0044 0.952070.0109

Table 3
Mean of created and deleted instances by the methods SMOTE-FRST-S and SMOTE-
FRST-2T over 5 independent runs of 5-fold cross validation.

Nr SMOTE-FRST-S SMOTE-FRST-2T

Fold 1
#may deleted 0 5.4
#synt created 103 97.6

Fold 2
#may deleted 0 6.6
#synt created 103 96.8

Fold 3
#may deleted 0 7
#synt created 103 96.6

Fold 4
#may deleted 0 8.8
#synt created 103 94.4

Fold 5
#may deleted 0 7.4
#synt created 104 96.6

Table 4
Mean of the false negatives and false positives obtained by each method over
5 independent runs of 5-fold cross validation.

Methods False negative False positive

Original 11.4 7.8
SMOTE 8.2 15.8
SMOTE-TL 5.4 31.6
SMOTE-ENN 12.4 14
Borderline-SMOTE1 9.4 19.6
Borderline-SMOTE2 7 23.6
Safe-Level-SMOTE 8 17.8
SPIDER2 6.4 23.4
SMOTE-RSB* 7 14
SMOTE-FRST-S ðγS ¼ 0:8Þ 11.4 5.8
SMOTE-FRST-S ðγS ¼ 1Þ 10.4 9
SMOTE-FRST-2T 7 9.4

Table 5
Maximum false negatives obtained by each method
over 5 independent runs of 5-fold cross validation.

Methods Maximum false negatives

Original 15
SMOTE 10
SMOTE-TL 8
SMOTE-ENN 14
Borderline-SMOTE1 17
Borderline-SMOTE2 9
Safelevel-SMOTE 13
SPIDER2 9
SMOTE-RSB* 9
SMOTE-FRST-S ðγs ¼ 0:8Þ 15
SMOTE-FRST-S ðγs ¼ 1Þ 13
SMOTE-FRST-2T 8
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procedure with each strategy. For reference, we also include the
performance of C4.5 without introducing any preprocessing to the
data (original data). We also distinguish between training (tra) and
test (tst) AUC: the former shows how well the classifier works on
the data that was used for training it, while the latter reveals how
good it is at making predictions for unseen data.

It can be seen that among the compared algorithms, SMOTE-
FRST-2T obtains the best test AUC, outperforming the second best
method (SMOTE-RSB*) by almost one percent.

Note also that several of the other considered preprocessing
methods do not manage to improve the AUC obtained using the
unreduced data, showing that they are unsuitable for this problem.

It can also be seen that the two considered variants of SMOTE-
FRST-S obtain a higher training AUC than SMOTE-FRST-2T, but do
not perform as well as on the test data. This fact supports the
benefits of removing the original majority examples with a very
low membership to the majority class. For a more detailed com-
parison between our proposal and its predecessor, Table 3 shows
the mean of data remaining in each fold after executing SMOTE-
FRST-S ðγs ¼ 0:8Þ and SMOTE-FRST-2T over 5 independent runs of
5-fold cross validation. Each row labeled as “#maj deleted” shows
the number of original majority examples deleted. Each row
labeled as “#synt created” shows the number of synthetic exam-
ples generated. As mentioned, SMOTE-FRST-S does not eliminate
any majority sample; however, by using a low threshold when
evaluating the majority samples, SMOTE-FRST-2T eliminates a few
in each fold, as the low positive region membership indicates that
they are probably noisy. On the other hand, using a higher value to
evaluate the synthetic samples leads to SMOTE-FRST-2T deleting
more synthetic instances than SMOTE-FRST-S. From the results, it
can be inferred that these modifications lead to an overall better
classification.

Finally, in Tables 4 and 5 we investigate the number of false
positives and false negatives for the compared algorithms; the
numbers in Table 4 are the mean over 5 independent runs of 5-
fold cross validation. The table shows that SMOTE-FRST-2T yields
on average 7 false negatives, which is the same result as that
obtained using Borderline-SMOTE2 and SMOTE-RSB*. This mean is
improved to 6.4 by SPIDER” and to 5.4 when using SMOTE-TL.
However, it can be seen that all these competing methods reach a
high false positives rate compared to our proposal. On the other
hand, in Table 5 we can observe that our proposal and SMOTE-TL
obtained the same maximum number value of false negatives over
all 5 runs of cross-validation, while for Borderline-SMOTE2, SPI-
DER2 and SMOTE-RSB* is strictly higher.

The above observations have an important consequence from
an electrical engineering point of view: indeed, the main objective
is to reduce the false negative rate while also reducing the false
positive rate, this means finding an equilibrium between failures
in both classes.

If the HVCB does not need maintenance and the system pre-
dicts “yes”, the associated cost relates to testing the equipment,
perhaps the maintenance itself to the involved parts, or the
associated cost, to the out-of-work time of the HVCB while it is
opened to check if it really needs maintenance. This could gen-
erate faults on the electrical system. If the system predicts “no”
when the maintenance is actually needed, the problem is far
worse since this can cause damage to the system and eventual
failure. These damages might produce the loss of synchronism of
the generators and lead the system (or part of it) to shut down.
The associated cost in terms of replacements may rise, as well as
the economic losses given the electric faults.
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Concluding, while an improvement of only 1% in AUC may
appear comparatively small, the reduction in associated cost due
to failure in both classes is significant, and may save the enterprise
operating the HCVB a considerable expense.
5. Conclusion

In this paper, we have proposed the algorithm SMOTE-FRST-2T
as a preprocessing step in order to predict the necessity of main-
tenance of a HVCB. Our main contribution from the machine
learning point of view can be summarized as follows:

� The use of two thresholds allows treating original majority
instances in a different way than synthetic instances.

� Majority instances with a very low membership to the positive
region are deleted and only synthetic examples with the highest
value of membership to the positive region are inserted into the
final dataset.

� Our proposal obtained better results than nine well-known
algorithms of the state-of-the-art.

Summing up, our method is able to reduce in a significant way the
number of misclassified examples. From an electrical engineering
point of view, this translates to avoiding power system faults,
HVCB ruptures and replacements, and unnecessary opening of the
equipment, as well as to saving significant resources.
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