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Abstract. The hybridization of rough sets and fuzzy sets has focused
on creating an end product that extends both contributing computing
paradigms in a conservative way. As a result, the hybrid theory inherits
their respective strengths, but also exhibits some weaknesses. In partic-
ular, although they allow for gradual membership, fuzzy rough sets are
still abrupt in a sense that adding or omitting a single element may dras-
tically alter the outcome of the approximations. In this paper, we revisit
the hybridization process by introducing vague quantifiers like “some”
or “most” into the definition of upper and lower approximation. The re-
sulting vaguely quantified rough set (VQRS) model is closely related to
Ziarko’s variable precision rough set (VPRS) model.
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1 Introduction

In rough set theory, an object belongs to the upper approximation of a set as soon
as it is related to one of the elements in the set, while the lower approximation
only retains those objects related to all the elements in the set. This is due
to the use of an existential quantifier in the definition of upper approximation,
and of a universal quantifier for the lower approximation. In applications that
use real-life data (which is usually noisy to some extent, and hence prone to
classification errors and inconsistency), the definition of upper approximation
might be too loose (easily resulting in very large sets), while the definition of
lower approximation might be too strict (easily resulting in the empty set). A
similar phenomenon can be observed at the level of fuzzy rough set theory, where
the 3 and V quantifiers are replaced by the sup and inf operations (see e.g. [1,
6]), which prove just as susceptible to noise as their crisp counterparts.

In his variable precision rough set (VPRS) model, Ziarko [8,9] introduced
thresholds to deal with these problems in the crisp case. In general, given 0 <
I <u <1, an element y is added to the lower approximation of a set A if at least
100 * u percent of the elements related to y are in A. Likewise, y belongs to the
upper approximation of A if more than 100x[ percent of the elements related to y



are in A. This can be interpreted as a generalization of the rough set model using
crisp quantifiers at least 100 x u percent and more than 100 * [ percent to replace
the universal quantifier (which corresponds to “at least 100 percent”) and the
existential quantifier (which corresponds to “more than 0 percent”). Also, some
attempts have been made to pursue this approach within the fuzzy rough set
model, having in common that they still rely on the use of crisp thresholds [ and
u (see e.g. [2,4]).

In this paper, we go one step further by introducing vague quantifiers like
most and some into the model. In this way, an element y belongs to the lower
approximation of A if most of the elements related to y are included in A. Like-
wise, an element belongs to the upper approximation of A if some of the elements
related to y are included in A. Mathematically, we model vague quantifiers in
terms of Zadeh’s notion of fuzzy quantifiers [7]. As such, the new model inherits
both the flexibility of VPRSs for dealing with classification errors (by relaxing
the membership conditions for the lower approximation, and tightening those for
the upper approximation) and that of fuzzy sets for expressing partial constraint
satisfaction (by distinguishing different levels of membership to the upper/lower
approximation). Moreover, we illustrate that the model can be used in a mean-
ingful way, regardless of whether the relation R and the set A to be approximated
are crisp or fuzzy. In each case, the outcome of the approximations will be a pair
of fuzzy sets delineating A in a flexible way.

The remainder of this paper is structured as follows. In Section 2, we review
basic notions of classical rough sets and VPRSs, while Section 3 introduces
vaguely quantified rough sets in the crisp case, and illustrates their relevance in
the context of information retrieval. In Section 4, we lift the VQRS paradigm to
the level of fuzzy rough set theory, distinguish it from related work that combines
VPRSs with fuzzy sets and detail an experiment on a benchmark dataset to show
the performance of the proposed extension vis-a-vis the classical approach in a
rough data analysis problem. Finally, in Section 5, we conclude.

2 Variable Precision Rough Sets

Recall that the traditional upper and lower approximation [5] of a set A in the
approximation space (X, R) are defined by

yERTAMF ANRy #0 (1)
y e RIAff Ry C A 2)

in which Ry is used to denote the equivalence class (also called R-foreset) of y.
Furthermore, the rough membership function R4 of A is defined by

Raly) = —'R@A' (3)

R4(y) quantifies the degree of inclusion of Ry into A, and can be interpreted
as the conditional probability that y belongs to A, given knowledge about the



equivalence class Ry that y belongs to. One can easily verify that

y € RTAff Ru(y) > 0 (4)
y € RIAIff Ra(y) =1 (5)

In other words, y is added to the upper approximation as soon as Ry overlaps
with A, while even a small inclusion error of Ry in A results in the rejection of
the whole class from the lower approximation.

Ezample 1. Consider a document collection D = {dy,...,ds} in which the doc-
uments are arranged according to topic into four categories : Dy = {d1,...,d5},
D2 = {dﬁ, ey d10}7 D3 = {d11; ey d15} and D4 = {d15, ceey dgo}. Hence, the
categorization defines an equivalence relation R on X. Suppose now that a user
launches a query, and that the relevant documents turn out to be (automati-
cally determined) the set A = {da,...,d12}. This suggests that the information
retrieval system simply might have missed d; since all other documents from
D, are in A. Furthermore, the fact that only dy; and di2 are retrieved from Dj
might indicate that these documents are less relevant to the query than the doc-
uments of Do, which all belong to A. Pawlak’s original rough set approach does
not allow to reflect these nuances, since R|A = Dy and RTA = Dy U Dy U Ds,
treating D1 and D3 in the same way.

Since in real life, data may be affected by classification errors caused by
humans or noise, Ziarko [9] relaxes the constraints in (4) and (5) to obtain the
following parameterized definitions:

y € RTAMf Ra(y) >1 (6)
y€ R, AT Ra(y) > u (7)

Formulas (4)—(7) can also be read in terms of quantifiers, i.e.

y € RTAMf (z € X)((z,y) e RNz € A) (8
y€ R|IAIf (Ve € X)((z,y) € R=x € A) 9
y € RT,;A iff more than 100 % [% elements of Ry are in A (10
y € R|,Aiff at least 100 * u% elements of Ry are in A (11

Note that the quantifiers used above are all crisp: the existential quantifier
3, the universal quantifier V, as well as two threshold quantifiers > 100 % {% and
> 100 % u%. As such, although the VPRS model warrants a measure of tolerance
towards problematic elements, it still treats them in a black-or-white fashion:
depending on the specific choice of [ and u, an element either fully belongs, or
does not belong to the upper or lower approximation.

Example 2. Let us return to the document retrieval problem from Example 1.
Ziarko’s model offers more flexibility to distinguish the roles of D; and D3, but
the choice of the thresholds is crucial. In a symmetric VPRS model, [ is chosen
equal to 1 — u [9]. For u = 0.8 we obtain R| g4 = D; U Dy and RT A =
Dy U Dy U Ds. For u = 0.9, however, we obtain the same results as in Example
1.



3 Vaguely Quantified Rough Sets

The VPRS definitions for upper and lower approximation from the previous sec-
tion can be softened by introducing vague quantifiers, to express that y belongs
to the upper approximation of A to the extent that some elements of Ry are in
A, and y belongs the lower approximation of A to the extent that most elements
of Ry are in A. In this approach, it is implicitly assumed that the approximations
are fuzzy sets, i.e., mappings from X to [0, 1], that evaluate to what degree the
associated condition is fulfilled.

To model the quantifiers appropriately, we use Zadeh’s concept of a fuzzy
quantifier [7], i.e. a [0,1] — [0, 1] mapping Q. @ is called regularly increasing if
it is increasing and it satisfies the boundary conditions Q(0) =0 and Q(1) = 1.

Ezample 3. Possible choices for @) are the existential and the universal quantifier

% ={1:30 ew={1c]

for z in [0, 1], that will lead us to (4) and (5); or the quantifiers

0,z <1 0,z <u

Q>l(x):{1,:c>l Qzu(x):{l,:CZu
for z in [0,1], that will lead us to (6) and (7).

Ezample 4. The quantifiers in Example 3 are crisp, in the sense that the outcome
is either 0 or 1. An example of a fuzzy quantifier taking on also intermediate
values is the following parametrized formula, for 0 < o < 8 < 1, and z in [0, 1],

0, r <«
2(z—a)? ot
Q@) =4 TG, 0575 2
1 1*((;_75))270(7%§1'§6
L, <z

For example, Q(0.1,0.6) and Q(.2,1) could be used respectively to reflect the vague
quantifiers some and most from natural language.

Given sets A; and As in X and a fuzzy quantifier @), Zadeh [7] computes the
truth value of the statement “Q Ai’s are also As’s” by the formula

Once we have fixed a couple (Q;, Q) of fuzzy quantifiers, we can formally
define the Q;-upper and Q,-lower approximation of A by

%%#QQM@@) (13)

|Ry N A|
|Ry|

R1q,A(y) = Qi (

m%mwm< )mmam (14)



for all y in X. It is straightforward to verify that RTg ;A = RTA and R|g,A =
R|A, and that RTg.,A = R1A and R|q.,A = R|,A. Moreover, if Q,, C @y,
ie., Qu(z) < Qi(x) for all x in [0, 1], then R|g, A C Rlg,A.

Ezample 5. Let us return once more to the document retrieval problem discussed
in Example 1 and 2. In our VQRS model with fuzzy quantifiers Q. = Q.2,1
and @Q; = Q(0.1,0.6) the lower approximation R|q, A equals

{((Eﬁ, 1), ey (,CClo, 1), (,CCl, 0875)7 ceay (.1‘57 0875)7 (.1‘11, 0125), ey (,CC15, 0125)}

In this weighted list a document ranks higher if most of the elements in its topic
category are in A. The gradations reflect the different roles of the categories in a
desirable way. For example, category D3 is not excluded but its documents are
presented only at the bottom of the list. A similar phenomenon occurs with the
upper approximation RTg, A = {(z1,1),..., (%10, 1), (x11,0.68),..., (x15,0.68)}.

4 Vaguely Quantified Fuzzy Rough Sets

As the definition of vaguely quantified rough sets brings together ideas from fuzzy
sets and rough sets, it is instructive to examine their relationship to, and combine
them with existing work on fuzzy-rough hybridization. Throughout this section,
we assume that 7 is a triangular norm (t-norm for short), i.e., any increasing,
commutative and associative [0,1]? — [0, 1] mapping satisfying 7 (1, x) = z, for
all  in [0,1], and that Z is an implicator, i.e. any [0,1]?> — [0, 1]-mapping T
that is decreasing in its first, and increasing in its second component and that
satisfies 7(0,0) = 1,Z(1,z) = «, for all z in [0, 1]. We also assume that the upper
and lower approximation of a fuzzy set A in X under a fuzzy relation R in X
are defined by [6]

RTA(y) = sup T(R(x,y), A(z)) (15)
R|A(y) = inf I(R(z,y), A(z)) (16)

for y in X . Note how these formulas paraphrase the definitions (8) and (9) which
hold in the crisp case. In particular, the sup and inf operations play the same
role as the 3 and V quantifiers, and as such a change in a single element can still
have a large impact on (15) and (16).

This observation has inspired some researchers to propose altered definitions
of fuzzy-rough approximations in the spirit of the VPRS model. For example,
Mieszkowicz-Rolka and Rolka [4] used the concept of a fuzzy inclusion set (based
on an implicator) and the notion of a-inclusion error (based on a-level sets),
while Ferndndez-Salido and Murakami [2] defined new approximations based on
the so-called -precision quasi minimum ming and maximum maxg (aggregation
operators dependent on a parameter 3 in [0,1]). A serious drawback of these
models is that they still rely on crisp thresholds [ and u like Ziarko’s model, which
requires a fairly complex and not wholly intuitive mathematical apparatus.



The VQRS approach, on the other hand, lends itself to a much smoother
and more elegant fuzzification. In fact, formulas (13) and (14) can simply be
maintained in the fuzzy case, i.e., for y in X we have

Rlg,Aly) = Qu (—'Rly]{;"‘”) (17)
Rlq,A(y) = Qu (7|R|er;|A|) (18)

with the conventions that the R-foreset Ry is defined by Ry(z) = R(z,y) for
x in X, the intersection A N B of two fuzzy sets A and B in X is defined by
(AN B)(z) = min(A(z), B(x)) and the cardinality |A| of a fuzzy set A in X is

defined by Y A(x).
reX
It is interesting that no implicator appears inside the VQRS lower approxi-

mation (18), as opposed to (16). In fact, |RyN A|/|Ry| and inﬁ(I(R(z, y), A(x))
EaS

are considered in fuzzy set literature as two alternatives, to compute the in-
clusion degree of Ry into A, the former set- or frequency-based and the latter
logic-based (see e.g. [3]).

To demonstrate that the VQRS construct offers a worthwhile alternative to
the traditional “logic”-based operations of fuzzy rough set theory in the con-
text of rough data analysis, we ran an experiment on the housing benchmark
dataset3. This dataset concerns housing prices in suburbs of Boston; it has 506
instances, 13 conditional attributes (12 continuous, one binary) and a continuous
class attribute called MEDV (median value of owner-occupied homes in $1000s).

The setup of our experiment is as follows. Based on the distribution of the
data, we defined a fuzzy partition on the universe of MEDV, containing three
fuzzy classes low, medium and high in the range [0,50] as shown in Figure 1la. We
also defined a fuzzy relation R in the universe X of instances expressing indis-
tinguishability between instances x; and x5 based on the conditional attributes:

R(x1, 1) = gg’{lmax (0, min (1, 12— QW)) (19)

in which ¢; denotes the ith conditional attribute, I(c;) is its range, and « is a
parameter > 1.2 that determines the granularity of R (the higher «, the finer-
grained the R-foresets).

We divided the instances into 11 folds for cross validation: in each step, we se-
lected one fold as test set and used the remaining folds as training set X’ to com-
pute the lower approximation of each decision class. For traditional fuzzy rough
sets, we used formula (16), with three popular implicators Z;, (Lukasiewicz),
Ik p ( Kleene-Dienes), and Zg (Godel) defined in Table 1. For the VQRS model,
we used formula (18), with a fixed quantifier Q. = Q(o.2,1) (shown in Figure
1b). We then predicted the membership of each test instance y to each class A

% available at http://www.ics.uci.edu/~mlearn/MLRepository.html
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Fig. 1. a). Fuzzy partition of class attribute b) Fuzzy quantifier Qg.2,1) for “most”

as the extent to which there exists a similar training instance = belonging to the
previously learned lower approximation C' of A:

sup T(R(z,y),C(z)) (20)
reX’

In this formula, 7 is a t-norm; in our experiments, we used 7p; (minimum) and
71, (Lukasiewicz), which are also shown in Table 1.4

Table 1. Implicators and t-norms used in the experiment.

To(w,y) =min(l— 2ty D)|Zo(@y) = max(0,2 +y - 1)
IKD($7y) = max(l -, y) T]u(l',y) = min(m7 y)

_JLifz<y
To(z,y) = {y7 otherwise

The average absolute error between the predicted and the actual membership
values of the test instances was used as a metric for comparing the approaches.
Also, we let v in (19) range from 2 to 8. From the results in Table 2, we observe
that all approaches perform better for increasing values of a. This corresponds
to the idea that a finer-grained relation allows for better approximation. How-
ever, for a too fine-grained relation, the average errors start increasing again,
indicating an overfit of the model.

Comparing Zp-77, with VQRS-77, we notice that in both cases the smallest
error is obtained for o = 4. The corresponding relation is still relatively coarse-
grained. We observe that our VQRS-7;, approach is least hampered by this: it
in fact achieves the lowest average error of all approaches displayed in the table.
The approaches with 7, score worse in general, but again the smallest error is
obtained with our VQRS-7); model.

4 Txp and Zg are, respectively, the S-implicator and R-implicator of Tas, while the
S- and R-implicator of 77, coincide in Zy,.



Table 2. Experimental results for 11-fold cross-validation

Io-To\ T p-Tvm\Za-Tyv VQRS-TL VQRS-TM
0.276 | 0.320 | 0.321 0.257 0298
0.264 | 0.301 | 0.315 0.238 0.280
0.258| 0.288 | 0.299 | 0.236 0.265
0.263| 0.268 | 0.274 0.246 0.256
0.272] 0.264 [0.270| 0.261 0.258
0.282| 0.269 | 0.271 0.274 0.266
0.291| 0.280 | 0.280 | 0.286 0.279

0~ O ULk WNR

5 Conclusion

In the VQRS model introduced in this paper, an element y belongs to the lower
approximation of a set A to the extent that most elements related to y are in
A. Likewise, y belongs to the upper approximation to the extent that some el-
ements related to y are in A. The use of vague quantifiers “most” and “some”,
as opposed to the traditionally used crisp quantifiers “all” and “at least one”
makes the model more robust in the presence of classification errors. Experimen-
tal results on the housing dataset show that VQRS consistently outperforms the
classical approach.
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