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Abstract— Harmonization with four voices is a musical problem
which is subject to hard constraints, which absolutely need to be ful-
filled, as well as to soft constraints, which preferably hold, but are
not mandatory. In this paper, we model this problem as a valued
constraint satisfaction problem (VCSP): costs are assigned to pos-
sible solutions based on the constraints they violate. We design an
algorithm that finds a minimal-cost solution, thus solving the har-
monization problem, and we present initial results obtained by this
algorithm.
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1 Introduction
Ever since people have had computers at their use, they have
attempted to make them acquire human skills like rational
thought and creativity. While the prospect of computers actu-
ally creating art might still seem out of reach, in musical com-
position some successful efforts have already been made; in
[1], Truchet and Codognet give an overview of musical prob-
lems that were solved using computers.

In this paper, we discuss the use of Valued Constraint Satis-
faction Problems (VCSPs) in functional harmony with four
voices (soprano, alto, tenor, bass). Solving harmonization
problems is a basic skill that every composer has to acquire
before attempting more serious work. These problems range
from very simple to advanced, with many gradations in be-
tween. Their solution is governed by a set of strict rules that
have to be verified, but also by a variety of “softer” guidelines
with varying, subjective importance, imposed to make the re-
sult more interesting, more varied, . . . Valued constraints can
be constructed and enforced sensibly to model them.

The structure of this paper is as follows: in Section 2, we
discuss related work, and in particular solvers that have al-
ready been proposed for this problem, and position our own
contribution. In Section 3, we briefly explain what functional
harmony is about, and which constraints govern harmoniza-
tion problems. In Section 4, we give the necessary back-
ground on VCSPs, while in Section 5 we translate the musical
composition problem and its constraints to this framework. In
Section 6 we describe the algorithm designed for solving our
VCSP. In Section 7 we present some results obtained by this
algorithm, and in the last section we discuss its practical use
and suggest future research directions.

2 Related work
Programs to compose music have been designed since the 50s.
We are specifically interested in harmonization problems with
four voices, a problem that can be stated as a constraint satis-
faction problem [2]. To solve this problem, two main classes

of techniques have been described in the literature: backtrack-
ing and genetic algorithms.

Backtracking algorithms tackle the problem in the follow-
ing way. The harmonization of a piece of music proceeds in
a left to right fashion, analyzing every subsequent note. For
each note, one seeks a possible chord for that note, and if there
is no solution for this note, the algorithm goes back to a pre-
ceding note to try other possibilities. The standard work in this
class is due to Ebcioğlu [3]: he introduced an expert system
for harmonizing chorales with four voices, based on a set with
about 350 rules. Apart from this, there are also backtracking
algorithms where possible chords for a note are ranked by mu-
sical suitability. At every step, one tries the best chord. If this
chord does not lead to a solution, the chord is removed from
the ranking and a solution with the second best chord is sought
[4]. Existing backtracking solvers look for one solution and
then stop.

Genetic Algorithms (GAs) use an evaluation function to
judge the musical quality of a set of solutions, and proceed in
an iterative way to optimize these solutions [5, 6], using evo-
lutionary reproduction operators like mutation and crossover.

Both approaches have their advantages and disadvantages.
Backtracking algorithms are very efficient in finding a single
solution, but little can be said about its quality: any solution
found by the algorithm is guaranteed to meet the imposed hard
constraints, but soft constraints are generally not considered.
Ranking possible chords for a note deals only partially with
this problem; this tactic will find a good solution, but it is
not guaranteed to be the best one. By virtue of the evaluation
function, genetic algorithms are better at catering for soft con-
straints, but they also suffer from the fact that their solutions
are often suboptimal.

The solver we describe in this paper combines the use of
soft constraints (which can be seen as the analogon of the eval-
uation function in GAs) with the potential to find an optimal
solution in the search space.

3 Functional harmony with four voices
We briefly describe the essentials of functional harmony, and
refer the interested reader to [7, 8] for more details. The
problem we consider is a simplification of the general har-
monization problem: given a melody for a soprano, we aim
to find corresponding melodies for alto, tenor and bass. We
suppose that only quarter notes are used in all the melodies
and we work in C major. In tonal music, one speaks about
grades, which —for a particular tuning— coincide with a set
of chords. The most important grades that are always consid-
ered are I, IV and V. Other grades that often appear are VI and
sometimes II. In C major tuning, the first note is c which re-
sults in grade I being the chord built on c; the fourth note is f,
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Figure 1: Essentials of functional harmony, illustrating the grades and chords of C Major (A), the concepts of narrow, mixed
and wide spacing (B), and some examples of constructs that are not allowed (C).

so the chord corresponding to grade IV is the chord built on f.
Fig. 1A illustrates the grades and chords of C major.
Now consider a note in the soprano. This note is in one or
more of these chords. In harmonizing the soprano, one must
choose a chord, and attribute the corresponding notes in the
other voices to a note of this particular chord. The bass must
always be the ground note (the lowest note) of the chord. For
example, if IV is chosen, then the bass must be f. The so-
prano, alto and tenor have to be different from each other, so
each note of the chord appears once, except for the ground
note which appears twice.
We now introduce the concepts wide and narrow spacing. For
every note in the soprano, we still have some freedom for the
notes in alto, tenor and bass. We now restrict the possibili-
ties a bit more. For each chord we choose, we have to decide
whether we write it in wide or in narrow spacing. Narrow
spacing means that between soprano and alto, and between
alto and tenor there is no other note of the chord. Wide spac-
ing means that there is always one note of the chord between
soprano and alto, and between alto and tenor. This is illus-
trated in Fig. 1B. If the previous chord is written in narrow
spacing, then the next chord must be narrow spaced as well.
If the previous chord is wide spaced, then so must be the next
chord.
The VIth grade chord is written like the other chords, except
for the case when it is preceded by a Vth grade. In this case,
the second note of the chord is written twice. This means that
it has neither wide nor narrow spacing; we refer to this situa-
tion as mixed spacing. When we encounter a sequence V-VI
it is possible to go from wide to narrow spacing or vice versa
using mixed spacing on the VIth grade. Fig. 1B shows a good
V-VI-IV sequence where we switch spacing.
Now we know how to write the chords we must consider the
problem of choosing the right grade. To this end, a number of
rules have been defined in the domain of functional harmony:

• The first and the last grade of a music piece must be I.
The other grades depend on the previous grades.

• Some transitions between grades are not allowed, others
are considered very good, while still others are not con-
sidered wrong but should be avoided as much as possible.

• Each of the different voices has its own range of notes
that it can sing. The soprano can sing the highest notes,

the bass sings the lower notes, and care has to be taken
that these ranges are respected.

• It is forbidden to write parallel fifths or parallel octaves,
to write the same grade before and after a bar or to over-
lap voices.

Some of these forbidden constructs are shown in Fig. 1C.

4 Valued constraint satisfaction problems
A constraint satisfaction problem (CSP) involves assigning
values to variables that are subject to some constraints [9].
If there are constraints that are preferred but not essential, we
can consider the problem of assigning values to the variables
in such a way that the more important constraints are fulfilled
and the less important ones are fulfilled to the extent possible.
The latter yields a valued CSP (VCSP), which is characterized
by a set of hard constraints (that must be fulfilled), and a set
of so-called valued constraints. If the valued constraints are
treated as mandatory, the problem is often unsolvable. If the
valued constraints are ignored, we get solutions of bad qual-
ity. Our interest is therefore in the solution that best respects
the set of constraints. To express what the best solution is, we
assign costs to valued constraints. Every time a valued con-
straint is violated, we count the cost of this violation. In the
end, we are interested in the solution with the lowest cost. We
recall a formal definition of VCSP’s.

Definition 1. A Valued Constraint Satisfaction Problem
(VCSP) is a quadruple (X, D, C, V ), where
X = {X1, ..., Xn} is a set of variables,
D = {D1, ..., Dn} is a set of finite domains: Di is the set of
possible values for Xi,
C = {C1, ..., Cr} is a set of hard constraints and
V = {V1, ..., Vs} is a set of valued constraints.

A hard constraint Ci on the ordered set of variables var(Ci)
is the relation of the allowed combinations of values for the
variables in var(Ci); Ci is a mapping from the cartesian prod-
uct of domains of variables in var(Ci) to {0, 1}.
A valued constraint Vi on the ordered set of variables var(Vi)
specifies the cost of the combination of the values for the vari-
ables in var(Vi); Vi is a mapping from the cartesian product
of domains of variables in var(Vi) to [0, 1].
For example, if Vi pertains to the variables X1, X2 (i.e.
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V ar(Vi) = (X1, X2)) and we assign values x1 and x2 to X1

and X2 respectively, the cost of this combination is given by
Vi(x1, x2). If Ci pertains to the variables X1, X2, X3 (i.e.
V ar(Ci) = (X1, X2, X3)) and we assign values x1, x2 and
x3 to these variables, the combination (x1, x2, x3) is allowed
if Ci(x1, x2, x3) = 1 and forbidden if Ci(x1, x2, x3) = 0.

5 Modeling the problem
We can now translate the musical problem of harmonizing a
soprano to a purely mathematical problem. Suppose we have a
soprano that lasts n times, with every time divided in 4 counts.
All the times contain four quarter notes, except for the last
time which contains one whole note. This makes a total of
l := (n−1)∗4+1 notes. We call l the length of the problem.
For every note, we want to store the notes for the bass, tenor,
alto and soprano and we want to store the grade we use. This
can be done using a 5 × l matrix X .
The grades and notes are represented by a positive integer, and
the central c is represented by the number 24. We assign inte-
gers to the other notes as follows: if the note is higher/lower
than the central c, we count the number of half tones between
the central c and this note and add/subtract it to 24. In this
way, we fix the domain and variables of our VCSP. The vari-
ables are the entries xi,j , i = 1, ..., 5, j = 1, ..., l of the matrix
X and the domain is the set of natural numbers N.

5.1 Hard constraints

We will first translate the hard constraints to mathematical for-
mulas. We only use grades I, II, IV, V and VI, which entails:

x5,j ∈ {1, 2, 4, 5, 6} ∀j = 1, ..., l.

The first and last grade must be I, so

x5,1 = x5,l = 1.

Every voice has a specific range of notes that it can sing, which
can be expressed as:

alto : 19 ≤ x2,j ≤ 38 ∀j = 1, ..., l

tenor : 12 ≤ x2,j ≤ 28 ∀j = 1, ..., l

bass : 5 ≤ x2,j ≤ 26 ∀j = 1, ..., l

The grades before and after a bar must be different:

∀j = 1, ..., l :

if j mod 4 ≡ 1 and j 	= 1

then x5,j 	= x5,j−1

No parallel fifths or octaves are allowed:

∀i, k, j : i, k = 1, 2, 3, 4, j = 1, ...l − 1 :

if (xi,j − xk,j mod 12 ≡ 0) and k 	= i

then (xi,j+1 − xk,j+1 mod 12 	≡ 0)

and
if (xi,j − xk,j mod 12 ≡ 7) and k 	= i

then(xi,j+1 − xk,j+1 mod 12 	≡ 7).

It is forbidden to write voice overlap (strictly between so-
prano, alto and tenor, not strictly between tenor and bass):

∀j = 1, ..., l :

x1,j > x2,j > x3,j ≥ x4,j ,

∀j = 1, ..., l − 1 :

x2,j+1 < x1,j

x3,j+1 < x2,j

x4,j+1 ≤ x3,j .

The possibilities for the notes in the bass, tenor and alto and
the forming of the chords (with wide and narrow spacing)
are also hard constraints. We will not explicitly state these
constraints here as mathematical formulas due to space con-
straints.

5.2 Valued constraints

We are now ready to introduce some valued constraints. There
are five aspects of functional harmony we model using valued
constraints. In the following subsections we propose tech-
niques for calculating the cost of certain combinations. The
results are five costs in [0, 1] that correspond to the transi-
tion of one grade to another (c1), the frequency of grades
(c2), the range of notes a voice can sing (c3), the distance
between two succeeding notes (c4) and the use of contrary
motion between bass and soprano (c5). To allow a composer
to determine the relative importance of each type of valued
constraints, we attach weights {w1, w2, ..., w5} and define the
total cost as

∑5
i=1 wici where all weights sum to one. Assign-

ing these weights depends on personal taste. Some composers
might think it is important to have a lot of variation in the use
of grades, while others might prefer to write music that is in
the right range for the different voices. The weights we pro-
pose are as follows: w1 = 0.3, w2 = 0.2, w3 = 0.1, w4 =
0.2, w5 = 0.2.

5.2.1 Grade transition constraints
As stated before, we only work with grades I, II, IV, V and VI.
The most important grades are I, IV and V. V can be seen as
a chord that builds up tension, I creates rest and IV is an ad-
vancing chord (to V). In music, it is important to have enough
tension but there are points of rest needed as well.
II is a grade that can be used as a replacement grade for IV. It
is also an advancing grade to V. VI is a grade that can replace
I or IV, depending on the context. Generally speaking, when
followed by V or preceded by I, VI is a replacement grade for
IV, while when preceded by V or followed by IV, VI is a re-
placement grade for I. (This is also valid if we replace IV by
II.) So depending on the context, VI can bring rest in music
or can advance to tension. II and VI are used to bring more
variation in music. For example, instead of writing I-IV-V-I (a
very good sequence) all the time, we can also write I-II-V-VI.
To express the aptitude of grade sequences, we introduce a
valued constraint G. It is a mapping from the cartesian prod-
uct of the possible grades to the interval [0, 1] that represents
the cost of the sequence:
G : {1, 2, 4, 5, 6} × {1, 2, 4, 5, 6} → [0, 1].
To determine the cost of a sequence, we only look at two con-
secutive grades. This is sufficient since every bad sequence is
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the result of one or more separate bad successions in the se-
quence.
The assignment of the costs is an intuitive and subjective task.
However, we try to bring some structure in it. The model se-
quence is I-IV-V-I. Therefore, we assign cost zero to every
subsequence of length two that appears in it. All sequences
that can be obtained from those subsequences by substitut-
ing a grade by its replacement grade (we call it derivative se-
quences) also have no cost.
Going from advancing to tension to rest is not very interest-
ing. Therefore, we assign cost 1 to the sequence IV-I and all
derivative sequences. Going from rest to tension without ad-
vancing should be avoided but is not particularly bad, so we
assign cost 0.5 to the sequence I-V. Using the same sequence
two times is not always interesting. We assign cost 0.3 to se-
quences I-I, V-V and derivatives, and cost 0.4 to sequences IV-
IV and derivatives. An overview of the assignments is given
in Table 1.

5.2.2 Grade frequency constraints

As stated before, in music it is important to maintain sufficient
variation. This is not covered by the previous constraints:
writing I-IV-V-I the whole time would give zero cost, but it
would be boring to listen to. To express this we introduce ad-
ditional valued constraints.
The algorithm designed in Section 6.1 has three options: it can
generate a solution with only grades I, IV and V, only grades
I, IV, V and VI, or using all grades I,II, IV, V and VI. The
number of times a grade should ideally be used depends on
this option, so we introduce three different valued constraints.
First consider the option where only grades I, IV and V can
be used. The best sequence here is I-IV-V-I. We want some
variation so we sometimes write I-I, I-IV-I or I-V-I. Say that
ideally, every three times we write I-IV-V, we should write I-I,
I-IV-I or I-V-I once. The corresponding grade occurence per-
centages are given in Table 2.
We now define the valued constraint H1 : {1, 4, 5}l → [0, 1]
as follows: for the whole piece of music, count how many
times grades I, IV or V are used and calculate the percentages.
Now for every grade, add the absolute difference between the
ideal and real percentage, and divide the result by three to ob-
tain a value in [0, 1].
Since grade VI is a replacement grade for I, in the option
where I, IV, V and VI can be used, we consider the same per-
centages as in the first option for IV and V, but we split the
ideal percentage for grade I. Analogously, as grade II has the

Table 1: The mapping G that assigns a cost to every allowed
succession of two grades

GRADE1-GRADE2 COST=G(GRADE1,GRADE2)

II-V, V-I, I-II, IV-V 0
VI-V, VI-II, I-IV, V-VI 0

VI-IV, V-I, I-VI 0
I-I, V-V, VI-I, VI-VI 0.3

IV-II, IV-IV, II-II 0.4
I-V 0.5

IV-I, II-I, II-VI 1.0

same function as grade IV, we split the ideal percentage for
grade IV in the third option. The percentages are presented
in Table 2. The valued constraints H2 and H3 are defined as
before.
Again, these ideal percentages are constructed subjectively
and intuitively. Different composers would propose different
percentages, but they should be similar. Moreover, as for the
previous valued constraints, the exact percentages are not very
important, more significant are the gradations.

5.2.3 Voice range constraints

The problem we consider is to write a music piece for four
voices. Of course, these voices cannot sing all existing notes.
Theoretically, a bass can sing notes presented by integers from
5 to 26, yet there exist very good basses that can not reach
the very low note presented by 5 or the very high note pre-
sented by 26. It is not wrong to write these extreme notes
but it should be avoided, because even if the bass can sing
these notes, they will not sound as good as the notes in the
middle of their register. To express this mathematically, we
introduce new valued constraints Ra, Rb and Rt as follows:
for every note in the reach of a voice, Rb, Rt and Ra express
how bad this note is for bass, tenor or alto respectively. Fig. 2
presents the values of Ra, Rb and Rt. The total cost is given
by (Ra + Rb + Rt)/3 ∈ [0, 1].

5.2.4 Distance constraints

In tonal music, it is important to have fluent melodies. Mod-
eling this requires counterpoint techniques, which we do
not consider here. Instead, we model the soundness of the
melodies by considering the distances between the notes. Fur-
thermore, it is hard to sing large intervals correctly. Therefore,
we introduce a valued constraint D that limits the distance be-
tween two notes. We assign cost 1 to all intervals larger than
an octave (12 half tones). Intervals smaller than an octave
get cost c4 = d/12, proportional to the distance d between
the notes. An exception is made for the octave, which gets
the same cost as a fifth because it sounds equally well and is
equally easy to sing. The costs are presented in Table 3.

5.2.5 Contrary motion constraints

Contrary motion is the general movement of two melodic lines
in opposite directions. That is, when one of the lines moves
up, the other line moves down. In tonal music, contrary mo-
tion is important to maintain independence of melodic move-
ment. To express this as a valued constraint we assign a cost

Table 2: valued constraint H compares the count of grades to
the ideal percentages.

GRADE IDEAL PERCENTAGES

OPTION 1: OPTION 2: OPTION 3:
I, IV AND V I, IV, V AND VI I, II, IV, V, VI

I 0.394 0.263 0.263
II - - 0.075
IV 0.303 0.303 0.228
V 0.303 0.303 0.303
VI - 0.131 0.131
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Figure 2: Costs that are incrurred when notes at the extreme
ends of a voice’s scale are used.

c5 = 1 if there is no contrary motion between bass and so-
prano.

6 Solving the four voices harmonization VCSP
Now we translated the musical problem to a purely mathemat-
ical problem, we can design an algorithm that solves it. There
exist good solvers for VCSPs [9] but we choose to design and
implement a separate algorithm for the harmonization prob-
lem. The algorithm follows the thinking of a composer that
solves the exercise: from left to right, try out all the possibili-
ties and return when a solution gets stuck.

6.1 A backtracking algorithm

Algorithm 1 shows the outline of the main part of the algo-
rithm. First note that it returns a single minimal-cost solution;
if there are several such solutions, our algorithm returns the
first one encountered. At each stage, max cost and total cost
represent the cost of the optimal solution so far, and of the cur-
rently investigated solution, respectively. They are initialized
in lines 1 and 2.
From Section 2, we know that the grade on the first note must
be I. Either narrow or wide spacing can be used for the first
chord; the former option is considered in lines 3–5, the sec-
ond one in line 6–8.
The central part of the algorithm is in the recursive procedure
Calculate Solution. For every note i except the last one, all
possible solutions are generated (line 2), that is, all permissi-
ble combinations of grades for note i, and corresponding notes
for bass, tenor and alto. Assuming no hard constraints are vio-
lated (line 3), the cost of a solution w.r.t. the valued constraints
is evaluated (line 4); all costs can be calculated directly, except

Table 3: valued constraint D is a measure for the soundness
of an interval.

INTERVAL COST c4 INTERVAL COST c4

(IN HALF TONES) (IN HALF TONES)
> 12 1.000 6 0.500
12 0.583 5 0.417
11 0.917 4 0.333
10 0.833 3 0.250
9 0.750 2 0.167
8 0.667 1 0.083
7 0.583 0 0.000

Algorithm 1: Algorithm that solves the problem of har-
monizing a melody for a soprano, l is the length of the
problem.

max cost=Double.max;1

total cost=0;2

Fill in the first chord, using narrow spacing;3

total cost=cost of this first chord (only w3c3);4

Calculate Solution(2,l);5

Fill in the first chord, using wide spacing;6

total cost=cost of this first chord (only w3c3);7

Calculate Solution(2,l);8

Procedure Calculate Solution(note position i,
total length l)

if (i < l) then1

foreach possibility for note i do2

if no hard constraints violated then3

calculate costs ;4

if total cost+
∑5

i=1 wici > max cost then5

go to next possibility;6

else7

total cost=total cost+
∑5

i=1 wici − w2c2;8

Calculate Solution(i+1);9

end10

else11

go to next possibility;12

end13

end14

else15

max cost=total cost+w2c2;16

save solution;17

end18

from c2 which is calculated considering the problem from the
beginning until position i. c2 is only calculated when i > 4.
If the total cost for the current solution is smaller than the new
costs added up to the total cost, one has to try the next possi-
bility, because from here we will never find a solution that is
cheaper than the solution we already found (line 5-6). Other-
wise, one adds the costs except from c2 up to the total cost and
goes further looking for a solution (lines 8-9). c2 is not added
up to the total cost since this cost is calculated every step and
it counts for the whole piece.
When we have reached the final note, we change the current
solution and the maximum cost and we return in the recursion
to find a cheaper solution (lines 16-17).

This can lead to a solution or to failure. In both cases we
return to try the next posibilities. If there are no posibilities
left, the algorithm does not go further in this branch of the re-
cursion.

7 Results
In this section we present some test results. We tested the
program for several problems but we will show only one rep-
resentative example here.
We illustrate the suitability of our approach by showing four
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Figure 3: A representative harmonization exercise, showing four solutions: (A), (B), (C) show solutions with weights as
proposed in Section 5. (A) has cost 3.14, (B) has cost 1.12 and (C) is the optimal solution with cost 0.65. (D) shows the
optimal solution with weights w1 = 0.3, w2 = 0.2, w3 = 0.1, w4 = 0.3 and w5 = 0.1. It has cost 0.47.

solutions with different costs. In Fig. 3A we show the solu-
tion with the highest cost (3.14). In this solution there are
unacceptable distances in the bass. Furthermore, the melodies
in the alto and tenor are not fluent, there is almost no contrary
motion between soprano and bass and the grade sequence is
bad.
Fig. 3B shows a solution with cost 1.12. This solution has a
better bass line. The grade sequence is slightly better since we
now have tension (grade V) in the second bar. This solution
sometimes lacks contrary movement and there is no second
grade used.
The optimal solution is shown in Fig. 3C. The grade sequence
and grade frequencies are very well but there are many large
distances between the bass notes. This can be explained by the
weights we assigned to the costs: contrary motion is consid-
ered equally important as the distances between the notes. If
we raise the weights corresponding to the distances between
notes and we lower the weight corresponding to the use of
contrary movement we obtain the result in Fig. 3D. Except
from the fact that there is no tension in the second bar this is a
good solution.

8 Practical Use And Further Work
The algorithm we presented is designed to solve harmonizing
problems. It can be used as a didactic tool: teachers can use
it to test quickly if problems have solutions, if these solutions
are interesting enough and if they are not too difficult to solve.
For instance, if a problem has only one solution where only
grades I and IV are used, this problem cannot be solved well.
Furthermore, students can use this program to compare their
solutions to an optimal solution.
The model we presented can be extended in various ways.
First of all, we can overcome the simplification of the harmo-
nization problem by allowing modulations, chord inversions,
non-chord tones, rhythm and ornaments, seventh chords and
so on. This requires an extension of the domains and the in-

troduction of new hard constraints. Furthermore, we can also
introduce more soft constraints. For instance, some counter-
point rules can be expressed as soft constraints.
As illustrated in the previous section, the assignment of the
weights is important. Fine-tuning of these parameters is
needed and should be done more profoundly.
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