
The standard completeness of interval-valued

monoidal t-norm based logic

B. Van Gasse 1, C. Cornelis 1, G. Deschrijver, E. E. Kerre

Fuzziness and Uncertainty Modelling Research Unit
Department of Applied Mathematics and Computer Science
Ghent University, Krijgslaan 281 (S9), 9000 Gent, Belgium

Abstract

In this paper we prove the strong standard completeness of interval-valued monoidal
t-norm based logic (IVMTL) and some of its extensions. For other extensions we
show that they are not strong standard complete. We also give a local deduction
theorem for IVMTL and other extensions of interval-valued monoidal logic. Similar
results are obtained for interval-valued fuzzy logics expanded with Baaz’s Delta.
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1 Introduction

In [31], we introduced interval-valued monoidal logic 2 (IVML). As its name
suggests, the intended semantics of this logic are algebras of intervals. The
idea behind interval-valued truth degrees is that they provide a way to ex-
press incomplete as well as graded knowledge (see e.g. [5,9,14,25,26,30,31]). In
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in our opinion the new name is more suitable, as it better describes what the logic
is meant for. Moreover, using this new name allows us to name extensions of the
logic in a uniform and consistent way.
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fact, interval-valued fuzzy sets are a special case of type-2 fuzzy sets, which
were introduced in [34]. It was proven in [31] that IVML is sound and com-
plete w.r.t. triangle algebras, and that triangle algebras are equivalent with
IVRLs (which are residuated lattices that have intervals as elements; the pre-
cise definition is in Definitions 4 and 5). These intervals can be taken in any
residuated lattice. Residuated lattices form the semantics of Höhle’s monoidal
logic (ML)[19], which explains the second part of the name IVML. Numer-
ous axiomatic extensions of IVML can be defined. All of them are sound and
complete w.r.t. the corresponding subvarieties of the variety of triangle alge-
bras. An interesting example is interval-valued monoidal t-norm based logic 3

(IVMTL), because it was proven in [33] that this logic (and its extensions)
is pseudo-chain complete. This means that the semantics can be restricted
to IVRLs in which the exact intervals form a chain. This is the analogon of
the chain completeness of Esteva and Godo’s MTL [11]. Jenei and Montagna
have proven that MTL is not only chain complete, but also standard complete
[23]. In the present paper, we will show that also IVMTL (and some of its
extensions) is standard complete. Moreover, we will prove a local deduction
theorem that holds for IVML and its extensions.
In Section 2 we recall the basic definitions and properties of fuzzy logics
and their interval-valued counterparts. In Section 3 we introduce a number
of specific interval-valued logics, corresponding to the commonly used (non-
IV) fuzzy logics. And in Section 4 we investigate which of these logics are
standard complete, and which not. Moreover, we prove a local deduction the-
orem. In Section 5 we prove similar results for a specific expansion of IVMTL,
IVMTL∆ (and its expansions).

2 Preliminaries

IVML is basically monoidal logic (ML) [19] enriched with two unary connec-
tives � and ♦ (representing ‘necessity’ and ‘possibility’) and a constant u
(representing ‘uncertainty’). So the language of IVML consists of countably
many propositional variables (p1, p2,. . .), the constants 0 and u, the unary
operators �, ♦, the binary operators ∧, ∨, &, →, and finally the auxiliary
symbols ‘(’ and ‘)’. IVML-formulas are defined inductively: propositional vari-
ables, 0 and u are IVML-formulas; if φ and ψ are IVML-formulas, then so are
(φ∧ψ), (φ∨ψ), (φ&ψ), (φ→ ψ), (�φ) and (♦φ).
Remark that the set of ML-formulas is contained in the set of IVML-formulas.
The following notations are used: 1 for 0 → 0, ¬φ for φ → 0, φ2 for φ&φ, φn

(with n = 3, 4, 5, . . .) for (φn−1)&φ (moreover, φ0 is 1 and φ1 is φ), and φ↔ ψ
for (φ→ ψ) ∧ (ψ → φ), for formulas φ and ψ.

3 In [33] we called this logic pseudo-linear triangle logic (PTL). For the same reasons
as for triangle logic, we decided to rename it.
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The axioms 4 of IVML are those of ML, i.e.,

(ML.1) (φ→ ψ)→ ((ψ → χ)→ (φ→ χ)),

(ML.2) φ→ (φ∨ψ),

(ML.3) ψ → (φ∨ψ),

(ML.4) (φ→ χ)→ ((ψ → χ)→ ((φ∨ψ)→ χ)),

(ML.5) (φ∧ψ)→ φ,

(ML.6) (φ∧ψ)→ ψ,

(ML.7) (φ&ψ)→ φ,

(ML.8) (φ&ψ)→ (ψ&φ),

(ML.9) (φ→ ψ)→ ((φ→ χ)→ (φ→ (ψ∧χ))),

(ML.10) (φ→ (ψ → χ))→ ((φ&ψ)→ χ),

(ML.11) ((φ&ψ)→ χ)→ (φ→ (ψ → χ)),

(ML.12) 0→ φ,

complemented with

(IVML.1) �φ→ φ, (IVML.1′) φ→ ♦φ,

(IVML.2) �φ→ ��φ, (IVML.2′) ♦♦φ→ ♦φ,

(IVML.3) (�φ∧�ψ)→ �(φ∧ψ), (IVML.3′) (♦φ∧♦ψ)→ ♦(φ∧ψ),

(IVML.4) �(φ∨ψ)→ (�φ∨�ψ), (IVML.4′) ♦(φ∨ψ)→ (♦φ∨♦ψ),

(IVML.5) ¬�u, (IVML.5′) ♦u,

(IVML.6) ♦φ→ �♦φ, (IVML.6′) ♦�φ→ �φ,

(IVML.7) �(φ→ ψ)→ (�φ→ �ψ),

(IVML.8) (�φ↔ �ψ)&(♦φ↔ ♦ψ)→ (φ↔ ψ),

(IVML.9) (�φ→ �ψ)→ �(�φ→ �ψ).

The deduction rules are modus ponens (MP, from φ and φ → ψ infer ψ),
generalization (G, from φ infer �φ) and monotonicity of ♦ (M♦, from φ→ ψ

4 Some of these axioms are referred to by a specific name. In [19], ML.1 is called
‘syllogism law, while Hájek uses ‘transitivity of implication in [17]. Other names in
[17] are ‘commutativity of &-conjunction for ML.8, ‘ex falso quodlibet for ML.12 and
‘residuation for the combination of ML.10 and ML.11 (which are called ‘importation
law and ‘exportation law in [19]).
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infer ♦φ→ ♦ψ). Proofs and the provability relation `IV ML are defined in the
usual way.

IVML is a logic which has interval-valued structures as its (general) semantics
(hence its name). To see this, we recall the following definitions and results
from [31].

ML is sound and complete w.r.t. the variety of residuated lattices 5 [7], which
are structures L = (L,u,t, ∗,⇒, 0, 1) in which u,t, ∗ and ⇒ are binary
operators on the set L and

• (L,u,t) is a bounded lattice with 0 as smallest and 1 as greatest element,
• ∗ is commutative and associative, with 1 as neutral element, and
• x ∗ y ≤ z iff x ≤ y ⇒ z for all x, y and z in L (residuation principle).

ML is the basis for a number of well-known stronger formal fuzzy logics,
such as Esteva and Godo’s monoidal t-norm based logic (MTL) [11], Hájek’s
basic logic (BL) [17],  Lukasiewicz logic (LL) [24], intuitionistic logic (IL) [18]
and Gödel logic (GL) [8,15]. These logics are sound and complete w.r.t. MTL-
algebras, BL-algebras, MV-algebras (or, equivalently, Wajsberg algebras [13]),
Heyting-algebras and G-algebras, respectively. Below, we recall the definitions
of these concepts, along with some other important notions. We refer to [4],
[12] and [16] for a comprehensive overview of these and other logics.
All these extensions of ML satisfy the following local deduction theorem:

Proposition 1 Let Γ∪{φ, ψ} be a set of ML-formulas, and L be an extension
of ML.
Then the following are equivalent:

• Γ ∪ {φ} `L ψ,
• There is an integer n such that Γ `L φ

n → ψ.

ML and its axiomatic extensions can be expanded with a unary connective
∆, called Baaz’s Delta[1]. The formulas of these logics will be called ML∆-
formulas. The logic ML∆ is defined as ML extended with the following ax-

5 In the literature (e.g. in [19]), the name residuated lattice is sometimes used for
more general structures than what we call residuated lattices. In the most general
terminology, our structures would be called bounded integral commutative residu-
ated lattices.
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ioms 6 and deduction rule for ∆:

(∆1) ∆φ ∨ ¬∆φ,

(∆2) ∆(φ ∨ ψ)→ (∆φ ∨∆ψ),

(∆3) ∆φ→ φ,

(∆5) ∆(φ→ ψ)→ (∆φ→ ∆ψ),

and necessitation (N, from φ infer ∆φ).
For ML∆ and its extensions, we have the following deduction theorem.

Proposition 2 Let Γ∪ {φ, ψ} be a set of ML∆-formulas, and L be an exten-
sion of ML∆.
Then the following are equivalent:

• Γ ∪ {φ} `L ψ,
• Γ `L ∆φ→ ψ.

Axiomatic extensions of MTL (which is ML extended with the axiom (φ →
ψ)∨ (ψ → φ)) are specific kinds of core fuzzy logics (see [4] for more details).
Axiomatic extensions of MTL∆ are specific kinds of ∆-core fuzzy logics. In
core fuzzy logics and ∆-core fuzzy logics, the language is allowed to have
more connectives than the ones we use in this paper (but at most a countable
amount).

Definition 3 We will use the notations ¬x for x ⇒ 0, x ⇔ y for (x ⇒
y) u (y ⇒ x) and xn for x ∗ x ∗ . . . ∗ x︸ ︷︷ ︸

n times

. Moreover, we assume x0 = 1.

• An MTL-algebra [11] is a prelinear residuated lattice, i.e., a residuated lat-
tice in which (x⇒ y) t (y ⇒ x) = 1 for all x and y in L.

• A BL-algebra [17] is a divisible MTL-algebra, i.e., an MTL-algebra in which
x u y = x ∗ (x ⇒ y) for all x and y in L. The weaker property x u y =
(x ∗ (x⇒ y)) t (y ∗ (y ⇒ x)) is called weak divisibility [30,31] and holds in
all MTL-algebras.

• An MV-algebra [2,3] is a BL-algebra in which the negation is an involution,
i.e., (x⇒ 0)⇒ 0 = x for all x in L.

• A Heyting-algebra, or pseudo-Boolean algebra [29], is a residuated lattice in
which x ∗ x = x for all x in L, or, equivalently, in which x ∗ y = x u y for

6 Note that we left out (∆ 4). In Section 5 we shall show that ∆φ→ ∆∆φ (which
is known as (∆ 4)) is provable from ML∆.
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all x and y in L.

• A G-algebra [17] is a prelinear Heyting-algebra.

• A Boolean algebra is an MV-algebra that is also a Heyting-algebra.

By adding a unary operator ∆ satisfying ∆1 = 1, ∆xt¬∆x = 1, ∆(xt y) ≤
∆x t∆y, ∆x ≤ x and ∆(x⇒ y) ≤ ∆x⇒ ∆y, for all x and y, we can define
the ‘∆-companions’ of these algebras (e.g. MTL∆-algebra, G∆-algebra, . . . ).
If a residuated lattice satisfies x t y = ((x ⇒ y) ⇒ y) u ((y ⇒ x) ⇒ x), for
all x and y in L, then it is called t-definable [11,12]. The stronger property
xty = (x⇒ y)⇒ y is called strong t-definability 7 [30,31]. Other interesting
properties are the law of excluded middle 8 (x t ¬x = 1), pseudocomplemen-
tation (x u ¬x = 0), cancellation (¬x t ((x ⇒ (x ∗ y)) ⇒ y) = 1), weak
cancellation (¬(x∗y)t ((x⇒ (x∗y))⇒ y) = 1) and weak nilpotent minimum
(¬(x ∗ y) t ((x u y)⇒ (x ∗ y)) = 1).

Definition 4 Given a lattice L = (L,u,t), its triangularization T(L) is the
structure T(L) = (Int(L), ⊔,⊔) defined by

• Int(L) = {[x1, x2] | (x1, x2) ∈ L2 and x1 ≤ x2},
• [x1, x2] ⊔[y1, y2] = [x1 u y1, x2 u y2],
• [x1, x2]

⊔
[y1, y2] = [x1 t y1, x2 t y2].

The set DL = {[x, x] | x ∈ L} is called the diagonal of T(L).

In particular, the triangularization of ([0, 1],min,max) is denoted as LI =
(LI ,u,t).

Definition 5 An interval-valued residuated lattice (IVRL) is a residuated
lattice (Int(L), ⊔,⊔,�,⇒�, [0, 0], [1, 1]) on the triangularization T(L) of a
bounded lattice L, in which the diagonal DL is closed under � and ⇒�,
i.e., [x, x]� [y, y] ∈ DL and [x, x]⇒� [y, y] ∈ DL for all x, y in L.

Example 6 [6] If T is a left-continuous t-norm on ([0, 1],min,max), α ∈
[0, 1] and the mapping TT,α is defined, for x = [x1, x2] and y = [y1, y2] in LI ,
by the formula

TT,α(x, y) = [T (x1, y1),max(T (α, T (x2, y2)), T (x1, y2), T (x2, y1))], (1)

7 Strong t-definable residuated lattices are exactly MV-algebras [19].
8 Residuated lattices satisfying the law of excluded middle are exactly Boolean
algebras.
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then (LI ,u,t, TT,α, ITT,α , [0, 0], [1, 1]) is an IVRL, in which ITT,α is the residual
implicator of TT,α:

ITT,α(x, y) = [min(IT (x1, y1), IT (x2, y2)),min(IT (T (x2, α), y2), IT (x1, y2))].

In [31], we introduced the notion of triangle algebra, a structure that serves as
an equational representation for an interval-valued residuated lattice. Triangle
algebras form the link between IVRLs and IVML.

Definition 7 A triangle algebra is a structureA = (A,u,t, ∗,⇒, ν, µ, 0, u, 1),
in which (A,u,t, ∗,⇒, 0, 1) is a residuated lattice, ν and µ are unary opera-
tors, u a constant, and satisfying the following conditions:

(T.1) νx ≤ x, (T.1′) x ≤ µx,

(T.2) νx ≤ ννx, (T.2′) µµx ≤ µx,

(T.3) ν(x u y) = νx u νy, (T.3′) µ(x u y) = µx u µy,

(T.4) ν(x t y) = νx t νy, (T.4′) µ(x t y) = µx t µy,

(T.5) νu = 0, (T.5′) µu = 1,

(T.6) νµx = µx, (T.6′) µνx = νx,

(T.7) ν(x⇒ y) ≤ νx⇒ νy,

(T.8) (νx⇔ νy) ∗ (µx⇔ µy) ≤ (x⇔ y),

(T.9) νx⇒ νy ≤ ν(νx⇒ νy).

A triangle algebra (A,u,t, ∗,⇒, ν, µ, 0A, uA, 1A) is called a standard triangle
algebra iff (A,u,t) = LI .

In a standard triangle algebra (LI ,u,t, ∗,⇒, ν, µ, 0A, uA, 1A), 0A = [0, 0], 1A =
[1, 1], u = [0, 1], ν[x1, x2] = [x1, x1] and µ[x1, x2] = [x2, x2] for all [x1, x2] in
LI . This is a consequence of Propositions 19 and 21 in [31].

In [31], we also established a one-to-one correspondence between interval-
valued residuated lattices (IVRLs) and triangle algebras. The correspondence
is shown in Figure 1. The unary operators ν and µ correspond with the map-
pings that map [x1, x2] to [x1, x1] and [x2, x2] respectively. We call these map-
pings in IVRLs the vertical and horizontal projection (pv and ph). The constant
u corresponds to [0, 1]. Theorem 8 gives this connection in more detail:

Theorem 8 [31] There is a one-to-one correspondence between the class of
IVRLs and the class of triangle algebras. Every extended IVRL 9 is a triangle

9 An extended IVRL is simply an IVRL in which the two mentioned projections
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1

u

µx

x

νx

0

A

[0, 0]

[1, 1][0, 1]

χ(x) = [x1, x2]

[x1, x1] = pv([x1, x2])

[x2, x2] = ph([x1, x2])

χ

Triangle algebra
(A,u,t, ∗,⇒, ν, µ, 0, u, 1)

Isomorphic extended IVRL
(A′,u′,t′, ∗′,⇒′, pv, ph, [0, 0], [0, 1], [1, 1])

Fig. 1. The isomorphism χ from a triangle algebra to an IVRL.

algebra and conversely, every triangle algebra is isomorphic to an extended
IVRL.

In [31], it was verified that IVML is sound and complete w.r.t. triangle alge-
bras. Because of Theorem 8, this implies that IVML is sound and complete
w.r.t. extended IVRLs. Axiomatic extensions of IVML are sound and complete
w.r.t. the corresponding subclasses of the class of extended IVRLs.

Definition 9 [31] Let A = (A,u,t, ∗,⇒, ν, µ, 0, u, 1) be a triangle algebra.
An element x in A is called exact if νx = x. The set of exact elements of A
is denoted by E(A).

Using the isomorphism in Figure 1, the set of exact elements of a triangle
algebra corresponds to the diagonal of the isomorphic (extended) IVRL. In
this paper we will sometimes use the term ‘diagonal’ for triangle algebras as
well.
It was proven in [31] that E(A) is closed under all the defined operations on
A. So (E(A),u,t, ∗,⇒, 0, 1) is a residuated lattice, that we will denote as
E(A). Every property in Definition 3 (prelinearity, divisibility, . . .) can there-
fore be weakened, by imposing it on E(A) (instead of A) only. We will denote
this with the prefix ‘pseudo’. For example, a triangle algebra is said to be
pseudo-linear if its set of exact elements is linearly ordered (by the original

are defined and the constant [0, 1] is fixed.

8



(restricted) ordering). Another example: a triangle algebra is pseudo-divisible
if νxu νy = νx ∗ (νx⇒ νy) for all x and y in A (E(A) consists exactly of the
elements of the form 10 νx).

For any x in a triangle algebra, it holds that x = νx t (µx u u) (see [32]).
Therefore, x is completely determined by νx and µx (which are elements of
E(A)): if νx = νy and µx = µy, then x = y.
In [32] we proved that

Theorem 10 In a triangle algebra A = (A,u,t, ∗,⇒, ν, µ, 0, u, 1), the im-
plication ⇒ and the product ∗ are completely determined by their action on
E(A) and the value of µ(u ∗ u). More specifically:

• ν(x⇒ y) = (νx⇒ νy) u (µx⇒ µy),
• µ(x⇒ y) = (µx⇒ (µ(u ∗ u)⇒ µy)) u (νx⇒ µy),
• ν(x ∗ y) = νx ∗ νy,
• µ(x ∗ y) = (νx ∗ µy) t (µx ∗ νy) t (µx ∗ µy ∗ µ(u ∗ u)).

Because of Theorem 10, Example 6 gives all standard triangle algebras (i.e.,
all IVRLs on LI).

Proposition 11 [33] For any residuated lattice L and α ∈ L, there is a
triangle algebra A = (A,u,t, ∗,⇒, ν, µ, 0, u, 1) such that (up to isomorphism)
E(A) is L and µ(u ∗ u) = α.

In the interval-valued setting, evaluations and models are defined in the same
way as in the known fuzzy setting.

Definition 12 [31] Let A = (A,u,t, ∗,⇒, ν, µ, 0, u, 1) be a triangle algebra,
Γ a theory (i.e., a set of (IVML-)formulas). An A-evaluation is a mapping
e from the set of IVML-formulas to A that satisfies, for each two formulas φ
and ψ: e(φ∧ψ) = e(φ)u e(ψ), e(φ∨ψ) = e(φ)t e(ψ), e(φ&ψ) = e(φ) ∗ e(ψ),
e(φ → ψ) = e(φ) ⇒ e(ψ), e(�φ) = νe(φ), e(♦φ) = µe(φ), e(0) = 0 and
e(u) = u. If an A-evaluation e satisfies e(χ) = 1 for every χ in Γ, it is called
an A-model for Γ.
We write Γ |=A φ if e(φ) = 1 for all A-models e for Γ.

We conclude this section with the definition of the different kinds of complete-
ness an axiomatic extension of IVML can enjoy. These are comparable to the
different kinds of completeness for fuzzy logics (see, e.g., [4,21]).

10 Remark that E(A) also consists exactly of the elements of the form µx. So pseudo-
divisibility might as well be expressed by µx u µy = µx ∗ (µx ⇒ µy) or µx u νy =
µx ∗ (µx ⇒ νy), for all x and y in A. And similarly for other properties (pseudo-
prelinearity, pseudo-cancellation, . . . ), of course.
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Definition 13 Let L be an axiomatic extension of IVML.
An L-algebra is a triangle algebra that satisfies the properties corresponding
to the axioms that were added to IVML in order to obtain L. 11

L is called pseudo-chain complete if the following equivalence holds for all
IVML-formulas φ: `L φ iff |=A φ for all pseudo-linear L-algebras A.
L is called finite strong pseudo-chain complete if the following equivalence
holds for all finite sets Γ ∪ {φ} of IVML-formulas: Γ `L φ iff Γ |=A φ for all
pseudo-linear L-algebras A.
L is called strong pseudo-chain complete if the following equivalence holds for
all sets Γ ∪ {φ} of IVML-formulas: Γ `L φ iff Γ |=A φ for all pseudo-linear
L-algebras A.
L is called standard complete if the following equivalence holds for all IVML-
formulas φ: `L φ iff |=A φ for all standard L-algebras A.
L is called finite strong standard complete if the following equivalence holds for
all finite sets Γ ∪ {φ} of IVML-formulas: Γ `L φ iff Γ |=A φ for all standard
L-algebras A.
L is called strong standard complete if the following equivalence holds for all
sets Γ∪{φ} of IVML-formulas: Γ `L φ iff Γ |=A φ for all standard L-algebras
A.

3 Axiomatic extensions of IVML

Now we introduce some extensions of IVML, by adding well-known 12 axiom
schemes. They are listed in Tables 1 and 2. Remark that these axiom schemes
are applied to formulas of the form �φ and not to all formulas (as usual). As
the image of a triangle algebra (A,u,t, ∗,⇒, ν, µ, 0, u, 1) under ν is the set
E(A) of exact elements 13 , this means that the axioms schemes do not hold
for all truth values, but only for exact truth values. This is not a drawback.
On the contrary, it is precisely what we want because the exact truth values
are easier to interpret and handle. Moreover, using Theorem 10, for all axiom
schemes equivalent axiom schemes can be found that only involve formulas of
the form �φ and ♦φ (two examples are given after Definition 2).

All these extensions of IVML are sound and (strong) complete w.r.t. their
corresponding subvariety of the variety of triangle algebras [31]. For example,
IVSBL is sound and complete w.r.t. the variety of triangle algebras satisfying

11 For example, if L is IVML extended with the axiom scheme ¬¬φ → φ, then an
L-algebra is a triangle algebra satisfying ¬¬x ⇒ x = 1, in other words a triangle
algebra with an involutive negation.
12 For a more detailed overview, we refer to [4] and [12].
13 Note that the image under µ is also E(A). All axioms schemes in Definition 2
can also be given in an equivalent way by changing �φ to ♦φ and/or �ψ to ♦ψ.

10



Table 1
Some axioms in interval-valued fuzzy logics.

Axiom Name

(�φ→ �ψ) ∨ (�ψ → �φ) pseudo-prelinearity (PP)

((�φ→ �ψ)→ �ψ)→ (�φ ∨�ψ) pseudo-strong ∨-definability (PS∨)

�φ ∨ ¬�φ pseudo-law of excluded middle (PLEM)

�φ→ (�φ&�φ) pseudo-contraction (PCon)

¬(�φ&�ψ) ∨ ((�φ ∧�ψ)→ (�φ&�ψ)) pseudo-weak nilpotent minimum (PWNM)

¬¬�φ→ �φ pseudo-involution (PInv)

¬(�φ ∧ ¬�φ) pseudo-pseudocomplementation (PPC)

¬(�φ&�ψ) ∨ ((�φ→ (�φ&�ψ))→ �ψ) pseudo-weak cancellation (PWCan)

¬�φ ∨ ((�φ→ (�φ&�ψ))→ �ψ) pseudo-cancellation (PCan)

(�φ ∧�ψ)→ (�φ&(�φ→ �ψ)) pseudo-divisibility (PDiv)

Table 2
Some axiomatic extensions of IVML obtained by adding the corresponding axioms.

Logic Additional axioms

IVMTL (PP)

IV L (PS∨)

IVCPC (PLEM)

IVG (PP) and (PCon)

IVWNM (PP) and (PWNM)

IVIMTL (PP) and (PInv)

IVNM (PP), (PWNM) and (PInv)

IVSMTL (PP) and (PPC)

IVWCMTL (PP) and (PWCan)

IVΠMTL (PP) and (PCan)

IVBL (PP) and (PDiv)

IVΠ (PP), (PDiv) and (PCan)

IVSBL (PP), (PPC) and (PDiv)

(νx⇒ νy) t (νy ⇒ νx) = 1, νx u νy ≤ νx ∗ (νx⇒ νy) and (νx u ¬νx) = 0.
Moreover, they are all 14 extensions of IVMTL and therefore all these logics
are also strong complete w.r.t. their corresponding subclass of the class of

14 Indeed, also in IV L and IVCPC, (�φ→ �ψ) ∨ (�ψ → �φ) can be proven.
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pseudo-linear triangle algebras (in other words, they are strong pseudo-chain
complete [33]).
For some of these logics, we can use these completeness results and use known
algebraic properties of triangle algebras [33] to derive alternative defining ax-
iom schemes. For example, IVCPC can also be defined as IVML extended
with the axiom scheme (φ→ ψ) ∨ (ψ → φ) (because a triangle algebra satis-
fies the pseudo-law of excluded middle iff it is prelinear); and IVBL can also
be defined as IVMTL extended with the axiom scheme (φ ∧ ψ)→ ((φ&(φ→
ψ)) ∨ (ψ&(ψ → φ))) (because a pseudo-prelinear triangle algebra is pseudo-
divisible iff it is weak divisible).

In the next section we will prove that IVMTL and some of its extensions are
strong standard complete and a fortiori also standard complete. For the other
defined extensions we will prove that they are not strong standard complete.
We will also give a local deduction theorem for all these logics.

4 Main results

In [4] it is shown that strong standard completeness of a propositional fuzzy
logic is equivalent with the real-chain embedding property of that logic, and
that MTL, G, WNM, IMTL, NM and SMTL satisfy this property. We will
use these results in the next theorem to show that their interval-valued coun-
terparts also satisfy strong standard completeness.

Theorem 14 (Strong standard completeness) For each set of IVML-formulas
Γ ∪ {φ}, the following four statements are equivalent:

(1) φ can be deduced from Γ in IVMTL (Γ `IV MTL φ),
(2) for every pseudo-prelinear triangle algebra A, Γ |=A φ (i.e., for every
A-model e of Γ, e(φ) = 1),

(3) for every pseudo-linear triangle algebra A, Γ |=A φ,
(4) for every standard triangle algebra A, Γ |=A φ.

PROOF. The equivalence of the first three statements was already proven
in [31] and [33]. We will now prove that (4) implies (3). This suffices to prove
the theorem, as (3) obviously implies (4).
Suppose (3) does not hold. Thus there exists a pseudo-linear triangle algebra
A = (A,u,t, ∗,⇒, ν, µ, 0A, u, 1A) and an A-model e of Γ such that e(φ) < 1A.
Clearly, only evaluations of subformulas of Γ ∪ {φ} are relevant, therefore we
can assume, without loss of generality, that A is at most countably generated
(as the set of IVML-formulas is countable), and therefore at most countable.
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Because E(A) = (D,uD,tD, ∗D,⇒D, 0A, 1A), in which D = E(A) and uD,
tD, ∗D and ⇒D are the restrictions of u, t, ∗ and ⇒ to D, is an MTL-chain
(i.e., a linearly ordered MTL-algebra), we know from [23] that there exists an
embedding i from E(A) into a standard MTL-algebra ([0, 1],min,max, ◦,⇒◦,
0, 1).
Now we define a standard triangle algebra A′ and a mapping j from A to A′
in the following way: A′ := (LI , inf, sup,�,;, pv, ph, [0, 0], [0, 1], [1, 1]), with

• inf([x1, x2], [y1, y2]) = [min(x1, y1),min(x2, y2)],
• sup([x1, x2], [y1, y2]) = [max(x1, y1),max(x2, y2)],
• [x1, x2]� [y1, y2] = [x1 ◦ y1,max(x1 ◦ y2, x2 ◦ y1, x2 ◦ y2 ◦ i(µ(u ∗ u)))],
• [x1, x2] ; [y1, y2] =

[min(x1 ⇒◦ y1, x2 ⇒◦ y2),min(x1 ⇒◦ y2, (x2 ◦ i(µ(u ∗ u)))⇒◦ y2)],
• pv([x1, x2]) = [x1, x1],
• ph([x1, x2]) = [x2, x2] and
• j(x) = [i(νx), i(µx)].

To verify that A′ is indeed a standard triangle algebra, note that ({[x, x]|x ∈
[0, 1]}, inf, sup,�,;, [0, 0], [1, 1]) is a subalgebra ofA′ isomorphic to ([0, 1],min,
max, ◦,⇒◦, 0, 1) and check Example 6 and Theorem 8. Now we show that j is
an embedding from A into A′:

j(u) = [i(νu), i(µu)] = [i(0A), i(1A)] = [0, 1]

(and similarly for j(0A) = [0, 0] and j(1A) = [1, 1]),

j(x u y) = [i(ν(x u y)), i(µ(x u y))]

= [i(νx u νy), i(µx u µy)]

= [i(νx uD νy), i(µx uD µy)]

= [min(i(νx), i(νy)),min(i(µx), i(µy))]

= inf([i(νx), i(µx)], [i(νy), i(µy)])

= inf(j(x), j(y))

(and similarly for x t y),

j(νx) = [i(ννx), i(µνx)] = [i(νx), i(νx)] = pv([i(νx), i(µx)]) = pv(j(x))

(and similarly for µx),
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j(x ∗ y)

= [i(ν(x ∗ y)), i(µ(x ∗ y))]

= [i(νx ∗ νy), i((νx ∗ µy) t (µx ∗ νy) t (µx ∗ µy ∗ µ(u ∗ u)))]

= [i(νx ∗D νy), i((νx ∗D µy) tD (µx ∗D νy) tD (µx ∗D µy ∗D µ(u ∗ u)))]

= [i(νx) ◦ i(νy),max(i(νx) ◦ i(µy), i(µx) ◦ i(νy), i(µx) ◦ i(µy) ◦ i(µ(u ∗ u)))]

= [i(νx), i(µx)]� [i(νy), i(µy)]

= j(x)� j(y),

j(x⇒ y)

= [i(ν(x⇒ y)), i(µ(x⇒ y))]

= [i((νx⇒ νy) u (µx⇒ µy)), i((νx⇒ µy) u ((µx ∗ µ(u ∗ u))⇒ µy))]

= [i((νx⇒D νy) uD (µx⇒D µy)), i((νx⇒D µy) uD ((µx ∗D µ(u ∗ u))⇒D µy))]

= [min(i(νx)⇒◦ i(νy), i(µx)⇒◦ i(µy)),

min(i(νx)⇒◦ i(µy), (i(µx) ◦ i(µ(u ∗ u)))⇒◦ i(µy))]

= [i(νx), i(µx)] ; [i(νy), i(µy)]

= j(x) ; j(y)

and

j(x) = j(y) iff (i(νx) = i(νy) and i(µx) = i(µy))

iff (νx = νy and µx = µy)

iff x = y.

Now remark that e′, defined by e′(ψ) = j(e(ψ)), is an A′-model of Γ such that
e′(φ) < 1, which concludes the proof. 2

This theorem can also be used, mutatis mutandis, for IVG, IVWNM, IVIMTL,
IVNM and IVSMTL, because G, WNM, IMTL, NM and SMTL satisfy the
real-chain embedding property, just like MTL.

Remark 15 Remark that basically what we do in the proof is applying the
real-chain embedding property to the diagonal of a (countable) pseudo-linear
triangle algebra, which gives us an embedding of this diagonal in a standard
MTL-chain. This embedding can be extended to an embedding of the whole tri-
angle algebra in a standard triangle algebra. This interval-valued counterpart
of the real-chain embedding property might be called ‘pseudo-real-chain embed-
ding property’ and enables us to prove the strong standard completeness.
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• Theorem 14 does not only hold for IVMTL, IVG, IVWNM, IVIMTL, IVNM
and IVSMTL, but for every interval-valued companion IVL (defined in the
same way as the examples in Table 2) of a core fuzzy logic L without ex-
tra connectives that satisfies strong standard completeness (or, equivalently,
the real chain embedding property). In short: if a core fuzzy logic L with-
out extra connectives 15 is strong standard complete, then its interval-valued
companion IVL is strong standard complete.

• In fact, Theorem 14 can be generalized even a bit more. Indeed, also for
other kinds of strong completeness (i.e., not necessarily strong standard com-
pleteness), we have a connection between a core fuzzy logic L without extra
connectives and its interval-valued companion IVL: if L is strong complete
w.r.t. a class K of L-chains, then IVL is strong complete w.r.t. the class
TA(K) (and vice versa), with TA(K) the class of IVL-algebras whose sub-
reduct of exact elements is isomorphic to an L-algebra in K. This is because
the connection between the strong standard completeness of a core fuzzy logic
L and the real-chain embedding property is only a particular case of the con-
nection between the strong completeness w.r.t. K of a core fuzzy logic L and
the ‘K-chain embedding property’. The proof for strong completeness of IVL
w.r.t. TA(K) therefore remains completely similar to the proof for strong
standard completeness of IVL.

Remark 16 In the previous remark we noted that for core fuzzy logics there
is connection between the strong completeness w.r.t. a class K of L-chains and
the ‘K-chain embedding property’, which was used to demonstrate the strong
completeness of IVL w.r.t. TA(K) (under the condition that L is strong com-
plete w.r.t. K). For core fuzzy logics L in a finite language (e.g., all axiomatic
extensions of MTL), we have a similar equivalence between the finite strong
completeness w.r.t. a class K of L-chains and the ‘K-chain partial-embedding
property’. Completely similarly as for strong completeness, we can use this
equivalence to show the finite strong completeness of IVL w.r.t. TA(K) (un-
der the condition that IVL is the interval-valued companion of a core fuzzy
logic L without extra connectives (and thus in a finite language) which is finite
strong complete w.r.t. K).
In particular, for a finite strong standard complete core fuzzy logic L with-
out extra connectives, we find that its interval-valued companion IVL is finite
strong standard complete. Because  L, WCMTL, ΠMTL, BL, Π and SBL are
all finite strong standard complete core fuzzy logics in a finite language (see
[4,17,20,21,28]), IV L, IVWCMTL, IVΠMTL, IVBL, IVΠ and IVSBL are all
finite strong standard complete (and therefore also standard complete). This
makes that all logics in Table 2, apart from IVCPC (and IVML), are finite
strong standard complete.
As witnessed in [10], it can occur that a core fuzzy logic L is complete w.r.t. a

15 For core fuzzy logics with extra connectives, this remains an open problem. But
not for ∆-core fuzzy logics, see Section 5.
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class K of L-chains, but not finite strong complete w.r.t. K. In this case we do
not know of a suitable characterization of completeness (in terms of a kind of
embedding property). For such a core fuzzy logic L, the completeness of IVL
remains an open problem.

For ML,  L, CPC, WCMTL, ΠMTL, BL, Π and SBL it is known [4,17,20,21,28]
that they are not strong standard complete. The next proposition implies that
their interval-valued counterparts cannot be strong standard complete either.
First we mention some notations that will be used.

Suppose K is a class of residuated lattices. Recall from Remark 15 that we
defined the class TA(K) of triangle algebras as follows: a triangle algebra A
is an element of TA(K) iff E(A) is isomorphic to a residuated lattice in K.
Because of Proposition 11, TA(K) is not empty if K is not empty.
Furthermore, for every ML-formula φ, we define the IVML-formula φ′ as fol-
lows: φ′(pi1 , . . . , pin) = φ(�pi1 , . . . ,�pin), where pi1 , . . . , pin are the proposi-
tional variables occurring in φ. For example, if φ is the ML-formula ((p6∨p3)→
p12)&(p3 → 0), then φ′ is the IVML-formula ((�p6 ∨�p3)→ �p12)&(�p3 →
0).
Also, if χ is an ML-formula, we denote the function corresponding to χ in
an expansion B of a residuated lattice by fBχ . For example, if χ is the ML-
formula (p2 → p4)∧ p2 (which we denote by χ(p2, p4)) and A = (A,u,t, ∗,⇒
, ν, µ, 0, u, 1) is a triangle algebra, then fAχ is the binary function in A defined
by fAχ (x, y) = (x⇒ y) u x, for all x and y in A.

Proposition 17 Suppose Γ ∪ {φ} is a set of ML-formulas and K is a class
of residuated lattices. Then Γ |=K φ iff Γ′ |=TA(K) φ

′, where Γ′ = {χ′|χ ∈ Γ}.

PROOF. Suppose Γ′ |=TA(K) φ
′. Now take any residuated lattice L in K and

L-model v of Γ. We want to prove that v(φ) = 1. Take any triangle algebra
A in TA(K) such that E(A) is isomorphic to L. Because of Proposition 11
such a triangle algebra always exists. Let i be the mapping from L to A that
maps L isomorphically on E(A). Then the values i(v(p1)), i(v(p2)), i(v(p3)),
. . . are well-defined, and we can extend this mapping of propositional variables
in A to an A-evaluation v′ of all IVML-formulas, in a unique way. So v′(pj) =
i(v(pj)) for all propositional variables pj. Remark now that v′(χ′) = i(v(χ))
for all ML-formulas χ. Indeed, if pi1 , . . . , pin are the propositional variables
occurring in χ, then we find v′(χ′(pi1 , . . . , pin)) = v′(χ(�pi1 , . . . ,�pin)) =
fAχ (νv′(pi1), . . . , νv′(pin)) = fAχ (νi(v(pi1)), . . . , νi(v(pin))) = fAχ (i(v(pi1)), . . . ,
i(v(pin))) = i(fLχ (v(pi1), . . . , v(pin))) = i(v(χ(pi1 , . . . , pin))). In particular, for
all ψ in Γ, we have v′(ψ′) = i(v(ψ)) = i(1) = 1. Our assumption Γ ∪ {φ}
ensures that v′(φ′) = 1. We conclude 1 = v′(φ′) = i(v(φ)), which implies
v(φ) = 1.
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Now suppose Γ |=K φ, and take any triangle algebra A in TA(K) and A-
model v′ of Γ′. We want to prove that v′(φ′) = 1. Therefore we consider
the E(A)-evaluation v determined by v(pi) = v′(�pi), for all propositional
variables pi. Then for all ML-formulas χ, we have v(χ) = v′(χ′). Indeed,
if pi1 , . . . , pin are the propositional variables occurring in χ, then we find
v(χ(pi1 , . . . , pin)) = fE(A)

χ (v(pi1), . . . , v(pin)) = fE(A)
χ (v′(�pi1), . . . , v′(�pin)) =

fAχ (v′(�pi1), . . . , v′(�pin)) = v′(χ(�pi1 , . . . ,�pin)) = v′(χ′(pi1 , . . . , pin)). In
particular, for all ψ in Γ, we have v(ψ) = v′(ψ′) = 1. Our assumption ensures
that v(φ) = 1. We conclude 1 = v(φ) = v′(φ′). 2

Proposition 17 enables us to show some negative completeness results for ex-
tensions of IVML.

For example, if we choose K to be the class of all BL-algebras, then TA(K)
is the class of all triangle algebras A for which E(A) is a BL-algebra. In
other words, TA(K) is the class of all triangle algebras A = (A,u,t, ∗,⇒,
ν, µ, 0A, u, 1A) satisfying (νx ⇒ νy) t (νy ⇒ νx) = 1 and νx u νy = νx ∗
(νx ⇒ νy) for all x and y in A. So TA(K) is the class of all IVBL-algebras.
The corresponding logic is IVBL: IVML extended with the axiom schemes
(�φ→ �ψ)∨ (�ψ → �φ) and (�φ∧�ψ)→ (�φ&(�φ→ �ψ)). It is known
that BL is not strong standard complete, so there exists a set of formulas
Γ ∪ {φ} such that Γ |=L φ for every standard BL-algebra L, but not for
every BL-algebra L. Proposition 17 then allows us to deduce that Γ′ |=A
φ′ for every pseudo-divisible standard triangle algebra A, but not for every
pseudo-divisible pseudo-prelinear triangle algebra A. Because IVBL is sound
and complete w.r.t. pseudo-divisible pseudo-prelinear triangle algebras, this
means exactly that this logic is not strong standard complete.

Because ML,  L, CPC, WCMTL, ΠMTL, Π (and every schematic extension
between ΠMTL and Π) and SBL are not strong standard complete [4], we
can reason in the same way as for BL and conclude that IVML, IV L, IVCPC,
IVWCMTL, IVΠMTL, IVΠ and IVSBL are not strong standard complete ei-
ther. We give an overview of the completeness results in Table 3. Between
brackets are the known completeness results for the non-IV counterparts. We
note that for a core fuzzy logic L that is standard complete but not finite
strong standard complete, the result for IVL would be “Unknown No No (for
standard, finite strong standard and strong standard completeness, respec-
tively).

Now we will show a local deduction theorem for IVML and its extensions. Let
L be an extension of IVML.
From the definition of a proof of Γ `L φ, we immediately obtain the following
property (which is actually a property of all logical systems).
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Table 3
Completeness of several extensions of IVML.

Logic standard complete finite strong standard complete strong standard complete

IVML No (No) No (No) No (No)

IVMTL Yes (Yes) Yes (Yes) Yes (Yes)

IV L Yes (Yes) Yes (Yes) No (No)

IVCPC No (No) No (No) No (No)

IVG Yes (Yes) Yes (Yes) Yes (Yes)

IVWNM Yes (Yes) Yes (Yes) Yes (Yes)

IVIMTL Yes (Yes) Yes (Yes) Yes (Yes)

IVNM Yes (Yes) Yes (Yes) Yes (Yes)

IVSMTL Yes (Yes) Yes (Yes) Yes (Yes)

IVWCMTL Yes (Yes) Yes (Yes) No (No)

IVΠMTL Yes (Yes) Yes (Yes) No (No)

IVBL Yes (Yes) Yes (Yes) No (No)

IVΠ Yes (Yes) Yes (Yes) No (No)

IVSBL Yes (Yes) Yes (Yes) No (No)

Lemma 18 Let Γ1 ∪ Γ2 ∪ {φ, ψ} be a set of IVML-formulas, and L be an
extension of IVML.
If Γ1 `L φ and Γ2 ∪ {φ} `L ψ, then Γ1 ∪ Γ2 `L ψ.

PROOF. Observe that putting the proof of Γ2 ∪ {φ} `L ψ after the proof of
Γ1 `L φ, gives a proof of Γ1 ∪ Γ2 `L ψ. 2

Proposition 19 Let Γ∪ {φ} be a set of IVML-formulas, and L be an exten-
sion of IVML. Then Γ `L φ iff Γ `L �φ.

PROOF. On the one hand, we can apply Lemma 18 with Γ2 = ∅ and ψ = �φ,
because {φ} `L �φ (application of the generalization rule).
On the other hand, we can apply Lemma 18 to Γ `L �φ and {�φ} `L φ
(application of the modus ponens to IVML.1). 2

In a similar way we can prove the following proposition.

Proposition 20 Let Γ ∪ {φ, ψ} be a set of IVML-formulas, and L be an
extension of IVML. Then Γ ∪ {φ} `L ψ if and only if Γ ∪ {�φ} `L ψ.
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PROOF. In one direction, apply Lemma 18 to {φ} `L �φ and Γ∪ {�φ} `L

ψ. In the other direction, apply the lemma to {�φ} `L φ and Γ∪{φ} `L ψ. 2

Now we prove a so-called local deduction theorem for IVML (and its exten-
sions), which gives a connection between `L and →.

Proposition 21 Let Γ ∪ {φ, ψ} be a set of IVML-formulas, and L be an
extension of IVML.
Then the following are equivalent:

• Γ ∪ {�φ} `L ψ,
• There is an integer n such that Γ `L (�φ)n → ψ.

PROOF. Suppose Γ `L (�φ)n → ψ, which is equivalent with Γ `L �φ →
((�φ)n−1 → ψ) because of ML.11. Then by an application of modus ponens
we obtain Γ∪{�φ} `L (�φ)n−1 → ψ. Proceeding like this, we get Γ∪{�φ} =
Γ ∪ {�φ} ∪ {�φ} `L (�φ)n−2 → ψ, . . . and finally Γ ∪ {�φ} `L �φ→ ψ and
Γ ∪ {�φ} `L ψ.
Now suppose Γ ∪ {�φ} `L ψ. This means that there is a proof of ψ, in which
every line is an axiom, an element of Γ ∪ {�φ}, or an application of modus
ponens, generalization or monotonicity of ♦ to previous lines in the proof. We
will show by induction that for all the formulas γ in the proof, there exists
an integer n such that Γ `L (�φ)n → γ. This will imply Γ `L (�φ)n → ψ
for some integer n, as ψ is the last line of the proof. Remark that we can
use soundness and completeness of IVML w.r.t. triangle algebras. So we know
that `L φ if φ holds in every triangle algebra.
We have to consider the following possibilities:

• γ is an axiom or an element of Γ. Then we have Γ `L γ, which is equivalent
with Γ `L (�φ)0 → γ.
• γ is �φ. In this case, we have Γ `L (�φ)→ γ.
• γ is the result of an application of modus ponens. So there are two formulas α

and α→ γ earlier in the proof. By induction hypothesis, we know that there
are integers k and l such that Γ `L (�φ)k → α and Γ `L (�φ)l → (α→ γ).
Combining these, we find Γ `L (�φ)k+l → (α&(α → γ)). As we also have
`L (α&(α→ γ))→ γ, we obtain Γ `L (�φ)k+l → γ.
• γ is the result of an application of generalization. This means γ is of the

form �α, where α is a formula occuring earlier in the proof. So by induction
hypothesis, there is an integer k such that Γ `L (�φ)k → α. Applying
generalization, IVML.7 and modus ponens, we get Γ `L �((�φ)k) → �α.
This is equivalent with Γ `L (�φ)k → �α.
• γ is the result of an application of monotonicity of ♦. This means γ is of the

form ♦α → ♦β, with α → β a formula earlier in the proof. The induction
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hypothesis assures that there is an integer k such that Γ `L (�φ)k → (α→
β). Then similarly as for generalization, we find Γ `L (�φ)k → �(α → β).
Because by Theorem 10 we also know `L �(α → β) → (♦α → ♦β),
Γ `L (�φ)k → (♦α→ ♦β).

2

Summarizing the previous propositions, we see that all of the following state-
ments are equivalent.

• There is an integer n such that Γ `L (�φ)n → ψ,
• Γ ∪ {φ} `L ψ,
• Γ ∪ {φ} `L �ψ,
• there is an integer n such that Γ `L (�φ)n → �ψ,
• Γ ∪ {�φ} `L �ψ,
• Γ ∪ {�φ} `L ψ.

Remark that in IVG �φ and (�φ)n (n ≥ 1) are provably equivalent, so for
IVG and its extensions we have a stronger deduction theorem: Γ ∪ {φ} `L ψ
iff Γ `L �φ→ ψ.

5 The expansion of IVML and its axiomatic extensions with Baaz’s
Delta

In this section we introduce IVML∆ and show that the deduction theorem
holds for this logic and its extensions. For IVMTL∆ and its extensions, we
argue that similar completeness results hold as in Section 4.
We start by proving that (∆4) is superfluous.

Proposition 22 Let (L,u,t, ∗,⇒,∆, 0, 1) be an ML∆-algebra 16 . Then ∆∆x
= ∆x and ∆(x ∗ y) = ∆x ∗∆y = ∆x u∆y = ∆(x u y), for all x and y in L.

PROOF. On one hand, we have ∆∆x ≤ ∆x. On the other hand, we have
1 = ∆1 = ∆(∆xt¬∆x) ≤ ∆∆xt∆¬∆x ≤ ∆∆xt¬∆x, and therefore ∆x =
∆x∗1 = ∆x∗(∆∆xt¬∆x) = ∆x∗∆∆xt∆x∗¬∆x = ∆x∗∆∆xt0 ≤ ∆∆x.
To prove ∆(x ∗ y) = ∆x ∗ ∆y = ∆x u ∆y = ∆(x u y), we first note that it
is already known (see e.g. [17]) that ∆x ∗∆x = ∆x and ∆x ∗∆y = ∆(x ∗ y)
are valid for all x and y in L. Using these properties, we find ∆(x u y) =

16 We mean that (L,u,t, ∗,⇒, 0, 1) is a residuated lattice and that ∆ satisfies ∆1 =
1, ∆xt¬∆x = 1, ∆(xt y) ≤ ∆xt∆y, ∆x ≤ x and ∆(x⇒ y) ≤ ∆x⇒ ∆y, for all
x and y in L.
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∆(x u y) ∗ ∆(x u y) ≤ ∆x ∗ ∆y ≤ ∆x u ∆y = (∆x u ∆y) ∗ (∆y t ¬∆y) =
((∆xu∆y)∗∆y)t((∆xu∆y)∗¬∆y) ≤ ∆x∗∆yt0 = ∆(x∗y) ≤ ∆(xuy). 2

Because the implicative logic (this can be verified easily) ML∆ is sound w.r.t.
the variety of ML∆-algebras, it is also strong complete w.r.t. it. Therefore
Proposition 22 implies that `ML∆

∆φ→ ∆∆φ.

Definition 23 Let L be an axiomatic expansion of ML∆. Then we define its
interval-valued companion IVL as the logic with as axioms the union of the
axioms of IVML and the axioms of ML∆ and as deduction rules the union
of the deduction rules of IVML and the deduction rules of ML∆ (in other
words, MP, G, M♦ and N), plus the ‘box translations’ 17 of all extra 18 axioms
of L, plus two axioms f(�φ1, . . . ,�φn) → �f(�φ1, . . . ,�φn) and ∆((φ1 ↔
ψ1)& . . .&(φn ↔ ψn)) → (f(φ1, . . . , φn) ↔ f(ψ1, . . . , ψn)) for every extra n-
ary connective f in L.
L-algebras and IVL-algebras are defined in the usual way.
In particular, an IVML∆-algebra is an algebra (A,u,t, ∗,⇒, ν, µ,∆, 0, u, 1) in
which (A,u,t, ∗,⇒, ν, µ, 0, u, 1) is a triangle algebra and the unary operator
∆ satisfies ∆1 = 1, ∆x t ¬∆x = 1, ∆(x t y) ≤ ∆x t ∆y, ∆x ≤ x and
∆(x⇒ y) ≤ ∆x⇒ ∆y, for all x and y in L.

Note that IVMTL∆ is IVML∆ + pseudoprelinearity, IVBL∆ is IVMTL∆ +
pseudodivisibility, . . . (similarly as for IVBL, IVMTL, IVML, . . . ), and IVMTL∆-
algebra are pseudo-prelinear IVML∆-algebras, IVBL∆-algebras are pseudo-
divisible pseudo-prelinear IVML∆-algebras, . . .
As a slightly more complex example, consider the axiomatic expansion L1 of
ML∆ with a new connective ∼ and the axioms (φ→ ψ)∨ (ψ → φ), ∼∼ φ→ φ
and ∆(φ→ ψ)→ ∆(∼ ψ →∼ φ). Then IVL1 is determined by the axioms and
deduction rules of IVML∆, plus (�φ → �ψ) ∨ (�ψ → �φ), ∼∼ �φ → �φ
and ∆(�φ → �ψ) → ∆(∼ �ψ →∼ �φ), plus ∼ �φ → � ∼ �φ and
∆(φ↔ ψ)→ (∼ φ↔∼ ψ) (for the new connective ∼).
An L1-algebra is an algebra (L,u,t, ∗,⇒,∆,∼, 0, 1) in which (L,u,t, ∗,⇒,
∆, 0, 1) is an ML∆-algebra and such that (x ⇒ y) t (y ⇒ x) = 1, ∼∼ x ⇒
x = 1 and ∆(x⇒ y)⇒ ∆(∼ y ⇒∼ x) = 1 hold for all x and y in L.
An IVL1-algebra is an algebra (A,u,t, ∗,⇒, ν, µ,∆,∼, 0, u, 1) in which (A,u,
t, ∗,⇒, ν, µ,∆, 0, u, 1) is an IVML∆-algebra and such that (νx⇒ νy)t(νy ⇒
νx) = 1, ∼∼ νx ⇒ νx = 1, ∆(νx ⇒ νy) ⇒ ∆(∼ νy ⇒∼ νx) = 1,
∼ νx ⇒ ν ∼ νx = 1 and ∆(x ⇔ y) ⇒ (∼ x ⇔∼ y) = 1 hold for all x
and y in A.

17 Similarly as in Table 2. For example, the box translation of prelinearity is pseudo-
prelinearity, the box translation of divisibility is pseudo-divisibility, and so on.
18 With extra axioms of L, we mean the axioms of L that are different from those
in ML∆.
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Similarly as for IVML (see [31]) we can show that interval-valued companions
of axiomatic expansions of ML∆ are implicative logics and conclude that such
a logic is sound and strong complete w.r.t. the variety of the corresponding
algebras. The part of the proof not yet considered in [31] is Γ ` ∆φ ↔ ∆ψ
if Γ ` φ ↔ ψ (which is proven exactly as for �) and, for every extra (n-ary)
connective f , Γ ` f(φ1, . . . , φn) ↔ f(ψ1, . . . , ψn) if Γ ` φ1 ↔ ψ1,. . . and
Γ ` φn ↔ ψn (which is proven using necessitation, the axiom ∆((φ1 ↔
ψ1)& . . .&(φn ↔ ψn)) → (f(φ1, . . . , φn) ↔ f(ψ1, . . . , ψn)), and modus po-
nens).

Proposition 24 Let (A,u,t, ∗,⇒, ν, µ,∆, 0, u, 1) be an IVML∆-algebra. Then
∆∆x = ∆x, ∆(xty) = ∆xt∆y, ∆(x∗y) = ∆x∗∆y = ∆xu∆y = ∆(xuy),
∆x ∗ ∆x = ∆x, ∆x ≤ νx, ν∆x = ∆x = ∆νx and ∆(x ⇔ y) = ∆(νx ⇔
νy) ∗∆(µx⇔ µy) for all x and y in A.

PROOF. The first four properties hold in each ML∆-algebra and thus a
fortiori also in each IVML∆-algebra. Now we prove that ∆x ≤ ν∆x. First
note that 1 = ν1 = ν(∆x t ¬∆x) = ν∆x t ν¬∆x ≤ ν∆x t ¬∆x. Therefore
∆x = ∆x ∗ 1 = ∆x ∗ (ν∆x t ¬∆x) = ∆x ∗ ν∆x t∆x ∗ ¬∆x = ∆x ∗ ν∆x t
0 ≤ ν∆x. As the converse inequality holds as well, ∆x = ν∆x. We also find
∆x = ν∆x ≤ νx, and ∆x = ∆∆x ≤ ∆νx (which implies ∆x = ∆νx because
∆νx ≤ ∆x).
Furthermore ∆(x ⇔ y) = ∆((x ⇒ y) u (y ⇒ x)) = ∆(x ⇒ y) ∗∆(y ⇒ x) =
∆ν(x⇒ y)∗∆ν(y ⇒ x) = ∆((νx⇒ νy)u(µx⇒ µy))∗∆((νy ⇒ νx)u(µy ⇒
µx)) = ∆(νx ⇒ νy) ∗ ∆(µx ⇒ µy) ∗ ∆(νy ⇒ νx)&∆(µy ⇒ µx) = ∆(νx ⇔
νy) ∗∆(µx⇔ µy).

As a corollary, the image of an element x under ∆ is always an exact element.
In particular, the subset of exact elements of an IVML∆-algebra is closed under
∆. For each IVML∆-algebra A = (A,u,t, ∗,⇒, ν, µ,∆, 0, u, 1), the subreduct
(E(A),u,t, ∗,⇒,∆, 0, 1) is an ML∆-algebra. Moreover, because ∆x = ∆νx,
the action of ∆ on the IVML∆-algebra is determined by its action on the sub-
set of exact elements.
As another corollary, in the definition of a pseudo-linear IVL-algebra A (with
L an axiomatic expansion of ML∆), the conditions ∆((x1 ⇔ y1) ∗ . . . ∗ (xn ⇔
yn)) ⇒ (f(x1, . . . , xn) ⇔ f(y1, . . . , yn)) = 1 (for every extra n-ary connective
f in A) are automatically fulfilled (if all other conditions do hold, of course).
Indeed, if x1 = y1,. . . and xn = yn then f(x1, . . . , xn) ⇔ f(y1, . . . , yn) = 1,
thus ∆((x1 ⇔ y1) ∗ . . . ∗ (xn ⇔ yn)) ⇒ (f(x1, . . . , xn) ⇔ f(y1, . . . , yn)) = 1.
If xi 6= yi for some i in {1, . . . , n}, then νxi 6= νyi or µxi 6= µyi and thus
νxi ⇔ νyi 6= 1 or µxi ⇔ µyi 6= 1. Because νxi ⇔ νyi and µxi ⇔ µyi
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are exact elements (which are linearly ordered by assumption), we find 19

∆(νxi ⇔ νyi) = 0 or ∆(µxi ⇔ µyi) = 0 and therefore ∆(xi ⇔ yi) = ∆(νxi ⇔
νyi) ∗ ∆(µxi ⇔ µyi) = 0. Thus also in this case, ∆((x1 ⇔ y1) ∗ . . . ∗ (xn ⇔
yn))⇒ (f(x1, . . . , xn)⇔ f(y1, . . . , yn)) = 1.

Now we can prove the deduction theorem for IVML∆ and its axiomatic ex-
pansions.

Proposition 25 Let L be an axiomatic expansion of IVML∆ and Γ ∪ {φ, ψ}
a set of formulas in the language of L. Then the following are equivalent:

• Γ ∪ {φ} `L ψ,
• Γ `L ∆φ→ ψ.

PROOF. Suppose Γ `L ∆φ → ψ. Because {φ} `L ∆φ, by an application of
modus ponens we obtain Γ ∪ {φ} `L ψ.
Now suppose Γ ∪ {φ} `L ψ. This means that there is a proof of ψ, in which
every line is an axiom, an element of Γ ∪ {φ}, or an application of modus
ponens, generalization, monotonicity of ♦ or necessitation to previous lines in
the proof. We will show by induction that for all the formulas γ in the proof,
Γ `L ∆φ → γ. This will imply Γ `L ∆φ → ψ, as ψ is the last line of the
proof. Remark that we can use soundness and completeness of IVML∆ w.r.t.
IVML∆-algebras. So we know that `L φ if φ holds in every IVML∆-algebra.
We have to consider the following possibilities:

• γ is an axiom or an element of Γ. Then we have Γ `L γ, which implies
Γ `L ∆φ→ γ.
• γ is φ. In this case, we have Γ `L ∆φ→ γ.
• γ is the result of an application of modus ponens. So there are two formulas
α and α → γ earlier in the proof. By induction hypothesis, we know that
Γ `L ∆φ → α and Γ `L ∆φ → (α → γ). Combining these, we find
Γ `L (∆φ&∆φ) → (α&(α → γ)). As we also have `L (α&(α → γ)) → γ
and ∆φ&∆φ is equivalent with ∆φ, we obtain Γ `L ∆φ→ γ.
• γ is the result of an application of generalization. This means γ is of the

form �α, where α is a formula occuring earlier in the proof. So by induction
hypothesis, Γ `L ∆φ → α. Applying generalization, IVML.7 and modus
ponens, we get Γ `L �∆φ → �α. This is equivalent with Γ `L ∆φ → �α
(because �∆φ is equivalent with ∆φ).
• γ is the result of an application of monotonicity of ♦. This means γ is

of the form ♦α → ♦β, with α → β a formula earlier in the proof. The
induction hypothesis assures that Γ `L ∆φ → (α → β). Then similarly as

19 Here we use ∆x = 0 if x < 1, which holds in linear ML∆-algebras.
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for generalization, we find Γ `L ∆φ→ �(α → β). Because by Theorem 10
we also know `L �(α→ β)→ (♦α→ ♦β), Γ `L ∆φ→ (♦α→ ♦β).
• γ is the result of an application of necessitation. This means γ is of the

form ∆α, where α is a formula occuring earlier in the proof. So by induction
hypothesis, Γ `L ∆φ→ α. Applying necessitation, (∆5) and modus ponens,
we get Γ `L ∆∆φ→ ∆α. This is equivalent with Γ `L ∆φ→ ∆α (because
∆∆φ is equivalent with ∆φ).

2

Let L be an axiomatic expansion of IVMTL∆ (for example, an interval-valued
companion of a ∆-core fuzzy logic). Similarly as in [33], we can use filters to
show that every L-algebra is isomorphic to a subalgebra of the direct product
of a system of pseudo-linear L-algebras. The idea behind the approach is the
same as in [33], but there are some practical differences (comparable to the
differences between BL and BL∆ in [17]), which we mention here.

• A filter of an L-algebra is a non-empty subset F that is upward closed, and
closed under ∗ and ∆. To show that the corresponding relation ∼F is a
congruence on an L-algebra, the properties (one for each new connective)
∆((x1 ⇔ y1) ∗ . . . ∗ (xn ⇔ yn)) ⇒ (f(x1, . . . , xn) ⇔ f(y1, . . . , yn)) = 1 are
needed.
• The smallest filter of an L-algebra A containing a given filter F and a given

element z is {v ∈ A | (∃w ∈ F )(w ∗∆z ≤ v)}. The proof is straightforward
and similar to the proof in [33] and the proof of Theorem 2.4.12 in [17].
• The proof that w1∗w2 ≤ a if w1∗∆(νx⇒ νy) ≤ a and w2∗∆(νy ⇒ νx) ≤ a,

is as follows: w1 ∗ w2 = w1 ∗ w2 ∗ ∆((νx ⇒ νy) t (νy ⇒ νx)) = w1 ∗ w2 ∗
(∆(νx⇒ νy) t∆(νy ⇒ νx)) = w1 ∗ w2 ∗∆(νx⇒ νy) t w1 ∗ w2 ∗∆(νy ⇒
νx) ≤ w1 ∗∆(νx⇒ νy) t w2 ∗∆(νy ⇒ νx) ≤ a t a = a.

This decomposition theorem for IVMTL∆-algebras allows us to strengthen the
(general) strong completeness of IVMTL∆ (and its axiomatic extensions) to
pseudo-chain strong completeness.

For several interval-valued companions of ∆-core fuzzy logics, we can prove
strong standard completeness in an analogous way as explained in Theorem
14 and Remark 15.

Theorem 26 Let L be a ∆-core fuzzy logic (with 20 k extra connectives f1, . . . ,
fk) that is strong complete w.r.t. a class K of L-chains. Then its interval-valued
companion IVL is strong complete w.r.t. TA(K) (as defined in Remark 15).

20 The number of extra connectives can also be infinite (but countable). The proof
is exactly the same.
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Note that the case of strong standard completeness is obtained by choosing K
as the class of standard L-chains.

PROOF. Suppose Γ ∪ {φ} is a set of formulas in the language of IVL, and
Γ 6`IV L φ. We need to prove that there exists an IVL-algebra C in TA(K) and
an C-model e of Γ such that e(φ) < 1C .
By the strong pseudo-chain completeness of IVL, we already know there exists
a pseudo-linear IVL-algebra A in TA(K) and an A-model e of Γ such that
e(φ) < 1A. Similarly as in Theorem 14, we can assume it is at most countably
generated. The subreduct E(A) consisting of the exact elements of A is a lin-
ear L-algebra (here, the properties f(�φ1, . . . ,�φn)→ �f(�φ1, . . . ,�φn) are
used). Because L is a ∆-core fuzzy logic that is strong complete w.r.t. a class
K, a countably generated linear L-algebra is embeddable in an L-chain from
K. Let i denote an embedding from the reduct E(A) = (D,uD,tD, ∗D,⇒D,
∆D, f1D, . . . , fkD, 0A, 1A), in whichD = E(A), in the L-chain B = (B,min,max, ◦,
⇒◦,∆B, f

′
1, . . . , f

′
k, 0, 1) from K.

Now we define an IVL-algebra C in TA(K) and a mapping j from A to C in the
following way: C := (C, inf, sup,�,;, pv, ph,∆C , f1C , . . . , fkC , [0, 0], [0, 1], [1, 1]),
with

• C = Int(B)
• inf([x1, x2], [y1, y2]) = [min(x1, y1),min(x2, y2)],
• sup([x1, x2], [y1, y2]) = [max(x1, y1),max(x2, y2)],
• [x1, x2]� [y1, y2] = [x1 ◦ y1,max(x1 ◦ y2, x2 ◦ y1, x2 ◦ y2 ◦ i(µ(u ∗ u)))],
• [x1, x2] ; [y1, y2] =

[min(x1 ⇒◦ y1, x2 ⇒◦ y2),min(x1 ⇒◦ y2, (x2 ◦ i(µ(u ∗ u)))⇒◦ y2)],
• pv([x1, x2]) = [x1, x1],
• ph([x1, x2]) = [x2, x2],
• ∆C([x1, x2]) = [∆Bx1,∆Bx1],
• j(x) = [i(νx), i(µx)], and
• flC(j(x1), . . . , j(xnl)) = j(fl(x1, . . . , xnl)) for elements in the image of j (for

other elements in C, there are two possibilities: flC([x1, x1], . . . , [xnl , xnl ]) =
[f ′l (x1, . . . , xnl), f

′
l (x1, . . . , xnl)]; for l-tuples not of this form, the value can

be chosen freely).

Similarly as in Theorem 14, we can prove that j is injective and that it
is an homomorphism for inf, sup,�,;, pv and ph. Now we show that it is
also a homomorphism for ∆ and the extra connectives. Indeed, j(∆x) =
[i(ν∆x), i(µ∆x)] = [i(∆νx), i(∆νx)] = [∆Bi(νx),∆Bi(νx)] = ∆C([i(νx), i(µx)])
= ∆C(j(x)). For the extra connectives, j is a homomorphism by definition.
Remark that C is an IVL-algebra even though the image of some elements was
chosen freely. This is because in a pseudo-linear IVL-algebra, the conditions
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on the extra connectives involve only elements on the diagonal.
Now remark that e′, defined by e′(ψ) = j(e(ψ)), is an C-model of Γ such that
e′(φ) < 1, which concludes the proof. 2

With a completely similar proof, we can also show the following theorem.

Theorem 27 Let L be a ∆-core fuzzy logic (with 21 k extra connectives f1, . . . ,
fk) that is finite strong complete w.r.t. a class K of L-chains. Then its interval-
valued companion IVL is finite strong complete w.r.t. TA(K) (as defined in
Remark 15).

We can prove Proposition 17 also in the case for axiomatic expansions of ML∆.

Proposition 28 Let L be an axiomatic expansion of ML∆, Γ ∪ {φ} a set of
formulas in the language of L and K is a class of L-algebras. Then Γ |=K φ iff
Γ′ |=TA(K) φ

′, where Γ′ = {χ′|χ ∈ Γ} (where φ′ is defined as before Proposition
17).

From Theorem 26 and Proposition 28, and using the fact that a core fuzzy
logic is (finite) strong complete iff its ∆-expansion is (finite) strong complete
[4], we can conclude that Table 3 can be copied for the ∆-expansions of the
included logics.

6 Conclusion and future work

In this paper, we have shown that the strong and finite strong standard com-
pleteness of MTL can be transferred succesfully to their interval-valued coun-
terparts. More generally, if an axiomatic extension of MTL is (finite) strong
standard complete, then its interval-valued counterpart is also (finite) strong
standard complete. Just like the classical standard completeness theorems
stress the importance of fuzzy logics on the unit interval, our results reveal
that the triangularization of the unit interval plays a similar role for interval-
valued fuzzy logics, and can be endowed with analogous properties.
We also gave a local deduction theorem for IVML and its extensions.
In Section 5 we proved similar completeness results and a deduction theorem
for interval-valued fuzzy logics expanded with Baaz’s Delta.

21 The number of extra connectives cannot be infinite in this case, because the
language has to be finite.
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