Square and Triangle: Reflections on Two Prominent
Mathematical Structures for the Representation of Imprecision

Chris Cornelis, Glad Deschrijver, Etienne E. Kerre

Department of Mathematics and Computer Science, Ghent University
Fuzziness and Uncertainty Modelling Research Unit
Krijgslaan 281 (S9), B-9000 Gent, Belgium
E-mail: {chris.cornelis|glad.deschrijver|etienne.kerre}@UGent.be

Homepage: http://fuzzy.UGent.be

Abstract

In this paper, we study, from a predominantly syntactical viewpoint, some of the
characteristics of and differences between the evaluation structures of intuitionistic fuzzy
set theory (“triangle”) and fuzzy four—valued or Belnap logic (“square”).
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1 Introduction

IFS theory basically enriches Zadeh’s fuzzy set theory with a notion of indeterminacy ex-
pressing hesitation or abstention. While in the latter, membership degrees, identifying the
degree to which an object satisfies a given property (generally speaking), are taken to be
exact, in the former extra information in the guise of a non—membership degree is permitted
to address a commonplace feature of uncertainty. In other words, IFS theory defies the claim
that from the fact that an element z € X “belongs” to a given degree (say pa(z)) to a fuzzy
set A, naturally follows that z should “not belong” to A to the extent 1 — p4(z). On the
contrary, IFSs assign to each element of the universe both a degree of membership pa(z)
and one of non-membership v4(z) such that pa(x) + va(z) < 1, thus relaxing the enforced
duality va(z) =1 — pa(z) from fuzzy set theory. The amount of indeterminacy, or “missing
information”, is quantified by the degree m4(z) =1 — pa(z) —va(z) for all z € X.

Just like the relationship between classical logic and set theory was exploited in fuzzy
set theory to define “fuzzy logics” (in a narrow sense), so we may also introduce a notion of
“intuitionistic fuzzy (IF) logics”; with a proposition P a degree of truth gp and one of falsity
vp may be associated, such that up + vp < 1. This idea is elaborated in e.g. [1].

One way to generalize IFS theory is to drop the restriction that pa(z) + va(z) <1, and
instead draw (ua(z),va(z)), or (up,vp), from [0,1]2. This extension was coined fuzzy four—
valued logic, and is sometimes also referred to as fuzzy Belnap logic, in reference to the logical
evaluation structure FOUR introduced by Belnap [3] and shown in Figure 1.

Fuzzy four—valued logic extends FOUR by drawing values from the entire unit square
and not just from its angular points. Those angular points, incidentally, codify the epistemic
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Figure 1: Belnap’s logical evaluation structure FOUR

states true (T), false (F), unknown (U) and contradiction (C) that can represent an
agent’s beliefs with respect to a proposition. By defining the correspondences 7' — (1,0),
F — (0,1), U — (0,0) and C — (1,1), it is easy to perceive how this structure relates to
IFS theory; in the latter, by the restriction on membership degrees/non—membership degrees
(truth/falsity degrees) the state C is not allowed. As a consequence, its evaluation structure
will be a triangle that takes up only (the consistent) half of the unit square.

In this paper, we compare the evaluation structures of IFS theory and fuzzy—four valued
logic. The exposition will be from an L—fuzzy set theoretical perspective, i.e. the respective
evaluation structures “Triangle” and “Square” are viewed as particular complete lattices. In
this way, the definition of graded versions of logical connectives becomes transparant. We
consider representational issues w.r.t. these connectives, and we also show that the bijections
Atanassov defined between “Triangle” and “Square” are in fact not lattice isomorphisms and
therefore limit the extent of useful consequences to be drawn from this perceived “equivalence”
between IFS theory and fuzzy four-valued logic.

2 Evaluation Structures: the L-Fuzzy Set Perspective

The defining idea behind our approach is to treat logical connectives as algebraic mappings; to
describe the domain and codomain structure for intuitionistic fuzzy connectives the partially
ordered set (L*, <r-) was introduced in [4]:

Definition 1 ((L*, <z+), “Triangle”)
L* = {(z1,22) €[0,1)? | 21 + 22 < 1}
(21, %2) <+ (y1,792) © 21 <Y1 AT2 > Y2

It is easily verified that (L*,<r-) is a complete lattice. By 0z = (0,1) and 1z- = (1,0) we
denote its bounds. A graphical representation of L* is the intuitionistic fuzzy representation
triangle (shortly, “Triangle”) shown in Figure 2. An IFS in X may simply be defined as an
L*—fuzzy set in X, i.e. a mapping from X to L* such that A(x) = (ua(z),va(z)) for each
z e X.

For fuzzy four—valued logic, the following lattice (Lg, <g) can be introduced:
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Figure 2: Intuitionistic Fuzzy Interpretation Triangle

Definition 2 ((Lg, <p), “Square”)
Lo = [Oa 1]2
(z1,72) <o (y1,92) © 71 <Y1 Az2 > 1o

By 0 = (0,1) and 1g = (1,0) we denote the bounds of the complete lattice ((Lg, <p)-
Its graphical interpretation is shown in Figure 3.
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Figure 3: Graphical representation of (Lg, <p)

3 Graded Logical Connectives

In the next three subsections, we recall and establish some important results w.r.t. the defini-
tion of extensions of the negation (—), conjunction (A), disjunction (V) and implication (—)
connectives from classical logic.

3.1 Negation

Atanassov [1] defined the negation of an element (z1,z2) € L* as (z2,z1). In [8, 9] a more
general definition encapsulating the former was given:

Definition 3 (Negator on L*) A negator on L* is any decreasing L* — L*-mapping N
satisfying N(Op+«) = 1, N(1p«) = Op+. If N(N(z)) = z,Vz € L*, then N is called an
involutive negator.



The mapping N, defined as Ny(z1,22) = (z2,21) will be called the standard negator. The
following theorem was established in [8]:

Theorem 1 Let N be a negator on L*, and let the [0,1] — [0,1]-mapping N be defined by,
for a € [0,1], N(a) = priN(a,1 — a), with pri(z) denoting the first component of © € L*.
Then N is involutive if and only if N is involutive and for all (z1,x2) € L*:

N(z1,22) = (N(1 — z2),1 — N(z1)).

Definition 4 (Negator on L) A negator on Lp is any decreasing Lo — Lo—mapping
N satisfying N(0g) = 1g and N(1g) = 0g. If N(N(z)) = z,Vx € Lo, then N is called an
involutive negator.

Lemma 1 For any involutive negator N on Lo one of the following holds:
(i) 9(0,0) = (0,0) and N(1,1) = (1,1); or
(i) N(0,0) = (1,1) and N(1,1) = (0,0).

Theorem 2 Let 0N be a negator on Lg.

(i) If (0,0) = (0,0), then let @ be the [0,1] — [0, 1]-mapping defined as p(a) = priN(0,a),
for all a € [0,1]. Then N is involutive if and only if ¢ is an increasing permutation of
[0,1] and, for all (z1,z2) € Ln,

N(z1,72) = (p(22), 0 (1))

(i) If9M(0,0) = (1,1), then let N1 and Ny be the [0,1] — [0, 1]-mappings defined as N1(a) =
pr1N(a,0) and Nao(a) = proN(0,a), for all a € [0,1]. Then N is involutive if and only
if N1 and Ny are involutive negators on [0,1] and, for all (x1,z2) € Ln,

N(z1,72) = (N1(21), Na(72)).

If in the first case p(z1) = 1, for all z; € [0,1], then we obtain N(z1,z2) = (x2,21),
i.e. the straightforward extension of the standard negation N on L* to Lg. We denote this
negator by L. If in the second case Ni(z1) = No(z1) = 1 — 21, for all z; € [0,1], then we
obtain M(z1,z2) = (1 — 1,1 — z2). We denote this negator by 2.

Let N(a) = ¢(1 — a), for all a € [0,1], then N is a bijective negator on [0,1] and in
Theorem 2(i) we obtain M(z1,z2) = (N(1 — z2),1 — N~1(z1)), for all (z1,z2) € Lg. While
for negators on L* the corresponding negator N is involutive, this is not necessarily the case
for negators on L. Note also that the case (ii) in Theorem 2 cannot occur in L*.

4 Conjunction and Disjunction

Since <« is a partial ordering, an order—theoretical definition of conjunction and disjunction
on L* as triangular norms and conorms, t—norms and t—conorms for short, respectively, arises
quite naturally:

Definition 5 (Triangular Norm on L*) A t-norm on L* is any increasing, commutative,
associative (L*)? — L*-mapping T satisfying T (1p+,z) = z, for all x € L*.



Definition 6 (Triangular Conorm on L*) A t-conorm on L* is any increasing, commu-
tative, associative (L*)? — L*-mapping S satisfying S(0r+,z) = z, for all z € L*.

Involutive negators on L* are always linked to an associated fuzzy connective (a negator
on [0,1]); the same does not always hold true for t-norms and t-conorms, however. We
therefore have to introduce the following definition: [5]

Definition 7 (t-representability) A t-norm T on L* (resp. t-conorm S) is called t-repre-
sentable if there exists a t-norm T and a t-conorm S on [0,1] (resp. a t-conorm S’ and a
t-norm T" on [0,1]) such that, for x = (z1,22),y = (v1,y2) € L*,

T('Tay) = (T($1,y1)>5($2,y2))a
S(z,y) = (8"(z1,91), T' (72, y2))-

T and S (resp. S' and T') are called the representants of T (resp. S).

The theorem below states the conditions under which a pair of connectives on [0, 1] gives
rise to a t-representable t—norm (t—conorm) on L*.

Theorem 3 [5] Given a t-norm T and t-conorm S on [0, 1] satisfying T(a,b) <1—S(1 —
a,1—>b) for all a,b € [0,1], the mappings T and S defined by, for x = (z1,z2) and y = (y1,y2)

in L*:
T(z,y) = (T(z1,91), S (22, 92)),
S(a:,y) = (S(whyl)aT(x?’y?))a

are a t-norm and a t—conorm on L*, respectively.
J

The dual of a t-norm 7 on L* (t—conorm §) w.r.t. a negator N is the mapping T*
(resp. 8*) defined by, for z,y € L*,

T (z,y) = N(T(N (), N(y))) (resp. §"(z,y) = N (SN (z), N (y))))-

It can be verified that 7 is a t—conorm and §* is a t—norm on L*. Moreover, the dual t—
norm (¢-conorm) with respect to an involutive negator A on L* of a {t-representable ¢-conorm
(t-norm) is t-representable. [9]

In [9] a representation theorem for t-norms on L* meeting a number of criteria was
formulated and proven.

Theorem 4 T is a continuous t-norm on L* satisfying

o (Vo e L*\ {01,110+ })(T (z,z) <~ z) (archimedean property)

(Fz,y € L*)(z1 #0 and z2 # 0 and y1 # 0 and y2 # 0 and T (x,y) = 0r~)
(strong nilpotency)

(Vz,y,2 € L*)(T (z,2) <p~ y < z <p~ sup{y € L* | T(z,7) <r- y})
(residuation principle)

(Vz,y € D)(sup{y € L* | T (z,7) <r- y} € D)
e 7((0,0),(0,0)) = 0~



if and only if there exists an increasing continuous permutation ¢ of [0,1] such that, for all
z,y € L¥,
T(@,y) = (¢~ (max(0, p(z1) + @(y1) — 1)),1 — ¢~} (max(0,
p(z1) + (1 —y2) — Lo(y) + (1 — x2) — 1)),
or equivalently, there exists a continuous increasing permutation ® of L* with increasing

inverse such that T = ®~1 o Ty o (® o pry, ® o pry), where Ty, the Lukasiewicz t—-norm on
L*, is defined by, for x,y € L*:

Tw(z,y) = (max(0,z1 + y1 — 1), min(1, 22 + 1 — y1,y2 + 1 — z1)).

Definition 8 (Triangular Norm on L) A t-norm on Lg is any increasing, commutative,
associative (Lo)? — Lo-mapping T satisfying T(1g,z) = x, for all x € L.

Definition 9 (Triangular Conorm on Lp) A t-conorm on Lo is any increasing, commu-
tative, associative (Lo)? — Lo-mapping & satisfying &(0g,x) = =, for all x € L.

t-representability is defined in a similar way as for t-norms and t-conorms on L*. In [11]
examples of t—norms on L are given which are not t—representable. Also the dual t—conorm
of a t-norm on Lp w.r.t. to a negator on L is defined in a similar way as for t—norms on
L*, and similarly for the dual t—norm.

The following are examples of t—representable t—-norms and t—conorms on L, for z,y €
LI:I:

e inf(z,y) = (min(z1,y1), max(zs, y2)),

e Tw(z,y) = (max(0,z1 +y1 — 1), min(1, z2 + y2)),

e sup(z,y) = (max(z1,y1), min(z2, y2)),

e Sw(z,y) = (min(1,z; + y1), max(0, z2 + y2 — 1)).

Note that the dual of Ty w.r.t. both 9Nl and N2 is equal to Sy, i.e.
Sw(z,y) = NH(Sw (M (@), N (y))) = I (Tw (M2(2), M2(y)).

In [9] we introduced the residuation principle for t-norms on L* as follows: a t-norm
satisfies the residuation principle if and only if, for all z,y, z € L*,

T('Tay) SL* 2=y SL* IT('Z"Z)'

The residuation principle for t-norms on L can be introduced in a similar way.

In [9] we have shown that 7y satisfies the residuation principle. This is not the case
anymore if we straightforwardly extend 7y to Lo, Ty is even not a t-norm on L. Moreover,
De Baets and Mesiar proved in [7] that if a t—-norm 7" on a complete product lattice L = L1 x Loy
satisfies the residuation principle, then T is the direct product of two t—norms on L; and Lo,
respectively. This result can be translated in our terminology as follows.

Theorem 5 Any t-norm T on Lo satisfying the residuation principle is t—representable.

Note that this result does not hold in L*: Ty satisfies the residuation principle but is not
t-representable!



5 Implication

A very general definition of the implication connective on L* is given in the following defini-
tion [4]:

Definition 10 (Implicator on L*) An implicator on L* is any (L*)2 — L*-mapping T sat-
zsfymg I(OL*,OL*) = 1L*,I(1L*,OL*) == OL*,I(OL*, 1L*) = 1L*,I(1L*, 1L*) = 1L*. Moreover
we require L to be decreasing in its first, and increasing in its second component.

Two important subclasses of implicators on L* were introduced in [5]. It is easily verified
that each of the mappings defined hereafter is indeed an implicator in the sense of Defini-
tion 10.

Definition 11 (S—implicator) Let S be an t-conorm on L* and N a negator on L*. The
S—implicator generated by S and N is the mapping Zs n defined as, for z,y € L*:

Isn(z,y) = SN (2),y).
If § is t-representable, s y is called a t-representable S—implicator.

Definition 12 (R—implicator) Let 7 be an t-norm on L*. The R—implicator generated by
T is the mapping Tr defined as, for x,y € L*:

Iy (xz,y) =sup{y € L* | T(x,7) <r- y}-
If T is t-representable, Lt is called a t—representable R—implicator.

The R-implicator generated by Ty is equal to the S—implicator generated by Sy and N,
where Sy denotes the dual t—conorm of Ty w.r.t. N, i.e. for z,y € L*,

ITW (‘Tay) = ISW,Ns (‘T,y) = (min(layl +1- T1,Z2 + 1-— yg),max(O,yQ + 1z — 1))

This result does not hold for the t-representable extension 7, of the Lukasiewicz t—norm on
[0,1] to L*, defined as, for z,y € L*,

Tw(w,y) = (max(0,z1 +y1 — 1), min(1, z2 + y2).
Indeed, we have, for x,y € L*,

I7,(2,y) = (min(l,y1 + 1 — 21,22 + 1 — y2), max(0, yo — 2)),
Irx N, (7, y) = (min(l, z2 + y1), max(0, 1 + y2 — 1)).
Definition 13 (Implicator on L) An implicator on Lo is any (Lo)? — Lo-mapping J
satisfying 3(00,00) = 3(0g, 1g) = J(1g, 1g) = 1g and F(0g,0n) = 0g. Moreover we require

J to be decreasing in its first, and increasing in its second component.

The notions of S—implicator and R—implicator on Ly are defined in a similar way as in
L*. The R-implicator generated by Ty is equal to the S—implicator generated by Gy and
N2, i.e. for z,y € Ly,

Jgw (2,Y) = Tey g (2,y) = (min(l,y1 + 1 — z1), max(0, yo — z2)).
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This implicator is however not equal to the S—implicator generated by &y, and 9!, which is
given by, for z,y € L,

Jewm(z,y) = (min(1, 22 + y1), max(0, 21 +y2 — 1).

From the above it follows that the equality between the R-implicator of and the corre-
sponding S—implicator holds in L for the t-representable t—norm ¥y, but in L* the equality
holds for the non—t-representable t-norm 7y and not for the t-representable 7y,.

The suitability of implicators on L* for a variety of purposes can be assessed using the
(generalized) criteria introduced by Smets and Magrez in [12]:

Definition 14 (Axioms of Smets and Magrez for an implicator Z on L*)
(A.1) (Vy € L*)(Z(.,y) is decreasing in L*)

(Vx € L*)(Z(x,.) is increasing in L*) (monotonicity laws)
(A.2) Vz € L*)(Z(1p+,z) = x) (neutrality principle)
(A.8) (Y(z,y) € (L*)?)(Z(x,y) = T(Nz(y),Nz(z)) (contrapositivity)
(A.4) (V(z,y,2) € (L*)*)(T(z,I(y,2)) = Z(y,I(z, 2))) (interchangeability principle)
(A.5) (V(z,y) € (L*))(z <1+ y & Z(z,y) = 11+) (confinement principle)
(A.6) T is a continuous (L*)?> — L*-mapping (continuity)

The axioms of Smets and Magrez for an implicator on L are introduced in a similar way.

In [9] it is proven that Z7;, satisfies all six Smets—-Magrez axioms. Furthermore no t—
representable S—implicator nor t-representable R—implicator satisfies all six axioms. On the
other hand, in Ln we have that Jg, satisfies all Smets-Magrez axioms. In other words,
t-representability plays very different roles in the intuitionistic fuzzy and in the fuzzy four—
valued framework!

6 Relationship Between the Triangle and the Square

In [2], Atanassov defined two transformations F' and G from L to L*, defined for (z;,z2) €
[0,1] by

(050) ifzi1=2o=0
x? .
F($1a$2) = $1+1£C2’ zva:sz if 1 >z (1)
2
;101_15_8;2’ mla—cl—z:m if z1 <o
:L‘l—w—z :c_z) if.TlZ.TQ
G = ( 2°2/) - 9
(1‘1,.’132) { (952_1’3:2_:%1) ifz1 < a9 ( )

and proved that they are bijective, showing that each L—fuzzy set with a lattice L that can
be represented in the form of figure 3, can be represented as an IFS, too. It is important
to realize, however, that the transformations are not lattice isomorphisms, i.e. they do not
satisfy

inf(F(z), F(y)
= sup(F(z), F(y
inf(G(z), G(y)
= sup(G(z),G(y

)

)



For instance, take z = (1,1), y = (0,0), so inf(z,y) = (0,1) in (Lg,<g). Now F(0,1) =
(0,1), while inf(F(1,1), F(0,0)) = inf ((3,1),(0,0)) = (0, 3).

As a consequence, the transformations do not preserve the order either, e.g. z <pg y %
F(z) <r~ F(y), so order-theoretical concepts like negators, t-norms, t—conorms and implica-
tors are not transferred by them; this is also confirmed by our results in the previous section,

which show that “Square” and “Triangle” have quite different characteristics.

7 Conclusion

This paper has hinted at some of the distinguishing features between (the evaluation structures
of) intuitionistic fuzzy sets and fuzzy four—valued logic. It is especially remarkable how t—
representability which acts as a key concept in IFS theory has only a marginal role to play in
the setting of fuzzy four—valued logic.
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