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Abstract

Inclusion for fuzzy sets was &rst introduced by Zadeh in his seminal 1965 paper. Since it was found that
the de&nition of inclusion was not in the true spirit of fuzzy logic, various researchers have set out to de&ne
alternative indicators of the inclusion of one fuzzy set into another. Among these alternatives, the indicator
proposed by Sinha and Dougherty stands out as an intuitively appealing one, as it is built up with a strong
but appropriate collection of axioms in mind. Starting from a very general expression depending on four
functional parameters for such an indicator, those authors proposed conditions they claimed to be necessary
and su7cient to satisfy the axioms. This paper aims to revisit this material by exposing it in a clearer way,
correcting errors along the way while pinpointing some nasty pitfalls that Sinha and Dougherty overlooked.
This results in a new, easier to handle and more consistent framework for the axiomatic characterization of
inclusion grades for fuzzy sets, advantageous to the further development of practical applications. In the end,
a link is established with Kitainik’s results on the fuzzi&cation of set inclusion, allowing amongst others the
derivation of a su7cient and necessary characterization of the Sinha–Dougherty axioms. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Traditionally, fuzzy set inclusion is de&ned according to Zadeh’s [13] original proposal. For A and
B fuzzy sets in a universe X he de&ned: A⊆B⇔ (∀x∈X )(A(x)6B(x)), i.e. A⊆B if and only if
the graph of A &ts beneath the graph of B. This rigid de&nition unfortunately does not do justice to
the spirit of fuzzy set theory: we may want to talk about a fuzzy set being “more or less” a subset
of another one, and such a concept has been successfully applied in a wide range of domains like,

∗ Corresponding author. Tel.: +32-9-264-4904; fax: +32-9-264-4995.
E-mail address: etienne.kerre@rug.ac.be (E. Kerre).

0165-0114/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0165-0114(02)00225-7



284 C. Cornelis et al. / Fuzzy Sets and Systems 134 (2003) 283–295

e.g. mathematical morphology [2], approximate reasoning [3,4] and fuzzy entropy [9]. Very aptly,
Bandler and Kohout [1] call the de&nition of inclusion by Zadeh “an unconscious step backwards
in the realm of dichotomy”.

This intuition has inspired several researchers to consider F(X )×F(X )→ [0; 1] mappings Inc
(where F(X ) represents the class of fuzzy sets in a universe X ), such that the value Inc(A; B)
indicates to what extent A is included into B. Of course, we should impose some elementary con-
straints on this indicator in order to come up with a genuine implementation of inclusion. Two
axiom systems seem to prevail in the literature, notably, the one proposed by Young [12] and the
one by Sinha and Dougherty [11]. The main diIerence between them lies in how each treats inclu-
sion for crisp sets. While the Sinha–Dougherty axioms explicitly demand that Inc(A; B)∈{0; 1} for
A and B∈P(X ), where P(X ) denotes the power class of X , Young disputes this condition and she
consequently does not impose it, arguing that much of the relative structure of A and B is lost in
this way. We give two arguments in favour of Sinha and Dougherty’s line of reasoning:

1. By constraining Inc to only two values for crisp sets, the indicator of inclusion grade is a faithful
(backwards compatible) extension of the concept of crisp inclusion.

2. Taking the following de&nition of inclusion in the crisp case:

A ⊆ B ⇔ (∀x ∈ X )(x ∈ A ⇒ x ∈ B)

and using a direct fuzzi&cation to implement Inc, as suggested by Bandler and Kohout [1], we
arrive at:

Inc(A; B) = inf
x∈X

I(A(x); B(x));

where I is a fuzzy implicator [10], i.e. a [0; 1]2 → [0; 1]-mapping for which I(0; 0) =I(0; 1) =
I(1; 1) = 1; I(1; 0) = 0 and whose &rst (second) partial mappings are decreasing (increasing).
It can be veri&ed that such Inc is always two-valued for crisp sets.

This said, we now concentrate exclusively on the Sinha–Dougherty approach, S–D approach for
short. In Section 2, we will brieMy survey the proposed axioms, reducing their number from nine
to eight by resolving some dependencies among them. At this point, the general Sinha–Dougherty
indicator, a mathematical formula with four functional parameters, is also introduced.

Section 3 then oIers a critical review of the original properties for these parameters. The objective
of this discussion is basically threefold: &rst, we prove that the authors’ claim for necessity and
su7ciency of the properties to satisfy the axioms is unjusti&ed; we will provide some convincing
counterexamples. Secondly, we will derive supplementary conditions, resulting in a collection of
(at least) su7cient requirements for the axioms, while at the same time allowing for a wider range
of (meaningful) indicators than the original S–D properties did. Finally, we will indicate why the
modi&ed properties are still not necessary for the axioms; we will show in particular that the speci&c
form of the indicator chosen in [11] gets much of the blame for this.

To alleviate the problems encountered with the general S–D indicator, we rewrite its de&nition in
Section 4, and derive a much simpler set of su7cient conditions. In this new framework, checking
for necessity becomes more elementary, allowing us to identify clearly the complicating factors in
this process.
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In Section 5, we look at an alternative approach to the classi&cation of fuzzy inclusion indicators
due to Kitainik. His results ultimately lead us to a necessary and su7cient characterization of the
Sinha–Dougherty axioms. It turns out that indicators satisfying all axioms necessarily belong to a
special subclass of the Bandler–Kohout indicator family. As will be seen, in case we are working
with a &nite universe X , the requirements on the fuzzy implicator I can be written down in an
even more explicit way.

Section 6 concludes with some general remarks and options for future research.

2. Most general form of the Sinha–Dougherty indicator

We will start by giving a reduced list of axioms as proposed in [11].

De�nition 2.1 (Sinha–Dougherty axioms). Let Inc be a F(X )×F(X )→ [0; 1] mapping, and A; B
and C fuzzy sets in a given universe X . The Sinha–Dougherty axioms imposed on Inc are as
follows:

Axiom 1. Inc(A; B) = 1⇔A⊆B (in Zadeh’s sense).

Axiom 2. Inc(A; B) = 0⇔ ker(A)∩ co supp(B) �= ∅, where ker(A) = {x∈X |A(x) = 1} and supp(B)
= {x∈X |B(x)¿0}.

Axiom 3. B⊆C⇒ Inc(A; B)6Inc(A; C), i.e. the indicator has increasing second partial mappings.

Axiom 4. B⊆C⇒ Inc(C; A)6Inc(B; A), i.e. the indicator has decreasing &rst partial mappings.

Axiom 5. Inc(A; B) = Inc(S(A); S(B)) where S is a F(X )→F(X ) mapping de&ned by, for every
x∈X; S(A)(x) =A(s(x)); s denoting an X →X mapping.

Axiom 6. Inc(A; B) = Inc(co B; co A).

Axiom 7. Inc(B∪C; A) = min(Inc(B; A); Inc(C; A)).

Axiom 8. Inc(A; B∩C) = min(Inc(A; B); Inc(A; C)).

The original version included a ninth axiom, Inc(A; B∪C)¿max(Inc(A; B); Inc(A; C)). Frago [6]
indicated that it is redundant because, as can easily be veri&ed, it is equivalent to axiom 3.

Next, we recall the most general form for the indicator similar 1 to the formula appearing in [11].
The following mappings are introduced:

• � : P([0; 1])→ [0; 1], e.g. supremum, in&mum

1 In Sinha and Dougherty’s proposal, � acts on multi-subsets, in which elements can occur more than once. The use of
these structures is very confusing and in fact unnecessary, so we omit any reference to it, including to those properties
speci&cally referring to it.
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Table 1
Sinha and Dougherty’s criteria for �;  ; �; � to satisfy the eight axioms

(E1) PA; B ⊆H⇔ �(PA; B) = 1
(E2) v∈PA; B ⇔ �(PA; B) = 0
(E3) (∀�1; �2 ∈P([0; 1]))((∀!1 ∈�1)(∃!2 ∈�2)(!16!2)⇒ �(�1)6�(�2))
(E4) (∀x1; x2; y∈ [0; 1])(x16x2 ⇒  (x1; y)6 (x2; y))
(E5) (∀x; y1; y2 ∈ [0; 1])(y16y2 ⇒  (x; y1)6 (x; y2))
(E6) (∀x; y∈ [0; 1])(x6y⇒�(x)6�(y))
(E7) (∀x; y∈ [0; 1])(x6y⇒ �(x)¿�(y))
(E8) (∀x; y∈ [0; 1])( (x; y) =  (y; x))
(E9) (∀�1; �2 ∈P([0; 1]))(�({min(!1; !2) | (!1; !2)∈�1 ×�2}) = min(�(�1); �(�2)))
(E10) (∀�; �; �∈ [0; 1])( (min(�; �); �) = min( (�; �);  (�; �)))
(E11) (∀�; �; �∈ [0; 1])( (�;min(�; �)) = min( (�; �);  (�; �)))
(E12) (∀�∈ [0; 1])(�(�) = �(1 − �))
(E13) (∀�; �∈ [0; 1])(�(max(�; �)) = min(�(�); �(�)))
(E14) (∀�; �∈ [0; 1])(�(min(�; �)) = min(�(�); �(�)))

•  : [0; 1]× [0; 1]→ [0; 1], e.g. maximum, minimum, bounded sum
• � : [0; 1]→ [0; 1], e.g. Zadeh complement, identity operator
• � : [0; 1]→ [0; 1], e.g. Zadeh complement, identity operator.

De�nition 2.2 (General S–D indicator). For fuzzy sets A and B in a universe X the S–D indicator
Inc for fuzzy set inclusion is de&ned as

Inc(A; B) = �({ (�(A(x)); �(B(x))) | x ∈ X }):

To simplify our discussion the following quantities are introduced:

v =  (�(1); �(0));

H = { (�(�); �(�)) | (�; �) ∈ [0; 1]2 and �6 �};
H′ = { (�(�); �(�)) | (�; �) ∈ [0; 1]2 and � ¿ �};
PA;B = { (�(A(x)); �(B(x))) | x ∈ X }:

The axioms will of course restrict possible mappings �;  ; � and �. In Table 1, we list the criteria,
i.e. the properties that Sinha and Dougherty claim to be necessary and su7cient for the functional
parameters to satisfy the axioms. 2

Some of the properties are clearly direct consequences of other ones (e.g. (E13) follows imme-
diately from (E7)), but we will not be concerned with redundancy at this point. We conclude this

2 The original exposition involved additional (redundant) conditions (E15)–(E17). Since they only appeared there in
the treatment of the superMuous ninth axiom, we did not include them in this table.
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Table 2
Necessary and su7cient conditions for each axiom according to Sinha and Dougherty

Axiom Necessary and
su7cient conditions proposed in [11]

1 (E1)
2 (E2)
3 (E3), (E4), (E5) and (E6)
4 (E3), (E4), (E5) and (E7)
5 always ful&lled
6 (E8) and (E12)
7 (E9), (E10) and (E13)
8 (E9), (E11) and (E14)

section by summarizing in Table 2, for each axiom, which properties were believed necessary and
su7cient according to Ref. [11].

3. Revision of necessary and su&cient conditions for the Sinha–Dougherty axioms

In this section, we review the properties for the Sinha–Dougherty indicator w.r.t. the axioms. We
start with axiom 1.

As listed in Table 2, Sinha and Dougherty claim that (E1) is su7cient for this axiom. We provide
a simple counterexample to this claim.

Indeed, consider  ; � and � de&ned by  (x; y) = max(x; y); �(x) = 1− x and �(x) = x for every
x and y in [0; 1]. One easily &nds:

H = {max(1 − �; �) | (�; �) ∈ [0; 1]2 and �6 �} = [0; 1]:

In other words PA;B ⊆H holds trivially. Choosing � as

� : P([0; 1]) → [0; 1]

A �→ 1; ∀A ∈ P([0; 1]);

�(PA;B) = 1 is also satis&ed for any A and B. Considering the universe X = {x0; x1; x2} and fuzzy sets
A= {(x0; 0); (x1; 0:5); (x2; 1)} and B= {(x0; 1); (x1; 0:5); (x2; 0)}, we easily see that although A*B;
�(PA;B) = 1, so axiom 1 is violated.

For a set PA;B of  -values included in H, we cannot conclude that there exist fuzzy sets A and
B so that A⊆B. Only when additionally H∩H′ = ∅ holds, this claim is justi&ed. We call the new
property (E1′).

(E1′) H ∩H′ = ∅:
It turns out that (E1) and (E1′) combined give a necessary and su7cient condition for the func-

tional parameters to have axiom 1, as the following theorem proves.
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Theorem 3.1. (E1) and (E1′) together are necessary and su4cient for axiom 1.

Proof.

• Su4cient part.

�(PA;B) = 1 ⇔ PA;B ⊆ H ⇔ A ⊆ B;

where (E1) justi&es the &rst and (E1′) the second equivalence.
• Necessary part.

Suppose axiom 1 holds. Assume for the present that H∩H′ �= ∅. In other words,

(∃�; �; �; � ∈ [0; 1])(�6 � and � ¿ � and  (�(�); �(�)) =  (�(�); �(�))):

Next, construct fuzzy sets A; A′; B; B′ in X ={x} in the following way:

A(x) = �; B(x) = �;

A′(x) = �; B′(x) = �:

It is noted that A⊆B, so by axiom 1 and De&nition 2.2 we have �(PA;B) = 1. On the other
hand, A′*B′, which ensures �(PA′ ; B′) �= 1. But by construction, PA;B =PA′ ; B′ , which leads to a
contradiction. In other words, (E1′) is necessary for axiom 1. It is easily veri&ed that in that case
(E1) holds as well.

We now concentrate on axiom 2. According to [11], (E2) is su7cient to satisfy axiom 2. Again,
we come up with a counterexample, setting the functional parameters as: �= inf ;  (x; y) = min(1;
x +y); �(x) =�(x) = 0 for every x and y in [0; 1]. By simple calculation, we get v= min(1; �(1) +
�(0)) = 0. The set PA;B becomes {min(1; �(A(x)) + �(B(x))) | x∈X }= {0}, assuring that v∈PA;B
and �(PA;B) = 0 are universally true, independent of A and B. So, condition (E2) holds but it is not
di7cult to come up with particular instances of A and B that violate axiom 2. For instance, given
X = {x}, set A(x) = 0:5 and B(x) = 0:7.

The di7culties arise from the fact that from v∈PA;B we cannot conclude in general that (∃x∈X )
(A(x) = 1 and B(x) = 0). It is possible that the numerical value v is attained several times, not
necessarily just in (�(1); �(0)). The required supplementary condition (E2′) is stated as
follows:

(E2′) v ∈ PA;B ⇔ (∃x ∈ X )(A(x) = 1 and B(x) = 0):

By construction, (E2) and (E2′) together form a necessary and su7cient condition for axiom 2.
Axioms 3 and 4 are very similar in nature, therefore we will restrict our attention to the &rst

of them. From Table 2 we learn that Sinha and Dougherty derive (E3), (E4), (E5) and (E6)
as allegedly su7cient and necessary conditions for the proposed indicator to satisfy
axiom 3.

While one can easily verify that axiom 3 holds for indicators satisfying those particular conditions
(proving their su7ciency), the opposite is not true: there exist values (even very sensible ones!) for
the functional parameters violating some of the established conditions but maintaining the axiom’s
validity. First, it is noted that (E5) may safely be dropped: how  behaves w.r.t. its &rst argument is
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irrelevant for this axiom. A more important remark comes from the observation that (E3) rules out
the in&mum as a valid choice for �; in other words, the entire class of Bandler–Kohout inclusion
grades as de&ned in the introduction, which can be easily seen to verify axiom 3, is disposed of in
this way! It seems like we need some condition complementary to (E3) that accounts for mappings
like the in&mum. A good candidate is the following requirement (E3′):

(E3′) (∀�1; �2 ∈ P([0; 1]))((∀!1 ∈ �1)(∃!2 ∈ �2)(!2 6 !1) ⇒ �(�2) 6 �(�1)):

Theorem 3.2. (E3), (E5), (E6) as well as (E3′), (E5), (E6) constitute su4cient conditions for
axiom 3.

Proof. Suppose that B⊆C and assume that (E3), (E5) and (E6) all hold. One easily derives:

Inc(A; B) = �({ (�(A(x)); �(B(x))) | x ∈ X })

6 �({ (�(A(x)); �(C(x))) | x ∈ X })

= Inc(A; C):

The same conclusion is arrived at when one presupposes (E3′), (E5), (E6).

The above conditions are not necessary, due to the weakness of axiom 3. Indeed, we may observe
that for the constant mapping �(A) = 1; ∀A∈P(X ), axiom 3 is always ful&lled irrespective of  
and �!

The treatment of axiom 4 is very similar to the previous one. We state the results without going
into the details: (E3), (E4), (E7) on one hand and (E3′), (E4), (E7) on the other hand are su7cient
but not necessary for axiom 4.

As far as axiom 5 is concerned, we are lucky: with the present general form of the indicator, it
holds universally. [11]

Taking axiom 6 into consideration, we can easily see that the original conditions (E8) and (E12)
imposed by [11] are su7cient but not necessary. Again this results from the weakness of the axiom.
Situations where either both � and �, or  , or � are constant mappings all provide sources of
counterexamples.

The study of axioms 7 and 8 introduces nothing new: the conditions in Table 2 are su7cient but
not necessary.

Summarizing, we have re&ned the original S–D conditions so as to guarantee su7ciency. Trying
to &nd necessary conditions for each axiom in isolation does not seem to be very meaningful,
because of the individual weakness of some of them. On the other hand, assuming that axioms
1–8 all hold simultaneously, the present de&nition of the indicator still does not allow for easy-to-
list necessary conditions: its formulation is ambiguous because the same mapping is arrived at for
diIerent parameter combinations. For instance, the mapping Inc, which happens to satisfy all S–D
axioms, de&ned by

Inc(A; B) = inf
x∈X

min(1; 1 − A(x) + B(x))
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can be decomposed in two diIerent ways:

�= inf �= inf
 (x; y) = min(1; x + y)  (x; y) = min(1; 1 − x + y)

�(x) = x �(x) = x
�(x) = 1 − x �(x) = x

The second decomposition shows a non-commutative  ((E.8) is violated) and a � and � violating
condition (E.12).

From a practical point of view the ambiguity aspect might not matter so much, but theoretically
speaking it complicates the derivation of necessary conditions signi&cantly. Therefore, in the next
section, we will simplify the original S–D indicator, without sacri&cing its expressiveness.

4. Revision of the general Sinha–Dougherty indicator

De�nition 4.1 (Revised general S–D indicator). For fuzzy sets A and B in a universe X the revised
S–D indicator Inc for fuzzy set inclusion is de&ned as 3

Inc(A; B) = �({ (A(x); B(x))|x ∈ X }):

To simplify our discussion the following quantities are introduced:

v =  (1; 0);

H = { (�; �) | (�; �) ∈ [0; 1]2 and �6 �};
H′ = { (�; �) | (�; �) ∈ [0; 1]2 and � ¿ �};
PA;B = { (A(x); B(x)) | x ∈ X }:

It is clear that any choice of parameters for the original indicator can still be expressed with this
new formula. We don’t claim that it completely rules out ambiguity, but it will be much easier to
check for su7ciency and necessity of conditions. In fact, taking into account this formal simpli&cation
and resolving the dependencies between the conditions in Table 2, we arrive at a much more concise
set of su7cient conditions.

Theorem 4.1 (Su7cient conditions). The indicator de&ned by, for A∈F(X ); B∈F(X ):

Inc(A; B) = �({ (A(x); B(x)) | x ∈ X });

where � and  satisfy the conditions in Table 3 ful9lls axioms 1–8.

3 Note that this indicator is a special case of the original S–D indicator corresponding to the choice of the identity
operator for � and �.
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Table 3
Su7cient conditions for � and  to satisfy the 8 axioms

(C1) PA; B ⊆H⇔ �(PA; B) = 1
(C2) H∩H′ = ∅
(C3) v∈PA; B ⇔ �(PA; B) = 0
(C4) v∈PA; B ⇔ (∃x∈X )(A(x) = 1 and B(x) = 0)
(C5) (∀�1; �2 ∈P([0; 1]2))((∀!1 ∈�1)(∃!2 ∈�2)(!16!2)

or (∀!2 ∈�2)(∃!1 ∈�1)(!16!2)⇒ �(�1)6�(�2))
(C6) (∀x1; x2; y∈ [0; 1])(x16x2 ⇒  (x1; y)¿ (x2; y))
(C7) (∀x; y1; y2 ∈ [0; 1])(y16y2 ⇒  (x; y1)6 (x; y2))
(C8) (∀�1; �2 ∈P([0; 1]))(�({min(!1; !2) | (!1; !2)∈�1 ×�2}) = min(�(�1); �(�2)))
(C9) (∀x; y∈ [0; 1])( (x; y) =  (1 − y; 1 − x))

Proof. Since every inclusion indicator that can be obtained through a speci&c choice of parameters
within the traditional S–D framework, is also covered by our revised de&nition, and vice versa, the
derivation of su7cient conditions consists merely of tailoring the ones established in the previous
section to the speci&c form of De&nition 4.1, and ruling out the redundant ones. We also note
that for brevity we have joined the separate conditions (E3) and (E3′) into the single equivalent
requirement (C5).

To illustrate how this transformation process works, we focus on axiom 6, for example. From the
last section we know that in the traditional framework a commutative  and any � and � linked
by the duality condition �(1− x) = �(x), for every x∈ [0; 1] su7ce to have axiom 6. It is clear that
condition (C9) accounts for this in the new framework.

Theorem 4.1 conditions are still not necessary. Indeed, consider � and  de&ned as

� : P([0; 1]) → [0; 1];

A �→




1 if A = {1};
0 if 0∈A;
1
2 otherwise;

 : [0; 1]2 → [0; 1]

(x; y) �→




1 if x 6 y;

0 if x = 1 ∧ y = 0;
1
2 otherwise:

This indicator, satisfying all S–D axioms, happens to be somewhat special because it is not surjective,
so we could ask whether this criterion should be included into the axioms. More gain is to be
expected from an alternative line of reasoning: in the next section, we will confront the S–D axioms
with the requirements for inclusion indicators established by Kitainik.
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5. Link with Kitainik’s work—necessary and su&cient characterization of the Sinha–Dougherty
axioms

Independently of Sinha and Dougherty, Kitainik [7,8] developed an axiomatic approach to the
treatment of fuzzy inclusion indicators which unfortunately received little attention so far in the
fuzzy community. Very surprisingly, by postulating merely four requirements he captures almost the
entire essence of Sinha and Dougherty’s approach (and, as we will show, his results will enable
us to drop three additionally superMuous S–D axioms!). For clarity, below we sum up the Kitainik
requirements 4 and their link with the S–D axioms:

Requirement Formula Equivalent to

(K1) Contrapositivity Inc(A; B) = Inc(co B; co A) Axiom 6
(K2) Distributivity Inc(A; B∩C) = min(Inc(A; B); Inc(A; C)) Axiom 8
(K3) Symmetry Inc(A; B) = Inc(S(A); S(B)) Axiom 5

with S a F(X )→F(X ) mapping de&ned
by, for x∈X; S(A)(x) =A(s(x)),
s an X →X mapping

(K4) Heritage Applying Inc to crisp sets, Axioms 1 and 2
it coincides with crisp set inclusion for crisp sets

Kitainik proved that whenever a fuzzy inclusion indicator satis&es the above requirements of
contrapositivity, distributivity, symmetry and heritage, Sinha and Dougherty’s axioms 3, 4 and 7
automatically hold:

Theorem 5.1. In the Sinha–Dougherty axiom list, the axioms 3, 4 and 7 are a direct consequence
of the axioms 1, 2, 5, 6 and 8.

The Kitainik requirements are thus equivalent with the S–D axioms with the single exception of
axioms 1 and 2, which Kitainik only imposes on crisp sets. Quintessential for the derivation of a
necessary and su7cient characterization of the S–D axioms is the following theorem due to Fodor
and Yager [5], who were basing themselves on a result of Kitainik in [8]:

Theorem 5.2 (Fodor and Yager [5]). A F(X )×F(X )→[0; 1] mapping Inc satis9es (K1), (K2),
(K3) and (K4) if and only if there exists a contrapositive 5 fuzzy implicator I such that, for
all A and B in F(X ):

Inc(A; B) = inf
x∈X

I(A(x); B(x)):

4 We do not call them axioms since Kitainik associated them to the de&nition of a fuzzy inclusion indicator.
5 A fuzzy implicator I is called contrapositive if it satis&es I(x; y) =I(NI(y);NI(x)) for all x; y∈ [0; 1], with NI,

the induced negator of I, de&ned as NI(x) =I(x; 0) for all x∈ [0; 1].
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EIectively, this means that the form imposed on Inc by the Kitainik requirements also applies
to the S–D axioms, since the former are a weaker version of the latter. We also see that the only
admissible indicators Inc belong in fact to the Bandler–Kohout class. To extend Theorem 5.2 to
a su7cient and necessary characterization of the S–D axioms, it therefore su7ces to complement
(K1)–(K4) with a necessary and su7cient condition for axioms 1 and 2. We have already established
such a condition as (C1)–(C4) in Table 3.

Unfortunately, C1–C4 are a bit abstract in their formulation, and do not refer to the form intro-
duced in Theorem 5.2. For &nite universes, however, we managed to prove an alternative necessary
and su7cient condition for axioms 1 and 2 in terms of a further restriction on the fuzzy implicator
I:

Theorem 5.3. Let X be a &nite universe and A; B fuzzy sets in X . When Inc is de9ned as

Inc(A; B) = inf
x∈X

I(A(x); B(x))

with I a contrapositive fuzzy implicator, then Inc satis9es axioms 1 and 2 if and only if I also
satis9es

(I1) (∀x; y ∈ [0; 1])(x 6 y ⇔ I(x; y) = 1);

(I2) (∀x; y ∈ [0; 1])(x = 1 ∧ y = 0 ⇔ I(x; y) = 0):

Proof. We &nd successively:

A ⊆ B⇔ (∀x ∈ X )(A(x) 6 B(x))

⇔ (∀x ∈ X )(I(A(x); B(x)) = 1)

⇔ inf
x∈X

I(A(x); B(x)) = 1

and

(∃x ∈ X )(A(x) = 1 ∧ B(x) = 0)⇔ (∃x ∈ X )(I(A(x); B(x)) = 0)

⇔ inf
x∈X

I(A(x); B(x)) = 0:

In the last step, we have to assume the universe is &nite to retain the equivalence. The above
derivations show the conditions’ su7ciency. It is easily veri&ed that they are also necessary for the
axioms.

Theorems 5.2 and 5.3 taken together naturally result in the following necessary and su7cient
characterization of the S–D axioms for &nite universes:

Theorem 5.4. Let X be a &nite universe. A F(X )×F(X )→ [0; 1] mapping Inc satis9es all Sinha–
Dougherty axioms if and only if there exists a contrapositive fuzzy implicator I satisfying prop-
erties (I1) and (I2), such that, for all A and B in F(X ):

Inc(A; B) = inf
x∈X

I(A(x); B(x)):
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The supplementary conditions (I1) and (I2) on I rule out a lot of candidates for the fuzzy
implicator. One suitable mapping is the  Lukasiewicz implicator Ia, de&ned by, for x and y in [0; 1]:

Ia(x; y) = min(1; 1 − x + y):

The above mapping can be generalized to a class of appropriate fuzzy implicators that we shall
call generalized  Lukasiewicz implicators.

De�nition 5.1 (Generalized  Lukasiewicz implicator). Every implicator I de&ned as, for x and y in
[0; 1],

I(x; y) = min(1; �(x) + �(1 − y));

where � is a strictly decreasing [0; 1]→ [0; 1] mapping satisfying �(0) = 1; �(1) = 0 and

(∀x; y ∈ [0; 1])(x 6 y ⇔ �(x) + �(1 − y)¿1) (1)

is called a generalized  Lukasiewicz implicator.

Note that the applicable restrictions are all accounted for by this de&nition. Every member of
the class is contrapositive; (I1) is equivalent to condition (1); (I2) is ful&lled because � strictly
decreases.

The above class de&ned in De&nition 5.1 is in agreement with the result obtained by Burillo et
al. in [2]. They proved that the more speci&c formula

inf
x∈X

min(1; �(A(x)) + �(1 − B(x)))

introduced by Sinha and Dougherty, satis&es all S–D axioms if and only if � is a strictly decreas-
ing mapping for which �(0) = 1; �(1) = 0 and condition (1) hold, i.e. they obtain precisely those
indicators based on generalized  Lukasiewicz implicators. An example of an indicator satisfying all
Sinha–Dougherty axioms that is not based on generalized  Lukasiewicz implicators is given by the
following:

Inc(A; B) = inf
x∈X

I(A(x); B(x))

with I given as, for x and y in [0; 1]:

I(x; y) =




1 if x 6 y;

0 if x = 1 ∧ y = 0;
1
2 otherwise:

One important question which should be asked is the following: do the Kitainik requirements
and the S–D axioms denote the same class of fuzzy inclusion indicators, i.e. are they equivalent?
The answer is no. It su7ces to come up with a fuzzy implicator I that is contrapositive, but does
not satisfy (I1) or (I2). Such a fuzzy implicator is for example the Kleene–Dienes implicator IKD,
de&ned by, for x and y in [0; 1]

IKD(x; y) = max(1 − x; y)
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which harms (I1). Thus, the class of inclusion indicators satisfying all S–D axioms is a strict subclass
of the indicators satisfying the Kitainik requirements (assuming that the universe is &nite).

6. Conclusion

We critically reviewed the inclusion indicator as proposed by Sinha and Dougherty, modi&ed it to
suit better its theoretical analysis w.r.t. a given collection of axioms, and compared it with Kitainik’s
results to end up with a su7cient and necessary characterization of the Sinha–Dougherty axioms. We
concluded that fuzzy inclusion indicators satisfying all axioms are special Bandler–Kohout inclusion
grades. Future work in this area would involve &nding other non-trivial inclusion indicators not
based on the generalized  Lukasiewicz implicators, as well as suggestions for enriching the axiom
scheme with supplementary requirements, so as to enable an even more &ne-grained diIerentiation
of suitable inclusion indicators.

Acknowledgements

The authors would like to thank J. Fodor for his critical comments on a previous version of this
paper, and for acquainting them with Kitainik’s crucial results. Chris Cornelis would like to thank
the Fund for Scienti&c Research—Flanders for funding the research elaborated on in this paper.

References

[1] W. Bandler, L. Kohout, Fuzzy power sets and fuzzy implication operators, Fuzzy Sets and Systems 4 (1980) 13–30.
[2] P. Burillo, N. Frago, R. Fuentes, Inclusion grade and fuzzy implication operators, Fuzzy Sets and Systems 114

(2000) 417–429.
[3] C. Cornelis, E. Kerre, Inclusion-based approximate reasoning, in: V. Alexandrov, J.J. Dongarra, B.A. Juliano, R.S.

Renner, C.J.K. Tan (Eds.), Lecture Notes in Computer Science, vol. 2074, Springer, Berlin, 2001, pp. 200–210.
[4] C. Cornelis, E. Kerre, A fuzzy inference methodology based on the fuzzi&cation of set inclusion, to appear in

“Innovations in Intelligent Systems” (eds. A. Abraham, B. Nath) Springer Verlag (2002).
[5] J. Fodor, R. Yager, Fuzzy set theoretic operators and quanti&ers, in: D. Dubois, H. Prade (Eds.), Fundamentals of

Fuzzy Sets, Kluwer, Boston, MA, 2000, pp. 125–193.
[6] N. Frago, Morfologia matematica borrosa basada en operadores generalizados de  Lukasiewicz: procesiamento de

imagines, Ph.D. Thesis, Universidad publica de Navarra, 1996.
[7] L. Kitainik, Fuzzy inclusions and fuzzy dichotomous decision procedures, in: J. Kacprzyk, S. Orlovski (Eds.),

Optimization Models Using Fuzzy Sets and Possibility Theory, Reidel, Dordrecht, 1987, pp. 154–170.
[8] L. Kitainik, Fuzzy Decision Procedures With Binary Relations, Kluwer, Dordrecht, 1993.
[9] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence,

Prentice-Hall, Englewood CliIs, NJ, 1992.
[10] D. Ruan, E.E. Kerre, Fuzzy implication operators and generalized fuzzy method of cases, Fuzzy Sets and Systems

54 (1993) 23–37.
[11] D. Sinha, E.R. Dougherty, Fuzzi&cation of set inclusion: theory and applications Fuzzy Sets and Systems 55 (1993)

15–42.
[12] V.R. Young, Fuzzy subsethood, Fuzzy Sets and Systems 77 (1996) 371–384.
[13] L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965) 338–353.


	Sinha--Dougherty approach to the fuzzificationof set inclusion revisited
	Introduction
	Most general form of the Sinha--Dougherty indicator
	Revision of necessary and sufficient conditions for the Sinha--Dougherty axioms
	Revision of the general Sinha--Dougherty indicator
	Link with Kitainik's work---necessary and sufficient characterization of the Sinha--Dougherty axioms
	Conclusion
	Acknowledgements
	References


