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Abstract

In this paper, we present an extension of the well-known implicator/t-norm based fuzzy rough
set model based on a family of adjoint pairs. Rather than using a fixed implicator/t-norm pair to
compute lower and upper approximations, our model allows to differentiate these fuzzy logical
connectives according to the objects used in the calculation. We verify mathematical properties
of the model, relate it to previous work in multi-adjoint property-oriented concept lattices, and
discuss its possible use in data reduction.

1. Introduction

Fuzzy sets and rough sets model two complementary characteristics of imperfect knowledge:
while the former allow that objects belong to a set or relationship to a given degree, the lat-
ter provide approximations of concepts when the available information is incomplete. A first
definition of fuzzy rough sets was given in the eighties [5], and since then numerous hybrid
models have been proposed, see e.g. [9, 10, 11, 12]. The most commonly used approach is the
implicator/t-norm based model: given a fuzzy set A : X → [0, 1] and a fuzzy relation R in X ,
R : X ×X → [0, 1], the lower and upper approximation, ↓, ↑ : [0, 1]X → [0, 1]X , of A under R
are defined by

(R↓A)(y) = inf
x∈X
I(R(x, y), A(x)) (1)

(R↑A)(y) = sup
x∈X
T (R(x, y), A(x)) (2)

where T is a t-norm and I a fuzzy implication. In this paper, we also assume that R is a fuzzy
tolerance (i.e, reflexive and symmetric) relation and that (I, T ) satisfies the adjoint property, that
is, for all x, y and z in [0, 1]

T (x, y) ≤ z if and only if x ≤ I(y, z) (3)
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Hence, I is the residuated implication of T , and (I, T ) is an adjoint pair [2].
The approximations given by (1) and (2) are static in a sense that the same adjoint pair is used

regardless of x and y. However, it may be interesting to differentiate these operators depending
on the objects under consideration. In this paper, we propose such a model in Section 2, and
investigate which properties of classical rough sets are preserved. In Section 3, we investigate
its relationship to previous work on multi-adjoint property-oriented concept lattices [7] and in
Section 4 we motivate the practical use of the model in a data reduction task where the adjoint
pair is determined by the relative noise level of the objects under consideration.

2. Model and Properties

Assume that for each x and y in X , there exists an adjoint pair (Ix,y, T x,y), where T x,y is a t-
norm and Ix,y its residuated implication. The order matters, such that (Ix,y, T x,y) = (Iy,x, T y,x)
does not necessarily hold. We can define the lower and upper approximation of A under R as

(R↓A)(y) = inf
x∈X
Ix,y(R(x, y), A(x)) (4)

(R↑A)(y) = sup
x∈X
T x,y(R(x, y), A(x)) (5)

Clearly, if all adjoint pairs are equal, (1) and (2) are recovered. Table 1 lists elementary properties
of the model w.r.t. monotonicity, interaction with set operations, and iterative application. It is
interesting that the first five properties hold under the same conditions as (1) and (2). Property 6
is in general not necessarily fulfilled, even when R satisfies min-transitivity.

Table 1: Properties of multi-adjoint approximations (R is a fuzzy tolerance relation).

Property Conditions
1. R↑A = coN (R↓(coNA)) N involutive

R↓A = coN (R↑(coNA))
2. R↓A ⊆ A ⊆ R↑A

3. A ⊆ B ⇒
{
R↓A ⊆ R↓B
R↑A ⊆ R↑B

4. R↓(A ∩B) = R↓A ∩R↓B (A∩B)(x) = min(A(x), B(x))
R↑(A ∩B) ⊆ R↑A ∩R↑B

5. R↓(A ∪B) ⊇ R↓A ∪R↓B (A∪B)(x) = max(A(x), B(x))
R↑(A ∪B) = R↑A ∪R↑B

6. R↑(R↓A) = R↓(R↓A) = R↓A does not hold
R↑(R↑A) = R↓(R↑A) = R↑A

3. Related Work

Property-oriented concept lattices [4] arise as an extension of rough set theory where two
different sets, namely the set of objects and the set of attributes, are considered.
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Recently this theory has been generalized to a fuzzy environment following the philosophy of
the mult-adjoint paradigm [7, 8]. The authors worked in a general non-commutative environment
and this naturally led to the consideration of several adjoint triples as the main building blocks
of a multi-adjoint concept lattice.

Adjoint triples are more general than the adjoint pairs considered in this paper where, for
example, the residuated conjunctor of an adjoint triple does not need to be commutative and
it is defined on two complete lattices (L1,�1), (L2,�2), and a poset (P,≤). For more details
see [6, 7].

In order to define the extension of the lower and upper approximations introduced in rough
sets, a context must be fixed. A context is a tuple (A,B,R, σ) such that A and B are non-
empty sets (usually interpreted as attributes and objects, respectively), R is a P -fuzzy relation
R : A × B → P and σ : B → {1, . . . , n} is a mapping which associates any element in B with
some particular adjoint triple in the frame. Note that, in the expressions (4) and (5), an adjoint
pair is associated with a pair of elements instead of only one.

Now, given g ∈ LB2 , and f ∈ LA1 , we define the following mappings: ↑π : LB2 → LA1 ,
↓N : LA1 → LB2 :

g↑π(a) = sup{R(a, b) &b g(b) | b ∈ B} (6)

f ↓
N

(b) = inf{f(a)↖b R(a, b) | a ∈ A} (7)

Clearly, considering A = X and [0, 1] as the complete lattices, these definitions are gener-
alizations of the lower and upper approximations (4) and (5), if the adjoint pairs are associated
with only one object.

Therefore, although the multi-adjoint fuzzy rough sets may be a particular case of a multi-
adjoint property-oriented concept lattice, in this new environment pairs of objects are associated
with adjoint pairs which will be an important characteristic in the application to feature selection.
Moreover, more relevant properties can be proved.

4. Application to Feature Selection

Fuzzy rough sets have been applied to feature selection extensively, see e.g. [1]. We consider
a decision system (X,A ∪ {d}) that consists of a universe of objects X = {x1, . . . , xm} and a
set of attributes A = {a1, . . . , an} together with a fixed decision attribute d. Any x in X has a
value a(x) for each attribute a in A that can be real of nominal. We assume that d(x), the class
label of x, is always nominal. We also assume that a fuzzy tolerance relation RB in X is defined
for every B ⊆ A. The B-positive region is then given as, for y in X ,

POSB(y) = (RB↓[y]d)(y) = inf
x∈X
I(RB(x, y), [y]d(x)) (8)

where [y]d(x) is 1 if x has the same class label as y and 0 otherwise. A set B ⊆ A is called a
fuzzy decision reduct if |POSB| = |POSA| 3, and there are no proper subsets of B with this

3The cardinality of a fuzzy set C in X is calculated by |C| =
∑

x∈X

C(x).
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property. Given a fuzzy decision reduct B, the decision system can be reduced such that all
attributes outside B are eliminated.

This feature selection process is very effective, but is also subject to the impact of noise.
Since the lower approximation definition contains an infimum, a change in a single object can
drastically affect the positive region. Many researchers have tried to tackle this problem by
replacing the infimum by other operations to reduce the impact of “noisy” objects, including
the VQRS model, OWA-based fuzzy rough sets, soft fuzzy rough sets, etc. In what follows, we
argue that, given an X → [0, 1] function α which assigns to each object its relative noise level (0
meaning no noise, 1 totally noisy), the multi-adjoint fuzzy rough set model can be invoked.

Given a family (Iα)α∈[0,1] of fuzzy implications increasing in α, we may redefine (8) by

POSB(y) = (RB↓[y]d)(y) = inf
x∈X
Imax(α(x),α(y))(RB(x, y), [y]d(x)) (9)

In this framework, if x is noisy (high α(x)), then it will lead to a larger fuzzy implication value
in (9), hence its impact on the computation of POSB(y) will be less since the infimum is taken
over all objects in X . On the other hand, if y is noisy (high α(y)), its membership to the positive
region will be increased. In this way, a noisy object can be more easily distinguished from
outliers in the data which are assumed to be correct; in the classical approach of (1), both would
have a low positive region membership.

In our current experimentation on benchmark datasets, we are working with the family
(Iα)α∈[0,1] of Łukasiewicz implications defined by Iα(x, y) = 1+α

√
min(1, 1− x1+α + y1+α),

and noise levels determined by means of rough membership functions. Other setups will be tried
in the future.
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