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Abstract

In this paper we examine in detail
the definition of intuitionistic fuzzy
(IF) connectives: negation, conjunc-
tion, disjunction and implication; we
argue that some of the existing def-
initions that appear in the IF liter-
ature are not sufficiently general for
all practical purposes, and suggest to
replace them with new ones. One di-
rect example to this effect will be the
construction of an IF implicator that
satisfies all Smets-Magrez axioms
and that in the classical framework
could not be expressed. Our ap-
proach will be algebraic: we treat IF
connectives as lattice-valued map-
pings, and we translate desirable log-
ical properties into algebraic equa-
tions to be satisfied.

Keywords: intuitionistic fuzzy -
norms, t—conorms, negators, impli-
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1 Introduction

The objective of this paper is to equip intu-
itionistic fuzzy set (IFS) theory, and in par-
ticular the definition of its connectives, with
robust algebraic foundations. IF connectives
are used to combine existing propositions in
IF logics [1] into compound propositions, and
equivalently they serve to implement opera-
tions like complement, intersection and union
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The defining idea behind our approach is to
treat logical connectives as algebraic map-
pings; since we want them to act on IF truth
values, that is: ordered pairs (u,v) satisfying
p+v <1 (p is often called the degree of truth,
while v conversely denotes the degree of non—
truth), to describe the domain and codomain
structure the partially ordered set (L*,<p«)
was introduced in [3]:

Definition 1.1 (Partially ordered set
(L*, <))

L* = {(z1,20) €[0,1)? | 21 + x5 < 1}

(z1,22) <p* (Yy1,92) © 21 <Y1 Az > Yo

It is easily verified that (L*,<g«) is a com-
plete lattice. By Oz« = (0,1) and 17« = (1,0)
we denote its bounds.

2 Negation

Atanassov [1] defined the negation of an el-
ement (z1,z2) € L* as (z2,z1). In [2] a
more general definition encapsulating the for-
mer was given:

Definition 2.1 (IF Negator) An IF nega-
tor is any decreasing L* — L* mapping N
satisfying N(0p+) = 10+, N(1g+) = Op«. If
NN (z)) = z,Vz € L*, N is called an invo-
lutive IF negator.

The mapping Ny, defined as Ny(z1,72) =
(z2,21) will be called the standard negator.

Bustince, Kacprzyk and Mohedano have al-
ready in [2] made a tremendous contribution



to our knowledge about IF negators. In par-
ticular, they proved that given a decreasing
[0,1] — [0,1] mapping ¢ satisfying ¢(0) = 1
and ¢(a) < 1 —a for all a € [0,1], Ny de-
fined by N¢(.’E1, .’BQ) = ((]5(1 - :CQ), 1-— ¢($1)) is
an IF negator. Also, they proved that N is
involutive as soon as ¢ is involutive.

We have studied the other direction, namely:
given an involutive IF negator N, does there
exist a [0,1] — [0,1] mapping ¢ such that
N (z1,22) can be written as (¢p(1 — z3),1 —
¢(x1)) for all (z1,z2) € L*? To this effect, we
proved the following lemmata and theorem:

Lemma 2.1 For any involutive IF mnegator
N on L* it holds that N'(0,0) = (0,0).

Corollary 2.1 For any involutive IF nega-
tor N on L* there holds, for all a € [0,1] :
proN(0,a) = 0 and priN(a,0) = 0, where pry
and pro denote the first and second projection
mapping on L*, defined as pri(zi,z2) = =1
and pro(x1,T9) = T3.

Lemma 2.2 Let N be an involutive IF nega-
tor on L*. For all x = (x1,1 — x1) and
z' = (£1,0) € L*, proN(z) = proN (z'). Sim-
ilarly, if v = (1—xz9,12) and ' = (0,z2) € L*,
then priN (z) = priN(z').

Lemma 2.3 Let N be an involutive IF nega-
tor on L*. For x = (x1,1 —x1) € L* it holds
that priN(z) + proN(z) = 1.

Theorem 2.1 Let N' be an involutive IF
negator on L*, and let the [0,1] — [0, 1] map-
ping n be defined by, for a € [0,1], n(a) =
priN(a,1 —a). Then for all (z1,x2) € L* :
N(z1,12) = (n(1 — z2),1 — n(z1)).

It can be verified that n is decreasing, invo-
lutive and satisfies n(0) = 1. In other words,
every involutive IF negator induces an invo-
lutive fuzzy negator.!

'But not vice versa: Bustince et al. [2] showed that
e.g. the fuzzy negators (due to Sugeno) defined by
Ni(a) = 11_;—;‘(1 where —1 < X < 0 are involutive but

(3(x1,22) € L) ((Na(1 — 22), 1 — Na(a1)) & L*).

3 Conjunction and Disjunction

Atanassov  [1] defined the conjunction
(resp. disjunction) of two elements (z1,z2)
and (y1,y2) € L* as (min(z1, x2),max(z1,z2))
(resp. (max(z1,z2), min(z1,z2))). In [3] we
noted that this definition can be generalized
using a tnorm? T and a t-conorm® S,
provided T(a,b) < 1 - S(1 —a,1 —b) for
all (a,b) € L*. The generalization should
not stop at this stage, however, as will be
demonstrated in this section.

Since (L*,<p+) is a partially ordered set, an
order—theoretic definition of IF conjunction
and disjunction arises naturally. To this aim,
we introduce IF {—norms and IF ¢-conorms.

Definition 3.1 (IF Triangular Norm) An
IF t-norm 1is any increasing, commutative,
associative L* — L* mapping T satisfying
T(1p«,z) =z, for all z € L*.

Definition 3.2 (IF Triangular Conorm)
An IF t-conorm is any increasing, commuta-
tive, associative L* — L* mapping S satisfy-
ing S(0r+,z) =z, for all z € L*.

IF t—norms and t—conorms can be easily gen-
erated using their classical counterparts, as
the following claim proves: [3]

Theorem 3.1 Given a fuzzy t-norm T and
t—conorm S satisfying T(a,b) < 1-S(1—a,1—
b) for all a,b € [0,1], the mappings T and S
defined by, for T = (z1,22) and y = (y1,92)
in L*:

(T(-Tlayl)a 5(302, y2)),
(S(xla y1),T(£C2, y2))a

are an IF t-norm and an IF t-conorm, re-
spectively.

On the other hand, we do not have that for
every IF t—norm (IF ¢—conorm) there exist

2A t-norm is any increasing, commutative, asso-
ciative [0,1] x [0,1] — [0,1] mapping T satisfying
T(1,a) = a for every a € [0,1]

3A t—conorm is any increasing, commutative, as-
sociative [0,1] x [0,1] — [0,1] mapping S satisfying
S(0,a) = a for every a € [0,1]



a t—norm and ¢—conorm such that the above
equalities hold. We therefore need to intro-
duce an additional definition:

Definition 3.3 (t-—representability) An
IF t-norm T is called t-representable if
there exist a t-norm T and t—conorm S such
that T(z,y) = (T(z1,y1),S(xz2,y2)) for all
r = (z1,22) and y = (y1,92) in L*. An
IF t-conorm S is called t-representable if
there exist a t—norm T and t—-conorm S such
that S(z,y) = (S(z1,y1),T(x2,y2)) for all
x = (z1,22) and y = (y1,y2) in L*. In both
cases, we say that T and S are representants
of the IF t—(co)norm.

We proceed to introduce an IF ¢—conorm that
is not t-representable:

Theorem 3.2 The (L*)? — L* mapping S;
defined as, for r,y € L*,

. if y = 0r
_ )y =0
81(37,?/) - (ma,X(l —.T2,1 _y2),

min(zs,y2)) else

is a non t-representable IF t-conorm.

It can easily be verified that &; is an IF ¢-
conorm. For &) to be t-representable, there
must exist a fuzzy t—conorm S and a fuzzy
t-norm T such that, for all z = (z1,22),y =
(y1,92) € L*, S(z,y) = (S(z1,51), T(22,92))-
Suppose that such S and 7T exist, and let
z = (0.1,0.6), z' = (0.1,0.7) and y =
(0.1,0.8). From Si(z,y) = (0.4,0.6) we ob-
tain S(z1,71) = 0.4. On the other hand,
from Si(z',y) = (0.3,0.7) it follows that
S(z},y1) = S(z1,91) = 0.3, which is obvi-
ously in contradiction with the above infor-
mation, so we must conclude that S does not
exist, and hence S; is not {t-representable.

Going one step further, the following theorem
introduces an IF ¢—conorm that is continuous
but even not i-representable.

Theorem 3.3 The (L*)? — L* mapping So
defined as, for ¢,y € L*,

So(z,y) = (min(l,z1 41—y, 91 +1 — z2),

max (0,22 + y2 — 1))

1§ a continuous, non t-representable IF t-—
conorm.

The dual of an IF ¢t-norm 7 (IF t-
conorm §) w.r.t. an IF negator N is the
mapping T* (resp. S*) defined by, for
z,y € L TH(xz,y) = N(TN(z),N(y)))
(resp. 8*(z,y) = N(SN(z),N(y))))- It can
be verified that 7* is an IF t—conorm and S§*
is an IF ¢—norm.

The dual IF t—norm of &; w.r.t. the standard
negator N is 7; defined as, for =,y € L*,
Ti(e,y) = Ny(S: Vi), s (), or:
xz if Yy = ].L*
Y ifx =1«
Ti(z,y) = .
1(‘,1: y) (mln(a:layl)a
max(l —z1,1 —y1)) else

The dual IF t—norm of S w.r.t. Ny is T3 de-
fined as, for x,y € L*,

7-2($,y) = (max(O,wl + Y1 — 1)3

min(l,z9 + 1 —y1,y2 + 1 — z1))

71 and Ty are also not t-representable, as the
following theorem implies:

Theorem 3.4 The dual IF t—-norm with re-
spect to an involutive IF mnegator N on
L* of a t-representable IF t—conorm is t—
representable. The dual IF t—conorm with re-
spect to an involutive IF negator N on L* of a
t—representable IF t—norm is t—representable.

4 Implication

A very general definition of the implication
connective (denoted IF implicator) is given in
the following definition [3]:

Definition 4.1 (IF Implicator) An IF im-
plicator is any (L*)> — L*-mapping T
satisfying Z(0r=,0r+) = 1p«,Z(1z+,0p+) =
OL*,I(OL*,lL*) = 1L*aI(1L*; 1L*) = 1px.
Moreover we require I to be decreasing in its
first, and increasing in its second component.

Two important subclasses of IF implicators
were introduced in [5]. It is easily verified



that each of the mappings defined hereafter is
indeed an IF implicator in the sense of defini-
tion 4.1.

Definition 4.2 (IF S—implicator) Let S be
an IF t-conorm and N an IF negator. The
IF S-implicator generated by S and N is the
mapping Is n defined as, for x,y € L* :

Isn(z,y) = SN (z),y)

If § is t-representable, Zs nr is called a t-
representable IF S—implicator.

Definition 4.3 (IF R—-implicator) Let T
be an IF t-norm. The IF R-implicator gen-
erated by T is the mapping T1 defined as, for
z,y € L* :

I7(x,y) =sup{y € L* | T(z,7) <r~ y}

If T is t-representable, Iy is called a t-
representable IF R—implicator.

The suitability of IF implicators for a variety
of purposes can be assessed using the (gener-
alized) criteria introduced by Smets and Ma-
grez in [6]:

Definition 4.4 (Axioms of Smets and
Magrez for an IF implicator 7)
(A.1) (Vy € L*)(Z(.,y) is decreasing)
(Vx € L*)(Z(x,.) is increasing)
(monotonicity laws)
(A.2) (Vzx e L*)(Z(1p+,z) = x)
(neutrality prln(:lple)

(4.3)  (V(z,y) € (L*)*)(Z(z,y) =
I(N( ),N(z))) (contrapositivity w.r.t.
an IF negator N)

(A.4) (V(z,y,2) € (L*)°)(Z(z,Z(y,2)) =

I(y, I(z, 2)))
(interchangeability principle)

(A.5) (V(z,y) € (L)) (z <Ly =
Z(z,y) = 11~) (confinement principle)

(A.6) T is continuous (continuity)

In [5] we discovered that there does not ex-
ist a t-representable IF S—implicator nor a
t—representable IF R—-implicator that satisfies
all Smets—Magrez axioms at once. We also
proved that an IF implicator satisfying (A.1),

(A.2), (A.3) and (A.4)—which is also called
an IF model implicator—must necessarily be
an IF S—implicator. It is a great surprise,
therefore, that the conjecture made in [5] in-
spired by the above facts, namely that there
does not exist an IF implicator satisfying all
Smets—Magrez axioms, is convincingly falsi-
fied by the following theorem:

Theorem 4.1 The IF S-implicator Is,
generated by So and N satisfies (A.1), (A.2),
(A.3), (A.4) and (A.6). Is, x satisfies (A.5)
if and only if N = N. In that case, Is, n, =
(min(1,y1 +1 — z1, 22 + 1 — y2), max(0,y2 +
r1 — 1))

Moreover, Zs, » is also an IF R-implicator,
and when applied to fuzzy values (z,1 —
z) € L* it coincides with the well-known
Lukasiewicz fuzzy implicator, defined by, for
a,b € [0,1], I(a,b) = min(1,1 —a + b).

Theorem 4.2 The IF R-implicator Lt, gen-
erated by the IF t—conorm Ty equals the IF
S—implicator Ls, v, .

Theorem 4.3 The IF S—implicator Ls, v, 15
an extension of the Lukasiewicz fuzzy impli-
cator Iy,.

Note that in fuzzy set theory I, is an S— and
R-implicator? satisfying (the fuzzy version of)
the Smets—Magrez axioms. It is all the more
compelling to note, however, that a naive ex-
tension of It to an IF R—implicator, obtained
by

e the observation that I; is a fuzzy
R-implicator = generated by T,
the Lukasiewicz t¢norm (defined by
Tw(a,b) = max(0,a + b —1));

4The fuzzy S—implicator generated by a t—conorm
S is the mapping Is defined as, for all z,y € [0, 1]:

Is: [0,12 — [0,1]

The fuzzy R-implicator generated by a t—norm T is
the mapping It defined as, for all z,y € [0,1] :

Ir: [0,1]* —
(x,y) =

[0,1]
sup{y € [0, 1]|T (=, ) < y}



e the application of theorem 3.1 to Tw
and its dual t-conorm the bounded
sum S, (defined by S, (a,b) =
min(1,a + b)), yielding the IF ¢-norm
T defined by T((z1,z2),(y1,92)) =
(Tw (71, y1), S+, (72, 92)));

e using 7 to generate Z7((z1,z2), (y1,y2))
= (min(l,l +y — 71,1 + 92 — yZ)a
max(0,y2 — z2));

is t-representable, differs from 77, only by
substituting s with 1 —z; in the second com-
ponent of Zr but does not satisfy (A.3).

5 Conclusion

In this paper, we re—investigated the defi-
nition of the most important connectives in
IFS theory: those for negation, conjunction,
disjunction and implication. A representa-
tion theorem for involutive IF negators com-
plementary to Bustince et al. ’s work was
obtained, while an order—theoretic approach,
strictly more general than the existing one, to
the definition of conjunction and disjunction
turned out to be indispensable when looking
for a suitable candidate for the implication
connective—i.e. an IF implicator satisfying the
combined Smets—Magrez axioms.
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