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Abstract

Fuzzy formal logics were introduced in or-
der to handle graded truth values instead
of only ‘true’ and ‘false’. A wide range of
such logics were introduced successfully, like
Monoidal T-norm based Logic, Basic Logic,
Gödel Logic,  Lukasiewicz Logic etc. How-
ever, in general, fuzzy set theory is not only
concerned with vagueness, but also with un-
certainty. A possible solution is to use inter-
vals instead of real numbers as membership
values. In this paper, we present an approach
with triangle algebras, which are algebraic
characterizations of interval-valued residu-
ated lattices. The variety of these structures
corresponds in a sound and complete way to a
logic that we introduce, called Triangle Logic
(in the same way as, e.g., BL-algebras and
Basic Logic). We will show that this truth-
functional approach, along with the residu-
ation principle, has some consequences that
seem to obstruct an easy and proper interpre-
tation for the semantics of Triangle Logic.

Keywords: Fuzzy logic, Interval-valued
fuzzy set theory, Residuated lattices.

1 Introduction and Preliminaries

1.1 Fuzzy formal logics

In classical logic1, a formula is provable if, and only
if, its value (under every evaluation) is 1 in every
Boolean algebra (this is called soundness and com-
pleteness). Moreover, it suffices to consider the only
linear Boolean algebra, which has two elements (0 and
1). We can therefore say that classical logic is a two-
valued logic. The value 0 stands for ‘false’, 1 for ‘true’.

1In this paper we only deal with propositional logics.
Therefore we will not write this explicitly.

However, in many cases it may be preferable to work
with graded truth values, e.g. for propositions like ‘a
cat is a small animal’, ‘Peter has dark hair’ or ‘the
weather is bad today’. This is the reason why fuzzy
(formal) logics, which are generalizations of classical
logic, were introduced. One of the most general ex-
amples is Höhle’s Monoidal Logic (ML) [9]. In this
logic, a formula is provable iff its value is 1 in every
residuated lattice. Recall that a residuated lattice is a
structure L = (L,⊓,⊔, ∗,⇒, 0, 1) in which ⊓,⊔, ∗ and
⇒ are binary operators on L and

• (L,⊓,⊔) is a bounded lattice with 0 as smallest
and 1 as greatest element,

• ∗ is commutative and associative, with 1 as neu-
tral element, and

• x ∗ y ≤ z iff x ≤ y ⇒ z for all x, y and z in L
(residuation principle).

This allows one to assign graded truth values to for-
mulas. Of course, not every formula that is provable
in classical logic, is provable in ML too. However,
we can add axioms to obtain intermediary logics. An
interesting example is Esteva and Godo’s Monoidal T-
norm based Logic (MTL) [7]. For this fuzzy logic, the
so-called prelinearity axiom ((φ → ψ) ∨ (ψ → φ)) is
added to the axioms of ML. As for all axiomatic ex-
tensions of ML, MTL is sound and complete w.r.t. the
associated variety of algebraic structures (in this case:
MTL-algebras, which are residuated lattices in which
(x ⇒ y) ⊔ (y ⇒ x) = 1 holds for all x and y). More-
over, because of the prelinearity MTL is also sound
and complete w.r.t. linear MTL-algebras2[7]. The lat-
ter property is preserved for axiomatic extensions of
MTL. For example, Basic Logic (BL) [8] is sound and
complete w.r.t. linear BL-algebras,  Lukasiewicz logic
[11] is sound and complete w.r.t. Wajsberg algebras,

2Recall that linear MTL-algebra is the same as linear
residuated lattices, because linearity is a stronger property
than prelinearity in residuated lattices.



and classical logic is sound and complete w.r.t. the lin-
ear Boole algebra. In some of these cases, it is even
possible to further improve this result in the sense
that one only has to take into account the algebraic
structures on the unit interval. Two examples are
MTL and BL, which are sound and complete w.r.t.
MTL-algebras on [0, 1] and BL-algebras on [0, 1], re-
spectively [1, 10]. These are exactly the structures
induced by left-continuous t-norms and continuous t-
norms, respectively. So we can speak of BL as the logic
of continuous t-norms on [0, 1].

1.2 Intervals as Truth Values

In order to handle also uncertainty together with
vagueness, it seems a good idea to use closed subinter-
vals of [0, 1] instead of real numbers in [0, 1]. Interval-
valued truth degrees have been widely adopted in
knowledge-based systems [6]. This is due to the rela-
tive efficiency of operations defined on them, as well as
to the fact that they carry an attractive and straight-
forward semantical interpretation as partial, or incom-
plete, truth values, i.e., they exhibit a lack of knowl-
edge about a formula’s exact truth value; the wider
the interval, the greater the uncertainty.

The lattice LI = (LI ,⊓,⊔) that contains these closed
subintervals is shown graphically in Figure 1 and de-
fined by

LI = {[x1, x2] | (x1, x2) ∈ [0, 1]2 and x1 ≤ x2},
[x1, x2] ⊓ [y1, y2] = [min(x1, y1),min(x2, y2)],
[x1, x2] ⊔ [y1, y2] = [max(x1, y1),max(x2, y2)].

Its partial ordering ≤LI is given by componentwise
extension of ≤,

[x1, x2] ≤LI [y1, y2] ⇐⇒ x1 ≤ y1 and x2 ≤ y2.

We use the ‘componentwise’ ordering, which is in our
opinion the most natural one. Indeed, it satisfies x ≤ y
iff x ⊓ y = x iff x ⊔ y = y, and x ⊓ y = {min(x0, y0) |
(x0, y0) ∈ x× y} and x ⊔ y = {max(x0, y0) | (x0, y0) ∈
x× y}.

One way to interpret these intervals is to see them
as a kind of confidence intervals. For example, a truth
value of [a, b] might mean that the exact, but unknown,
truth value is definitely greater than or equal to a and
smaller than or equal to b (100%-confidence interval).

Research on fuzzy formal logics has centered on prelin-
ear residuated structures. However, while prelinearity
holds in every residuated lattice ([0, 1],min,max, ∗,⇒,
0, 1), it is not necessarily preserved for closed intervals
of a bounded lattice L; for example, it was shown in
[2] that no MTL-algebra exists on the lattice LI .

The goal of this paper is to develop a logic that
formally characterizes tautologies (true formulas) in

[1; 1℄
x2

[0; 0℄ x1

[0; 1℄
x = [x1; x2℄

Figure 1: The lattice LI

interval-valued residuated lattices (IVRLs). Monoidal
Logic, which corresponds to the complete class of
residuated lattices, is too general for our purposes, and
we need to extend it with suitable axioms to replace
prelinearity. To achieve this, we propose the use of
modal-like operators.

In Section 2 we first recall triangle algebras and their
relationship with residuated lattices on interval-valued
algebraic structures [12]. In Section 3 we will introduce
Triangle Logic and show soundness and completeness
w.r.t. triangle algebras. We round up the paper with
some remarks about the suitability of TL for modelling
reasoning with uncertain propositions, and a conclu-
sion.

2 Triangle algebras

In view of the considerations in Section 1, we defined
[12] algebraic structures that should satisfy as many
properties as possible of residuated lattices on LI , like
MTL-algebras are the algebraic structures that satisfy
as many properties as possible of residuated lattices
on [0, 1]. These structures are called triangle algebras.
Before we give their definition and discuss triangle al-
gebras, we give some additional definitions:

Definition 1 Given a lattice L = (L,⊓,⊔), its
triangularization T(L) is the structure T(L) =
(Int(L), ⊔,

⊔
) defined by

• Int(L) = {[x1, x2] | (x1, x2) ∈ L2 and x1 ≤ x2}

• [x1, x2] ⊔[y1, y2] = [x1 ⊓ y1, x2 ⊓ y2]

• [x1, x2]
⊔

[y1, y2] = [x1 ⊔ y1, x2 ⊔ y2]

The set DL = {[x, x] | x ∈ L} is called the diagonal of
T(L).
The first and the second projection pr1 and pr2 are the
mappings from Int(L) to L, defined by pr1([x1, x2]) =



x1 and pr2([x1, x2]) = x2, for all [x1, x2] in Int(L). We
also define the mappings pv and ph from Int(L) to DL

as pv([x1, x2]) = [x1, x1] and ph([x1, x2]) = [x2, x2], for
all [x1, x2] in Int(L).
A t-norm T on a triangularization of a bounded lattice
is called t-representable if pr1(T ([x1, x2], [y1, y2])) is
independent of x2 and y2, and pr2(T ([x1, x2], [y1, y2]))
is independent of x1 and y1.
An interval-valued residuated lattice (IVRL) is a resid-
uated lattice (Int(L), ⊔,

⊔
,⊙,⇒⊙, [0, 0], [1, 1]) on the

triangularization T(L) of a bounded lattice L, in which
the diagonal DL is closed under ⊙ and ⇒⊙, i.e.,
[x1, x1] ⊙ [y1, y1] ∈ DL and [x1, x1] ⇒⊙ [y1, y1] ∈ DL

for x1, y1 in L.

Note for example that LI is the triangularization of
([0, 1],min,max).

Example 1 It was shown in [3] that if T is a left-
continuous t-norm on [0, 1], then for each α in [0, 1],
the mapping TT,α defined by, for x = [x1, x2] and y =
[y1, y2] in LI , TT,α(x, y) =

[T (x1, y1),max(T (α, T (x2, y2)), T (x1, y2), T (x2, y1))],

is a t-norm on LI , with residual implicator3 ITT,α
(x, y)

= [min(IT (x1, y1), IT (x2, y2)),

min(IT (T (x2, α), y2), IT (x1, y2))],

that induces a residuated lattice on LI . Be-
cause also TT,α([x, x], [y, y]) = [T (x, y), T (x, y)] and
ITT,α

([x, x], [y, y]) = [IT (x, y)), IT (x, y)] for all x and y
in [0, 1], (LI ,⊓,⊔, TT,α, ITT,α

, [0, 0], [1, 1]) is an IVRL.

Two important values of α can be distinguished:

• If α = 1, we obtain t-representable t-norms on LI :
TT,1(x, y) = [T (x1, y1), T (x2, y2)], which can be
seen as the straightforward (and most commonly
used) extension of T to LI . These t-norms on LI

are characterized by the property ph(T (x, y)) =
T (ph(x), ph(y)).

• If α = 0, we obtain pseudo t-representable
t-norms on LI :
TT,0(x, y) = [T (x1, y1),max(T (x1, y2), T (x2, y1))].
These t-norms are inherently more complex than
their t-representable counterparts, but, as we
shall see at the end of this section, satisfy more
relevant properties.

Definition 2 [12] A triangle algebra is a structure
A = (A,⊓,⊔, ∗,⇒, ν, µ, 0, u, 1), in which (A,⊓,⊔, ∗,

3If T is a t-norm on a bounded lattice (L,⊓,⊔), its
residual implicator IT is defined as IT (x, y) = sup{z ∈ L |
T (x, z) ≤ y} for all x and y in L, if the supremum exists.
It always exists in complete lattices and residuated lattices
(provided that ∗ is the t-norm).

⇒, 0, 1) is a residuated lattice, in which ν and µ are
binary operators and u a constant, and in which the
following conditions hold:

T.1 νx ≤ x, T.1′ x ≤ µx,
T.2 νx ≤ ννx, T.2′ µµx ≤ µx,
T.3 ν(x ⊓ y) = νx ⊓ νy, T.3′ µ(x ⊓ y) = µx ⊓ µy,
T.4 ν(x ⊔ y) = νx ⊔ νy, T.4′ µ(x ⊔ y) = µx ⊔ µy,
T.5 ν1 = 1, T.5′ µ0 = 0,
T.6 νu = 0, T.6′ µu = 1,
T.7 νµx = µx, T.7′ µνx = νx,

T.8 ν(x⇒ y) ≤ νx⇒ νy,
T.9 (νx⇔ νy) ∗ (µx⇔ µy) ≤ (x⇔ y),
T.10 νx⇒ νy ≤ ν(νx⇒ νy).

The set {x ∈ A | νx = x} is called the set of exact
elements E(A) of the triangle algebra A.

We use the modal-like operators ν and µ in order to
represent the lower and upper bound of an interval.
The set of exact elements corresponds to the diagonal
of an IVRL.

Proposition 1 [12] Let A = (A,⊓,⊔, ∗,⇒, ν, µ, 0,
u, 1) be a triangle algebra. Then E(A) is the direct
image of A under ν, as well as under µ. Moreover,
this set is invariant under ν and µ, and contains 0 and
1, but not u (unless in the trivial case when |A| = 1).
It is closed under ⊓, ⊔, ∗ and ⇒.

The next theorem [12] establishes the equivalence be-
tween IVRLs and triangle algebras:

Theorem 1 Every triangle algebra A = (A,⊓,⊔, ∗,
⇒, ν, µ, 0, u, 1) is isomorphic to a triangle algebra
(Int(E(A)), ⊔,

⊔
,⊙,⇒⊙, pv, ph, [0, 0], [0, 1], [1, 1])

where (Int(E(A)), ⊔,
⊔
,⊙,⇒⊙, [0, 0], [1, 1]) is an

IVRL.
Conversely, if (A,⊓,⊔,⊙,⇒⊙, [0, 0], [1, 1]) is an
IVRL and ν and µ are defined by ν[x1, x2] = [x1, x1]
and µ[x1, x2] = [x2, x2], then (A,⊓,⊔,⊙,⇒⊙,
ν, µ, [0, 0], [0, 1], [1, 1]) is a triangle algebra.

This theorem shows that triangle algebras are a good
characterization for IVRLs. However, IVRLs are still
more general than residuated lattices on LI . For exam-
ple, the diagonal of an IVRL needs not be linear. We
can impose the property that the diagonal should be
prelinear, but it is currently unknown if this is enough
to guarantee that all identities that are true in IVRLs
with linear diagonal are also true in every IVRL with
prelinear diagonal. This property would be compa-
rable to the fact that all the identities that are true
in linear residuated lattices are also true in prelinear
residuated lattices [7].



3 Triangle Logic

In this section we translate the defining properties of
triangle algebras into logical axioms, and show that
the resulting logic TL is sound and complete w.r.t.
the variety of triangle algebras.

The language of TL consists of countably many propo-
sition variables (p1, p2,. . .), the constants 0 (‘falsity’)
and ⊥ (‘uncertainty’), the unary operators � (‘neces-
sity’), ♦ (‘possibility’), the binary operators ∧ (‘weak
conjunction’), ∨ (‘disjunction’), & (‘strong conjunc-
tion’), → (‘implication’), and finally the auxiliary sym-
bols ‘(’ and ‘)’. Formulas are defined inductively:
proposition variables, 0 and ⊥ are formulas; if φ and
ψ are formulas, then so are (φ∧ψ), (φ∨ψ), (φ&ψ),
(φ→ ψ), (�ψ) and (♦ψ).

In order to avoid unnecessary brackets, we agree on
the following priority rules:

• unary operators always take precedence over bi-
nary ones,

• among the binary operators, & has the highest
priority; furthermore ∧ and ∨ take precedence
over →,

• the outermost brackets are not written.

We also introduce some useful shorthand notations: 1
for 0 → 0, ¬φ for φ→ 0 and φ↔ ψ for (φ→ ψ)∧(ψ →
φ) for formulas φ and ψ.

The axioms of TL are those of ML (Monoidal Logic)

ML.1 (φ→ ψ) → ((ψ → χ) → (φ→ χ)),
ML.2 φ→ (φ∨ψ),
ML.3 ψ → (φ∨ψ),
ML.4 (φ→ χ) → ((ψ → χ) → ((φ∨ψ) → χ)),
ML.5 (φ∧ψ) → φ,
ML.6 (φ∧ψ) → ψ,
ML.7 (φ&ψ) → φ,
ML.8 (φ&ψ) → (ψ&φ),
ML.9 (φ→ ψ) → ((φ→ χ) → (φ→ (ψ∧χ))),
ML.10 (φ→ (ψ → χ)) → ((φ&ψ) → χ),
ML.11 ((φ&ψ) → χ) → (φ→ (ψ → χ)),
ML.12 0 → φ,

complemented with axioms corresponding to T.1–T.10

and T.1’–T.7’:

TL.1 �φ→ φ,
TL.1′ φ→ ♦φ,
TL.2 �φ→ ��φ,
TL.2′ ♦♦φ→ ♦φ,
TL.3 (�φ∧�ψ) → �(φ∧ψ),
TL.3′ (♦φ∧♦ψ) → ♦(φ∧ψ),
TL.4 �(φ∨ψ) → (�φ∨�ψ),
TL.4′ ♦(φ∨ψ) → (♦φ∨♦ψ),
TL.5 �1,
TL.5′ ¬♦0,
TL.6 ¬�⊥,
TL.6′ ♦⊥,
TL.7 ♦φ→ �♦φ,
TL.7′ ♦�φ→ �φ,
TL.8 �(φ→ ψ) → (�φ→ �ψ),
TL.9 (�φ↔ �ψ)&(♦φ↔ ♦ψ) → (φ↔ ψ),
TL.10 (�x→ �y) → �(�x→ �y).

The deduction rules are modus ponens (MP, from φ
and φ → ψ infer ψ), generalization (G, from φ infer
�φ) and monotonicity of ♦ (M♦, from φ → ψ infer
♦φ→ ♦ψ).

The consequence relation ⊢ is defined as follows,
in the usual way. Let V be a theory, i.e., a set of
formulas in TL. A (formal) proof of a formula φ in
V is a finite sequence of formulas with φ at its end,
such that every formula in the sequence is either an
axiom of TL, a formula of V , or the result of an
application of an inference rule to previous formulas in
the sequence. If a proof for φ exists in V , we say that
φ can be deduced from V and we denote this by V ⊢ φ.

Note that TL.5 is in fact superfluous, as it immedi-
ately follows from ∅ ⊢ 1 and generalization; we include
it here to obtain full correspondence with Definition 2.

To show that this logic is sound and complete w.r.t.
the variety of triangle algebras, we use the same ap-
proach as for, e.g. ML [9], MTL [7] and BL [8]. We
first establish some intermediate results. For a the-
ory V , and formulas φ and ψ in TL, denote φ ∼V ψ
iff V ⊢ φ → ψ and V ⊢ ψ → φ (this is also
equivalent with V ⊢ φ ↔ ψ). Note that ∼V is an
equivalence relation on the set of formulas. More-
over, it is a congruence w.r.t. �, ♦, ∧, ∨, & and
→; this means that the results of the application of
these connectives are equivalent whenever the argu-
ments are equivalent.As a consequence, we can mean-
ingfully consider the structure (AV ,∧V ,∨V ,&V ,→V ,
�V ,♦V , [0]V , [⊥]V , [1]V ), in which

• AV is the set of equivalence classes of ∼V , i.e.



A/∼V
,

• ∧V is the binary operation on AV that maps
([φ]V , [ψ]V ) to [φ∧ψ]V ,

• ∨V is the binary operation on AV that maps
([φ]V , [ψ]V ) to [φ∨ψ]V ,

• &V is the binary operation on AV that maps
([φ]V , [ψ]V ) to [φ&ψ]V ,

• →V is the binary operation on AV that maps
([φ]V , [ψ]V ) to [φ→ ψ]V ,

• �V is the unary operation on AV that maps [φ]V
to [�φ]V ,

• ♦V is the unary operation on AV that maps [φ]V
to [♦φ]V ,

• [0]V , [⊥]V , [1]V are the elements of AV that con-
tain 0, ⊥ and 1 resp.

Proposition 2 The structure (AV ,∧V ,∨V ,&V ,→V ,
�V ,♦V , [0]V , [⊥]V , [1]V ) is a triangle algebra.

If V = ∅, this structure is called the Lindenbaum-
algebra of TL.

Definition 3 Let A = (A,⊓,⊔, ∗,⇒, ν, µ, 0, u, 1) be a
triangle algebra and V a theory. An A-evaluation is
a mapping e from the set of formulas of TL to A that
satisfies, for each two formulas φ and ψ:

• e(φ ∧ ψ) = e(φ) ⊓ e(ψ),

• e(φ ∨ ψ) = e(φ) ⊔ e(ψ),

• e(φ&ψ) = e(φ) ∗ e(ψ),

• e(φ→ ψ) = e(φ) ⇒ e(ψ),

• e(�φ) = νe(φ),

• e(♦φ) = µe(φ),

• e(0) = 0 and

• e(⊥) = u.

If an A-evaluation e satisfies e(χ) = 1 for every χ in
V , it is called an A-model for V .

Theorem 2 (Soundness and completeness of

TL) A formula φ can be deduced from a theory V
in TL iff for every triangle algebra A and for every
A-model e of V , e(φ) = 1.

Theorem 2 implies similar results for more specific log-
ics.

• For example, if we add µ(x ∗ y) = µx ∗ µy to the
conditions of a triangle algebra and ♦φ&♦ψ →
♦(φ&ψ) to the axioms of TL, then we can obtain
a valid theorem by replacing ‘triangle algebra’ and
‘Triangle Logic’ in the formulation of Theorem 2
by the new algebra and logic. This property im-
plies that (in terms of IVRL) the second compo-
nent of [x1, x2] ∗ [y1, y2] is independent of x1 and
y1. This means that we can use this property to
characterize IVRLs with t-representable t-norms
by triangle algebras satisfying µ(x ∗ y) = µx ∗ µy.

• Another interesting example is x = ¬¬x, con-
nected to the axiom ¬¬φ → φ. The only invo-
lutive t-norms of the form TT,α are the pseudo
t-representable ones [3]. More generally, in an in-
volutive triangle algebra, it can be verified that
u ∗ u = 0.

• As a final example, we can add (νx⇒ νy)⊔(νy ⇒
νx) = 1 to the conditions of a triangle algebra
(remark that this property is always satis-
fied for triangle algebras on LI , because its
diagonal is linearly ordered). If also we add
(�φ → �ψ)∨(�ψ → �φ) to the axioms of TL,
then again we obtain a valid theorem by replacing
‘triangle algebra’ and ‘Triangle Logic’ in Theorem
2 by the new algebra and logic. In this case
(E(A),⊓,⊔, ∗,⇒, 0, 1) is an MTL-algebra (pre-
linear residuated lattice). This means that it is a
subalgebra of the direct product of a system of
linearly ordered residuated lattices [9]. Using this
property, a stronger form of completeness, called
chain completeness, can be proven for MTL: a
formula φ can be deduced from a theory V in
MTL iff for every linearly ordered MTL-algebra
A and for every A-model e of V , e(φ) = 1.
Similar results hold for subvarieties of the va-
riety of MTL-algebras and their corresponding
logics (e.g. BL and  L). We would like to find
analogous theorems for triangle algebras (and
subvarieties) too, but at this moment it is still an
open question if every triangle algebra satisfying
(νx⇒ νy)⊔ (νy ⇒ νx) = 1 is a subalgebra of the
direct product of a system of triangle algebras
with linearly ordered diagonal.

Note 1 Triangle Logic is a truth-functional logic: the
truth degree of a compound proposition is determined
by the truth degree of its parts. This causes some
counterintuitive results, if we want to interpret the el-
ement [0, 1] of an IVRL as uncertainty. For example:
suppose we don’t know anything of the truth value
of propositions p and q, i.e., v(p) = v(q) = [0, 1].
Then yet the implication p → q is definitely valid:
v(p → q) = v(p) ⇒ v(q) = [1, 1]. However, if



¬[0, 1] = [0, 1] 4 (which is intuitively preferable, since
the negation of an uncertain proposition is still un-
certain), then we can take q = ¬p, and obtain that
p → ¬p is true. Or, equivalently (using the residua-
tion principle), that p&p is false. This does not seem
intuitive, as one would rather expect p&p to be uncer-
tain if p is uncertain.
Another consequence of [0, 1] ⇒ [0, 1] = [1, 1] is that
it is impossible to interpret the intervals as a set in
which the ‘real’ (unknown) truth value is contained,
and X ⇒ Y as the smallest closed interval containing
every x ⇒ y, with x in X and y in Y (as in [6]). In-
deed: 1 ∈ [0, 1] and 0 ∈ [0, 1], but 1 ⇒ 0 = 0 /∈ [1, 1].
On the other hand, for t-norms it is possible that
X ∗ Y is the smallest closed interval containing every
x ∗ y, with x in X and y in Y , but only if they are
t-representable (described by the axiom µ(x ∗ y) =
µx ∗ µy). However, in this case ¬[0, 1] = [0, 0], which
does not seem intuitive (‘the negation of an uncertain
proposition is absolutely false’).
These considerations seem to suggest that Triangle
Logic is not suitable to reason with uncertainty. This
does not mean that intervals are not a good way for
representing degrees of imprecise knowledge, only that
they are not suitable as truth values in a truth func-
tional logical calculus when we interpret them as ex-
pressing imprecision. It might even be impossible
to model uncertainty as a truth value in any truth-
functional logic. This question is discussed in [4, 5].
However, nothing prevents the intervals in Triangle
Logic from having more adequate interpretations.

4 Conclusion

In this paper we explained why we wanted to con-
struct a (family of) fuzzy formal logic(s) with inter-
vals as truth values. We showed how triangle algebras
can be used to achieve this goal, as they character-
ize interval-valued residuated lattices. We introduced
Triangle Logic and proved soundness and complete-
ness w.r.t. triangle algebras, and thus w.r.t. interval-
valued residuated lattices. Finally, we made some ob-
servations which seem to limit the usefulness of Trian-
gle Logic, and indeed of any truth-functional logic, to
model reasoning about uncertain propositions.
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