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ABSTRACT.  The incorporation of imprecise, linguistic information into logical
deduction processes, as opposed to the practice of traditional two—valued proposi-
tional logic and set theory, continues to be a predominant feature of fuzzy expert
systems. Throughout the literature, we can find all sorts of intelligent inference
schemes acting under imprecision; common to most approaches is their reliance on
if-then rules of the kind “IF X is A THEN Y is B”, where A and B are fuzzy sets in
given universes U and V. Intuitively, fuzzy sets (FSs) can be used to model elastic
constraints on the values a variable may assume. While the theory of FS—based ap-
proximate reasoning is surely a well-established and commonly applied one, there
is still a demand for further expanding the expressiveness of the formalism. One
such improvement can be obtained by using Atanassov’s [1] intuitionistic fuzzy sets
(IFSs), of which FSs are specific instances, and which highlight the fundamental
importance of negation: the degree to which a proposition is false, or equivalently
to which an object does not belong to a set, is given an independent status here.
In this paper we will contribute to the further development of this relatively young
theory, by generalizing the well-known Compositional Rule of Inference (CRI) to
IFSs. We also deal with the related problem of checking the validity of the inference,
as motivated in [3].

1 Introduction and preliminaries

Inference is defined as a procedure for deducing new facts out of existing
ones on the basis of formal deduction rules. Classical paradigms like two—
valued propositional and predicate logic, exhibit some important drawbacks
(lack of expressivity in describing incomplete and/or imprecise knowledge,
high computational complexity) that make them unsuitable for application
in automated deduction systems (e.g. for medical diagnosis). To alleviate
these difficulties, Zadeh in 1973 introduced a formalism called approximate
reasoning to cope with problems which are too complex for exact solution



but which do not require a high degree of precision. [12] His work is centered
around the notions of a fuzzy set and a fuzzy restriction.

In his seminal 1965 paper [11], Zadeh generalized ordinary sets to fuzzy
sets (F'Ss, for short), allowing an element u € U to belong to any degree of
membership in [0,1] (denoted A(u)) to a fuzzy set A in U. It is clear that
the extension equivalently gives rise to a continuum of truth values between
0 and 1 for a logical proposition P.

Definition 1.1 (Fuzzy set)A fuzzy set A in a given universe U is a map-
ping from U into the unit interval [0,1]. The class of fuzzy sets in U is
denoted F(U).

To define the intersection and union of fuzzy sets (equivalently, conjunc-
tion and disjunction of fuzzy propositions), so—called ¢—norms and t—conorms
are used: a t—norm is any symmetric, associative, increasing [0, 1] x [0,1] —
[0,1] mapping T satisfying T'(1,z) = z for every z € [0, 1], whereas for a
t—conorm S the last property is replaced by S(0,z) = z for every z € [0, 1].
t-—norms give rise to fuzzy intersections, in the sense that A Ny B(u) =
T(A(u), B(u)) for every uw € U and T a t—norm. An analogous result holds
of course for t—conorms and unions.

Now consider the statement: “Paul is very old”. Modelling “very old” as
a fuzzy set on a suitable range of ages, this statement constitutes a so—called
fuzzy restriction on the possible values of Paul’s age rather than an assertion
about the membership of Paul in a class of individuals. [12] From a logical
perspective, it is interesting to see how people are able to combine such in-
formation efficiently in a Modus Ponens-like fashion to allow for inferences
of the following kind:

IF  bath water is “too hot” THEN T'm apt to get burnt
bath water is “really rather hot”

I’'m quite apt to get burnt

The technique used above is in fact less restrictive than the actual MP
from propositional logic since it doesn’t require the observed fact (“really
rather hot”) and the antecedent of the rule (“too hot”) to coincide to yield a
meaningful conclusion. The need emerges for a flexible, qualitative scale of
measuring to what extent the antecedent is fulfilled, on the basis of which we
could obtain an approximate idea (stated under the form of another fuzzy
restriction) of the value of the consequent variable.

With his introduction of a calculus of fuzzy restrictions [12], Zadeh
paved the way towards a reasoning scheme called Generalized Modus Ponens
(GMP) to systematize deductions like the example we presented. Since his
pioneering work, many researchers have sought for efficient realizations' of

!By “realization”, we mean any computational procedure unambiguously defining the
output in terms of the inputs



this approximate inference scheme. In section 2 we will formally define the
GMP and survey its most common realization, the Compositional Rule of
Inference (CRI). Section 3 introduces the notion of Intuitionistic Fuzzy Sets
(IFSs) and their connectives. In section 4, we proceed to extend the CRI
to the IFS setting. In section 5, we address a common validation procedure
based on the notion of Intuitionistic Fuzzy Tautology (IFT) and discuss how
it affects our reasoning processes. Finally, section 6 offers some options for
future research.

2 FS—based Compositional Rule of Inference

We start by recalling from [7] the definition of the main concept that we are
concerned with:

Definition 2.1 (Generalized Modus Ponens, GMP) Let X and Y
be wvariables assuming values in U, resp. V. Consider then a fuzzy rule
“IF X is A, THEN'Y is B” and a fuzzy fact (or observation) “X is A'”
(A,A" € F(U),B € F(V)). The GMP allows deduction of a fuzzy fact “Y
is B'”, with B' € F(V).

Ezxpressing this under the form of an inference scheme, we get:

IF X is A, THEN Y is B
X is A

Y is B’

Definition 2.1 does not state what the fuzzy restriction B’ should be
when A, A’ and B are given. A lot of approaches have been proposed for this
purpose ([6], among others, gives a survey), the most common one relying
on the so—called Compositional Rule of Inference, a convenient mechanism
for calculating with fuzzy restrictions introduced by Zadeh in [12].

Definition 2.2 (Compositional Rule of Inference, CRI) [7] Let X
and Y be defined as in definition 2.1. Consider also fuzzy facts “X is A"”
and “X and Y are R”, where A' € F(U),R € F({U xV) (R is a fuzzy
relation between U and V). The CRI allows us to infer the fuzzy fact: “Y
is Rog A'”, in which the direct image of A' under R, denoted’ Ror A', is
defined as, forv e V:

Rop A'(v) = zlelgT(A'(u), R(u,v))

Ezxpressing this under the form of an inference scheme, we get:

2Some people prefer to speak of the “composition of R with A’” hence the appearance
of the composition symbol.



X is A
X andY are R
Y is Rop A’

For definition 2.2 to be a realization of the GMP, R must be a relational
representation of a fuzzy implicator, an extension of the classical implication
operator:

Definition 2.3 (Fuzzy implicator) [10] A fuzzy implicator is any [0, 1) —
[0, 1] mapping T for which the restriction to {0,1}? coincides with classical
implication: Z(0,0) =1, Z(1,0) =0, Z(0,1) =1, Z(1,1) = 1. Moreover, T
should satisfy the following monotonicity criteria:
(Vy € [0,1])(V(z,2") € [0,1]*)(z < 2" = I(=,y)
(V2 € [0, 1) ((3 ") € [0, 1)y < o/ = ()

(

Z(z',y)) (1.1)
I(z,y'

) (1.2)

IN IV

Given Z and A and B, the fuzzy sets used in definition 2.1, R is defined
as, for (u,v) € U x V: R(u,v) = Z(A(u), B(v)). The two most important
classes of fuzzy implicators are called S— and R—implicators, and are defined
as follows3:

Definition 2.4 (S—implicator) /5] Let S be a t—conorm. The S—implicator
generated by S is the mapping Lg defined as:

Is: [0,12 — [0,1]
(a:,y) = S(l—.’l},y), V(:I:,y)E[O,l]Z

Definition 2.5 (R—implicator) /5] Let T be a t—norm. The R—implicator
generated by T is the mapping It defined as:

Ir: [0,12 — [0,1]
(z,y) — sup{y €[0,1]|T(z,7) <y}, V(z,y) € [0,1]?

3 Intuitionistic Fuzzy Sets

IFSs, first introduced by Atanassov [1] in 1983, generalize Zadeh’s fuzzy
sets. While FSs merely give the degree of membership of an element in a
set, IF'Ss also involve a degree of non—-membership.

Definition 3.1 An intuitionistic fuzzy set in a universe U is any object A
of the form A = {(u, pa(u),va(u))|lu € U}, where the membership function
pa and the non—-membership function v4 are U — [0, 1] mappings satisfying
(Vu € U)(pa(u) +va(u) < 1). The class of all IFSs in U is denoted ZF (U).

31t is easily verified that they are indeed fuzzy implicators. [6]




Clearly any FS A € F(U) has an IFS representation where for any
u € U the degree of non-membership equals one minus the degree of mem-
bership. There also exist straightforward extensions of the F'S union and
intersection to IFSs. Let T be a t-norm and S a t-conorm. Then the gen-
eralized intersection A N7 s B of two IFSs A and B in U can be defined as
ANngps B = {(u,T(pa(u), pp(u)),S(va(u),vp(u)))|lu € U}. The resulting
object is again an IFS provided T' < §*, where S* denotes the dual ¢-norm
of S, defined as S*(z,y) =1—S(1—=z,1—y) for all z and y in [0, 1]. Indeed,
from T' < S* and using the increasing property of the ¢-conorm S, we ob-
tain T'(pa(u), pp(u) <1—S(1—pa(u),1 - pp(u)) <1—Swalu),va(u)).
Putting va(u) = 1 — pa(u) and vp(u) = 1 — up(u), it is clear that the
condition T' < §* is also necessary. A similar result can be obtained for the
IF'S union Ug, 7, under the condition S < T™, which is equivalent to T' < S*.

4 IFS—based Compositional Rule of Inference

As discussed in the previous section, IFSs offer a more general framework
than FSs do, thus allowing representation of relations between variables
that could previously not be described (see e.g. [2] [8] for some real-world
examples). Also in [2], a first attempt is made to endow fuzzy expert systems
with concepts from IFS theory, indicating the real interest excited by these
structures. It would therefore be nice to find some suitable IFS adaptation
of the CRI, by far the most common means of deduction in the F'S setting.

Before we can generalize the GMP and the CRI, we have to introduce
some preliminary concepts.

Definition 4.1 (Lattice (L*,<r+)) Define a lattice (L*, <p~) such that:

L* = {(z1,29) €[0,1)? | 21 + x5 < 1}
(331,302) <r (ylayQ) Sz <y Ao > Yo

The shaded area in the figure is the set of elements x = (x1,z2) belonging
to L*.
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The lattice (L*, <p+) is a complete lattice: for each A C L*,

supA = (sup{z; €[0,1] | (3z2 € [0,1])((z1,72) € A)},
inf{zo € [0,1] | (z1 € [0,1])((z1,22) € A)}),

infA = (inf{z; €0,1] | (3z2 € [0,1])((z1,2z2) € A)},
sup{z2 € [0,1] | (Fz1 € [0,1])((z1,22) € A)}).

Equivalently, this lattice can also be defined as an algebraic structure
(L*, A, V) where the meet operator A and the join operator V are defined as
follows, for (z1,z2), (y1,y2) € L*:

(z1,22) A (y1,92) = (min(z1,y1), (max(zs,y2))
(z1,22) V (y1,92) = (max(z1, y1), min(z2, y2))

For our purposes, we will also consider a generalized meet operator At g
and join operator Vg on (L*, <r-):

(z1,22) A5 (Y1,92) = (T(21,91), S(%2,92))
(z1,22) Vs (y1,92) = (S(z1,91), T(22,y2))

for given t—norm T and t—conorm S satisfying T < S*. Again, it can be
shown that the condition 7" < S* is necessary and sufficient for these oper-
ators to be well-defined.

Lastly, we define an order—reversing mapping N’ by N (z1,x2) = (22, 1),
V(:L'l,.TQ) € L*.

We now propose the following extensions for intuitionistic fuzzy impli-
cators, as well as the special instances of S— and R—implicators.

Definition 4.2 (Intuitionistic Fuzzy Implicator) An intuitionistic fuzzy
implicator is any (L*)? — L*-mapping T satisfying the border conditions

Z(0r+,0r+) = 1p~,
I(]-L*;OL*) = OL*;
I(O0p+, 1) = 1,
I(]-L*7 1L*) — ]-L*7

where O« = (0,1) and 17« = (1,0) are the identities of (L*,<r»). More-
over we require T to be decreasing in its first, and increasing in its second
component, i.e.

(Vy € L*)(V(z,2") € (L*)*)(z <p» &’ = I(z,y) >1- I(7',y)) (1.3)
(Vz € L*)(Y(y,y') € (L)) (y <p+ ¥ = I(z,y) <p+ L(z,y)))  (1.4)



Definition 4.3 (S—implicator) Let T be a t-norm, S a t-conorm satis-
fying T < 8*, and N an involutive* order—reversing operator on L*. The
S—implicator generated by T', S and N is the mapping s n defined as, for
(z,y) € (L*)? :
Isawn(z,y) = N(z) Vsry

Definition 4.4 (R—implicator) Let T be a t-norm, S a t-conorm satisfy-
ing T < S§*. The R—implicator generated by T and S 1is the mapping It s
defined as, for (z,y) € (L*)? :

Irs(z,y) =sup{y € L" |z Ar,s v <1~ y}
Theorem 4.1 The mappings Ls n and It s are intuitionistic fuzzy impli-
cators.

Proof. 1t is easy to verify that the defined operators satisfy the border con-
ditions. We now prove that they satisfy the hybrid monotonicity properties.

(i) Since each t-norm T and each t-conorm S are increasing in both com-
ponents, it can easily be seen that, for all (a1, as), (b1, b2), (c1,c2),
(dl, dg) € L*, (al, ag) <px (bl, bg) and (Cl, CQ) <= (d1, dz) implies
(S(al, Cl), T(CI,Q, 62)) <px (S(bl, dl), T(bQ, d2)), i.e. (al, G,Q) Vs,T (Cl, Cz)
<+ (b1,b2) Vs (di,dz2). Hence Vg r is increasing in both components.
Similarly A7 g is increasing in both components.

Since N is order-reversing, we obtain successively, for z,z',y € L*,
r <p- o
N(z) >+ N(a')
N(z)Vsry > N(@')Vsry
Ison(z,y) > Isoa(e'y)

It is equally obvious that Zg 7 v is increasing in its second component.

(ii) Now we prove that an arbitrary R-implicator Zr g is hybrid monotonous.
Let z = (z1,22),2 = (21,25),y = (y1,¥2) € L* such that z <« z'.
Then

{(r1,72) € L* | (T(z1,71), S(x2,72)) <1+ (Y1,%2)}
2 {(1,72) € L* | (T(z,71), S(2h,72)) <r+ (y1,92)}

since T'(z1,71) < T(x},71) and S(z2,7v2) > S(z4,7v2). Hence

sup{(y1,72) € L* | (T(z1,m), S(z2,72)) <1~ (y1,92)}
Z Sup{(’)/la’}?) € L* | (T(xll,7l)as(x12,72)) SL* (yl,yZ)}

Analogously, monotonicity in the second component is obtained.

“An X — X-mapping f is involutive iff, for all z € X, f(f(z)) = &
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A generalization of the CRI will require us to define the direct image of
an IFS under an intuitionistic fuzzy relation (IFR).

Definition 4.5 Let A € ZF(U), R € ZF(U x V), T a t-norm and S a
t—conorm satisfying T < S*. The direct image R ot s A is defined as:

Rors A= { (v,5up T(ua(w) (), inf Sa(w),vm,0)) [0 € 5}5)

Now we have all the necessary tools to generalize the GMP and the CRI.
Definition 2.1 can be maintained if we replace the word “fuzzy” by “intu-
itionistic fuzzy”, and F(U) and F(V) by ZF(U) and ZF(V) respectively.
We call this pattern Intuitionistic Generalized Modus Ponens (IGMP).

Just as in the fuzzy case, a realization of the IGMP can be obtained
by defining the output B’ as the direct image of the input A’ under an
intuitionistic fuzzy relation R representing the intuitionistic fuzzy rule. This
gives rise to the following generalization of the CRI.

Definition 4.6 (IFS-based Compositional Rule of Inference, ICRI)
Let X andY be variables assuming values in U, resp. V. Consider intuition-
istic fuzzy facts “X is A'” and “X and Y are R”, where A" € TF(U),R €
IF(U x V) (R is an intuitionistic fuzzy relation between U and V). The
ICRI allows us to infer the fuzzy fact: “Y is B' = Ropg A'”, where (T, S)
s a given pair of a t—norm and a t—conorm satisfying T < S*.
Ezxpressing this under the form of an inference scheme, we get:

X is A

(X,Y)is R

Y is B'=Ropg A’

We use an IF implicator Z to define R. Given IFSs A and B and Z, we
calculate, for (u,v) €U x V,

(ur(u, ), vr(u,v)) = T((na(u), va(u)), (kB (v),vB(v))),

thus defining R. Using this definition, it is clear that the ICRI is an exten-
sion of the fuzzy-based CRI.

5 Validity of the Modus Ponens

As pointed out in [3], validity of the modus ponens (MP) is essential if one
is interested in passing from hypothesis to conclusions without loss in the
degree of truth. Before we introduce the definition of validity, we first give
the following definition.



Definition 5.1 (Intuitionistic fuzzy tautology, IFT) [3] Let a = (a1,a2) €
L*, then a is said to be an “intuitionistic fuzzy tautology” if and only if
ai > as.

Definition 5.2 (Validity of the modus ponens) [3/ We say that the
MP is valid for an IF implicator T iff, for a = (a1,a2),b = (b1,b2) € L*, we
have®

a1 > ag A pri(Z(a,b)) > pro(Z(a,b)) = by > by

This amounts to: “if a is an IFT and Z(a, b) is an IFT, then b is an IFT”.

Unfortunately, the implicators defined in the previous section, do not
satisfy the validity of the modus ponens, as shown in the following theorem.

Theorem 5.1

o If for the mapping N there exists an © = (z1,72) € L* such that
z1 > x2 and pri(N(z)) # 0, then the modus ponens in not valid for
the S—implicator Is T v .

e The modus ponens is not valid for any R—implicator.
Proof.

e Let z = (z1,29) € L* with 21 > x9 be such that N (z) = (2}, z),) with
z) #0, and let y = (0,2)). Then

IS,T,N(‘Tay) = N(‘T) VS,Ty = (S(‘Tllao)aT("I"IZa‘/Ell)) = (wllaT(‘TI%‘Tll))a

with #} > T'(z},2). This shows that the modus ponens is not valid
for Zg T nr.

e Let z = (r1,22) € L* and y = (y1,y2) € L* such that yo > y1 > 21 >
3 = 0. Then T(z1,71) < 21 < y1, V91 € [0,1] and S(z2,72) = 72,
hence

sup{(71,72) € L™ | (T(z1,1), S(z2,72)) <1~ y} = (1 — Y2, 92)-

If yo < %, then 1 — yo > y5. For the MP to be valid, we need:

(V(al,ag) € L*)(V(bl,bg) € L*)(a1 > as N\
pri(Z((a1, az2), (b1,02))) > pra(Z((a1,a2), (b1,b2))) = b1 > bo)

The chosen z and y satisfy z; > x9 and pri(Z(z,y)) > pro(Z(z,y)),
but have y; < y2. Hence the MP is not valid.

®The projection mappings pri, pra are defined, for any (z1,2) € L*, as: pri(z1,x2) =
z1,pr2(T1,T2) = T2
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In [3] Atanassov defines a number of alleged implicators for which the
modus ponens is valid. Unfortunately, none of his proposed mappings is an
IF implicators in the sense of definition 4.2 (either the border conditions, or
the hybrid monotonicity, or both, are violated).

One may wrongly conclude from the above discussion that the implica-
tors defined in section 4 are of minor interest. Indeed, in the fuzzy case
validity is defined as, for a,b € [0,1] and Z a fuzzy implicator, “a is a fuzzy
tautology (FT) and Z(a,b) is a FT implies b is a FT”, where z € [0,1] is
said to be a FT if and only if z > % (cfr. [3]). The modus ponens is not
valid for fuzzy S—implicators either.® However, most of the commonly used
fuzzy implicators belong to this class.

Set apart from these considerations, we still find it useful to look for
intuitionistic fuzzy implicators for which the modus ponens does hold. This
will be the subject of a future paper.

6 Conclusion and Future Work

The interest for Intuitionistic Fuzzy Sets from the perspective of logical
deduction will continue to grow as more people become familiar with their
straightforward semantics and flexible operations. As it turns out, we could
find very useful results not previously established, notably the extension of
a very wide range of fuzzy implicators to IFS’s and their application in the
intuitionistic CRI. The consistency of the reached approach still needs to
be looked into systematically. The procedure of checking for validity lined
out in section 5, along with several other criteria that the inference should
satisfy, provides us with various yardsticks for evaluating the performance
of our inference scheme. For FS—-based GMP, extensive studies have been
carried out for this purpose [4] [9].
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