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Abstract—Imbalanced classification deals with learning from
data with a disproportional number of samples in its classes.
Traditional classifiers exhibit poor behavior when facing this kind
of data because they do not take into account the imbalanced
class distribution. Four main kinds of solutions exist to solve this
problem: modifying the data distribution, modifying the learning
algorithm for considering the imbalance representation, including
the use of costs for data samples, and ensemble methods. In
this paper, we adopt the second type of solution, and introduce
a classification algorithm for imbalanced data that uses fuzzy
rough set theory and ordered weighted average aggregation. The
proposal considers different strategies to build a weight vector
to take into account data imbalance. Our methods are validated
by an extensive experimental study, showing statistically better
results than thirteen other state-of-the-art methods.

Index Terms—machine learning, imbalanced classification,
fuzzy rough sets, ordered weighted average.

I. INTRODUCTION

LEARNING from imbalanced data is a challenging task
that has gained attention over the last few years [28],

[35], [41]. In contrast to traditional classification, it deals with
data sets where one or more classes are under-represented. In
this paper, we consider the two-class case where one class
(the majority or negative class) is over-represented and the
other class (the minority or positive class) is under-represented.
This characteristic is very common in real-world applications,
such as anomaly detection [33], medical applications [34],
microarray data [49], database marketing [15], etc., and has
opened up a whole new field of research to develop new
techniques to overcome the imbalance problem.

This work was partially supported by the Spanish Ministry of Science and
Technology under the project TIN2011-28488 and the Andalusian Research
Plans P11-TIC-7765 and P10-TIC-6858, and by project PYR-2014-8 of the
Genil Program of CEI BioTic GRANADA. The authors would like to thank
Nitesh Chawla for making the code of the Hellinger Distance Decision Tree
method described in [10] and referred to in this paper as HDDT+bagging
available.

E. Ramentol and Y. Caballero are with the Department of Com-
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Classical machine learning algorithms often obtain high ac-
curacy over the majority class, while for the minority class the
opposite occurs. This happens because the classifier focuses
on global measures that do not take into account the class data
distribution [28], [35], [41]. Nevertheless the most interesting
information is often found within the minority class.

Many techniques for dealing with class imbalance have
emerged. These techniques can be grouped into four main
categories: those that modify the data distribution by prepro-
cessing techniques (data level solutions), those at the level
of the learning algorithm which adapt a base classifier to
deal with class imbalance (algorithm level solutions), those
that apply different costs to misclassification of positive and
negative samples (cost-sensitive solutions) and ensemble based
solutions that combine the previous solutions by means of an
ensemble.

In this paper, we present a new algorithm level solution to
classify imbalanced data that is based on the Fuzzy Rough
Nearest Neighbor (FRNN) classifier introduced in [32]. In
order to predict the class of a new test instance, the FRNN
algorithm computes the sum of the memberships of the in-
stance to the fuzzy-rough lower and upper approximation of
each class. The lower approximation membership expresses
the degree to which similar elements of the opposite class
do not exist, while the upper approximation membership tells
us to which extent similar elements of the same class exist.
Finally, FRNN assigns the instance to the class with the higher
sum.

However, this algorithm has some important weaknesses.
On one hand, its classifications are completely determined by
the closest samples in either class, thus making it very sensitive
to noise [44]. On the other hand, FRNN treats the positive and
negative class in a symmetric way and hence makes no provi-
sions for the class imbalance. Therefore, in this paper, we have
designed a new classifier called the Imbalanced Fuzzy Rough
Ordered Weighted Average Nearest Neighbor (IFROWANN)
algorithm; it computes the approximations taking into account
not only the closest samples of the opposite class, but all of
them, assigning them decreasing weights proportionate to their
similarity with the test sample x, following two steps:

1) we consider different weight vectors for the majority and
the minority class, taking into account the fact that the
former contains much fewer elements than the latter.

2) we aggregate training samples’ contributions by means
of the ordered weighted average (OWA) fuzzy rough set
model from [11].

Using this approach, our proposed algorithm can better address
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the imbalanced data distributions.
To evaluate the quality of our model, we have carried out

an extensive experimental analysis on a collection of 102
imbalanced data sets with different imbalance ratios (IR),
originating from the UCI repository. In the experiments, we
have compared our algorithm with the original FRNN proposal
to show that it is better positioned to deal with the class imbal-
ance. In order to demonstrate the importance of differentiating
the weight vectors for the positive and negative class, we have
considered a version of IFROWANN in which equal weight
vectors are assigned to each class. This has shown to seriously
weaken the performance of the algorithm. Finally, we have
compared IFROWANN with a set of thirteen state-of-the-art
methods specifically designed for imbalanced classification.
To assess the classification performance, we have used the
well-known Area Under the Curve (AUC) metric, and the
significance of the results has been supported by the proper
statistical analysis.

The remainder of this paper is organized as follows. In
Section II, we provide an introduction to the imbalanced classi-
fication problem, including an overview of the state-of-the-art
methods for solving it, and a discussion of its evaluation. In
Section III, we recall the standard FRNN algorithm. In Section
IV, we introduce the IFROWANN algorithm, and outline
the proposed weighting strategies to deal with imbalanced
data. In Section V, we discuss the setup of the experimental
study, including a description of the benchmark data sets, the
algorithms used for comparison along with their parameters,
and the statistical tests used for performance comparison. In
Section VI, we present and discuss the results. In Section VII,
we draw some conclusions about the study and outline future
work.

II. IMBALANCED CLASSIFICATION PROBLEMS

A. Two-Class Imbalanced Classification: Models and Evalu-
ation

The class imbalance problem is growing in importance and
has been identified as one of the 10 main challenges of Data
Mining [48]. The two-class version of this problem is formally
described below.

We consider a set of data samples U , characterized by their
values for the set A = {a1, . . . ,am} of attributes. Moreover,
U = P∪N, where P represents the positive class and N the
negative class. We denote p = |P|, n = |N| and t = |U |= p+n.
The imbalance ratio is then defined as IR = n

p .
The imbalanced classification problem can be tackled using

four main types of solutions:
1) Sampling (solutions at the data level) [4], [7], [8],

[22]: this kind of solution consists of balancing the
class distribution by means of a preprocessing strategy.
Techniques at data level are divided in 3 groups:
• Undersampling methods: create a subset of the

original data set by eliminating some of the exam-
ples of the majority class.

• Oversampling methods: create a superset of the
original data set by replicating some of the examples
of the minority class or creating new minority

instances, for example by interpolation of original
instances.

• Hybrid methods: combine the two previous meth-
ods by reducing the size of the majority class and
increasing the number of minority elements.

An important advantage of the data level approaches is
that their use is independent from the classifier selected
[38].

2) Design of specific algorithms (solutions at the algo-
rithmic level) [5], [31], [10] : in this case, a traditional
classifier is adapted to deal directly with the imbalance
between the classes, for example, modifying the cost per
class [26] or adjusting the probability estimation in the
leaves of a decision tree to favor the positive class [46].

3) Cost-sensitive solutions [14], [42], [50], [51]: these
kind of methods incorporate solutions at data level, at
algorithmic level, or at both levels together, that try to
minimize higher cost errors. Let C (+,−) denote the cost
of misclassifying a positive (minority class) instance as
a negative (majority class) instance and C (−,+) the cost
of the inverse case. We impose C (+,−)>C (−,+), i.e.,
the cost of misclassifying a positive instance should be
higher than the cost of misclassifying a negative one.

4) Ensemble solutions [20]: Ensemble techniques for im-
balanced classification usually consist of a combination
of an ensemble learning algorithm and one of the tech-
niques above, specifically, data level and cost-sensitive.
Through the addition of a data level approach to the
ensemble learning algorithm, the new hybrid method
usually preprocesses the data before training each clas-
sifier. On the other hand, instead of modifying the base
classifier in order to accept costs in the learning process,
cost-sensitive ensembles guide the cost minimization via
the ensemble learning algorithm.

Below, we review some high-quality proposals that will be
used in our experimental study.

• Synthetic Minority Oversampling Technique
(SMOTE) [7]. An oversampling method that creates
new minority class examples by interpolating between
minority class examples and their nearest neighbors.

• SMOTE-ENN [4]. This hybrid method applies the Edited
Nearest Neighbor (ENN) technique to remove examples
from both classes after SMOTE has been applied. In
particular, any example that is misclassified by its three
nearest neighbors is removed from the training set.

• SMOTE-RSB∗ [38]. This is another hybrid data level
method. It first applies SMOTE to introduce new syn-
thetic minority class instances to the training set, and
then removes synthetic instances that do not belong to the
lower approximation of its class, computed using rough
set theory [36]. This process is repeated until the training
set is balanced.

• Hellinger Distance Decision Trees (HDDT) [10]. This
algorithm level method is a decision tree technique that
uses the Hellinger distance as the splitting criterion. It
yields very good results for imbalanced data when used
in a bagging (ensemble) configuration, which is the setup
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considered in this paper.
• Cost-sensitive C4.5 decision tree (CS-C4.5) [42]. This

method builds decision trees that try to minimize the
number of high cost errors and, as a consequence, leads
to the minimization of the total misclassification costs in
most cases. The method changes the class distribution
such that the induced tree is in favor of the class with
high weight/cost and is less likely to commit errors with
high cost.

• Cost-sensitive Support Vector Machine (CS-SVM)
[45]. This method is a modification of the soft-margin
support vector machine [43]. It biases SVM in a way that
will push the boundary away from the positive instances
using different error costs for the positive and negative
classes.

• EUSBOOST [21]. An ensemble method that uses Evo-
lutionary UnderSampling (EUS, [25]) guided boosting.
EUS arises from the application of evolutionary prototype
selection algorithms to imbalanced domains. In EUS,
each chromosome is a binary vector representing the
presence or absence of instances in the data set. This
method reduces the search space by considering only
the majority class instances; hence, all the minority class
instances are always introduced in the new data set. The
fitness function tries to balance between the minority
class and majority class instances, and includes a diversity
mechanism among classifiers.

Next, we will discuss the evaluation of machine learning
algorithms in imbalanced domains. Consider a two-class prob-
lem. For any given classifier, a correctly classified positive
instance is called a true positive (TP). Similarly, a true negative
(TN) is a negative instance that was correctly classified as
negative. In the remaining cases, a positive instance was either
misclassified as negative, a false negative (FN), or a negative
instance was wrongly predicted as positive, a false positive
(FP). The confusion matrix, shown in Table I, presents a
numerical summary of this information, showing the number
of instances in each case.

Actual/Predicted Positive Negative
Positive TP FN
Negative FP TN

Table I: Confusion matrix obtained after classification of a
two-class dataset.

For classical domains, the performance is typically evalu-
ated using predictive accuracy (acc), defined by

acc =
T P+T N

T N +T N +FP+FN
.

However, this is not appropriate when the data are imbalanced
or when the costs of different errors vary markedly [9]. Indeed,
accuracy can take on misleadingly high values. As an example,
assume that the IR of the data set is 9, meaning that 90% of
the elements belong to the negative class. When we classify
all instances as negative, we obtain a predictive accuracy of
90%. Even though this is a high value, the classifier has still

misclassified the entire positive class, which renders it quite
useless.

A more appropriate way to measure the performance of
classification over imbalanced data sets are the Receiver Oper-
ating Characteristic (ROC) graphs [6]. These graphs visualize
the tradeoff between the True Positive Rate (TPR) and False
Positive Rate (FPR), defined as

T PR =
T P

T P+FN
and FPR =

FP
FP+T N

,

when the classifier is treated as a probabilistic classifier,
that is, one which calculates the probability that the element
under consideration belongs to the given class. By varying the
threshold for belonging to the positive class, different points
of the ROC curve are generated.

The Area Under the ROC Curve (AUC) [30] then provides
a single-number summary for the performance of learning
algorithms. The AUC can be interpreted as the probability that
the classifier assigns a lower probability of belonging to the
positive class to a randomly chosen negative instance than to a
randomly chosen positive instance [16].There are many ways
to compute the AUC. In this paper, we use the definition given
by Fawcett [16], who proposed an algorithm that, instead of
collecting ROC points, adds successive areas of trapezoids to
the computed AUC value.

III. FUZZY-ROUGH NEAREST NEIGHBOR ALGORITHM
(FRNN)

In this section, we recall the FRNN classification algorithm
proposed in [32]. We apply it directly to the specific case
of two-class imbalanced data. In order to predict the class
of a new test instance x, the FRNN algorithm computes the
sum of the memberships of x to the fuzzy-rough lower and
upper approximation of each class, and assigns the instance to
the class for which this sum is higher. More precisely, let
I be an implicator1, T a t-norm and R a fuzzy relation
that represents approximate indiscernibility between instances.
The membership degrees P(x) and N(x) of x to the lower
approximation of P and N are defined by, respectively,

P(x) = min
y∈U

I (R(x,y),P(y)) (1)

N(x) = min
y∈U

I (R(x,y),N(y)) (2)

The value P(x) can be interpreted as the degree to which
objects outside P (thus, in N) which are approximately in-
discernible from x do not exist. A similar interpretation can
be given to the value N(x).

On the other hand, the membership degrees P(x) and N(x)
of x to the upper approximation of P and N under R are defined
by, respectively,

P(x) = max
y∈U

T (R(x,y),P(y)) (3)

N(x) = max
y∈U

T (R(x,y),N(y)) (4)

1An implicator I is a [0,1]2→ [0,1] mapping that is decreasing in its first
argument and increasing in its second argument, and that satisfies I (0,0) =
I (0,1) = I (1,1) = 1 and I (1,0) = 0.
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P(x) can be interpreted as the degree to which another element
in P close to x exists, and similarly for N(x).

In this paper, we consider I and T defined by I (a,b) =
max(1−a,b) and T (a,b) = min(a,b), for a,b in [0,1]. It can
be verified that in this case, Eqs. (1)–(4) can be simplified to

P(x) = min
y∈N

1−R(x,y) (5)

N(x) = min
y∈P

1−R(x,y) (6)

P(x) = max
y∈P

R(x,y) (7)

N(x) = max
y∈N

R(x,y) (8)

In other words, P(x) is determined by the similarity to the
closest negative (majority) sample, and N(x) is determined by
the similarity to the closest positive (minority) sample. On the
other hand, to obtain P(x) and N(x), we look for the most
similar element to x belonging to the positive, resp., negative
class. Also, the lower and upper approximations are clearly
related: P(x) = 1−N(x) and N(x) = 1− P(x). The FRNN
algorithm then determines the classification of the test instance
x as follows. We compute

µP(x) =
P(x)+P(x)

2
=

P(x)+1−N(x)
2

(9)

µN(x) =
N(x)+N(x)

2
=

N(x)+1−P(x)
2

(10)

x is classified to the positive class if µP(x)≥ µN(x), otherwise
it is classified to the negative class.

The main drawback of this method for imbalanced classifi-
cation is that it treats all classes symmetrically, not making a
distinction between majority and minority instances. The next
section introduces a new strategy to deal with imbalanced data
based on FRNN.

IV. FUZZY-ROUGH ORDERED WEIGHTED AVERAGE
APPROACH TO IMBALANCED CLASSIFICATION

As discussed in the previous section, FRNN treats the
positive and negative class in a completely symmetric way
and hence makes no provisions for the class imbalance. On
the other hand, the classifications of the FRNN algorithm are
completely determined by the closest samples in either class,
which may be too naive a strategy, especially if noise is present
in the data.

To deal with these problems, in this section we introduce
the imbalanced fuzzy-rough ordered weighted average nearest
neighbor (IFROWANN) classifier. Its general format is intro-
duced in Section IV-A, while in Section IV-B, we propose
different weighting strategies for the positive and the negative
class and in Section IV-C, we consider different strategies to
model the indiscernibility relation.

A. Imbalanced Fuzzy-Rough Ordered Weighted Average Near-
est Neighbor Algorithm (IFROWANN)

In order to take into account not just the closest samples for
a test instance, we rely on ordered weighted average (OWA)
operators [47], which are recalled first. Given a sequence
A of t real values A = 〈a1, . . . ,at〉, and a weight vector

W = 〈w1, . . . ,wt〉 such that wi ∈ [0,1] and
t
∑

i=1
wi = 1, the OWA

aggregation of A by W is given by

OWAW (A) =
t

∑
i=1

wibi

where bi = a j if a j is the ith largest value in A. For instance,
if A = 〈0.3,0.1,0.2〉, and W = 〈0.3,0.2,0.5〉, then

OWAW (A) = 0.3∗0.3+0.2∗0.2+0.5∗0.1 = 0.18

The OWA operator has the minimum and the maximum
operator as a special case. Indeed, if W = 〈0,0, . . . ,1〉, then
OWAW (A) will return the minimum value in A, while W =
〈1,0, . . . ,〉 will cause OWAW (A) to be the maximum of A.
Furthermore, we can consider OWA weight vectors to model
a wide variety of aggregation strategies different from min and
max, and apply them in Eqs. (1)–(4).

In general, given OWA weight vectors W l
P and W l

N of length
t = |U |, an implicator I and a fuzzy relation R, we can
define the membership of a test instance x to the W l

P-lower
approximation of P, and to the W l

N-lower approximation of N
by

PW l
P
(x) = OWAW l

P
y∈U

〈I (R(x,y),P(y))〉 (11)

NW l
N
(x) = OWAW l

N
y∈U

〈I (R(x,y),N(y))〉, (12)

On the other hand, given OWA weight vectors W u
P and W u

N of
length t = |U | and a t-norm T , we can define the membership
of x to the W u

P -upper approximation of P, and to the W u
N-upper

approximation of N by

PW u
P
(x) = OWAW u

P
y∈U

〈T (R(x,y),P(y))〉 (13)

NW u
N
(x) = OWAW u

N
y∈U

〈T (R(x,y),N(y))〉 (14)

The following proposition shows that, similar to Section
III, a relationship between the lower and upper approximation
can be established when specific conditions are imposed on
the logical connectives and weight vectors.

Proposition 1. Let I and T be defined by I (a,b) =
max(1 − a,b) and T (a,b) = min(a,b), for a,b in [0,1].
Additionally, we impose the conditions (W u

P )i = (W l
N)t−i+1 and

(W u
N)i = (W l

P)t−i+1, for i = 1, . . . , t. Under these restrictions,
PW u

P
(x) = 1−NW l

N
(x) and NW u

N
(x) = 1−PW l

P
(x), for any x in

U.

Proof. We rename the elements of U such that U =
{y1, . . . ,yt}, where

min(R(x,yi),P(yi))≥min(R(x,y j),P(y j))

for i≥ j. Let x ∈U , it holds that
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PW u
P
(x) = OWAW u

P
y∈U

〈T (R(x,y),P(y))〉

=
t

∑
i=1

(W u
P )i min(R(x,yi),P(yi))

=
t

∑
i=1

(W l
N)t−i+1 min(R(x,yi),1−N(yi))

=
t

∑
i=1

(W l
N)t−i+1(1−max(1−R(x,yi),N(yi)))

= 1−
t

∑
i=1

(W l
N)iI (R(x,yt−i+1),N(yt−i+1))

= 1−NW l
N
(x)

Analogously, we can establish that NW u
N
(x) = 1−PW l

P
(x).

Assuming the conditions of Proposition 1, the IFROWANN
algorithm then determines the classification of the test instance
x by computing

µP(x) =
PW l

P
(x)+PW u

P
(x)

2
=

PW l
P
(x)+1−NW l

N
(x)

2
(15)

µN(x) =
NW l

N
(x)+NW u

N
(x)

2
=

NW l
N
(x)+1−PW l

P
(x)

2
(16)

Similarly as in FRNN, x is classified to the positive class if
µP(x)≥ µN(x), otherwise it is classified to the negative class.

B. OWA Weight Vectors for Imbalanced Classification

A crucial factor in the application of IFROWANN is the
choice of the OWA weight vectors in Eqs. (11)–(14). Because
of the relationship we assume between the lower and upper
approximation, in this section we only focus on the former.
In particular, we design weight vectors that provide flexible
generalizations of the minimum operator, and at the same time
take into account the imbalance present in the data.

First note that, under our assumptions, I (R(x,y),P(y)) = 1
as soon as P(y) = 1, in other words, when sample y is
positive. Similarly, I (R(x,y),N(y)) = 1 always holds when
y is negative. It can be argued that these values should not be
taken into account when computing the lower approximation;
indeed, the commonsense interpretation of rough sets [40]
states that an instance x belongs to the lower approximation of
a class to the extent that it can be discerned (separated) from
instances belonging to different classes; thus, instances from
x’s own class should not influence the instance’s membership
to the lower approximation.

In the context of the IFROWANN approach, we can imple-
ment this idea by assigning a weight of 0 to the corresponding
positions in the OWA weight vectors. In particular, the first p
positions in W l

P can be put to 0, taking into account that they
correspond to the highest values of I (R(x,y),P(y)), and thus
to the p positive samples in the training data.

The remaining n positions in the weight vector W l
P corre-

spond to the instances in N. For these instances, the impli-
cation values equal I (R(x,y),P(y)) = max(1−R(x,y),0) =
1−R(x,y). We consider two alternative strategies to construct

the weight vectors, both of which assign higher weights to the
smaller implication values.

W l1
P =

〈
0, . . . ,0,

2
n(n+1)

,
4

n(n+1)
, . . . ,

2(n−1)
n(n+1)

,
2

n+1

〉
(17)

W l2
P =

〈
0, . . . ,0,

1
2n−1

,
2

2n−1
, . . . ,

2n−2

2n−1
,

2n−1

2n−1

〉
(18)

The main difference between both vectors is that in the first
case, weights decrease less rapidly than in the second case and
are distributed more evenly among the instances. For instance,
if n = 5, then

W l1
P =

〈
0, . . . ,0,

1
15

,
2
15

,
3
15

,
4

15
,

5
15

〉
(19)

W l2
P =

〈
0, . . . ,0,

1
31

,
2
31

,
4
31

,
8

31
,

16
31

〉
(20)

In a completely analogous way, we can obtain two versions
of the weight vectors W l1

N , where the first n positions are given
a value of 0.

W l1
N =

〈
0, . . . ,0,

2
p(p+1)

,
4

p(p+1)
, . . . ,

2(p−1)
p(p+1)

,
2

p+1

〉
(21)

W l2
N =

〈
0, . . . ,0,

1
2p−1

,
2

2p−1
, . . . ,

2p−2

2p−1
,

2p−1

2p−1

〉
(22)

Since typically p is a lot smaller than n, the obtained weight
vectors for the positive and the negative classes will be quite
different. However, for the second weighting strategy, we need
to take into account that in practice, even for fairly small values
of n and p, W l2

P and W l2
N soon approximate the fixed weight

vector
W =

〈
. . . ,

1
32

,
1

16
,

1
8
,

1
4
,

1
2

〉
(23)

For this reason, in our experiments we will also consider mixed
approaches, where e.g. W l1

P and W l2
N are used in combination.

On the other hand, when n gets large, all the weights in
W l1

P become very small. Consequently, a similar phenomenon
occurs as for the kNN (k Nearest Neighbor) classifier [12]
when the number k of considered neighbors gets very high,
i.e., the individual impact of instances gets diluted and the
classification performance drops sharply. In order to mitigate
this effect, we consider the following variant of W l1

P . Given
0≤ γ ≤ 1,

W l1,γ
P =

〈
0, . . . ,0,

2
r(r+1)

,
4

r(r+1)
, . . . ,

2(r−1)
r(r+1)

,
2

r+1

〉
(24)

where r = dp + γ(n− p)e, and the first t − r values of the
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vector are equal to 0. Clearly, W l1,0
P = W l1

N and W l1,1
P = W l1

P .
Hence, the number r of non-zero weights in W l1,γ

P will always
be between p and n. In our experiments, we will use a small
value of γ , e.g. γ = 0.1, to limit the number of instances which
receive strictly positive weights.

C. Indiscernibility Relation

Apart from the OWA weight vectors, we also need to make
a choice for the fuzzy relation R. In order to determine the
approximate indiscernibility between two instances x and y
based on the set A of attributes, in this paper we assume the
following definitions. Given a quantitative (i.e., real) attribute
a,

Ra(x,y) = 1− |a(x)−a(y)|
range(a)

(25)

while for a nominal attribute a,

Ra(x,y) =
{

1 if a(x) = a(y)
0 otherwise (26)

We establish the range of a feature based on the training
data. In case a test sample has a value for a feature that lies
outside this range, we dynamically change the range to take
into account the extreme value.

We then consider the three following alternatives for defin-
ing the fuzzy relation R:

RTL(x,y) = TL(Ra1(x,y), . . . ,Ram(x,y)) (27)
RMin(x,y) = min(Ra1(x,y), . . . ,Ram(x,y)) (28)

RAv(x,y) =
Ra1(x,y)+ . . .+Ram(x,y)

m
(29)

where the Łukasiewicz t-norm TL is defined by, for
u1,u2, . . . ,um in [0,1],

TL(u1,u2, . . . ,um) = max(u1 +u2 + . . .+um−m,0). (30)

It can be easily checked that RTL(x,y)≤ RMin(x,y)≤ RAv(x,y)
always holds. In other words, RTL provides a comparatively
more conservative (lower) estimate for the similarity between x
and y, while RAv provides a more liberal (higher) one, and RMin
is in between the two. In the next sections, we will evaluate
the impact of this choice on the results of our experiments.

V. EXPERIMENTAL SETUP

In this section, we describe the experimental framework
used to validate our proposal, including the benchmark data
sets, the particular configurations considered for IFROWANN
and for the baseline and state-of-the-art methods, and the
statistical tests used in order to carry out the performance
comparison.

A. Data sets

We consider 102 data sets with different imbalance ratios
(between 1.82 and 129.44) to evaluate our proposal. They
originate from the UCI repository [3] and were obtained by
modifying multiple class data sets into two-class imbalanced
problems. To create a new two-class data set, we take one
or more small classes versus one or more of the remaining

classes. The name of the resulting data set references the
original classes used in the construction, for instance: in ecoli-
0-1-3-7vs2-6 the first class consists of class0, class1, class3
and class7 from the original ecoli data set, while the second
is composed of class2 and class6. The characteristics of these
data sets can be found in Table II, showing the imbalance
ratio (IR), the number of instances (Inst) and the number of
attributes (Attr) for each of them.

Apart from considering the data set collection as a whole, in
our experimental study we have also considered three subsets
of the collection based on their IR. The purpose of this division
is to evaluate the behavior of the algorithms at different
imbalance levels.

1) IR < 9 (low imbalance): This group contains 22 data
sets, all with IR lower than 9.

2) IR ≥ 9 (high imbalance): This group contains 80 data
sets, all with IR at least 9.

3) IR≥ 33 (very high imbalance): This group contains 31
data sets, all with IR at least 33. This is a subset of the
collection considered in the second case.

Furthermore, each data set is partitioned in order to perform
a five fold cross-validation (5FCV). The partitions were built in
such a way that the quantity of elements in each class remains
uniform [17]. The data sets are available online2 as part of the
KEEL data set repository [1], [2].

B. Algorithms Analyzed in the Experimental Study

1) IFROWANN: based on the proposals in Section IV-B, we
consider the following six configurations for the IFROWANN
weight vectors:

1) W1 = 〈W l1
P ,W l1

N 〉
2) W2 = 〈W l1

P ,W l2
N 〉

3) W3 = 〈W l2
P ,W l1

N 〉
4) W4 = 〈W l2

P ,W l2
N 〉

5) W5 = 〈W l1,γ
P ,W l1

N 〉 with γ = 0.1
6) W6 = 〈W l1,γ

P ,W l2
N 〉 with γ = 0.1

In order to check the robustness of the parameter γ in the last
two configurations, we will also perform a sensitivity analysis
with γ taking values between 0 and 1.

Each of these weight vectors will be combined with the
three indiscernibility relations considered in Section IV-C. The
resulting 18 combinations will be denoted TL-Wi, MIN-Wi and
AV-Wi, with i = 1, . . . ,6.

2) Baseline Methods—FRNN and IFROWANN using Equal
Weight Vectors: Apart from comparing IFROWANN with the
original FRNN algorithm, we also want to demonstrate the
importance of using different weight vectors for the positive
and the negative class. For this reason, we will consider a par-
ticular configuration of IFROWANN, denoted W7 = 〈W l ,W l〉,
in which equal weight vectors are used for both classes:

W l =

〈
2

(n+ p)(n+ p+1)
,

4
(n+ p)(n+ p+1)

, . . . ,

2(n+ p−1)
(n+ p)(n+ p+1)

,
2

n+ p+1

〉
(31)

2See http://www.keel.es/datasets.php.
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Table II: Description of the data sets used in the experimental evaluation.
Dataset IR Inst Attr Dataset IR Inst Attr
glass1 1.82 214 9 ecoli4 15.8 336 7
ecoli-0vs1 1.86 220 9 page-blocks-1-3vs4 15.86 472 10
wisconsinImb 1.86 683 7 abalone9-18 16.4 731 8
iris0 2 150 4 glass-0-1-6vs5 19.44 184 9
glass0 2.06 214 9 shuttle-c2-vs-c4 20.5 129 9
yeast1 2.46 1484 8 cleveland-4 21.85 297 13
habermanImb 2.78 306 3 shuttle-6vs2-3 22 230 9
vehicle2 2.88 846 18 yeast-1-4-5-8vs7 22.1 693 8
vehicle1 2.9 846 18 ionosphere-bredvsg 22.5 235 33
vehicle3 2.99 846 18 glass5 22.78 214 9
glass-0-1-2-3vs4-5-6 3.2 214 9 yeast-2vs8 23.1 482 8
vehicle0 3.25 846 18 wdbc-MredBvsB 23.8 372 30
ecoli1 3.36 336 7 texture-2redvs3-4 23.81 1042 40
appendicitisImb 4.05 106 7 yeast4 28.1 1484 8
new-thyroid1 5.14 215 5 winequalityred-4 29.17 1599 11
new-thyroid2 5.14 215 5 kddcup-guess-passwdvssatan 29.98 1642 41
ecoli2 5.46 336 7 yeast-1-2-8-9vs7 30.57 947 8
segment0 6.02 2308 19 abalone-3vs11 32.47 502 8
glass6 6.38 214 9 winequalitywhite-9vs4 32.6 168 77
yeast3 8.1 1484 8 yeast5 32.73 1484 8
ecoli3 8.6 336 7 winequalityred-8vs6 35.44 656 11
page-blocks0 8.79 5472 10 ionosphere-bredBvsg 37.5 231 33
ecoli-0-3-4vs5 9 200 7 ecoli-0-1-3-7vs2-6 39.14 281 7
ecoli-0-6-7vs3-5 9.09 222 7 abalone-17vs7-8-9-10 39.31 2338 8
yeast-2vs4 9.1 515 7 abalone-21vs8 40.5 581 8
ecoli-0-2-3-4vs5 9.1 202 7 yeast6 41.4 1484 8
glass-0-1-5vs2 9.12 172 9 segment-7redvs2-4-5-6 42.58 1351 19
yeast-0-3-5-9vs7-8 9.12 506 8 winequalitywhite-3vs7 44 900 11
yeast-0-2-5-6vs3-7-8-9 9.14 1004 8 wdbc-MredvsB 44.63 365 30
yeast-0-2-5-7-9vs3-6-8 9.14 1004 8 segment-5redvs1-2-3 45 1012 19
ecoli-0-4-6vs5 9.15 203 6 winequalityred-8vs6-7 46.5 855 11
ecoli-0-1vs2-3-5 9.17 244 7 phoneme-1redvs0red 46.98 2543 5
ecoli-0-2-6-7vs3-5 9.18 224 7 texture-6redvs7-8 47.62 1021 40
glass-0-4vs5 9.22 92 9 kddcup-landvsportsweep 49.52 1061 41
ecoli-0-3-4-6vs5 9.25 205 7 abalone-19vs10-11-12 49.69 1622 8
ecoli-0-3-4-7vs5-6 9.28 257 7 magic-hredvsgred 54.1 2645 10
yeast-0-5-6-7-9vs4 9.35 528 8 winequalitywhite-3-9vs5 58.28 1482 11
ecoli-0-6-7vs5 10 220 6 shuttle-2vs5 66.67 3316 9
glass-0-1-6vs2 10.29 192 9 winequalityred-3vs5 68.1 691 11
ecoli-0-1-4-7vs2-3-5-6 10.59 336 7 phoneme-1redBvs0redB 69.7 2333 5
ecoli-0-1vs5 11 240 6 texture-12redvs13-14 71.43 1014 40
glass-0-6vs5 11 108 9 abalone-20vs8-9-10 72.69 1916 8
glass-0-1-4-6vs2 11.06 205 9 kddcup-bufferoverowvsback 73.43 2233 41
glass2 11.59 214 9 kddcup-landvssatan 75.67 1610 41
ecoli-0-1-4-7vs5-6 12.28 332 7 shuttle-2vs1red 81.63 4049 9
cleveland-0vs4 12.31 173 13 segment-6redvs3-4-5 82.5 1002 19
ecoli-0-1-4-6vs5 13 280 6 shuttle-6-7vs1red 86.96 2023 9
movement-libras-1 13 336 90 magic-hredBvsgredB 88 2403 10
shuttle-c0-vs-c4 13.87 1829 9 texture-7redvs2-3-4-6 95.24 2021 40
yeast-1vs7 14.3 459 7 kddcup-rootkit-imapvsback 100.14 2225 41
glass4 15.46 214 9 abalone19 129.44 4174 8

Each of the above baseline configurations will be combined
with the same indiscernibility relations considered above. We
denote the resulting methods TL-FRNN, MIN-FRNN, AV-
FRNN, TL-W7, MIN-W7 and AV-W7.

3) State-of-the-Art Methods: as discussed in Section II-A,
we will consider the following imbalanced learning methods
to compare our method with:
• SMOTE
• SMOTE-ENN
• SMOTE-RSB∗
• CS-C4.5
• CS-SVM
• EUSBOOST
• HDDT+Bagging

The first three methods are preprocessing techniques, so they
need to be combined with a base classifier. We chose three
well known classifiers, representing lazy learners, decision
tree-based methods and support vector machines, respectively:
• kNN [12]
• C4.5 [37]
• SVM [43]

The parameters of all the resulting thirteen proposals which
were used in our experimentation are described in Table III.

For detailed explanation of these parameters, we refer to the
corresponding articles. For the kNN method, in order to set the
number of neighbors optimally, we used the best value of k for
each data set, obtained by trying all values between 1 and the
total number of training instances, with 100 equidistant steps.
Figure 1 shows this analysis, averaged over all data sets.

C. Statistical tests for performance comparison

In order to compare the different algorithms appropriately,
we will conduct a statistical analysis using non-parametric
tests as suggested in the literature [13], [23], [24].

We first use Friedman’s aligned-ranks test [19] to detect
statistical differences among a set of algorithms. The Friedman
test computes the average aligned-ranks of each algorithm,
obtained by computing the difference between the performance
of the algorithm and the mean performance of all algorithms
for each data set. The lower the average rank, the better the
corresponding algorithm.

Then, if significant differences are found by the Friedman
test, we check if the control algorithm (the one obtaining
the smallest rank) is significantly better than the others using
Holm’s post hoc test [29]. The post hoc procedure allows us to
decide whether a hypothesis of comparison can be rejected at a
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Table III: Parameters of the state-of-the-art methods for the experimental study.
Algorithm Parameters
SMOTE Number of Neighbors = 5, Type of SMOTE = both, Balancing = YES

Quantity of generated examples = 1, Distance Function = HVDM, Type of Interpolation = standard
SMOTE-ENN Number of Neighbors ENN = 3, Number of Neighbors SMOTE = 5, Type of SMOTE = both, Balancing = YES

Quantity of generated examples = 1, Distance Function (SMOTE) = HVDM, Distance Function (ENN) = Euclidean
SMOTE-RSB∗ Number of Neighbors = 5, Type of neighbors = Both, Balance = Yes, Smoting = 1

Type of Interpolation = standard, Cutoffini = 0.6, Cutoffinal = 0.9
kNN Distance Function = Euclidean
C4.5 pruned = TRUE, confidence = 0.25, instancesPerLeaf = 2
SVM c = 1.0, Tolerance Parameter = 0.001, epsilon = 1.0E-12, Kernel Type = polynomial

Normalized PolyKernel exponent = 1.0, Normalized PolyKernel use Lower Order = False
FitLogisticModels = TRUE, ConvertNominalAttributesToBinary = True, PreprocessType = Normalize

EUSBOOST pruned = TRUE, confidence = 0.25, instancesPerLeaf = 2, Number of Classifiers = 10, Algorithm = ERUSBOOST
Train Method = NORESAMPLING, Quantity of balancing SMOTE = 50, IS Method = HammingEUB M GM

C4.5-CS pruned = TRUE, confidence = 0.25, instancesPerLeaf = 2, minimumExpectedCost = TRUE
SVM-CS Kernel Type = polynomial, C = 100.0, eps = 0.001

degree = 1, gamma = 0.01, coef0 = 0.0, nu = 0.1, p = 1.0, shrinking = 1
HDDT+Bagging For Bagging: bagSizePercent = 100, calcOutOfBag = false, numIterations = 100

For HDDT: binarySplits = true, collapse = false, confidenceFactor = 0.25, minNumObj = 2, reducedErrorPruning = false
saveInstanceData = false, subtreeRaising = true, unpruned = false, useLaplace = false

Figure 1: Tuning of the k parameter for kNN with SMOTE, SMOTE-RSB∗ and SMOTE-ENN.
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specified level of significance α . In this paper, we set α = 0.05.
In practice, it is very interesting to compute the adjusted p-
value, which represents the lowest level of significance of a
hypothesis that results in a rejection. In this manner, we can
find out whether two algorithms are significantly different and
how different they are.

VI. EXPERIMENTAL RESULTS

In this section, we present the results of our experimental
analysis3. In Section VI-A, we first compare the 18 variants of
IFROWANN over the entire collection of 102 data sets. Next,
in Section VI-B, we provide a detailed analysis for different
IR levels (low IR, high IR and very high IR). Section VI-C
compares our proposal with the baseline methods FRNN and
W7. Furthermore, in Section VI-D we compare the algorithms
that perform best in the first analysis with the state-of-the-art
methods for imbalanced classification. Finally, Section VI-E
provides a graphical analysis.

A. Comparative Analysis between IFROWANN Variants over
All Data Sets

Table IV shows the mean AUC obtained for 18 variants
of IFROWANN. We can see that AV-W6 obtains the highest

3The detailed results, per method and per data set, are available online at
the website associated to this paper, http://sci2s.ugr.es/frowa-imbalanced/

average AUC. There are also some quite noticeable differences
between the results obtained with each indiscernibility relation
(TL, AV, MIN). The best general results are obtained with AV,
while there are no great performance difference between TL
and MIN.

Table IV: Mean AUC for IFROWANN variants over all data
sets. The values marked in light blue (values higher than 0.91)
are taken into account in the statistical analysis.

Algorithm AUC Algorithm AUC Algorithm AUC
TL-W1 0.8943 AV-W1 0.9098 MIN-W1 0.8908
TL-W2 0.8802 AV-W2 0.9094 MIN-W2 0.8908
TL-W3 0.8893 AV-W3 0.8990 MIN-W3 0.8813
TL-W4 0.8998 AV-W4 0.9181 MIN-W4 0.9030
TL-W5 0.8928 AV-W5 0.9122 MIN-W5 0.8955
TL-W6 0.9054 AV-W6 0.9256 MIN-W6 0.9071

Next, we can also notice several differences between the
weighting strategies, which are summarized below:
• Exponentially decreasing weights (W4) outperform lin-

early decreasing weights (W1).
• Mixing different weighting strategies (W2 and W3) gen-

erally lowers the results compared to W1, and thus also
compared to W4.

• Varying W1 to only weigh a fraction of the negative
instances (W5) improves the results when using AV and
MIN; yet, they remain inferior to those of W4. On the
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other hand, this strategy slightly lowers the results when
TL is used. Figure 2a shows the sensitivity analysis for
γ , obtained over all data sets when this parameter moves
between 0 and 1. As can be seen, the results are overall
very stable. The TL curve shows a slight performance
drop for small values of γ , which might explain why
results worse than W1 are obtained in this case.

• Varying W4 to only a fraction of the negative instances
(W6) benefits the classification for high IR data sets, but
slightly deteriorates it for low IR data sets. The sensitivity
analysis in Figure 2b shows that the best results are
obtained for low values of γ , which justifies our choice
of γ = 0.1.

Figure 2: Sensitivity analysis for the parameter γ in the
weighting strategies W5 and W6, evaluated over all data sets.
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(b) IFROWANN-W6
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We proceed with the statistical analysis of our results. In
order to reduce the number of variants considered in the test,
and thus increase its discriminatory power, we have selected
only the highest scoring proposals (AUC higher than 0.91).
Such values are marked in light blue in Table IV.

The average ranks of the algorithms and the adjusted p-
values obtained by Holm’s post-hoc procedure are shown in
Table V. The p-value computed by Friedman test is 0.003426,
which indicates that the hypothesis of equivalence can be
rejected with high confidence.

Table V: Average Friedman rankings and adjusted p-values
using Holm’s post-hoc procedure for all data sets, using AV-
W6 as the control algorithm.

Algorithm Average Friedman ranking Adjusted p-value
AV-W6 1.7549 -
AV-W4 2.0196 0.058707
AV-W5 2.2255 0.001555

As we can observe, AV-W6 obtains the lowest ranking of the
algorithms used which turns it into the control method. The
adjusted p-values are low enough to reject the null hypothesis
with a high confidence level for AV-W4 and for AV-W5. This
confirms that AV-W6 is indeed the best overall IFROWANN
configuration.

B. Comparative Analysis between IFROWANN Variants for
Different Levels of Data Imbalance

Table VI shows the mean AUC obtained for each method
and each block of data sets. Every row represents one variant
of IFROWANN, and the columns represent the data set groups
based on IR. For every column, the highest AUC value is
marked in bold.

Table VI: Mean AUC for IFROWANN variants for different
IR levels. The values marked in light blue (values higher than
0.91) are taken into account in the statistical analysis.

Method <9 ≥9 ≥33
TL-W1 0.9186 0.8877 0.8845
TL-W2 0.9076 0.8727 0.8424
TL-W3 0.8935 0.8882 0.8941
TL-W4 0.9180 0.8948 0.8959
TL-W5 0.9163 0.8863 0.8925
TL-W6 0.9148 0.9028 0.8989
AV-W1 0.9014 0.9121 0.9023
AV-W2 0.9029 0.9112 0.8938
AV-W3 0.8900 0.9014 0.8938
AV-W4 0.9232 0.9167 0.9073
AV-W5 0.9068 0.9136 0.9030
AV-W6 0.9139 0.9288 0.9166

MIN-W1 0.8844 0.8961 0.9062
MIN-W2 0.8809 0.8935 0.8990
MIN-W3 0.8713 0.8841 0.8975
MIN-W4 0.9101 0.9010 0.9156
MIN-W5 0.8877 0.8977 0.9085
MIN-W6 0.8925 0.9111 0.9230

It can be noticed that for the high imbalance data sets (IR≥
9), AV-W6 still obtains the highest average AUC. However, for
low imbalance data sets (IR < 9), AV-W4 reaches the highest
value, and for very high imbalance data sets (IR ≥ 33), the
best variant is MIN-W6.

Below, we carry out a statistical analysis of our results
for each block of data sets. As before, we consider only the
proposals obtaining a mean AUC higher than 0.91. Such values
are marked in light blue in Table VI.

1) Statistical analysis for low IR data sets: For the low
IR data sets, seven proposals are selected. Table VII shows
the average ranking obtained by the Friedman test. As we
can observe, the best ranking is obtained by AV-W4. The p-
value computed by the Friedman Test is 0.082069, which is
low enough to conclude that there are significant differences
among the algorithms.

Based on the adjusted p-values, the Holm post hoc test
allows to conclude that the control method AV-W4 is signifi-
cantly better than MIN-W4. The fairly low adjusted p-values
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for AV-W6 and TL-W6 also suggest that in this case W4 is
indeed a better weighting strategy than W6.

Table VII: Average Friedman rankings and adjusted p-values
using Holm’s post-hoc procedure for low imbalance data sets,
using AV-W4 as the control algorithm.

Algorithm Average Friedman ranking Adjusted p-value
AV-W4 2.9545 -
TL-W4 3.3864 0.507350
AV-W6 4.0455 0.193227
TL-W6 4.1591 0.193227
TL-W1 4.2500 0.186845
TL-W5 4.3864 0.139650

MIN-W4 4.8182 0.025319

2) Statistical analysis for high IR data sets: Table VIII
shows the average ranking obtained by the Friedman test for
the five proposals selected in this case. The p-value computed
by the Friedman test is approximately 0, which indicates
that the hypothesis of equivalence can be rejected with high
confidence. As we can observe, the best ranking is obtained by
AV-W6 which is used as the control algorithm. The adjusted
p-values are all very low, indicating that the method AV-W6
significantly outperforms the remaining methods when high
IR data sets are considered.

Table VIII: Average Friedman rankings and adjusted p-values
using Holm’s post-hoc procedure for high imbalance data sets,
using AV-W6 as the control algorithm.

Algorithm Average Friedman ranking Adjusted p-value
AV-W6 2.1000 -
AV-W5 3.0187 0.000238
AV-W4 3.0875 0.000156
AV-W2 3.3312 0.000003
AV-W1 3.4625 0.000000

3) Statistical analysis for very high IR data sets: Table IX
shows the average ranking obtained by the Friedman test for
the three selected proposals. The Friedman p-value in this case
is 0.706965, which indicates that the hypothesis of equivalence
of the five considered methods can be accepted. As we can
observe, the best ranking is obtained by AV-W6.

Table IX: Average Friedman rankings for very high imbalance
data sets. The Friedman test does not discover significant
differences, so Holm’s test is not performed.

Algorithm Average Friedman ranking
AV-W6 1.8871

MIN-W6 2.0161
MIN-W4 2.0968

C. Comparative Analysis of IFROWANN and Baseline Meth-
ods

Table X shows the results over all 102 data sets of the basic
FRNN algorithm and the IFROWANN baseline configuration
W7 employing equal weight vectors for both classes, combined
with the three indiscernibility relations TL, AV and MIN.
The table also shows the results obtained with the best three
IFROWANN variants AV-W4, AV-W5 and AV-W6.

Table X: Mean AUC for baseline methods and best
IFROWANN variants over all data sets.

Method AUC
TL-W7 0.8288
AV-W7 0.7798

MIN-W7 0.7754
TL-FRNN 0.8905
AV-FRNN 0.9083

MIN-FRNN 0.8925
AV-W4 0.9181
AV-W5 0.9122
AV-W6 0.9256

As can be seen in Table X, considering equal weight vectors
affects the results adversely, causing a drop in AUC of over
10%. This clearly shows the advantage of using different
weight vectors for the positive and negative class. On the other
hand, when the basic FRNN algorithm is used, we obtain fairly
good results. However, these results rank below those obtained
with the best IFROWANN variants.

We support the comparison with a statistical analysis in or-
der to demonstrate the superiority of our proposal. The average
ranks of the algorithms and the adjusted p-values obtained by
Holm’s post-hoc procedure are shown in Table XI. The p-value
computed by the Friedman test is approximately 0, which
indicates that the hypothesis of equivalence can be rejected
with high confidence. From Table XI, we can conclude that
the control algorithm AV-W6 obtains significantly better results
than all baseline methods.

Table XI: Average Friedman rankings and adjusted p-values
using Holm’s post-hoc procedure for all data sets, using AV-
W6 as the control algorithm.

Method Average Friedman ranking Adjusted p-value
AV-W6 2.6667 -
AV-W4 3.0147 0.364103
AV-W5 3.7157 0.012457

AV-FRNN 4.1765 0.000247
TL-FRNN 4.6618 0.000001

MIN-FRNN 5.1127 <0.000001
TL-W7 6.6324 <0.000001
AV-W7 7.3529 <0.000001

MIN-W7 7.6667 <0.000001

D. Comparative analysis with the state-of-the-art methods

The experimental study carried out in Section VI-A and
VI-B shows that the best two proposals are W4 in the case of
low IR data sets and W6 in the remaining cases. This section
compares these two methods with the state-of-the-art methods.
The mean AUC results for the different blocks are shown in
Table XII.



1063-6706 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TFUZZ.2014.2371472, IEEE Transactions on Fuzzy Systems

IEEE TRANSACTIONS ON FUZZY SYSTEMS 11

Table XII: Mean AUC for state-of-the-art methods and the best
IFROWANN variants. The values marked in light blue (values
higher than 0.91) are taken into account in the statistical
analysis.

Method all <9 >9 >33
SMOTE-kNN 0.9096 0.9143 0.9083 0.8987
SMOTE-C4.5 0.8315 0.8604 0.8235 0.8050
SMOTE-SVM 0.9000 0.9051 0.8986 0.9133

SMOTE-ENN-kNN 0.8839 0.9093 0.8769 0.8320
SMOTE-ENN-C4.5 0.8412 0.8714 0.8329 0.8218
SMOTE-ENN-SVM 0.9005 0.9046 0.8994 0.9130

C4.5-CS 0.8263 0.8691 0.8146 0.8083
SVM-CS 0.8952 0.9137 0.8901 0.9032

EUSBOOST 0.9094 0.9263 0.9048 0.8977
SMOTE-RSB∗-kNN 0.9085 0.9119 0.9076 0.8975
SMOTE-RSB∗-C4.5 0.8266 0.8681 0.8152 0.8021

SMOTE-RSB∗-SVM 0.9001 0.9036 0.8991 0.9130
HDDT+Bagging 0.9158 0.9281 0.9124 0.9019

AV-W4 0.9181 0.9232 0.9167 0.9073
AV-W6 0.9256 0.9139 0.9288 0.9166

From these results, we can observe that W6 obtains the
highest AUC value in all blocks, except for low IR data sets
for which HDDT+Bagging gets the highest score. Again, we
will subject these results to a thorough statistical analysis. In
this case, per block we take into account the methods which
obtain a mean AUC of at least 0.9. These methods are marked
in light blue in Table XII.

1) Statistical analysis for all data sets: Table XIII shows
the average ranking obtained by the Friedman test. The p-value
computed by the Friedman test is 0.000011, which indicates
that the hypothesis of equivalence can be rejected with high
confidence. As we can observe, the best ranking is obtained
by AV-W6. Moreover, the adjusted p-values are all very low,
so we may conclude that AV-W6 statistically outperforms all
of them.

Table XIII: Average Friedman rankings and adjusted p-values
using Holm’s post-hoc procedure for all data sets, using AV-
W6 as the control algorithm.

Algorithm Average Friedman ranking Adjusted p-value
AV-W6 3.299 -

HDDT+Bagging 4.2941 0.003718
SMOTE-RSB∗-kNN 4.5147 0.000787

EUSBOOST 4.5833 0.000543
SMOTE-kNN 4.6275 0.000430

SMOTE-RSB∗-SVM 4.7304 0.000150
SMOTE-SVM 4.8186 0.000056

SMOTE-ENN-SVM 5.1324 0.000001

2) Statistical analysis for low IR data sets: In Table XIV,
the results of applying the Friedman test are shown. In this
case, the associated p-value is 0.204917, which is not low
enough to reject the hypothesis of equivalence and which
leads us to conclude that there are no statistically significant
differences among the compared methods. Note that while
EUSBOOST obtains the highest AUC mean for this block,
the lowest Friedman rank is obtained by AV-W4.

Table XIV: Average Friedman rankings for low imbalance
data sets. The Friedman test does not discover significant
differences, so Holm’s test is not performed.

Algorithm Average Friedman ranking
AV-W4 3.9091

HDDT+Bagging 4.8636
SVM-CS 5.0227

EUSBOOST 5.2955
SMOTE-kNN 5.6136

SB-kNN 5.7500
SMOTE-SVM 5.8409

SB-SVM 6.0682
SMOTE-ENN-kNN 6.2727
SMOTE-ENN-SVM 6.3636

3) Statistical analysis for high IR data sets: the results,
shown in Table XV, are concordant with those obtained for
all data sets. The p-value computed by the Friedman test is
smaller than 0.000001. AV-W6 obtains the best ranking and
significantly outperforms all the remaining methods.

Table XV: Average Friedman rankings and adjusted p-values
using Holm’s post-hoc procedure for high imbalance data sets,
using AV-W6 as the control algorithm.

Algorithm Average Friedman ranking Adjusted p-value
AV-W6 2.0125 -

HDDT+Bagging 2.9812 0.000107
SMOTE-RSB∗-kNN 3.25 0.000001

EUSBOOST 3.2938 0.000001
SMOTE-kNN 3.4625 <0.000001

4) Statistical analysis for very high IR: in this case, the
p-value computed by the Friedman test is 0.574894, which
indicates that the hypothesis of equivalence between the five
considered methods can be accepted. In Table XVI, the
Friedman aligned ranks are shown. It is interesting to note
that in this case, SMOTE-RSB∗-SVM gets the best rank, while
AV-W6 obtains the highest mean AUC.

Table XVI: Average Friedman rankings for very high imbal-
ance data sets. The Friedman test does not discover significant
differences, so Holm’s test is not performed.

Algorithm Average Friedman ranking
SMOTE-RSB∗-SVM 3.0968

SMOTE-SVM 3.2258
SMOTE-ENN-SVM 3.4516

SVM-CS 3.6613
HDDT+Bagging 3.7258

AV-W6 3.8387

E. Graphical analysis

To complement the statistical study from the previous sec-
tion, we have also provided a graphical analysis that compares
the behavior of our best two proposals (AV-W6 and AV-W4)
to its closest competitors among the state-of-the-art methods.
To this end, Figure 3 plots the considered method’s AUC
(Y axis) for all data sets, which are ordered on the X axis
according to their IR. Similarly, in Figure 4, we show a
more fine-grained analysis depicting the results for each of
the experiment blocks, considering in each case the best
performing algorithms.

In both figures, we can see that for both low and very
high IR data sets, the compared methods behave more or less
similarly, and that the most noticeable differences are in the
middle section (IR between 9 and 33), where our method AV-
W6 clearly shows the best performance.
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Figure 3: AUC for all data sets, ordered according to their IR, for our best proposal (AV-W6) and the best algorithms from the
state-of-the-art (SMOTE-RSB∗-kNN and EUSBOOST).
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VII. CONCLUDING REMARKS

In this paper, we have presented the Imbalanced
Fuzzy-Rough Ordered Weighted Average Nearest Neighbor
(IFROWANN) method, a new algorithm level solution to
two-class imbalanced classification problems that is based on
the Fuzzy-Rough Nearest Neighbor (FRNN) method and on
Ordered Weighted Average (OWA) aggregation. In particular,
we considered six weighting strategies, combined with three
different indiscernibility relations.

Our experimental results and statistical analysis have shown
that IFROWANN can outperform not only the classical FRNN
algorithm over a large collection of imbalanced data sets
with varying IR degrees, but also a selection of state-of-
the-art representative algorithms that cover algorithm level,
cost-sensitive and ensemble solutions specifically designed for
imbalanced learning.

For future work, we will consider the integration of
IFROWANN within ensemble methods, where it can be com-
bined with data level (preprocessing) techniques to further
optimize the classification performance. Another possible re-
finement of the approach concerns the automated extraction
of OWA weight vectors and indiscernibility relations from
the training data, using either a wrapper method, or basing
ourselves on data characteristics, such as the imbalance ratio
or other data complexity measures.

Finally, our third idea for future work is to extend
IFROWANN to handle multi-class problems. One solution is to
transform a multi-class problem into a two-class problem using
binarization techniques such as the One-vs-One Approach
(OVO) introduced by Hastie and Tibshirani [27], and the
One-vs-All Approach (OVA) of Rifkin and Klautau [39]. In
[18], the authors presented a complete experimental study for
the classification of multi-class imbalanced data sets, which
concluded that the OVO strategy is a better option than
OVA. This allows us to design a new method for multi-class
problems combining OVO and IFROWANN. Another solution

will be to modify the IFROWANN itself to directly operate
with multi-class problems.
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Figure 4: AUC for all blocks of data sets. Data sets are ordered according to their IR.
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[18] A Fernández, V. López, M.Galar, M.J. del Jesus, and F. Herrera.
Analysing the classification of imbalanced data-sets with multiple
classes: Binarization techniques and ad-hoc approaches. Knowledge-
Based Systems, 42:97–110, 2013.

[19] M. Friedman. The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the American Statistical
Association, 32:675–701, 1937.

[20] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera.
A review on ensembles for the class imbalance problem: Bagging-,
boosting-, and hybrid-based approaches. IEEE Transactions on Systems,
Man, and Cybernetics-Part C: Applications and Reviews, 42 (4):463–
484, 2012.

[21] M. Galar, A. Fernández, E. Barrenechea, and F. Herrera. EUSBoost:
Enhancing ensembles for highly imbalanced data-sets by evolutionary
undersampling. Pattern Recognition, 46:3460–3471, 2013.

[22] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera. A study of statis-
tical techniques and performance measures for genetics–based machine
learning: Accuracy and interpretability. Soft Computing, 13(10):959–
977, 2009.

[23] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera. Advanced non-
parametric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: experimental analysis of
power. Information Sciences, 180:2044–2064, 2010.

[24] S. Garcı́a and F. Herrera. An extension on ”statistical comparisons of
classifiers over multiple data sets” for all pairwise comparisons. Journal
of Machine Learning Research, 9:2677–2694, 2008.

[25] S. Garcı́a and F. Herrera. Evolutionary undersampling for classifica-
tion with imbalanced datasets: proposals and taxonomy. Evolutionary
Computation, 17:275–306, 2009.

[26] J.W. Grzymala-Busse, J. Stefanowski, and S. Wilk. A comparison of two
approaches to data mining from imbalanced data. Journal of Intelligent
Manufacturing, 16(6):565–573, 2005.

[27] T. Hastie and R. Tibshirani. Classification by pairwise coupling. Ann.
Statist, 26(2):451–471, 1998.

[28] H. He and E.A. Garcı́a. Learning from imbalanced data. IEEE
Transactions On Knowledge And Data Engineering, 21(9):1263–1284,
2009.

[29] S. Holm. A simple sequentially rejective multiple test procedure,
scandinavian. Journal of Statistics, 6:65–70, 1979.

[30] J. Huang and C. X. Ling. Using AUC and accuracy in evaluating learning
algorithms. IEEE Transactions on Knowledge and Data Engineering,
17(3):299–310, 2005.

[31] Y.M. Huang, C.M. Hung, and H.C. Jiau. Evaluation of neural networks
and data mining methods on a credit assessment task for class imbalance
problem. Nonlinear Analysis: Real World Applications, 7(4):720–747,
2006.

[32] R. Jensen and C. Cornelis. Fuzzy rough nearest neighbour classification
and prediction. Theoretical Computer Science, 412(42):5871–5884,
2011.

[33] W. Khreich, E. Granger, A. Miri, and R. Sabourin. Iterative boolean
combination of classifiers in the ROC space: An application to anomaly
detection with HMMs. Pattern Recognition, 43:2732–2752, 2010.

[34] Y.H. Lee, P.J.H. Hu, T.H. Cheng, T.C. Huang, and W.Y. Chuang. A
preclustering-based ensemble learning technique for acute appendicitis
diagnoses. Artificial Intelligence in Medicine, 58(2):115–124, 2013.
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