
Abstract

Fuzzy sets and rough sets are known as uncertainty models. They are proposed to treat different
aspects of uncertainty. Therefore, it is natural to combine them to build more powerful mathematical
tools for treating problems under uncertainty. In this chapter, we describe the state of the art in the
combinations of fuzzy and rough sets dividing into three parts.

In the first part, we first describe two kinds of models of fuzzy rough sets: one is classification-oriented
model and the other is approximation-oriented model. We describe the fundamental properties and show
the relations of those models. Moreover, because those models use logical connectives such as conjunction
and implication functions, the selection of logical connectives can sometimes be a question. Then we
propose a logical connective-free model of fuzzy rough sets.

In the second part, we develop a generalized fuzzy rough set model. We first introduce general types of
belief structures and their induced dual pairs of belief and plausibility functions in the fuzzy environment.
We then build relationships between belief and plausibility functions in the Dempster-Shafer theory of
evidence and the lower and upper approximations in rough set theory in various situations. We also
provide the potential applications of the main results to intelligent information systems.

In the third part, we give an overview of the practical applications of fuzzy rough sets. The main focus
will be on the machine learning domain. In particular, we review fuzzy-rough approaches for attribute
selection, instance selection, classification and prediction.
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1 Introduction

Rough set approaches [1, 2] have been successfully applied to various fields related to data analysis, knowl-
edge discovery, decision analysis and so on. In order to expand the application area and to develop its theory
further, rough sets have been generalized under various settings. There are two different generalizations.
One relaxed the precision so that the sizes of lower and upper approximations are controlled by a precision
parameter. This generalized rough set is called a variable precision rough set. The other generalizes the ap-
proximation space, i.e., the structure of background knowledge. Many researchers generalized an equivalence
relation which is often referred to as an indiscernibility relation to a general binary relation or a family. The
other many researchers [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] generalized an
equivalence relation to a fuzzy binary relation or a family of fuzzy sets.

In this chapter, we describe the generalizations of rough sets in the latter sense. More precisely, we
concentrate on the fuzzy generalizations of rough set approaches called fuzzy rough hybridizations. Fuzzy
rough sets were originally proposed by Nakamura [3] and by Dubois and Prade [4, 5]. The fundamental
properties of fuzzy rough sets have been investigated by Dubois and Prade [4, 5] and Radzikowska and
Kerre [9]. In those studies, an equivalence relation of approximation space in the original rough sets is
generalized to a fuzzy equivalence relation. Greco et al. [7] proposed fuzzy rough sets under a fuzzy dominance
relation. Those fuzzy rough sets are based on possibility and necessity measures directly. Moreover, this
type of fuzzy rough sets is defined under more generalized settings [11, 15] and different types of fuzzy rough
sets were proposed based on certainty qualifications by Inuiguchi and Tanino [10, 12] and based on modifier
functions by Greco et al. [24, 25]. The rough fuzzy set model can be used to deal with attribute reduction in
information systems with fuzzy decision while the fuzzy rough set model can be employed in reasoning and
knowledge acquisition with decision tables with real valued conditional attributes or quantitative data (see,
for example, [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]).

In the first part of this paper, we introduce three models of fuzzy rough sets. Those fuzzy sets are
classified into two groups, i.e., classification-oriented fuzzy rough set models and approximation-oriented
fuzzy rough set models proposed by Inuiguchi [26] originally in the crisp settings. In the classification-
oriented models, we are interested in a set to which objects belong. We evaluate each object whether its
membership to a set X is consistent with all information we have at hand or not. The positive region of
X is defined by collecting all objects whose memberships to X are consistent with whole information. The
possible region of X is defined by collecting all objects whose memberships to X are conceivable from some

2



part of information but not consistent with all information. Then the fuzzy rough set of X is defined by a
pair of the positive and possible regions of X. On the contrary, in approximation-oriented models, we are
interested in the approximations of a set by using elementary sets of a family. We approximate a set X by
unions of the elementary sets and by intersections of the complementary sets of the elementary sets. The
lower and upper approximations are defined by the inner and outer approximations of X, respectively. A
rough set of X is defined by a pair of the lower and upper approximations. We describe that one of the
three models belongs to the group of classification-oriented models and the remaining two models belong to
the group of approximation-oriented models.

Another important method used to deal with uncertainty in intelligent systems is the Dempster-Shafer
theory of evidence [27]. Shafer’s belief and plausibility functions are constructed under the assumption that
the focal elements in the belief structure are all crisp. In some situations, it seems to be quite natural that
the evidence mass may be assigned to a fuzzy subset of the universe of discourse. In fact, combining the
Dempster-Shafer theory and fuzzy set theory has been suggested to be a way to deal with different kinds of
uncertain information in intelligent systems in a number of studies. It is demonstrated that the lower and
upper approximation operators in rough set theory have strong relationship with the belief and plausibility
functions in the Dempster-Shafer theory of evidence [21, 23, 28, 29, 30, 31, 32, 33]. The Dempster-Shafer
theory of evidence may be used to analyze knowledge acquisition in information systems (see, for example,
[34, 35, 36, 37, 38]).

In the second part of this chapter, we will explore the relationships between belief and plausibility
functions in the Dempster-Shafer theory of evidence and the lower and upper approximations in rough set
theory with their potential applications to intelligent information systems.

Both fuzzy set and rough set theories have fostered broad research communities and have been applied
in a wide range of settings. More recently, this has extended also to the hybrid fuzzy rough set models.
The third part of this chapter tries to give a sample of those applications, which are in particular numerous
for machine learning but which also cover many other fields, like image processing, decision making and
information retrieval.

Note that we do not consider applications that simply involve a joint application of fuzzy sets and
rough sets, like for instance a rough classifier that induces fuzzy rules. Rather, we focus on applications that
specifically involve one of the fuzzy rough set models discussed in the previous sections.

This chapter is organized as follows. In the next section, three models of fuzzy rough sets are explained
dividing into two groups. In Section 3, we introduce generalized fuzzy belief structures with application in
fuzzy information systems. In Section 4, we give an overview of the practical applications of fuzzy rough
sets focusing on the machine learning domain.

2 Classification- versus Approximation-oriented Fuzzy Rough Set
Models

2.1 Two views of the classical rough set model

In this section, we review three kinds of fuzzy rough sets from classification-oriented and approximation-
oriented points of view. Focusing on the membership of an object to a set X under the indiscernibility
relation, the classical rough set defined by a pair of lower and upper approximations of a set X can be seen
as a classifier of objects into three disjoint regions: positive, negative and boundary regions of a set X.
Namely, the lower approximation defines the positive region, the complement of the upper approximation
defines the negative region and the difference between upper and lower approximations defines the boundary
region. On the other hand, focusing on the approximations of X by means of elementary sets of the partition,
the rough set of X defines the inner and outer approximations of X. Namely, the lower approximation defines
the inner approximation and the upper approximation defines the outer approximation. Those two different
views of rough sets give the different definitions of rough sets in the generalized settings (see Inuiguchi [50]).
In this section, we describe fuzzy rough sets in a generalized setting from those points of view and show the
fundamental properties, differences and similarities.

Throughout this chapter, U will be a nonempty set called the universe of discourse. The class of
all subsets (respectively, fuzzy subsets) of U will be denoted by P(U) (respectively, by F(U)). For any
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A ∈ F(U), the complement of A will be denoted by ∼ A, i.e. (∼ A)(x) = 1−A(x) for all x ∈ U .

2.2 Classification-oriented fuzzy rough sets

2.2.1 Definitions in crisp setting

In this subsection, we define fuzzy rough sets under the interpretation of rough sets as classification of objects
into positive, negative and boundary regions of a set and describe their properties. As the introduction, we
first describe the definitions of positive and possible regions of a set in the crisp setting. Let U be a set of
all objects. Assume that we do not know objects which fit with a particular concept C but we have pieces of
information that tell some objects fit with C and that the other objects do not fit. Let X ⊆ U be the set of
objects which are supposed to fit with C in the information and U −X the set of objects which are supposed
not to fit with C in the information. On the other hand, there is knowledge about C expressed by a binary
relation P ⊆ U × U . Under the binary relation P , we presume ‘y fits with C’ from facts (y, x) ∈ P and ‘x
fits with C’.

Under this circumstance, we investigate credible members of X and plausible members of X. Objects
whose membership to X is consistent with the knowledge can be understood as credible members of X, while
objects whose membership to X is presumable from the information and the knowledge can be understood
as plausible members. For convenience, we define P (x) = {y ∈ U | (y, x) ∈ P} which is the set of objects
whose membership to X is presumed from the fact x ∈ X. Therefore, if x ∈ X satisfies ∀y ∈ P (x), y ∈ X
or simply, P (x) ⊆ X, x can be considered a credible member of X. Thus, the set of credible members of X
is defined by

P∗(X) = {x ∈ X | P (x) ⊆ X} = X ∩ {x ∈ U | P (x) ⊆ X}. (1)

On the other hand, we may presume x ∈ X if x ∈ X or ∃y ∈ X, x ∈ P (y) under the information and the
knowledge. Then the set of plausible members of X can be defined by

P ∗(X) = X ∪ {x ∈ U | ∃y ∈ X, x ∈ P (y) 6= ∅}. (2)

P∗(X) is called the positive region of X and P ∗(X) is called the possible region of X. Moreover, we do not
assume the reflexivity of P , i.e., ∀x ∈ U, (x, x) ∈ P . This is why we take the intersection with X in the
definition of P∗(X) and the union with X in the definition of P ∗(X). Those intersection and union can be
dropped when P is reflexive.

When there is knowledge about C expressed by a binary relation Q ⊆ U × U instead of P . Under the
binary relation Q, we presume ‘y does not fit with C’ from facts (y, x) ∈ Q and ‘x does not fit with C’. In
this case, we directly obtain positive and possible regions of U −X respectively by

Q∗(U −X) = {x ∈ U −X | Q(x) ⊆ U −X}
= (U −X) ∩ {x ∈ U | Q(x) ⊆ U −X}, (3)

Q∗(U −X) = (U −X) ∪ {x ∈ U | ∃y ∈ U −X, x ∈ Q(y) 6= ∅}. (4)

Because an object which is not a member of Q∗(U − X) can be seen as a plausible member of X and an
object which is not a member of Q∗(U −X) can be seen as a credible member of X, we may define positive
and possible regions of X by

Q̄∗(X) = U −Q∗(U −X), Q̄∗(X) = U −Q∗(U −X). (5)

Inuiguchi [50] investigated the properties of those positive and possible regions.

2.2.2 Definitions in fuzzy setting and their properties

We now extend those definitions of positive and possible regions into the fuzzy setting. First, we assume a
fuzzy set X ⊆ U and a fuzzy binary relation P ∈ F(U × U) are given. Their membership functions µX(x)
and µP (y, x) shows the membership degree of x ∈ U to a fuzzy set X and the degree to what extent we
presume that y is a member of X from the fact x is a member of a fuzzy set X, where µX : U → [0, 1] and
µP : U × U → [0, 1]. We define P (x) by its membership function µP (x)(y) = µP (y, x).
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To define the positive region under this circumstance, we should consider the consistency degree of the
information that x is a member of X to membership degree µX(x) with the knowledge P . This can be
measured by the truth value of statement ‘y ∈ P (x) implies y ∈ X’ under fuzzy sets P (x) and X. The truth
value of this statement can be defined by a necessity measure infy∈U I(µP (x)(y), µX(y)) with an implication
function I : [0, 1]× [0, 1]→ [0, 1] such that I(0, 0) = I(0, 1) = I(1, 1) = 1, I(1, 0) = 0, I(·, a) is decreasing for
any a ∈ [0, 1] and I(a, ·) is increasing for any a ∈ [0, 1]. Therefore, in the analogy to Eq. (1), the membership
function of the positive region P∗(X) of X can be defined by

µP∗(X)(x) = min

(
µX(x), inf

y∈U
I(µP (x)(y), µX(y))

)
= min

(
µX(x), inf

y∈U
I(µP (y, x), µX(y))

)
, (6)

where we note the intersection C ∩ D of two fuzzy sets C,D ∈ F(U) is normally defined by µC∩D(x) =
min(µC(x), µD(x)), ∀x ∈ U . µC∩D, µC and µD are membership functions of C ∩D, C and D, respectively.
However some researchers use t-norms [51] instead of the min operation. A t-norm t is a conjunction function
t : [0, 1] × [0, 1] → [0, 1] such that (t1) ∀a ∈ [0, 1], t(a, 1) = t(1, a) = a (boundary condition), (t2) ∀a, b ∈
[0, 1], t(a, b) = t(b, a) (commutativity) and (t3) ∀a, b, c ∈ [0, 1], t(a, t(b, c)) = t(t(a, b), c) (associativity).

Now let us define the possible region when X and P are a fuzzy set and a fuzzy binary relation,
respectively. To do this, we should define the truth value of statement ‘there exists y ∈ X such that x ∈ P (y)’
under fuzzy sets X and P (x). The truth value of this statement can be obtained by a possibility measure
supy∈U T (µP (y)(x), µX(y)) with a conjunction function T : [0, 1] × [0, 1] → [0, 1] such that T (1, 1) = 1,
T (0, 0) = T (0, 1) = T (1, 0) = 0 and T is increasing in both arguments. Therefore, in the analogy to Eq. (2),
the membership function of the possible region P ∗(X) of X can be defined by

µP∗(X)(x) = max

(
µX(x), sup

y∈U
T (µP (y)(x), µX(y))

)
= max

(
µX(x), sup

y∈U
T (µP (x, y), µX(y))

)
, (7)

where we note the union C∪D of two fuzzy sets C,D ⊆ U is normally defined by µC∪D(x) = max(µC(x), µD(x)),
∀x ∈ U . µC∪D is a membership functions of C ∪ D. However some researchers use t-conorms [51] in-
stead of the max operation. A t-conorm s is a function s : [0, 1] × [0, 1] → [0, 1] such that (s1) ∀a ∈
[0, 1], t(a, 0) = t(0, a) = a (boundary condition), (s2) ∀a, b ∈ [0, 1], s(a, b) = s(b, a) (commutativity), (s3)
∀a, b, c ∈ [0, 1], s(a, s(b, c)) = s(s(a, b), c) (associativity), and (s4) ∀a, b, c, d such that a ≥ c and b ≥ d;
s(a, b) ≥ s(c, d) (monotonicity).

Note that we do not assume the reflexivity of P , i.e., µP (x, x) = 1, ∀x ∈ U , so that we take
the minimum between µX and infy∈U I(µP (x)(y), µX(y)) in Eq. (6) and the maximum between µX and
supy∈U T (µP (y)(x), µX(y)) in Eq. (7). When P is reflexive, I(1, a) ≤ a, and T (1, a) ≥ a for all a ∈ [0, 1], we
have

µP∗(X)(x) = inf
y∈U

I(µP (x)(y), µX(y)), µP∗(X)(x) = sup
y∈U

T (µP (y)(x), µX(y)). (8)

Those definitions of lower and upper approximations have been proposed by Dubois and Prade [4, 5] and
Radzikowska and Kerre [9]. They assumed the reflexivity of P and I(1, a) = T (1, a) = a, for all a ∈ [0, 1].
Moreover, the definitions in Eq. (8) are used even when P is not reflexive and neither I nor T satisfy the
boundary conditions I(1, a) = T (1, a) = a, for all a ∈ [0, 1] (see [?, 15]). In such generalized situation, we
may loose the inclusiveness of P∗(X) in X and that of X in P ∗(X) for P∗(X) and P ∗(X) defined by Eq. (8).
The definitions of P∗(X) and P ∗(X) by Eqs. (6) and (7) obtained from the interpretations of positive and
possible regions of X satisfy the inclusiveness of P∗(X) in X and that of X in P ∗(X) even in the generalized
situation.

Using the positive region P∗(X) and the possible region P ∗(X), we can define a fuzzy rough set of X as
a pair (P∗(X), P ∗(X)). We can call such fuzzy rough sets as classification-oriented fuzzy rough sets under
a positively extensive relation P of X (for short CP-fuzzy rough sets). Note that the relation P depends on
the meaning of a set X. Thus, we cannot always define the CP-rough set of U −X by the same relation P .
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To define a CP-rough set of U −X, we should introduce another fuzzy relation Q ∈ F(U ×U) such that
µQ(x)(y) = µQ(y, x) represents the degree to what extent we presume an object y as a member of U − X
from the fact x is a member of U−X, where µQ : U×U → [0, 1] is a membership function of a fuzzy relation
Q. In the same way, we define positive and possible regions of U − X under the fuzzy relation Q by the
following membership functions:

µQ∗(U−X)(x) = min

(
n(µX(x)), inf

y∈U
I(µQ(y, x), n(µX(y)))

)
, (9)

µQ∗(U−X)(x) = max

(
n(µX(x)), sup

y∈U
T (µP (x, y), n(µX(y)))

)
, (10)

where U −X is defined by a membership function n(µX(·)) and n : [0, 1]→ [0, 1] is a strong negation which
is a decreasing function such that n(n(a)) = a, for all a ∈ [0, 1] (involutive). The involution implies the
continuity of n.

Using Q∗(X) and Q∗(X), in analogy to Eq. (5), we can define positive region Q̄∗(X) and possible
region Q̄∗(X) of X by the following membership functions,

µQ̄∗(X)(x) = min

(
µX(x), inf

y∈U
n(T (µQ(x, y), n(µX(y))))

)
, (11)

µQ̄∗(X)(x) = max

(
µX(x), sup

y∈U
n(I(µQ(y, x), n(µX(y))))

)
. (12)

We can define a fuzzy rough set of X as a pair (Q̄∗(X), Q̄∗(X)) with the positive region Q̄∗(X) and
the possible region Q̄∗(X). We can call this type of rough sets as classification-oriented rough sets under a
negatively extensive relation Q of X (for short CN-fuzzy rough sets).

Let us discuss the properties of CP- and CN-fuzzy rough sets. By definition, we have

P∗(X) ⊆ X ⊆ P ∗(X), Q̄∗(X) ⊆ X ⊆ Q̄∗(X), (13)

P∗(∅) = P ∗(∅) = Q̄∗(∅) = Q̄∗(∅) = ∅, (14)

P∗(U) = P ∗(U) = Q̄∗(U) = Q̄∗(U) = U, (15)

P∗(X ∩ Y ) = P∗(X) ∩ P∗(Y ), P ∗(X ∪ Y ) = P ∗(X) ∪ P ∗(Y ), (16)

Q̄∗(X ∩ Y ) = Q̄∗(X) ∩ Q̄∗(Y ), Q̄∗(X ∪ Y ) = Q̄∗(X) ∪ Q̄∗(Y ), (17)

X ⊆ Y implies P∗(X) ⊆ P∗(Y ), X ⊆ Y implies P ∗(X) ⊆ P ∗(Y ), (18)

X ⊆ Y implies Q̄∗(X) ⊆ Q̄∗(Y ), X ⊆ Y implies Q̄∗(X) ⊆ Q̄∗(Y ), (19)

P∗(X ∪ Y ) ⊇ P∗(X) ∪ P∗(Y ), P ∗(X ∩ Y ) ⊆ P ∗(X) ∩ P ∗(Y ), (20)

Q̄∗(X ∪ Y ) ⊇ Q̄∗(X) ∪ Q̄∗(Y ), Q̄∗(X ∩ Y ) ⊆ Q̄∗(X) ∩ Q̄∗(Y ), (21)

where the inclusion relation between two fuzzy sets A and B is defined by µA(x) ≤ µB(x), for all x ∈ U .
The properties satisfied under some conditions are listed as follows (see Inuiguchi [26]):

〈1〉 When I(a, b) = n(T (a, n(b))), for all a, b ∈ [0, 1] and Q is the converse of P , i.e., µQ(x, y) = µP (y, x),
for all x, y ∈ U , we have

P∗(X) = U −Q∗(U −X) = Q̄∗(X), (22)

P ∗(X) = U −Q∗(U −X) = Q̄∗(X). (23)

〈2〉 When T (a, I(a, b)) ≤ b holds for all a, b ∈ [0, 1], we have

X ⊇ P ∗(P∗(X)) ⊇ P∗(X) ⊇ P∗(P∗(X)), (24)

X ⊆ Q̄∗(Q̄∗(X)) ⊆ Q̄∗(X) ⊆ Q̄∗(Q̄∗(X)). (25)

〈3〉 When I(a, T (a, b)) ≥ b holds for all a, b ∈ [0, 1], we have

X ⊆ P∗(P ∗(X)) ⊆ P ∗(X) ⊆ P ∗(P ∗(X)), (26)

X ⊇ Q̄∗(Q̄∗(X)) ⊇ Q̄∗(X) ⊇ Q̄∗(Q̄∗(X)). (27)
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〈4〉 Let P and Q be T ′-transitive. The following assertions are valid.

(a) When I is upper semi-continuous and satisfies I(a, I(b, c)) = I(T ′(b, a), c) for all a, b, c ∈ [0, 1], we
have

P∗(P∗(X)) = P∗(X), Q̄∗(Q̄∗(X)) = Q̄∗(X). (28)

(b) When T = T ′ is lower semi-continuous and satisfies T (a, T (b, c)) = T (T (a, b), c) for all a, b, c ∈
[0, 1] (associativity), we have

P ∗(P ∗(X)) = P ∗(X), Q̄∗(Q̄∗(X)) = Q̄∗(X). (29)

〈5〉 When P and Q are reflexive and T -transitive, the following assertions are valid:

(a) If I(a, ·) is upper semi-continuous, I(1, a) ≤ a, and T = ξ[I] is associative, then we have

P ∗(P∗(X)) = P∗(X), Q̄∗(Q̄
∗(X)) = Q̄∗(X). (30)

(b) If I(a, b) = n(ξ[I](a, n(b))) and the conditions of (a) are satisfied, then we have

P∗(P
∗(X)) = P ∗(X), Q̄∗(Q̄∗(X)) = Q̄∗(X). (31)

Here a fuzzy relation P is said to be T ′-transitive, if and only if P satisfies µP (x, z) ≥ T ′(µP (x, y), µP (y, z))
for all x, y, z ∈ U and for a conjunction function T ′. We can generate a function ξ[I] : [0, 1]× [0, 1]→ [0, 1] by
ξ[I](a, b) = inf{s ∈ [0, 1] | I(a, s) ≥ b} when a function I : [0, 1]× [0, 1]→ [0, 1] is given. ξ[I] is a conjunction
function when I satisfies I(1, a) < 1 for all a ∈ [0, 1).

Concerning to the assumption of 〈1〉, it is known that a function I ′ defined by I ′(a, b) = n(T (a, n(b))) is
an implication function and that a function T ′ defined by T ′(a, b) = n(I(a, n(b))) is a conjunction function
(see, for example, Inuiguchi and Sakawa [51, 52]). The assumption of 〈2〉 corresponds to modus ponens, i.e., A
and (A→ B) implies B. Therefore, it is a natural assumption. However, this cannot hold for any implication
and conjunction functions. For example, consider functions T (a, b) = min(a, b) and I(a, b) = max(1 − a, b)
which are often used in possibility theory. T (a, I(a, b)) ≤ b does not always hold. On the other hand,
the assumption holds for any T and I such that T (a, b) ≤ min(a, b) for all a, b ∈ [0, 1] and I(a, b) ≤ b for
all a, b ∈ [0, 1] satisfying a > b. Thus, a t-norm T and a residual implication I of a t-norm satisfies the
assumption, i.e., I is defined by I(a, b) = sup{s ∈ [0, 1] | t(a, s) ≤ b}, for a, b ∈ [0, 1]. The assumption of
〈3〉 is dual with that of 〈2〉. Namely, for any implication function I, there exists a conjunction function T ′

such that I(a, b) = n(T ′(a, n(b))), and for any conjunction function T , there exists an implication function
I ′ such that T (a, b) = n(I ′(a, n(b))). Using T ′ and I ′, the assumption I(a, T (a, b)) ≥ b is equivalent to
T ′(a, I ′(a, b)) ≤ b which is the same as the assumption of 〈2〉.

The assumption of 〈3〉 is satisfied with I and T such that I(a, b) ≥ max(n(a), b) for all a, b ∈ [0, 1]
and T (a, b) ≥ b for all a, b ∈ [0, 1] satisfying a > n(b). The assumption of 〈4〉-(a) is satisfied with residual
implication functions of lower semi-continuous t-norms T ′ and S-implication functions with respect to lower
semi-continuous t-norms T ′, where an S-implication function I with respect to t-norm T ′ is defined by
I(a, b) = n(T ′(a, n(b))), a, b ∈ [0, 1] with a strong negation n. The assumption of 〈4〉-(b) is satisfied with
lower semi-continuous t-norms T . These assumptions are satisfied with a lot of famous implication and
conjunction functions.

2.3 Approximation-oriented fuzzy rough sets

2.3.1 Definitions in crisp setting

In this subsection, we define fuzzy rough sets under the interpretation of rough sets as approximation of sets
and describe their properties. We first describe the definitions of lower and upper approximations in the crisp
setting. We assume a family of subsets in U , F = {Fi | i = 1, 2, . . . , p} is given. Each elementary set Fi is a
meaningful set of objects such as a set of objects satisfying some properties. Fi’s can be seen as information
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granules with which we would like to express a set of objects. Given a set X ⊆ U , an understated expression
of X, or in other words, an inner approximation of X by means of unions of Fi’s is obtained by

F∪∗ (X) =
⋃
{Fi ∈ F | Fi ⊆ X}. (32)

On the other hand, an overstated expression of X, or in other words, an outer approximation of X by means
of unions of Fi’s is obtained by

F∗∪(X) =
⋂{⋃

i∈J
Fi

∣∣∣∣ ⋃
i∈J

Fi ⊇ X, J ⊆ {1, 2, . . . , p, ◦}

}
, (33)

where we define F◦ = U . We add F◦ considering cases where there is no J ⊆ {1, 2, . . . , p} such that⋃
i∈J Fi ⊇ X. In such cases, we obtain F∗∪(X) = U owing to the existence of F◦ = U . F∪∗ (X) and F∗∪(X)

are called lower and upper approximations of X, respectively.
Applying those approximations to U−X, we obtain F∪∗ (U−X) and F∗∪(U−X). From those, we obtain

F∩∗ (X) = U −F∗∪(U −X)

=
⋃{

U −
⋃
i∈J

Fi

∣∣∣∣ ⋃
i∈J

Fi ⊇ U −X, J ⊆ {1, 2, . . . , p}

}
, (34)

F∗∩(X) = U −F∪∗ (U −X)

=
⋂
{U − Fi | Fi ⊆ U −X, i ∈ {1, 2, . . . , p, •}}, (35)

where we define F• = ∅. We note that F∩∗ (X) and F∗∩(X) are not always the same as F∪∗ (X) and F∗∪(X),
respectively. The properties of those lower and upper approximations are studied in Inuiguchi [50].

2.3.2 Definitions by certainty qualifications in fuzzy setting

We extend those lower and upper approximations to cases where F is a family of fuzzy sets in U and X
is a fuzzy set in U . To do this, we extend the intersection, union, complement and the inclusion relation
into the fuzzy setting. The intersection, union and complement are defined by the min operation, the max
operation and a strong negation n, i.e., C ∩ D, C ∪ D and U − C for fuzzy sets C and D are defined by
membership functions µC∩D(x) = min(µC(x), µD(x)), ∀x ∈ C, µC∪D(x) = max(µC(x), µD(x)), ∀x ∈ C,
µU−C(x) = n(µC(x)), ∀x ∈ C, respectively. The inclusion relation C ⊆ D is extended to inclusion relation
with degree Inc(C,D) = infx I(µC(x), µD(x)), where I is an implication function.

First let us define a lower approximation by extending Eq. (32). In Eq. (32), before applying the union,
we collect Fi such that Fi ⊆ X. This procedure cannot be extended simply into the fuzzy setting, because
the inclusion relation has a degree showing to what extent the inclusion holds in the fuzzy setting. Namely,
each Fi has a degree qi = Inc(Fi, X). This means that X includes Fi to a degree qi. Therefore, by using Fi,
X is expressed as a fuzzy set including Fi to a degree qi. In other words, X is a fuzzy set Y satisfying

Inc(Fi, Y ) = inf
x
I(µFi(x), µY (x)) = qi. (36)

We note that there exists a solution satisfying Eq. (36) because qi is defined by Inc(Fi, X). There can be
many solutions Y satisfying Eq. (36) and the intersection and union of those solutions can be seen as inner
and outer approximations of X by Fi. Because we are now extending Eq. (32) and interested in the lower
approximation, we consider the intersection of fuzzy sets including Fi to a degree qi. Let us consider

Inc(Fi, Y ) = inf
x
I(µFi(x), µY (x)) ≥ qi, (37)

instead of Eq. (36). Eq. (37) is called a converse-certainty qualification [10] (or possibility-qualification).
Because I(a, ·) is increasing for any a ∈ [0, 1] for an implication function I and Eq. (36) has a solution, the
intersection of solutions of Eq. (36) is the same as the intersection of solutions of Eq. (37). Moreover, because
I is upper semi-continuous, we obtain the intersection of solutions of Eq. (37) as the smallest solution Y̌ of
Eq. (37) defined by the following membership function:

µY̌ (x) = inf{s ∈ [0, 1] | I(µFi(x), s) ≥ qi} = ξ[I](µFi(x), qi). (38)
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We have Y̌ ⊆ X. Because we have many Fi ∈ F , the lower approximation Fξ∗ (X) of X is defined by the
following membership function:

µFξ∗ (X)(x) = sup
F∈F

ξ[I]

(
µF (x), inf

y∈U
I(µF (y), µX(y))

)
, (39)

where F can have infinitely many elementary fuzzy sets F .
Because Eq. (32) is extended to Eq. (39), Eq. (35) is extended to the following equation in the sense

that F∗ξ (X) = U − F ξ∗ (U −X):

µF∗
ξ (X)(x) = inf

F∈F
n

(
ξ[I]

(
µF (x), inf

y∈U
I (µF (y), n(µX(y)))

))
, (40)

where µF∗
ξ (X) is the membership function of the upper approximation F∗ξ (X) of X.

Now let us consider the extension of Eq. (33). In this case, before applying the intersection, we collect⋃
i∈J Fi such that

⋃
i∈J Fi ⊇ X. In the fuzzy setting, each

⋃
i∈J Fi has a degree rJ = Inc(X,

⋃
i∈J Fi). This

means that X is included in
⋃
i∈J Fi to a degree rJ . Therefore, by using Fi, i ∈ J , X is expressed as a fuzzy

set included in
⋃
i∈J Fi to a degree rJ . In other words, X is a fuzzy set Y satisfying

Inc

(
Y,
⋃
i∈J

Fi

)
= inf

x
I

(
µY (x),max

i∈J
µFi(x)

)
= rJ . (41)

We note that there exists a solution satisfying Eq. (41) because rJ is defined by Inc(X,
⋃
i∈J Fi). There

can be many solutions Y satisfying Eq. (41) and the intersection and union of those solutions can be seen
as inner and outer approximations of X by

⋃
i∈J Fi. Because we are now extending Eq. (33) and interested

in the upper approximation, we consider the union of fuzzy sets including
⋃
i∈J Fi to a degree rJ . Let us

consider

Inc

(
Y,
⋃
i∈J

Fi

)
= inf

x
I

(
µY (x),max

i∈J
µFi(x)

)
≥ rJ , (42)

instead of Eq. (41). Eq. (42) is called a certainty qualification [10, 57]. Because I(·, a) is decreasing for any
a ∈ [0, 1] for an implication function I and Eq. (41) has a solution, the union of solutions of Eq. (41) is the
same as the union of solutions of Eq. (42). Moreover, because I is upper semi-continuous, we obtain the
union of solutions of Eq. (42) as the greatest solution Ŷ of Eq. (42) defined by the following membership
function:

µŶ (x) = sup

{
s ∈ [0, 1]

∣∣∣∣ I (s,max
i∈J

µFi(x)

)
≥ qi

}
= σ[I]

(
rJ ,max

i∈J
µFi(x)

)
, (43)

where we define σ[I](a, b) = sup{s ∈ [0, 1] | I(s, b) ≥ a} for a, b ∈ [0, 1]. We have X ⊆ Ŷ . Because we have
many

⋃
i∈J Fi, the upper approximation F∗σ(X) of X is defined by the following membership function:

µF∗
σ(X)(x) = inf

T ⊆F
σ[I]

(
inf
y∈U

I

(
µX(y), sup

F∈T
µF (y)

)
, sup
F∈T

µF (x)

)
, (44)

where F can have infinitely many elementary fuzzy sets F . We note that σ[I] becomes an implication
function.

Because Eq. (33) is extended to Eq. (44), Eq. (34) is extended to the following equation in the sense
that Fσ∗ (X) = U − F ∗σ (U −X):

µFσ∗ (X)(x) = sup
T ⊆F

n

(
σ[I]

(
inf
y∈U

I

(
n(µX(y)), sup

F∈T
µF (y)

)
, sup
F∈T

µF (x)

))
, (45)

where µF∗
σ(X) is the membership function of the upper approximation F∗σ(X) of X.

These four approximations were originally proposed by Inuiguchi and Tanino [10]. They selected a

pair (Fξ∗ (X),F∗ξ (X)) to define a rough set of X. However, in connection with the crisp case, Inuiguchi [26]

selected pairs (Fξ∗ (X),F∗σ(X)) and (Fσ∗ (X),F∗ξ (X)) for the definitions of rough sets of X. In this paper, a

pair (Fξ∗ (X),F∗ξ (X)) is called a ξ-fuzzy rough set and a pair (Fσ∗ (X),F∗σ(X)) a σ-fuzzy rough set.
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2.3.3 Properties

First we show properties about the representations of lower and upper approximations defined by Eqs. (39),
(40), (44) and (45). We have the following equalities (see Inuiguchi [26]):

µFξ∗ (X)(x) = sup{ξ[I](µF (x), h) | F ∈ F , h ∈ [0, 1] such that

ξ[I](µF (y), h) ≤ µX(y),∀y ∈ U}, (46)

µFσ∗ (X)(x) = sup

{
n

(
σ[I]

(
h, sup
F∈T

µF (x)

)) ∣∣∣∣ T ⊆ F , h ∈ [0, 1]

such that σ[I]

(
h, sup
F∈T

µF (y)

)
≥ n(µX(y)),∀y ∈ U

}
, (47)

µF∗
ξ (X)(x) = inf{n(ξ[I](µF (x), h)) | F ∈ F , h ∈ [0, 1] such that

ξ[I](µF (y), h) ≤ n(µX(y)),∀y ∈ U}, (48)

µF∗
σ(X)(x) = inf

{
σ[I]

(
h, sup
F∈T

µF (x)

) ∣∣∣∣ T ⊆ F , h ∈ [0, 1]

such that σ[I]

(
h, sup
F∈T

µF (y)

)
≥ µX(y),∀y ∈ U

}
. (49)

Using these equations, the following properties can be obtained easily:

Fξ∗ (X) ⊆ X ⊆ F∗ξ (X), Fσ∗ (X) ⊆ X ⊆ F∗σ(X), (50)

Fξ∗ (∅) = Fσ∗ (∅) = ∅, F∗ξ (U) = F∗σ(U) = U, (51)

X ⊆ Y implies Fξ∗ (X) ⊆ Fξ∗ (Y ), X ⊆ Y implies Fσ∗ (X) ⊆ Fσ∗ (Y ), (52)

X ⊆ Y implies F∗ξ (X) ⊆ F∗ξ (Y ), X ⊆ Y implies F∗σ(X) ⊆ F∗σ(Y ), (53)

Fξ∗ (X ∪ Y ) ⊇ Fξ∗ (X) ∪ Fξ∗ (Y ), Fσ∗ (X ∪ Y ) ⊇ Fσ∗ (X) ∪ Fσ∗ (Y ), (54)

F∗ξ (X ∩ Y ) ⊆ F∗ξ (X) ∩ F∗ξ (Y ), F∗σ(X ∩ Y ) ⊆ F∗σ(X) ∩ F∗σ(Y ), (55)

Fξ∗ (U −X) = U −F∗ξ (X), Fσ∗ (U −X) = U −F∗σ(X). (56)

Furthermore, we can prove the following properties (see Inuiguchi [26]):

〈7〉 The following assertions are valid:

(a) If a > 0, b < 1 imply I(a, b) < 1 and infx∈U supF∈F µF (x) > 0, then we have Fξ∗ (U) = U and
F∗ξ (∅) = ∅.

(b) If b < 1 implies I(1, b) < 1 and infx∈U supF∈F µF (x) = 1, then we have Fξ∗ (U) = U and F∗ξ (∅) = ∅.
(c) If a > 0, b < 1 imply I(a, b) < 1 and ∀x ∈ U , ∃F ∈ F such that µF (x) < 1, then we have
Fσ∗ (U) = U and F∗σ(∅) = ∅.

(d) If a > 0 implies I(a, 0) < 1 and ∀x ∈ U , ∃F ∈ F such that µF (x) = 0, then we have Fσ∗ (U) = U
and F∗σ(∅) = ∅.

〈8〉 We have

Fσ∗ (X ∩ Y ) = Fσ∗ (X) ∩ Fσ∗ (Y ), F∗σ(X ∪ Y ) = F∗σ(X) ∪ F∗σ(Y ). (57)

Moreover, if ∀a ∈ [0, 1], I(a, a) = 1 and ∀Fi, Fj ∈ F , Fi 6= Fj , Fi ∩ Fj = ∅, we have

Fξ∗ (X ∩ Y ) = Fξ∗ (X) ∩ Fξ∗ (Y ), F∗ξ (X ∪ Y ) = F∗ξ (X) ∪ F∗ξ (Y ). (58)

〈9〉 We have

Fξ∗ (Fξ∗ (X)) = Fξ∗ (X), Fσ∗ (Fσ∗ (X)) = Fσ∗ (X), (59)

F∗ξ (F∗ξ (X)) = F∗ξ (X), F∗σ(F∗σ(X)) = F∗σ(X). (60)

10



Inuiguchi and Tanino [10] proposed first this type of fuzzy rough sets. They demonstrated the advantage
in approximation when P is reflexive and symmetric, I is Dienes implication and T is minimum operation.
Inuiguchi and Tanino [58] showed that by selection of a necessity measure expressible various inclusion
situations, the approximations become better, i.e., the differences between lower and upper approximations
satisfying Eq. (58) become smaller. Moreover, Inuiguchi and Tanino [59] applied these fuzzy rough sets to
function approximation.

2.4 Relations between two kinds of fuzzy rough sets

Under given fuzzy relations P and Q described in subsection 2.2, we discuss the relations between two kinds
of fuzzy rough sets. Families of fuzzy sets are defined by P = {P (x)| x ∈ U} and Q = {Q(x)| x ∈ U}. We
have the following assertions.

〈10〉 When P and Q are reflexive, I(1, a) = a, we have

P∗(X) ⊆ Pξ∗(X), Q∗ξ(X) ⊆ Q̄∗(X). (61)

〈11〉 When P and Q are reflexive, X is a crisp set, a ≤ b if and only if I(a, b) = 1 and T (a, 1) = a for all
a ∈ [0, 1], we have

P∗σ(X) ⊆ P ∗(X), Q̄∗(X) ⊆ Qσ∗ (X). (62)

〈12〉 When P and Q are T -transitive, the following assertions are valid:

(a) When T = ξ[I] is associative, we have

Pξ∗(X) ⊆ P∗(X), Q̄∗(X) ⊆ Q∗ξ(X). (63)

(b) When T = ξ[σ[I]] and σ[I](a, σ[I](b, c)) = σ[I](b, σ[I](a, c)) for all a, b, c ∈ [0, 1], we have

P ∗(X) ⊆ P∗σ(X), Qσ∗ (X) ⊆ Q̄∗(X). (64)

Here we define ζ[T ](a, b) = sup{s ∈ [0, 1] | T (a, s) ≤ b}. This functional ζ can produce an implication
function from a conjunction function T . Note that ζ[ξ[I]] = I and ξ[ζ[T ]] = I for upper semi-continuous I
and lower semi-continuous T (see Inuiguchi and Sakawa [52]).

2.5 The other approximation-oriented fuzzy rough sets

Greco et al. [24, 25] proposed fuzzy rough sets corresponding to a gradual rule [53], ‘the more an object is
in G, the more it is in X’ with fuzzy sets F and X. Corresponding to this gradual rule, we may define the
lower approximation G+

∗ (X) of X and the upper approximation G∗+(X) of X respectively by the following
membership functions

µG+
∗ (X)(x) = inf{µX(z) | z ∈ U, µG(z) ≥ µG(x)}, (65)

µG∗
+(X)(x) = sup{µX(z) | z ∈ U, µG(z) ≤ µG(x)}. (66)

When we have a gradual rule, ‘the less an object is in G, the more it is in X’, we define the lower approx-
imation G−∗ (X) of X and the upper approximation G∗−(X) of X respectively by the following membership
functions

µG−
∗ (X)(x) = inf{µX(z) | z ∈ U, µG(z) ≤ µG(x)}, (67)

µG∗
−(X)(x) = sup{µX(z) | z ∈ U, µG(z) ≥ µG(x)}. (68)

Moreover, when a complex gradual rule, ‘the more an object is in G+ and the less it is in G−, the more it
is in X’ is given, the lower approximation G±∗ (X) and upper approximation G∗±(X) are defined respectively
by the following equations:

µG±
∗ (X)(x) = inf{µX(z) | z ∈ U, µ+

G(z) ≥ µ+
G(x), µ−G(z) ≤ µ−G(x)}, (69)

µG∗
±(X)(x) = sup{µX(z) | z ∈ U, µ+

G(z) ≤ µ+
G(x), µ−G(z) ≥ µ−G(x)}, (70)
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where we define G = {G+, G−}.
The fuzzy rough sets are defined by pairs of those lower and upper approximations. This approach is

advantageous in (i) no logical connectives such as implication function, conjunction function, etc., are used
and (ii) the fuzzy rough sets correspond to gradual rules (see Greco et al. [24, 25]). However, we need a
background knowledge about the monotone properties between G (or G) and X.

This approach can be seen from a view point of modifier functions of fuzzy sets. A modifier function
ϕ is generally a function from [0, 1] to [0, 1] (see [54]). Functions defined by ϕ1(x) = x2, ϕ2(x) =

√
x and

ϕ3(x) = 1− x are known as modifier functions corresponding to modifying words ‘very’, ‘more or less’ and
‘not’. Namely, given a fuzzy set A, we may define fuzzy sets ‘very A’, ‘more or less A’ and ‘not-A’ by the
following membership functions:

µvery A(x) = (µA(x))2, µmore or less A(x) =
√
µA(x), µnot-A(x) = 1− µA(x). (71)

Such modifier functions are often used in approximate/fuzzy reasoning [55, 56], especially in the indirect
method of fuzzy reasoning which is called also, truth value space method.

Namely, we may define the lower approximation Φ∗(X) of X and the upper approximation Φ∗(X) of
X by means of a fuzzy set G by the following membership functions:

µΦ∗(X)(x) = ϕG→X∗ (µG(x)), µΦ∗(X)(x) = ϕ∗G→X(µG(x)), (72)

where Φ = {ϕG→X∗ , ϕ∗G→X} and modifier functions ϕG→X∗ and ϕ∗G→X are selected to satisfy

ϕF→X∗ (µG(x)) ≤ µX(x), ϕ∗F→X(µG(x)) ≤ µX(x), ∀x ∈ U. (73)

Indeed, ξ[I](·, infy∈U I(µG(y), µX(y)) and σ[I](infy∈U I(µG(y), µX(y), ·) are modifier functions satisfying

Eq. (73) and these are used to define Fξ∗ (X) and F∗σ(X) in Eqs. (39) and (44), respectively. We note
that we consider multiple fuzzy set G = F ∈ F in Eq. (39) and apply the union because we have
ξ[I](µG, infy∈U I(µG(y), µX(x)) ≤ µX(x), ∀x ∈ U for all G ∈ F . Similarly we consider multiple fuzzy
sets G defined by µG(x) = supF∈T ⊆F µF (x), x ∈ U in Eq. (44) and we apply the intersection because we
have σ[I](infy∈U I(µG(y), µX(y), µG(x)) ≥ µX(x), ∀x ∈ U for all those fuzzy sets G.

In the definitions of Eqs. (65) to (68), the following modifier functions are used respectively:

ϕ+
∗ (α) = sup{ψ+

∗ (β) | β ∈ [0, α]}, ϕ∗+(α) = inf{ψ∗+(β) | β ∈ [α, 1]}, (74)

ϕ−∗ (α) = sup{ψ−∗ (β) | β ∈ [α, 1]}, ϕ∗−(α) = inf{ψ∗−(β) | β ∈ [0, α]}, (75)

where we define

ψ+
∗ (β) = inf{µX(z) | z ∈ U, µG(z) ≥ β}, (76)

ψ∗−(α) = sup{µX(z) | z ∈ U, µG(z) ≤ β}, (77)

ψ−∗ (α) = inf{µX(z) | z ∈ U, µG(z) ≤ β}, (78)

ψ∗−(α) = sup{µX(z) | z ∈ U, µG(z) ≥ β}, (79)

with inf ∅ = 0 and sup ∅ = 1. We note that ϕ+
∗ and ϕ∗+ are monotonically increasing which ϕ−∗ and ϕ∗−

are monotonically decreasing. These monotonicities are imposed in order to fit the supposed gradual rules.
However, such monotonicities do not hold for functions ψ+

∗ , ψ∗+, ψ−∗ and ψ∗−. In the cases of Eqs. (69) and
(70), we should extend the modifier function to a generalized modifier function which is a function from
[0, 1] × [0, 1] to [0, 1] because we have two fuzzy sets in the premise of the corresponding gradual rule. The
associated generalized modifier functions with Eqs. (69) and (70) are obtained as

ϕ±∗ (α1, α2) = sup{ψ±∗ (β1, β2) | β1 ∈ [0, α1], β2 ∈ [α2, 1]}, (80)

ϕ∗±(α1, α2) = sup{ψ∗±(β1, β2) | β1 ∈ [α1, 1], β2 ∈ [0, α2]}, (81)

where we define

ψ±∗ (β1, β2) = inf{µX(z) | z ∈ U, µ+
G(z) ≥ β1, µ

−
G(z) ≤ β2}, (82)

ψ∗±(β1, β2) = sup{µX(z) | z ∈ U, µ+
G(z) ≤ β1, µ

−
G(z) ≥ β2}, (83)
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with inf ∅ = 0 and sup ∅ = 1. We note ϕ±∗ and ϕ∗± are monotonically increasing in the first argument and
monotonically decreasing in the second argument.

Moreover when we do not have any background knowledge about the relation between G and X which
is expressed by a gradual rule. We may define the lower approximation G∗(X) and the upper approximation
G∗(X) by the following membership functions:

µG∗(X)(x) = inf{µX(z) | z ∈ U, µG(z) = µG(x)}, (84)

µG∗(X)(x) = sup{µX(z) | z ∈ U, µG(z) = µG(x)}. (85)

The modifier functions associate with these approximations are obtained as

ϕ∗(α) = inf{µX(z) | z ∈ U, µG(z) = α}, (86)

ϕ∗(α) = sup{µX(z) | z ∈ U, µG(z) = α}. (87)

where we define inf ∅ = 0 and sup ∅ = 1. Eq. (87) is the same as the inverse truth qualification [55, 56] of X
based on G.

We describe the properties of the approximations defined by Eqs. (65) to (68). However the other
approximations defined by Eqs. (69), (70), (84) and (85) have the similar results. We have the following
properties for the approximations defined by Eqs. (65) to (68) (see Greco et al. [25] for a part of these
properties):

G+
∗ (X) ⊆ X ⊆ G∗+(X), G−∗ (X) ⊆ X ⊆ G∗−(X), (88)

G+
∗ (∅) = G∗+(∅) = G−∗ (∅) = G∗−(∅) = ∅, (89)

G+
∗ (U) = G∗+(U) = G−∗ (U) = G∗−(U) = U, (90)

G+
∗ (X ∩ Y ) = G+

∗ (X) ∩G+
∗ (Y ), G−∗ (X ∩ Y ) = G−∗ (X) ∩G−∗ (Y ), (91)

G∗+(X ∪ Y ) = G∗+(X) ∪G∗+(Y ), G∗−(X ∪ Y ) = G∗−(X) ∪G∗−(Y ), (92)

X ⊆ Y implies G+
∗ (X) ⊆ G+

∗ (Y ), X ⊆ Y implies G∗+(X) ⊆ G∗+(Y ), (93)

X ⊆ Y implies G−∗ (X) ⊆ G−∗ (Y ), X ⊆ Y implies G∗−(X) ⊆ G∗−(Y ), (94)

G+
∗ (X ∪ Y ) ⊇ G+

∗ (X) ∪G+
∗ (Y ), G∗+(X ∩ Y ) ⊆ G∗+(X) ∩G∗+(Y ), (95)

G−∗ (X ∪ Y ) ⊇ G−∗ (X) ∪G−∗ (Y ), G∗−(X ∩ Y ) ⊆ G∗−(X) ∩G∗−(Y ), (96)

G+
∗ (U\X) = U\G∗−(X) = U\(U\G)∗+(X) = (U\G)−∗ (U\X), (97)

G−∗ (U\X) = U\G∗+(X) = U\(U\G)∗−(X) = (U\G)+
∗ (U\X), (98)

G+
∗ (G+

∗ (X)) = G∗+(G+
∗ (X)) = G+

∗ (X), G∗+(G∗+(X)) = G+
∗ (G∗+(X)) = G∗+(X),

(99)

G−∗ (G−∗ (X)) = G∗−(G−∗ (X)) = G−∗ (X), G∗−(G∗−(X)) = G−∗ (G∗−(X)) = G∗−(X),

(100)

where U\X is a fuzzy set defined by its membership function µU\X(x) = N(µX(x)), ∀x ∈ U with a strictly
decreasing function N : [0, 1] → [0, 1]. We found that all fundamental properties [2] of the classical rough
set are preserved.

2.6 Remarks

Three types of fuzzy rough set models have been described, divided into two groups: classification-oriented
and approximation-oriented models. The classification-oriented fuzzy rough set models are much more
investigated by many researchers. However, the approximation-oriented fuzzy rough set models would be
more important because they are associated with rules. While approximation-oriented fuzzy rough set
models based on modifiers are strongly related to the gradual rules, approximation-oriented fuzzy rough set
models based on certainty qualification have relations to uncertain generation rule (uncertain qualification
rule: certainty rule and possibility rule) [57], i.e., a rule such as ‘the more an object is in A, the more
certain (possible) it is in B’. While approximation-oriented fuzzy rough set models based on modifiers need
a modifier function for each granule G, the approximation-oriented fuzzy rough set models based on certainty
qualification need only a degree of inclusion for each granule F . Therefore, the latter may work well for data
compression such as image compression, speech compression and so on.
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3 Generalized Fuzzy Belief Structures with Application in Fuzzy
Information Systems

In rough set theory there exists a pair of approximation operators, the lower and upper approximations,
whereas in the Dempster-Shafer theory of evidence there exists a dual pair of uncertainty measures, the
belief and plausibility functions. In this section, general types of belief structures and their induced dual
pairs of belief and plausibility functions are first introduced. Relationships between belief and plausibility
functions in the Dempster-Shafer theory of evidence and the lower and upper approximations in rough set
theory are then established. It is shown that the probabilities of lower and upper approximations induced
from an approximation space yield a dual pair of belief and plausibility functions. And for any belief structure
there must exist a probability approximation space such that the belief and plausibility functions defined by
the given belief structure are, respectively, the lower and upper probabilities induced by the approximation
space. The pair of lower and upper approximations of a set capture the non-numeric aspect of uncertainty
of the set which can be interpreted as the qualitative representation of the set, whereas the pair of the
belief and plausibility measures of the set capture the numeric aspect of uncertainty of the set which can be
treated as the quantitative characterization of the set. Finally, the potential applications of the main results
to intelligent information systems are explored.

3.1 Belief structures and belief functions

In this subsection we recall some basic notions related to belief structures with their induced belief and
plausibility functions.

3.1.1 Belief and plausibility functions derived from a crisp belief structure

The basic representational structure in the Dempster-Shafer theory of evidence is a belief structure.

Definition 1 Let U be a non-empty set which may be infinite, a set function m : P(U) → [0, 1] is referred
to as a crisp basic probability assignment if it satisfies axioms (M1) and (M2):

(M1) m(∅) = 0, (M2)
∑
X⊆U

m(X) = 1.

A set X ∈ P(U) with nonzero basic probability assignment is referred to as a focal element of m. We denote
by M the family of all focal elements of m. The pair (M,m) is called a crisp belief structure on U .

Lemma 1 Let (M,m) be a crisp belief structure on U . Then the focal elements of m constitute a countable
set.

Proof. For any n ∈ {1, 2, . . .}, let

Hn = {A ∈M|m(A) > 1/n}.

By axiom (M2) we can see that for each n ∈ {1, 2, . . .}, Hn is a finite set. Since M =
∞⋃
n=1

Hn, we conclude

that M is countable.
Associated with each belief structure, a pair of belief and plausibility functions can be defined.

Definition 2 Let (M,m) be a crisp belief structure on U . A set function Bel : P(U) → [0, 1] is called a
CC-belief function on U if

Bel(X) =
∑
M⊆X

m(M), ∀X ∈ P(U). (101)

A set function Pl : P(U)→ [0, 1] is called a CC-plausibility function on U if

Pl(X) =
∑

M∩X 6=∅

m(M), ∀X ∈ P(U). (102)
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Remark 1 Since M is a countable set, the change of convergence may not change the values of the infinite
(countable) sums in Eqs. (101) and (102). Therefore, Definition 2 is reasonable.

The CC-belief function and CC-plausibility function based on the same belief structure are connected
by the dual property

Pl(X) = 1− Bel(∼ X), ∀X ∈ P(U) (103)

and moreover,

Bel(X) ≤ Pl(X), ∀X ∈ P(U). (104)

When U is finite, a CC-belief function can be equivalently defined as a monotone Choquet capacity [60]
on U which satisfies the following properties [27]:

(MC1) Bel(∅) = 0,
(MC2) Bel(U) = 1,
(MC3) for all Xi ∈ P(U), i = 1, 2, . . . , k,

Bel(

k⋃
i=1

Xi) ≥
∑

∅6=J⊆{1,2,...,k}

(−1)|J|+1Bel(
⋂
i∈J

Xi). (105)

Similarly, a CC-plausibility function can be equivalently defined as an alternating Choquet capacity on U
which satisfies the following properties:

(AC1) Pl(∅) = 0,
(AC2) Pl(U) = 1,
(AC3) for all Xi ∈ P(U), i = 1, 2, . . . , k,

Pl(

k⋂
i=1

Xi) ≤
∑

∅6=J⊆{1,2,...,k}

(−1)|J|+1Pl(
⋃
i∈J

Xi). (106)

A monotone Choquet capacity is a belief function in which the basic probability assignment can be
calculated by using the Möbius transform:

m(X) =
∑
Y⊆X

(−1)|X\Y |Bel(Y ), X ∈ P(U). (107)

A crisp belief structure can also be induced a dual pair of fuzzy belief and plausibility functions.

Definition 3 Let (M,m) be a crisp belief structure on U . A fuzzy set function Bel : F(U)→ [0, 1] is called
a CF-belief function on U if

Bel(X) =
∑
A∈M

m(A)NA(X), ∀X ∈ F(U). (108)

A fuzzy set function Pl : F(U)→ [0, 1] is called a CF-plausibility function on U if

Pl(X) =
∑
A∈M

m(A)ΠA(X), ∀X ∈ F(U). (109)

Where NA : F(U)→ [0, 1] and ΠA : F(U)→ [0, 1] are, respectively, the necessity measure and the possibility
measure determined by the crisp set A defined as follows:

NA(X) =
∧
u∈A

X(u), X ∈ F(U), (110)

ΠA(X) =
∨
u∈A

X(u), X ∈ F(U). (111)
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3.1.2 Belief and plausibility functions derived from a fuzzy belief structure

Definition 4 Let U be a non-empty set which may be infinite. A set function m : F(U)→ [0, 1] is referred
to as a fuzzy basic probability assignment, if it satisfies axioms (FM1) and (FM2):

(FM1) m(∅) = 0, (FM2)
∑

X∈F(U)

m(X) = 1.

A fuzzy set X ∈ F(U) with m(X) > 0 is referred to as a focal element of m. We denote by M the family of
all focal elements of m. The pair (M,m) is called a fuzzy belief structure.

Lemma 2 [61] Let (M,m) be a fuzzy belief structure on W . Then the focal elements of m constitute a
countable set.

In the discussion to follow, all the focal elements are supposed to be normal, i.e., for any A ∈M, there
exists an x ∈ U such that A(x) = 1. Associated with the fuzzy belief structure (M,m), two pairs of fuzzy
belief and plausibility functions can be derived.

Definition 5 Let U be a non-empty set which may be infinite, and (M,m) a fuzzy belief structure on U . A
crisp set function Bel : P(U)→ [0, 1] is referred to as a FC-belief function on U if

Bel(X) =
∑
A∈M

m(A)NA(X), ∀X ∈ P(U). (112)

A crisp set function Pl : P(U)→ [0, 1] is called a FC-plausibility function on U if

Pl(X) =
∑
A∈M

m(A)ΠA(X), ∀X ∈ P(U). (113)

Where NA : P(U)→ [0, 1] and ΠA : P(U)→ [0, 1] are, respectively, the necessity measure and the possibility
measure determined by the fuzzy set A defined as follows:

NA(X) =
∧
u/∈X

(1−A(u)), X ∈ P(U) (114)

ΠA(X) =
∨
u∈X

A(u), X ∈ P(U). (115)

Definition 6 Let U be a non-empty set which may be infinite, and (M,m) a fuzzy belief structure on U . A
fuzzy set function Bel : F(U)→ [0, 1] is referred to as a FF-belief function on U if

Bel(X) =
∑
A∈M

m(A)NA(X), ∀X ∈ F(U). (116)

A fuzzy set function Pl : F(U)→ [0, 1] is called a FF-plausibility function on U if

Pl(X) =
∑
A∈M

m(A)ΠA(X), ∀X ∈ F(U). (117)

Where NA : F(U)→ [0, 1] and ΠA : F(U)→ [0, 1] are, respectively, the necessity measure and the possibility
measure determined by the fuzzy set A defined as follows:

NA(X) =
∧
u∈U

(X(u) ∨ (1−A(u))), X ∈ F(U), (118)

ΠA(X) =
∨
u∈U

(X(u) ∧A(u)), X ∈ F(U). (119)
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It can be proved that the belief and plausibility functions derived from the same fuzzy belief structure
(M,m) are dual, that is,

Bel(X) = 1− Pl(∼ X), ∀X ∈ F(U). (120)

And

Bel(X) ≤ Pl(X), ∀X ∈ F(U). (121)

Moreover, Bel is a fuzzy monotone Choquet capacity of infinite order on U which satisfies axioms (FMC1)-
(FMC3),

(FMC1) Bel(∅) = 0,
(FMC2) Bel(U) = 1,
(FMC3) For Xi ∈ F(U), i = 1, 2, . . . , n, n ∈ N,

Bel(

n⋃
i=1

Xi) ≥
∑

∅6=J⊆{1,2,...,n}

(−1)|J|+1Bel(
⋂
j∈J

Xj). (122)

And Pl is a fuzzy alternating Choquet capacity of infinite order on U which obeys axioms (FAC1)-(FAC3),
(FAC1) Pl(∅) = 0,
(FAC2) Pl(U) = 1,
(FAC3) For Xi ∈ F(U), i = 1, 2, . . . , n, n ∈ N,

Pl(

n⋂
i=1

Xi) ≤
∑

∅6=J⊆{1,2,...,n}

(−1)|J|+1Pl(
⋃
i∈J

Xi). (123)

3.2 Belief structures of rough approximations

In this subsection, we show relationships between various belief and plausibility functions in Dempster-Shafer
theory of evidence and the lower and upper approximations in rough set theory with potential applications.

3.2.1 Belief functions VS crisp rough approximations

Definition 7 Let U and W be two nonempty universes of discourse. A subset R ∈ P(U ×W ) is referred to
as a binary relation from U to W . The relation R is referred to as serial if for any x ∈ U there exists y ∈W
such that (x, y) ∈ R. If U = W , R ∈ P(U × U) is called a binary relation on U , R ∈ P(U × U) is referred
to as reflexive if (x, x) ∈ R for all x ∈ U ; R is referred to as symmetric if (x, y) ∈ R implies (y, x) ∈ R for
all x, y ∈ U ; R is referred to as transitive if for any x, y, z ∈ U, (x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R;
R is referred to as Euclidean if for any x, y, z ∈ U, (x, y) ∈ R and (x, z) ∈ R imply (y, z) ∈ R; R is referred
to as an equivalence relation if R is reflexive, symmetric and transitive.

Assume that R is an arbitrary binary relation from U to W . One can define a set-valued mapping
Rs : U → P(W ) by:

Rs(x) = {y ∈W |(x, y) ∈ R}, x ∈ U. (124)

Rs(x) is called the successor neighborhood of x with respect to (w.r.t.) R [62]. Obviously, any set-valued
mapping F from U to W defines a binary relation from U to W by setting R = {(x, y) ∈ U ×W |y ∈ F (x)}.
For A ∈ P(W ), let j(A) = R−1

s (A) be the counter-image of A under the set-valued mapping Rs, i.e.,

j(A) =

{
R−1
s (A) = {u ∈ U |Rs(u) = A}, if A ∈ {Rs(x)|x ∈ U},
∅, otherwise.

(125)

Then it is well-known that j satisfies the properties (J1) and (J2):

(J1) A 6= B =⇒ j(A) ∩ j(B) = ∅, (J2)
⋃

A∈P(W )

j(A) = U.
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Definition 8 If R is an arbitrary relation from U to W , then the triple (U,W,R) is referred to as a gener-
alized approximation space. For any set A ⊆W , a pair of lower and upper approximations, R(A) and R(A),
are, respectively, defined by

R(A) = {x ∈ U |Rs(x) ⊆ A}, R(A) = {x ∈ U |Rs(x) ∩A 6= ∅}. (126)

The pair (R(A), R(A)) is referred to as a generalized crisp rough set, and R and R : P(W ) → P(U) are
called the lower and upper generalized approximation operators respectively.

If U is countable set, P a normalized probability measure on U , i.e. P ({x}) > 0 for all x ∈ U , and R
an arbitrary relation from U to W , then ((U,P ),W,R) is referred to as a probability approximation space.

Theorem 1 [32] Assume that ((U,P ),W,R) is a serial probability approximation space, for X ∈ P(W ),
define

m(X) = P (j(X)), Bel(X) = P (R(X)), Pl(X) = P (R(X)). (127)

Then m : P(W ) → [0, 1] is a basic probability assignment on W and Bel : P(W ) → [0, 1] and Pl : P(W ) →
[0, 1] are, respectively, the CC-belief and CC-plausibility functions on W .

Conversely, for any crisp belief structure (M,m) on W which may be infinite. If Bel : P(W ) → [0, 1]
and Pl : P(W )→ [0, 1] are, respectively, the CC- belief and CC-plausibility functions defined in Definition 2,
then there exists a countable set U , a serial relation R from U to W , and a normalized probability measure
P on U such that

Bel(X) = P (R(X)), Pl(X) = P (R(X)), ∀X ∈ P(W ). (128)

The notion of information systems (sometimes called data tables, attribute-value systems, knowledge
representation systems etc.) provides a convenient tool for the representation of objects in terms of their
attribute values.

An information system is a pair (U,A), where U = {x1, x2, . . . , xn} is a non-empty, finite set of objects
called the universe of discourse and A = {a1, a2, . . . , am} is a non-empty, finite set of attributes, such that
a : U → Va for any a ∈ A, where Va is called the domain of a.

Each non-empty subset B ⊆ A determines an indiscernibility relation as follows:

RB = {(x, y) ∈ U × U |a(x) = a(y),∀a ∈ B}. (129)

Since RB is an equivalence relation on U , it forms a partition U/RB = {[x]B |x ∈ U} of U , where [x]B
denotes the equivalence class determined by x with respect to (w.r.t.) B, i.e., [x]B = {y ∈ U |(x, y) ∈ RB}.

Let (U,A) be an information system, B ⊆ A, for any X ⊆ U , denote

RB(X) = {x ∈ U |[x]B ⊆ X},

RB(X) = {x ∈ U |[x]B ∩X 6= ∅}.
(130)

RB(X) and RB(X) are respectively referred to as the lower and upper approximations of X w.r.t. (U,RB),
the knowledge generated by B. Objects in RB(X) can be with certainty classified as elements of X on the

basis of knowledge in (U,RB), whereas objects in RB(X) can only be classified possibly as elements of X
on the basis of knowledge in (U,RB)).

For B ⊆ A andX ⊆ U , denote BelB(X) = P (RB(X)) and PlB(X) = P (RB(X)), where P (Y ) = |Y |/|U |
and |Y | is the cardinality of a set Y . Then BelB and PlB are CC-belief function and CC-plausibility function
on U respectively, and the corresponding mass distribution is

m
B

(Y ) =

{
P (Y ), if Y ∈ U/RB ,
0, otherwise.

A decision system (sometimes called decision table) is a pair (U,C∪{d}) where (U,C) is an information
system, and d is a distinguished attribute called the decision, in this case C is called the conditional attribute
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set, d is a map d : U → Vd of the universe U into the value set Vd, we assume, without any loss of generality,
that Vd = {1, 2, . . . , r}. Define

Rd = {(x, y) ∈ U × U |d(x) = d(y)}. (131)

Then we obtain the partition U/Rd = {D1, D2, . . . , Dr} of U into decision classes, where Dj = {x ∈ U |d(x) =
j}, j ≤ r. If RC ⊆ Rd, then the decision system (U,C ∪ {d}) is consistent, otherwise it is inconsistent. One
can acquire certainty decision rules from consistent decision systems and uncertainty decision rules from
inconsistent decision systems.

3.2.2 Belief functions VS rough fuzzy approximations

Definition 9 Let (U,W,R) be a generalized approximation space, for a fuzzy set A ∈ F(W ), the lower and
upper approximations of A, RF (A) and RF (A), with respect to the approximation space (U,W,R) are fuzzy
sets of U whose membership functions, for each x ∈ U , are defined, respectively, by

RF (A)(x) =
∨

y∈Rs(x)

A(y), x ∈ U,

RF (A)(x) =
∧

y∈Rs(x)

A(y), x ∈ U. (132)

The pair (RF (A), RF (A)) is referred to as a generalized rough fuzzy set, and RF and RF : F(W )→ F(U)
are referred to as lower and upper generalized rough fuzzy approximation operators, respectively.

In the discussion to follow, we always assume that (U,A, P ) is a probability space, i.e., U is a nonempty
set, A ⊆ P(U) a σ-algebra on U , and P a probability measure on U .

Definition 10 A fuzzy set A ∈ F(U) is said to be measurable w.r.t. (U,A) if A : U → [0, 1] is a measurable
function w.r.t. A− B([0, 1]), where B([0, 1]) is the family of Borel sets on [0, 1]. We denote by F(U,A) the
family of all measurable fuzzy sets of U w.r.t. A− B([0, 1]).

For any measurable fuzzy set A ∈ F(U,A), since Aα ∈ A for all α ∈ [0, 1], Aα is a measurable set on
the probability space (U,A, P ) and then P (Aα) ∈ [0, 1]. Notice that f(α) = P (Aα) is monotone decreasing

and left continuous, it can be seen that f(α) is integrable, we denote the integrand as
∫ 1

0
P (Aα)dα.

Definition 11 If a fuzzy set A is measurable w.r.t. (U,A), and P is a probability measure on (U,A). Denote

P (A) =

∫ 1

0

P (Aα)dα, (133)

P (A) is called the probability of A.

For a singleton set {x}, we will write P (x) instead of P ({x}) for short.

Proposition 1 [63, 21] The fuzzy probability measure P in Definition 11 satisfies the following properties:
(1) P (A) ∈ [0, 1] and P (A) + P (∼ A) = 1, for all A ∈ F(U,A).
(2) P is countably additive, i.e., for Ai ∈ F(U,A), i = 1, 2, . . . , Ai ∩Aj = ∅, ∀i 6= j, then

P (

∞⋃
i=1

Ai) =

∞∑
i=1

P (Ai). (134)

(3) A,B ∈ F(U,A), A ⊆ B =⇒ P (A) ≤ P (B).
(4) If U = {ui|i = 1, 2, . . .} is an infinite countable set and A = P(U), then for all A ∈ F(U),

P (A) =

∫ 1

0

P (Aα)dα =
∑
x∈U

A(x)P (x). (135)

(5) If U is a finite set with |U | = n, A = P(U), and P (u) = 1/n, then P (A) =
∫ 1

0
P (Aα)dα = |A|/n

for all A ∈ P(U).
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Theorem 2 Assume that ((U,P ),W,R) is a serial probability approximation space, for X ∈ F(W ), define

m(X) = P (j(X)), Bel(X) = P (RF (X)), Pl(X) = P (RF (X)). (136)

Then m : P(W )→ [0, 1] is a basic probability assignment on W and Bel : F(W )→ [0, 1] and Pl : F(W )→
[0, 1] are, respectively, the CF-belief and CF-plausibility functions on W .

Conversely, for any crisp belief structure (M,m) on W which may be infinite. If Bel : F(W ) → [0, 1]
and Pl : F(W )→ [0, 1] are, respectively, the CF- belief and CF-plausibility functions defined in Definition 3,
then there exists a countable set U , a serial relation R from U to W , and a normalized probability measure
P on U such that

Bel(X) = P (RF (X)), Pl(X) = P (RF (X)), ∀X ∈ F(W ). (137)

For a decision table (U,C ∪ {d}), where Vd = {d1, d2, . . . , dr}, d is called a fuzzy decision if, for each
x ∈ U , d(x) is a fuzzy subset of Vd, i.e., d : U → F(Vd), with no lose of generality, we represent d as follows:

d(xi) = di1/d1 + di2/d2 + · · ·+ dir/dr, i = 1, 2, . . . , n, (138)

where dij ∈ [0, 1]. In this case, (U,C ∪ {d}) is called an information system with fuzzy decision. For the
fuzzy decision d, we define a fuzzy indiscernibility binary relation Rd on U as follows: For i, k = 1, 2, . . . , n

Rd(xi, xk) = min{1− |dij − dkj ||j = 1, 2, . . . , r}. (139)

Then, we obtain a fuzzy similarity class Sd(x) of x ∈ U in the system (U,C ∪ {d}) as follows:

Sd(x)(y) = Rd(x, y), y ∈ U. (140)

Since Sd(x)(x) = Rd(x, x) = 1, we see that Sd(x) : U → [0, 1] is a normalized fuzzy set of U . Denote by
U/Rd the fuzzy similarity classes induced by the fuzzy decision d, i.e.

U/Rd = {Sd(x)|x ∈ U}. (141)

For B ⊆ C and X ∈ F(U), we define the lower and upper approximations of X w.r.t. (U,RB) as
follows:

RFB(X)(x) =
∧

y∈SB(x)

X(y), x ∈ U,

RFB(X)(x) =
∨

y∈SB(x)

X(y), x ∈ U. (142)

Theorem 3 Let (U,C ∪ {d}) be an information system with fuzzy decision. For B ⊆ C and X ∈ F(U), if
RFB(X) and RFB(X) are, respectively, the lower and upper approximations of X w.r.t. (U,RB) defined by
Definition 9, denote

BelB(X) = P (RFB(X)),
PlB(X) = P (RFB(X)),

(143)

where P (X) =
∑
x∈U X(x)/|U | for X ∈ F(U), then BelB : F(U) → [0, 1] and PlB : F(U) → [0, 1] are,

respectively, a CF-belief function and a CF-plausibility function on U , and the corresponding basic probability
assignment m

B
is

m
B

(Y ) =

{
P (Y ) = |Y |/|U |, if Y ∈ U/RB ,
0, otherwise.

(144)

3.2.3 Belief functions VS fuzzy rough approximations

Definition 12 Let U and W be two nonempty universes of discourse. A fuzzy subset R ∈ F(U × W )
is referred to as a binary relation from U to W , R(x, y) is the degree of relation between x and y, where
(x, y) ∈ U × W . The fuzzy relation R is referred to as serial if for each x ∈ U ,

∨
y∈W R(x, y) = 1. If

U = W , R ∈ F(U ×U) is called a fuzzy binary relation on U , R is referred to as a reflexive fuzzy relation if
R(x, x) = 1 for all x ∈ U ; R is referred to as a symmetric fuzzy relation if R(x, y) = R(y, x) for all x, y ∈ U ;
R is referred to as a transitive fuzzy relation if R(x, z) ≥ ∨y∈U (R(x, y) ∧R(y, z)) for all x, z ∈ U ; and R is
referred to as an equivalence fuzzy relation if it is reflexive, symmetric, and transitive.
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Definition 13 Let U and W be two non-empty universes of discourse and R a fuzzy relation from U to W .
The triple (U,W,R) is called a generalized fuzzy approximation space. For any set A ∈ F(W ), the lower and
upper approximations of A, FR(A) and FR(A), with respect to the approximation space (U,W,R) are fuzzy
sets of U whose membership functions, for each x ∈ U , are defined, respectively, by

FR(A)(x) =
∨
y∈W

[R(x, y) ∧A(y)], x ∈ U,

FR(A)(x) =
∧
y∈W

[(1−R(x, y)) ∨A(y)], x ∈ U. (145)

The pair (FR(A), FR(A)) is referred to as a generalized fuzzy rough set, and FR and FR : F(W )→ F(U)
are referred to as lower and upper generalized fuzzy rough approximation operators, respectively.

Theorem 4 Let (U,W,R) be a serial fuzzy approximation space in which U is a countable set, P a probability
measure on U . If FR and FR are the fuzzy rough approximation operators defined in Definition 13, denote

Bel(X) = P (FR(X)), Pl(X) = P (FR(X)), X ∈ F(W ). (146)

Then Bel : F(W ) → [0, 1] and Pl : F(W ) → [0, 1] are, respectively, FF-fuzzy belief and FF-plausibility
functions on W .

Conversely, if (M,m) is a fuzzy belief structure on W , Bel : F(W )→ [0, 1] and Pl : F(W )→ [0, 1] are
the pair of FF-fuzzy belief function and FF-plausibility function defined in Definition 6, then there exists a
countable set U , a serial fuzzy relation R from U to W , and a probability measure P on U such that for all
X ∈ F(W ),

Bel(X) = P (FR(X)) =
∑
x∈U

FR(X)(x)P (x), (147)

Pl(X) = P (FR(X)) =
∑
x∈U

FR(X)(x)P (x). (148)

A pair (U,A) is called a fuzzy information system if each a ∈ A is a fuzzy attribute, i.e. for each x ∈ U ,
a(x) is a fuzzy subset of Vd, that is, a : U → F(Va). Similar to Eq. (139), we can define a reflexive fuzzy
binary relation Ra on U , and consequently, for any attribute subset B ⊆ A one can define a reflexive fuzzy
relation RB as follows

RB =
⋂
a∈B

Ra. (149)

For X ∈ F(U), denote

BelB(X) = P (FRB(X)), PlB(X) = P (FRB(X)), (150)

where P (X) =
∑
x∈U X(x)/|U | for X ∈ F(U). Then, according to Theorem 4, BelB : F(U) → [0, 1] and

PlB : F(U) → [0, 1] are respectively, FF-fuzzy belief function and FF-plausibility function on U . More
specifically, if X in Eq. (150) is crisp subset of U , then BelB : P(U) → [0, 1] and PlB : P(U) → [0, 1]
defined by Eq. (150) are respectively, FC-fuzzy belief functions and FC-plausibility functions on U . Based
on these observations, we believe that FF-fuzzy belief functions and FF-plausibility functions can be used to
analyze uncertainty fuzzy information systems with fuzzy decision and whereas FC-fuzzy belief functions and
FC-plausibility functions can be employed to deal with knowledge discovery in fuzzy information systems
with crisp decision.

3.3 Conclusion of this section

The lower and upper approximations of a set capture the non-numeric aspect of uncertainty of the set which
can be interpreted as the qualitative representation of the set, whereas the pair of the belief and plausibility
measures of the set characterize the numeric aspect of uncertainty of the set which can be treated as the
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quantitative characterization of the set. In this section, we have introduced some generalized belief and
plausibility and belief functions on the Dempster-Shafer theory of evidence. We have shown that the fuzzy
belief and plausibility functions can be interpreted as the lower and upper approximations in rough set theory.
That is, the belief and plausibility functions in the Dempster-Shafer theory of evidence can be represented
as the probabilities of lower and upper approximations in rough set theory, thus rough set theory may be
regarded as the basis of the Dempster-Shafer theory of evidence. And the Dempster-Shafer theory of evidence
in the fuzzy environment provides a potentially useful tool for reasoning and knowledge acquisition in fuzzy
systems and fuzzy decision systems.

4 Applications of Fuzzy Rough Sets

Both fuzzy set and rough set theories have fostered broad research communities and have been applied in
a wide range of settings. More recently, this has extended also to the hybrid fuzzy rough set models. This
section tries to give a sample of those applications, which are in particular numerous for machine learning
but which also cover many other fields, like image processing, decision making and information retrieval.

Note that we do not consider applications that simply involve a joint application of fuzzy sets and
rough sets, like for instance a rough classifier that induces fuzzy rules. Rather, we focus on applications that
specifically involve one of the fuzzy rough set models discussed in the previous sections.

4.1 Applications in machine learning

4.1.1 Feature selection

The most prominent application of classical rough set theory is undoubtedly semantics-preserving data
dimensionality reduction: the removal of attributes (features) from information systems1 without sacrificing
the ability to discern between different objects. A minimal attribute subset B ⊆ A that maintains objects’
discernibility is called a reduct. For classification tasks, it is sufficient to be able to discern between objects
belonging to different classes, in which case a decision reduct, also called relative reduct, is sought.

The traditional rough set model sets forth a crisp notion of discernibility, where two objects are either
discernible or not w.r.t. a set of attributes B based on their values for all attributes in B. To be able to handle
numerical data, discretization is required. Fuzzy-rough feature selection avoids this external preprocessing
step by incorporating graded indiscernibility between objects directly into the data reduction process. On
the other hand, by the use of fuzzy partitions, such that objects can belong to different classes to varying
degrees, a more flexible data representation is obtained.

Chronologically, the oldest proposal to apply fuzzy rough sets to feature selection is due to Kuncheva [39]
in 1992. However, rather than using Dubois and Prade’s definition, she proposed her own notion of a fuzzy
rough set based on an inclusion measure. Based on this, she defined a quality measure for evaluating attribute
subsets w.r.t. their ability to approximate a predetermined fuzzy partition on the data, and illustrated its
usefulness on a medical data set.

Jensen and Shen [40, 42] were the first to propose a reduction method that generalizes the classical
rough set positive region and dependency function. In particular, the dependency degree γB , with B ⊆ A,
is used to guide a hill-climbing search in which, starting from B = ∅, in each step an attribute a is added
such that γB∪{a} is maximal. The search ends when there is no further increase in the measure. This is the
QuickReduct algorithm. In [64] they replaced this simple greedy search heuristic by a more complex one
based on ant colony optimization.

Hu et al. [66] formally defined the notions of reduct and decision reduct in the fuzzy-rough case, referring
to the invariance of the fuzzy partition induced by the data, and of the fuzzy positive region, respectively.
They also showed that minimal subsets that are invariant w.r.t. (conditional) entropy are (decision) reducts.

Tsang et al. [67] proposed a method based on the discernibility matrix and function to find all decision
reducts where invariance of the fuzzy positive region defined using Dubois and Prade’s definition is imposed,
and proved its correctness. In [68], an extension of this method is defined that finds all decision reducts where
the approximations are defined using a lower semi-continuous t-norm T and its R-implicator. The particular

1An information system (U,A) consists of a non-empty set U of objects which are described by a set of attributes A.
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case using  Lukasiewicz connectives was studied in [69]. Later, Zhao and Tsang [?] studied relationships that
exist between different kinds of decision reducts, defined using different types of fuzzy connectives.

In [65], Jensen and Shen introduced three different quality measures for evaluating attribute subsets:
the first one is a revised version of their previously defined degree of dependency, the second one is based
on the fuzzy boundary region and the third one on the satisfaction of the clauses of the fuzzy discernibility
function. On the other hand, in [70], Cornelis et al. proposed the definition of fuzzy M-decision reducts,
where M is an increasing, [0,1]-valued quality measure. They studied two measures based on the fuzzy
positive region and two more based on the fuzzy discernibility function, and applied them to classification
and regression problems.

In [46], Chen and Zhao study the concept of local reduction: instead of looking for a global reduction,
where the whole positive region is considered as an invariant, they focus on subsets of decision classes and
identify the conditional attributes that provide minimal descriptions for them.

Over the past few years, there has also been considerable interest in the application of noise-tolerant
fuzzy rough set models to feature selection, where the aim is to make the reduction more robust in the
presence of noisy or erroneous data. For instance, Hu et al.[71] defined fuzzy rough sets as an extension of
Variable Precision Rough Sets, and used a corresponding notion of positive region to guide a greedy search
algorithm. In [72], Cornelis and Jensen evaluated the Vaguely Quantified Rough Set (VQRS) approach to
feature selection. They found that because the model does not satisfy monotonicity w.r.t. the fuzzy relation
R, adding more attributes does not always lead to an expansion of the fuzzy positive region, and the hill-
climbing search sometimes runs into troubles. Furthermore, in [73] Hu et al., inspired by the idea of soft
margin support vector machines, introduced soft fuzzy rough sets and applied them to feature selection.

He et al. [74] consider the problem of fuzzy-rough feature selection for decision systems with fuzzy
decisions, that is, where the decision attribute is characterized by a fuzzy T -similarity relation instead of a
crisp one. This is the case of regression problems. They give an algorithm for finding all decision reducts
and another one for finding a single reduction.

The relatively high complexity of fuzzy-rough feature selection algorithms somewhat limits is applica-
bility to large datasets. In view of this, Chen et al. [75] propose a fast algorithm to obtain one reduct, based
on a procedure to find the minimal elements of the discernibility matrix of [67]. The algorithm is compared
w.r.t. execution time with the proposals in [65] and [67], and turns out to be a lot faster. On the other hand,
Qian et al. [76] implement an efficient version of feature selection using the model of Hu et al. [71].

The use of kernel functions as fuzzy similarity relations in feature selection algorithms has also sparked
researchers’ interest. In particular, Du et al. [77] apply fuzzy-rough feature selection with kernelized fuzzy
rough sets to yawn detection, while Chen et al. [78] propose parameterized attribute reduction with Gaussian
kernel based fuzzy rough sets. He and Wu [79] develop a new method to compute membership for fuzzy
support vector machines (FSVMs) by using a Gaussian kernel-based fuzzy rough set, and employ a technique
of attribute reduction using Gaussian kernel-based fuzzy rough sets to perform feature selection for FSVMs.

Finally, Derrac et al. [80] combine fuzzy-rough feature selection with evolutionary instance selection.

4.1.2 Instance selection

Instance selection can be seen as the orthogonal task to feature selection: here the goal is to reduce an
information system (U,A) by removing objects from U . The first work on instance selection using fuzzy
rough set theory was presented in [81]. The main idea is that instances for which the fuzzy rough lower
approximation membership is lower than a certain threshold are removed. This idea was improved in [82],
where the selection threshold is optimized. This method has been applied in combination with evolutionary
feature selection in [83] and for imbalanced classification problems in [84, 85], in combination with resampling
methods.

4.1.3 Classification

Fuzzy rough sets have been widely used for classification purposes, either by means of rule induction or
by plugging them into existing classifiers like nearest neighbor classifiers, decision trees and support vector
machines (SVM).

The earliest work on rule induction using fuzzy rough set theory can be found in [25]. In this paper,
the authors propose a fuzzy rough framework to induce fuzzy decision rules that does not use any fuzzy
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logical connectives. Later, in [43], an approach that generates rules from data using fuzzy reducts was
presented, with a fuzzy rough feature selection preprocessing step. In [86], the authors noticed that using
feature selection as a preprocessing step often leads to too specific rules, and proposed an algorithm for
simultaneous feature selection and rule induction. In [87, 88], a rule-based classifier is built using the
so-called consistency degree as a critical value to keep the discernibility information invariant in the rule
induction process. Another approach to fuzzy rough rule induction can be found in [89], where rules are
found from training data with hierarchical and quantitative attribute values. The most recent work can
be found in [90], where fuzzy equivalence relations are used to model different types of attributes in order
to obtain small rule sets from hybrid data, and in [91] where a harmony search algorithm is proposed to
generate emerging rule sets.

In [92], the K nearest neighbor method was improved using fuzzy set theory. So far, three different
fuzzy rough based approaches have been used to improve this Fuzzy Nearest Neighbor (FNN) classifier.
In [93], the author introduces a fuzzy rough ownership function and plugs it into the FNN algorithm. In
[94, 95, 96, 97], the extent to which the nearest neighbors belong to the fuzzy lower and upper approximations
of a certain class are used to predict the class of the target instance, these techniques are applied in [98] for
mammographic risk analysis. Finally, in [99], the FNN algorithm is improved using the fuzzy rough positive
regions as weights for the nearest neighbors.

During the last decade, several authors have worked on fuzzy rough improvements of decision trees.
The common idea of these methods is that during the construction phase of the decision tree, the feature
significances are measured using fuzzy rough techniques [100, 101, 102, 103]. In [104, 105, 106], the kernel
functions of the SVM are redefined using fuzzy rough sets, to take into account the inconsistency between
conditional attributes and the decision class. In [79], this approach is combined with fuzzy rough feature
selection. In [107], SVMs are reformulated by plugging in the fuzzy rough memberships of all training
samples into the constraints of the SVMs.

4.1.4 Clustering

Many authors have worked on clustering methods that use both fuzzy set theory and rough set theory, but
to the best of our knowledge, only two approaches use fuzzy rough sets for clustering. In [108], fuzzy rough
sets are used to measure the intra-cluster similarity, in order to estimate the optimal number of clusters. In
[109], a fuzzy rough measure is used to measure the similarity between genes in microarray analysis, in order
to generate clusters such that genes within a cluster are highly correlated to the sample categories, while
those in different clusters are as dissimilar as possible.

4.1.5 Neural networks

There are many approaches to incorporate fuzzy rough set theory in neural networks. One option is to use
fuzzy rough set theory to reduce the problem that samples in the same input clusters can have different
classes. The resulting fuzzy rough neural networks are designed such that they work as fuzzy rough member-
ship functions [110, 111, 112, 113]. A related approach is to use fuzzy rough set theory to find the importance
of each subset of information sources of subnetworks [114]. Other approaches use fuzzy rough set theory to
measure the importance of each feature in the input layer of the neural network [115, 116, 117].

4.2 Other applications

4.2.1 Image processing

Fuzzy rough sets have been used in several domains of image processing. They are especially suitable for
these tasks because they can capture both indiscernibility and vagueness, which are two important aspects
of image processing.

In [118, 119], fuzzy rough based image segmenting methods are proposed and applied in a traditional
Chinese medicine tongue image segmentation experiment. Often, fuzzy rough attribute reduction methods
are proposed for image processing problems, as in [120] or in [121], where the methods are applied for face
recognition. In [122], a method for edge detection is proposed by building a hierarchy of rough-fuzzy sets to
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exploit the uncertainty and vagueness at different image resolutions. Another aspect of image processing is
texture segmentation, this problem is tackled in [123] using rough-fuzzy sets. In [124], the authors solve the
image classification problem using a nearest neighbor clustering algorithm based on fuzzy rough set theory,
and apply their algorithm to hand gesture recognition. In [125], a combined approach of neural network
classification systems with a fuzzy rough sets based feature reduction method is presented. In [126], fuzzy
rough feature reduction techniques are applied to a large-scale Mars McMurdo panorama image.

4.2.2 Decision making

Fuzzy rough set theory has many applications in decision making. In [127], the authors calculate the fuzzy
rough memberships of software components in previous projects and decide based on these values which ones
to reuse in a new program. In [128, 129], a multi objective decision making model based on fuzzy rough
set theory is used to solve the inventory problem. In [130], variable precision fuzzy rough sets are used
to develop a decision making model, that is applied for IT offshore outsourcing risk evaluation. Another
approach can be found in [131] where the decision corresponds to the decision corresponding with the instance
with maximal sum of lower and upper soft fuzzy rough approximation. Recent work can be found in [132],
where a fuzzy rough set model over two universes is defined to develop a general decision making framework
in an uncertainty environment for solving a medical diagnosis problem.

4.2.3 Information retrieval, data Mining and the web

Fuzzy rough sets have been used to model imprecision and vagueness in databases. In [133], the authors
develop a fuzzy rough relational database, while in [134], a fuzzy rough extension of a rough object classifier
for relational database mining is studied. In [135], fuzzy rough set theory is used to mine from incomplete
datasets, while in [136], fuzzy rough sets are incorporated in mining agents for predicting stock prices. More
recently, fuzzy rough sets have been applied to identify imprecision in temporal database models [137, 138].

In [139, 140], fuzzy rough set theory is used to approximate document queries. In the context of the
semantic web, a lot of work has been done on fuzzy rough description logics. The first paper on this topic
can be found in [141], where a fuzzy rough ontology was proposed. Later, in [142], the authors propose a
fuzzy rough extension of the descriptive logic SHIN . A fuzzy rough extension of the descriptive logic ALC
can be found in [143]. In [144, 145], an improved and more general approach is presented.
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