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Abstract. A temporal question answering system must be able to de-
duce which qualitative temporal relation holds between two events, a
reasoning task that is complicated by the fact that historical events tend
to have a gradual beginning and ending. In this paper, we introduce an
algebra of temporal relations that is well–suited to represent the qualita-
tive temporal information we have at our disposal. We provide a practical
algorithm for deducing new temporal knowledge, and show how this can
be used to answer questions that require several pieces of qualitative and
quantitative temporal information to be combined. Finally, we propose
a heuristic technique to cope with inconsistencies that may arise when
integrating qualitative and quantitative information.

1 Introduction

Question answering systems (QA–systems) are information retrieval systems
that differ from traditional search engines in two ways: users can express their
information need as natural language questions, and the result of the system is
an answer to a question instead of a ranked list of possibly relevant documents.

In this paper we focus on (complex) temporal questions, such as Which battles
were fought in Belgium between D-Day and the unconditional surrender of Ger-
many. Not only are temporal questions interesting in their own right, a thorough
understanding of temporal question answering is also indispensable to answer,
for example, definition questions about events or even about persons. Further-
more, we believe that a temporal QA–system can provide a first step towards
causal question answering, as for example an event B can only be a consequence
of A, if A happened before B.

Temporal question answering [1, 5, 8] offers a lot of interesting challenges. For
some events we may be able to extract an accurate time span from, for example,
the web. For other events, however, we will only be able to find qualitative
temporal information (e.g., A happened before B, A happened during B,...);
hence, qualitative temporal reasoning is sometimes necessary to determine if an
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event is relevant for a particular question. Moreover, this qualitative temporal
information may conflict with some of the time spans we have at our disposal.

Temporal reasoning is further complicated by the fact that many historical
events are vague, i.e., their time span cannot be accurately captured by an
interval with well–defined boundaries. This vagueness can be due to the fact
that an event is characterized by a gradual beginning or ending (e.g., the Cold
War, the Great Depression, ...). Another important cause for vagueness is that
many large–scale historical events are in fact ill–defined aggregations of small–
scale events. For example, World War II is a name that has been coined to refer
to a number of battles and military operations around the first half of the 1940s.
Some of these battles and military operations are clearly a part of World War
II (e.g., the battle of the Bulge in 1944), while for others it may be hard to say
whether or not this holds (e.g., the Japanese invasion of China in 1937).

In order to support efficient temporal question answering, we have (auto-
matically) constructed a large knowledge base consisting of tens of thousands of
events [1]. For some of these events, we have been able to extract an accurate
time span, while for other events we only have qualitative temporal information
at our disposal. To cope with vague events, we represent time spans of events
as fuzzy sets, and model qualitative temporal relations using fuzzy relations.
However, many temporal questions require reasoning to obtain an answer, i.e.,
several pieces of information, possibly coming from different sources, may have
to be combined. Although there already exist some approaches to qualitative
temporal reasoning that effectively deal with possibilistic uncertainty (e.g., [3,
4]), to our knowledge, the problem of qualitative temporal reasoning with vague
events has not yet been considered.

In the next section, we explain how temporal information extracted from
Wikipedia3 and from the web is represented in the temporal relation algebra
underlying the knowledge base of our system. It encompasses grounded events,
i.e., dated events from Wikipedia and events for which we were able to construct
a reliable (fuzzy) time interval, as well as ungrounded events for which we have
only qualitative information at our disposal. In Section 3 we present an algebraic
closure algorithm to derive new knowledge from the qualitative information in
our initial knowledge base. At this point, because of space and time requirements,
the available quantitative information about the grounded events is used only
for inconsistency repairing. Finally, in Section 4 we explain how at question
answering time both the initial and the newly derived qualitative information,
as well as the quantitative information in our knowledge base are used to provide
the answer.

2 Representing temporal information

To efficiently support temporal question answering, we have constructed (au-
tomatically) a large knowledge base by extracting relevant information from

3 http://www.wikipedia.org
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Wikipedia and from the web in general. Wikipedia is a freely available, online
encyclopedia with broad coverage. It contains large lists of dated events which
are relatively easy to extract. Moreover, the information in Wikipedia is much
more reliable than information on the web in general. However, for some events,
only a starting date, an ending date, or an underspecified date is given. Further-
more, for most large–scale events, no structured temporal information is given
at all in Wikipedia. We cope with this lack of information by searching the web
for beginning dates and ending dates using a simple pattern–based approach. If
there is sufficient agreement among different web pages about the beginning and
ending date of an event, we represent the time span of this event as an interval;
if not, we use the techniques described in [11] to construct a suitable fuzzy set,
which we call a fuzzy (time) interval in this context.

To increase the coverage of our knowledge base, we again make use of a
pattern–based approach. For example, to find events that happened during an
event e, we may send the query “happened during e” to Google4. The search
results returned by Google are then analysed to find noun phrases that match this
pattern. Finally, heuristics are used to decide if such a noun phrase constitutes
a good, umambiguous description of a unique event. For some events, it is not
possible to find any starting dates or ending dates on the web. Using these
patterns, we can link these events to other events in the knowledge base, using
chains of before and during relations. The construction and expansion of the
knowledge base is discussed in more detail in a separate paper [1].

In this section, we discuss how the temporal information in our knowledge
base can be represented. After providing the necessary background on fuzzy set
theory, we show how the definitions of Allen’s qualitative temporal relations [2]
can be generalized to cope with fuzzy time intervals, allowing to effectively cal-
culate which qualitative temporal relations hold between two grounded events,
and to what degree. Next, we show how qualitative, as well as underspecified
temporal information, can be represented in this framework. Finally, we intro-
duce an algebra of temporal relations, which will serve as the basis for qualitative
reasoning in Section 3.

2.1 Grounded events

In defining a traditional set in a universe U we draw a sharp boundary between
those objects of U that satisfy a certain property and those objects that do not.
Therefore, classical sets are sometimes referred to as crisp sets in this context.
Natural language, on the other hand, is pervaded with ill–defined concepts and
properties for which such a sharp boundary may be difficult, if not impossible,
to define. Fuzzy set theory [12] provides an alternative where this boundary
between objects that satisfy a given property and objects that do not can be
gradual. Formally, a fuzzy set A in a universe U is a mapping from U to the unit
interval [0, 1]. For u in U , A(u) is called the membership degree of u in A, where
A(u) = 1 means u fully belongs to A and A(u) = 0 means u does not belong to

4 http://www.google.com
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A at all. If A(u) = 1 for some u in U , A is called normalised. A fuzzy relation
in U is defined as a fuzzy set in U × U .

In this paper, normalised fuzzy sets in R are used to represent the time span
of vague events such as the Cold War, or the Great Depression. To adequately
generalize the notion of a closed interval, we require that these fuzzy sets be
convex and upper semicontinuous. Recall that a fuzzy set A is convex and upper
semicontinuous iff for each α in ]0, 1], the α–level set {x|A(x) ≥ α} is a closed
interval.

Note that, for crisp intervals E1 = [p−, p+] and E2 = [q−, q+], the following
equivalence holds:

p− ≤ q− ⇔ (∀y ∈ R)(y ∈ E2 ⇒ (∃x ∈ R)(x ∈ E1 ∧ x ≤ y)) (1)

To express that the beginning of a fuzzy interval E1 is before the beginning of
a fuzzy interval E2, we generalize the expression in the right hand side of (1).
In particular, to generalize the logical conjunction and implication to the unit
interval [0, 1], we use the  Lukasiewicz t–norm TW and  Lukasiewicz implicator
IW , defined by:

TW (a, b) = max(0, a + b− 1)
IW (a, b) = min(1, 1− a + b)

for all a and b in [0, 1]. It can be shown that this choice of fuzzy logic connectives
leads to a generalization that satisfies many important properties [10]. To gen-
eralize the universal and existential quantification, the infimum and supremum
are used. Finally to generalize the ordering relation ≤, we use the fuzzy relation
L4 in R defined by L4(x, y) = 1 if x ≤ y and L4(x, y) = 0 otherwise5. Thus,
we obtain the following formulation of bb4(E1, E2), the degree to which the be-
ginning of the fuzzy interval E1 is before the beginning of the fuzzy interval E2

[9]:

bb4(E1, E2) = inf
y∈R

IW (E2(y), sup
x∈R

TW (E1(x), L4(x, y))) (2)

In the same way, we can express the degree ee4(E1, E2) to which the end of E1

is before the end of E2, the degree eb4(E1, E2) to which the end of E1 is before
the beginning of E2, and the degree be4(E1, E2) to which the beginning of E1

is before the end of E2 [9]:

ee4(E1, E2) = inf
x∈R

IW (E1(x), sup
y∈R

TW (E2(y), L4(x, y))) (3)

eb4(E1, E2) = inf
x∈R

IW (E1(x), inf
y∈R

IW (E2(y), L4(x, y))) (4)

be4(E1, E2) = sup
x∈R

TW (E1(x), sup
y∈R

TW (E2(y), L4(x, y))) (5)

5 In [9], a more general approach is taken, where L4(x, y) may express the degree to
which x is before or at approximately the same time as y. This is useful to model
imprecise qualitative relations such as “E1 took place more or less during E2”.
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Note that be4, bb4, ee4 and eb4 are fuzzy relations in the universe of fuzzy
time intervals. These fuzzy relations generalize some of the constraints between
boundary points that are used in Allen’s algebra [2] to define qualitative relations
between crisp intervals.

2.2 Qualitative relations

A lot of temporal information on the web is qualitative by nature, stating for
example that event e1 happened before e2. Even if we have no groundings for
those events, i.e., even if we can not run formulas (2)–(5), we know that the
ending of e1 is before the beginning of e2. Hence, we can interpret this as
eb4(e1, e2) = 1, where, for convenience, we use e1 and e2 both to refer to the
events and to the unknown fuzzy intervals corresponding to their time spans6.
In the same way, the fact that e1 happened during e2 can be interpreted as
bb4(e2, e1) = 1 ∧ ee4(e1, e2) = 1. As another example, if e1 and e2 represent
the life spans of two persons, be4(e1, e2) = 1∧ be4(e2, e1) = 1 expresses the fact
that these persons were contemporaries.

In a similar way, we can represent underspecified information. Assume, for
example, that we only know that event e began in September, 1939. In this case,
e is added to the knowledge base as an ungrounded event, and a new event
e′ which is grounded with a fuzzy interval representing September 1939 (which
will correspond to a crisp interval in this case) is also added to the knowledge
base. The knowledge that e began in September 1939 can now be expressed as
bb4(e′, e) = 1 ∧ be4(e, e′) = 1.

Finally, note that while we interpret, for example, “e1 happened before e2”
as eb4(e1, e2) = 1, this might be too strong in some cases, i.e., it may only
be that eb4(e1, e2) ≥ δ (with δ ∈]0, 1[) holds. To make our knowledge base as
informative as possible, we always use the strongest interpretations that do not
lead to inconsistencies. In Section 3.2 we discuss how these initial interpretations
can be weakened when the knowledge base is inconsistent.

2.3 An algebra of temporal relations

We represent temporal relations as quadruples [α, β, γ, δ], where α, β, γ, δ ∈ [0, 1],
with the following interpretation:

e1[α, β, γ, δ]e2

⇔ be4(e1, e2) ≥ α ∧ bb4(e1, e2) ≥ β ∧ ee4(e1, e2) ≥ γ ∧ eb4(e1, e2) ≥ δ

i.e., temporal relations are defined as crisp relations expressing a lower bound
for the fuzzy relations be4, bb4, ee4 and eb4. In the following, let R be the set
6 Allen [2] differentiates between on one hand “e1 happened strictly before e2”, i.e.,

the ending of e1 is strictly before the beginning of e2, and on the other hand “e1

meets e2”, i.e., the ending of e1 coincides with the beginning of e2. Due to the high
ambiguity of natural language, such a fine–grained distinction is not useful in the
context of our question answering system.
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of all temporal relations, i.e., R = {[α, β, γ, δ]|α, β, γ, δ ∈ [0, 1]}. Our qualitative
knowledge about the temporal relationship of two events e1 and e2 can then be
completely described by a statement of the form:

e1[α1, β1, γ1, δ1]e2 ∧ e2[α2, β2, γ2, δ2]e1

Intersection, union, equivalence, inclusion, and strict inclusion of temporal rela-
tions are defined in the usual way, i.e., for two crisp relations R1 and R2 in the
universe of all fuzzy time intervals F , we have:

(∀(e1, e2) ∈ F2)(e1(R1 ∩R2)e2 ⇔ e1R1e2 ∧ e1R2e2)

(∀(e1, e2) ∈ F2)(e1(R1 ∪R2)e2 ⇔ e1R1e2 ∨ e1R2e2)

R1 = R2 ⇔ (∀(e1, e2) ∈ F2)(e1R1e2 ⇔ e1R2e2)
R1 ⊆ R2 ⇔ R1 ∩R2 = R1

R1 ⊂ R2 ⇔ R1 ⊆ R2 ∧R2 6⊆ R1

If R1 ⊆ R2, we say that R1 is a stronger relation than R2.

Lemma 1. If E1 and E2 are fuzzy time intervals, it holds that:

eb4(E1, E2) ≤ bb4(E1, E2) ≤ be4(E1, E2) (6)

eb4(E1, E2) ≤ ee4(E1, E2) ≤ be4(E1, E2) (7)

This lemma shows that the four components of a temporal relation are not
independent of each other. For example, if we know that e1[0.3, 0.5, 0.1, 0.2]e2

holds, we also know that e1[0.5, 0.5, 0.1, 0.2]e2 and e1[0.5, 0.5, 0.2, 0.2]e2 must
hold. In other words, [0.3, 0.5, 0.1, 0.2], [0.5, 0.5, 0.1, 0.2], and [0.5, 0.5, 0.2, 0.2]
denote the same temporal relation.

Lemma 2. If E1 and E2 are fuzzy time intervals, it holds that:

be4(E1, E2) = 1 ∨ eb4(E1, E2) = 0

Hence, we also have that [0.3, 0.5, 0.1, 0.2], and [1, 0.5, 0.1, 0.2] denote the same
temporal relation. Therefore, we introduce an operator norm that transforms a
temporal relation into a canonical form:

norm([α, β, γ, δ]) =

{
[1, max(β, δ), max(γ, δ), δ] if δ > 0
[max(α, β, γ), β, γ, 0] otherwise

If norm(R) = R, then R is called normalised. Obviously norm(R) is normalised
for every temporal relation R. We can prove the following proposition.

Proposition 1. If R = [α, β, γ, δ] is a normalised temporal relation, there al-
ways exist fuzzy intervals A and B such that:

be4(A,B) = α ∧ bb4(A,B) = β ∧ ee4(A,B) = γ ∧ eb4(A,B) = δ
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Corollary 1. Let R1 = [α1, β1, γ1, δ1] and R2 = [α2, β2, γ2, δ2] be normalised
temporal relations. It holds that:

R1 = R2 ⇔ α1 = α2 ∧ β1 = β2 ∧ γ1 = γ2 ∧ δ1 = δ2

This corollary expresses that the operator norm indeed transforms temporal
relations into a canonical form; hence, our normalization operator is well–defined.
It is easy to see that if R1 = [α1, β1, γ1, δ1] and R2 = [α2, β2, γ2, δ2], it holds that:

R1 ∩R2 = [max(α1, α2), max(β1, β2), max(γ1, γ2), max(δ1, δ2)] (8)

Moreover, if R1 and R2 are normalised, we have that:

R1 ⊆ R2 ⇔ α1 ≥ α2 ∧ β1 ≥ β2 ∧ γ1 ≥ γ2 ∧ δ1 ≥ δ2 (9)

3 Reasoning with imperfect temporal information

3.1 Deduction algorithm

The composition of R1 and R2 is defined as:

e1(R1 ◦R2)e2 ⇔ (∃e ∈ F)(e1R1e ∧ eR2e2) (10)

i.e., R1 ◦ R2 is the strongest relation that is assured to hold between e1 and e2

using only the knowledge that e1R1e and eR2e2 for some fuzzy time interval e.
As in many algebras for qualitative temporal or spatial reasoning, our algebra is
not closed under composition. Therefore, we use the notion of weak composition
[7], which is defined for relations R1 and R2 as the strongest relation R1 �R2 in
R that contains R1 ◦R2, i.e.:

R1 ◦R2 ⊆ R1 �R2 ∧ (∀R ∈ R)(R1 ◦R2 ⊆ R⇒ R1 �R2 ⊆ R) (11)

i.e., R1 �R2 is the strongest relation in R that is assured to hold between e1 and
e2 using only the knowledge that e1R1e and eR2e2 for some fuzzy time interval
e. Intuitively, the weak composition operator can be seen as an optimal operator
for propagating temporal knowledge in a particular algebra. Unfortunately, (11)
does not tell us how to compute the weak composition of two relations in practice.
The following important proposition gives us a practical characterization of weak
composition of temporal relations.

Proposition 2. Let R1 = [α1, β1, γ1, δ1] and R2 = [α2, β2, γ2, δ2] be normalised
temporal relations. It holds that:

R1 �R2 = [α′,
max(TW (β1, β2), min(α1 + TW (δ2, γ1), δ2, β1 + TW (δ2, α1))),
max(TW (γ1, γ2), min(α2 + TW (δ1, β2), δ1, γ2 + TW (δ1, α2))),
max(TW (δ1, β2), TW (γ1, δ2), min(δ1, δ2))]
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where

α′ =

{
max(TW (β1, α2), TW (α1, γ2)) if TW (α1, δ2) = 0 and TW (δ1, α2) = 0
min(α1, α2) otherwise

Let the qualitative temporal information we have at our disposal be represented
as temporal relations Rij = [αij , βij , γij , δij ] such that eiRijej holds for all
1 ≤ i, j ≤ n, i 6= j. We apply the weak composition to derive as much new
information as possible from the qualitative information in our knowledge base,
which was initially gathered as described in Section 2.2.

Example 1. Let the temporal relations between e1, e2 and e3 be given by R12 =
[0.8, 0.5, 0.3, 0], R23 = [1, 0.6, 0.9, 0], and R13 = [0.6, 0.3, 0.3, 0]. Using Proposi-
tion 2 we can deduce that also R12 � R23 = [0.7, 0.1, 0.2, 0] holds between e1

and e3. Thus we obtain that R13 should be replaced by the stronger temporal
relation [0.6, 0.3, 0.3, 0] ∩ [0.7, 0.1, 0.2, 0] = [0.7, 0.3, 0.3, 0].

To deduce stronger temporal relations in the way of Example 1, we use Algorithm
1, which is similar in spirit to Allen’s path–consistency algorithm [2]. It can be
shown that this algorithm has a worst–case complexity of O(n4). We stress once
more that only temporal relations based on qualitative information gathered as
described in Section 2.2 serve as input to Algorithm 1. Hence, newly derived
temporal relations are also based solely on qualitative information. However, we
do check if these new relations are consistent with the known groundings, i.e.,
with the available quantitative information, and only in this case they are used
in further deductions.

It can be shown that the set of qualitative temporal relations in our knowl-
edge base is always consistent, i.e., for every event ei we can always find a
fuzzy interval Ei such that all the relations Rjk are satisfied (1 ≤ j, k ≤ n). In
other words, inconsistencies can only arise when at least some of the events are
grounded. In the following discussion, let E be the set of events and G the set
of grounded events in our knowledge base (G ⊆ E). If, for example, e1 ∈ G and
e2 ∈ G then we know the exact degree be4(E1, E2) to which the beginning of
e1 is before the end of e2. On the other hand, suppose that we have deduced,
using the available qualitative information, that α12 is a lower bound for this
degree. Hence, if be4(E1, E2) < α12, the lower bound α12 is too strong, and
the temporal relation R12 is inconsistent with the groundings of e1 and e2. In
general, we define the predicate consistent for e1 and e2 in G as:

consistent(e1, e2)⇔α12 ≤ be4(E1, E2) ∨ β12 ≤ bb4(E1, E2)

∨ γ12 ≤ ee4(E1, E2) ∨ δ12 ≤ eb4(E1, E2)

In other words, consistent(e1, e2) expresses that the available qualitative in-
formation about events e1 and e2, namely R12 = [α12, β12, γ12, δ12], does not
contradict the values that can be computed from quantitative information, i.e.,
from the groundings E1 and E2. For e1 ∈ E \ G or e2 ∈ E \ G, consistent(e1, e2)
always holds.
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Algorithm 1 Algebraic closure algorithm
1: todo← {(i, j, k)|1 ≤ i, j, k ≤ n, i 6= j 6= k}
2: while todo 6= ∅ do
3: select and remove a triplet (i0, j0, k0) from todo
4: if consistent(ei0 , ej0) and consistent(ej0 , ek0) then
5: R← Ri0j0 �Rj0k0

6: if R ∩Ri0k0 ⊂ Ri0k0 then
7: Ri0k0 ← R ∩Ri0k0

8: todo← todo ∪ {(i0, k0, j)|i0 6= j 6= k0} ∪ {(j, i0, k0)|i0 6= j 6= k0}
9: end if

10: end if
11: end while

3.2 Inconsistency repairing

During the execution of Algorithm 1, inconsistent relations may be deduced. In
the following, we make the assumption that all groundings in the knowledge base
are correct. This is a reasonably safe assumption because these groundings are
extracted either from Wikipedia, or from a large number of webpages. Under this
assumption, whenever a temporal relation is deduced that is inconsistent with
the groundings in the knowledge base, we know that one or more temporal rela-
tions in the original knowledge base are too strong. This may either be because
these qualitative relations were obtained by using false information, e.g., some
website states that e1 happened before e2, while in reality e1 happened after e2,
because of errors introduced in the information extraction phase, or because our
interpretation of the natural language fragment expressing the relation is too
strong, e.g., we assume that eb4(e1, e2) = 1 holds, while in reality we only have
that eb4(e1, e2) = 0.8. To make an inconsistent knowledge base consistent, we
revise some of these interpretations, and apply Algorithm 1 a second time. This
process is repeated until all inconsistencies have been eliminated.

Let R
(0)
ij = [α(0)

ij , β
(0)
ij , γ

(0)
ij , δ

(0)
ij ] be the qualitative relation between ei and

ej in the initial knowledge base, i.e., before the execution of Algorithm 1, and
let R

(1)
ij = [α(1)

ij , β
(1)
ij , γ

(1)
ij , δ

(1)
ij ] be the relation that results after Algorithm 1

is completed. Assume, for example, that e1 ∈ G, e2 ∈ G, and α
(1)
12 leads to

an inconsistency, i.e., α
(1)
12 > be4(E1, E2). During the execution of Algorithm

1, we keep track of the components of the relations R
(0)
ij that are used to ob-

tain each conclusion. In particular, we have a set V at our disposal contain-
ing those values that were used to obtain the value α

(1)
12 ; assume, for example,

V = {α(0)
pq , δ

(0)
qr , β

(0)
rs , α

(0)
st }. Most of the values v in V will also be used in other de-

duction chains, leading to other conclusions. Some of these conclusions will define
temporal relations between ungrounded events; hence, we cannot tell whether
they are correct or not. However, other conclusions will define temporal relations
between grounded events; we will call these verifiable conclusions. For v in V , let
pos(v) be the number of correct verifiable conclusions that were obtained using
v, and neg(v) the number of incorrect verifiable conclusions that were obtained
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using v; then, rel(v) = pos(v)
pos(v)+neg(v) can be used as an approximation of the

reliability of v (provided pos(v) +neg(v) > 0). The knowledge base is revised by
subtracting a value from each v in V that is proportional to 1− rel(v):

v ← v − (α(1)
12 − be4(E1, E2))

1− rel(v)∑
v′∈V 1− rel(v′)

In practice, it may occur that different inconsistencies in the knowledge base
require the value v to be updated in different ways. In this case, the final value
for v is the minimum of all these different updates.

Finally, Algorithm 1 is executed a second time using this revised knowledge
base as a starting point. If there are still inconsistencies detected, this whole
process is repeated. In practice, we found that all inconsistencies are typically
eliminated after one or two iterations.

4 Question answering

The temporal questions in which we are primarily interested consist of a non–
temporal main part asking for an event (e.g., Which battles took place in Bel-
gium), the participant of an event (e.g., Which countries were involved in World
War II ), or a time–dependent factoid (e.g., Who was president of the U.S.),
and a temporal restriction (e.g., after the invasion of Normandy). The question
analysis module separates the temporal restriction from the main part using a
large set of handcrafted patterns. The temporal restriction is further analysed
to identify which temporal relation is expressed in it. We use standard ques-
tion answering techniques to determine, from the main part of the question,
the expected semantic type of the answer (e.g., person, battle,...), the question
type, i.e., whether the question is asking for an event, a participant, or a time–
dependent factoid, and some additional information depending on the question
type (see e.g., [6]).

Standard techniques are also used to find events in the knowledge base that
satisfy the non–temporal main part of the question. Checking which of these
events satisfy the temporal restriction in the question typically boils down to
inferring if, and to what degree, a particular qualitative temporal relation holds
between these events and the events occurring in the temporal restriction of
the question. To support this reasoning task efficiently, Algorithm 1 and the
techniques described in Section 3.2 are applied a priori. Hence, at question–
answering time Rij is the strongest qualitative relation that we can infer from the
available qualitative information, i.e., using groundings of events only to detect
inconsistencies. However if e1 and e2 are grounded events, with corresponding
groundings E1 and E2, then (Ri1 � R∗

12) � R2j might be a stronger conclusion,
where

R∗
12 = [be4(E1, E2), bb4(E1, E2), ee4(E1, E2), eb4(E1, E2)] (12)

In other words, we might obtain a stronger conclusion by also considering the
qualitative relation R∗

12 between e1 and e2, computed directly from the ground-
ings of these events. Hence, to obtain a maximal amount of qualitative temporal
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information between ei and ej , we should calculate:

R = Rij ∩

 ⋂
(e1,e2)∈G2

(Ri1 �R∗
12) �R2j


In practice, various techniques can be used to evaluate this efficiently; we omit
the details here. Note that, because of space and time requirements, it would
not be feasible to add the qualitative relation R∗

12 to the knowledge base for
every pair (e1, e2) of grounded events a priori, before the execution of Algorithm
1. Finally, if the knowledge base contains too little information to answer a
particular question, we use the web to expand it with relevant information at
question answering time.

Example 2. Consider the question Which battles took place in Asia after V-J
Day, and the knowledge base, after the execution of Algorithm 1, illustrated in
Figure 1(a). Assume that only World War II and the Cold War are grounded.
Intuitively, the qualitative information in this knowledge base expresses that the
Battle of Chosin Reservoir happened during the Korean War which happened
during the Cold War, and that V–J Day happened during World War II. Assume
that, using external knowledge, we were able to establish that the Battle of
Chosin Reservoir is a battle that took place in Asia. As becomes clear from
Figure 1(a), it is not possible to infer that this battle happened after V–J Day
using qualitative information alone. Using the groundings of World War II and
the Cold War however, we can calculate the strongest temporal relation that
holds between these two events. This is illustrated in Figure 1(b). Thus we
obtain that V–J Day and the Battle of Chosin Reservoir satisfy the temporal
relation given by

([1, 0, 1, 0] � [1, 0.9, 1, 0.7]) � [1, 1, 0, 0] = [1, 0.7, 1, 0.7] � [1, 1, 0, 0]
= [1, 0.7, 0.7, 0.7]

Hence, according to our knowledge base, the Battle of Chosin Reservoir was
after V–J Day at least to degree 0.7.

5 Conclusions

We have discussed the problem of reasoning with vague and qualitative temporal
information in the context of question answering. We introduced an algebra of
temporal relations to express qualitative temporal information between vague
events, and provided a practical characterization of weak composition. Further-
more, we introduced an algorithm to compute the algebraic closure of an initial
specification, as well as a heuristic technique to eliminate inconsistencies in the
knowledge base. Finally, we have shown how qualitative and quantitative tem-
poral information can be combined to effectively support the question answering
process.
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(a) Using only qualitative information (b) Using qualitative information and
groundings

Fig. 1. Verifying whether the Battle of Chosin Reservoir happened after V–J Day .
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