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Abstract

In this paper, we revisit the notion of inclusion for intuitionistic
fuzzy sets (IFSs). Applying the extended modal logic operators Dα

over IFSs, we construct a new class of two–valued inclusion indi-
cators; we compare it to the original proposal from [1]; and finally
we exploit it to define an intuitively meaningful notion of graded
inclusion indicators over IFSs, parallelling and clarifying earlier
work on (direct) generalizations of fuzzy inclusion measures.

1 Introduction

Intuitionistic fuzzy set (IFS) theory, first described in [1], basically en-
riches Zadeh’s fuzzy set theory [17] with a notion of indeterminacy.
While in the latter, membership degrees, identifying the degree to which
an object satisfies a given property are taken to be exact, in the for-
mer extra information in the guise of a non–membership degree is per-
mitted to address a commonplace feature of uncertainty. Imagine, for
instance, a voting procedure in which delegates have to express their
feelings w.r.t. a number of proposals. It is obvious that while one can be
in favour or in disfavour of a proposal to a certain extent, one can also
abstain from the vote; an attitude inspired by, e.g., a lack of background
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or interest, or simply because no obvious arguments for or against the
cause at stake have been raised.

In brief, IFS theory does not insist that membership and non–member-
ship to a set be strictly complementary. In an IFS A defined in a universe
X, alongside a membership degree µA(x) of x to A, we also distinguish a
non–membership degree νA(x), such that µA(x) + νA(x) ≤ 1. Note that
a fuzzy set in X is then just an IFS for which µA(x) + νA(x) = 1 holds
for every x. The degree πA(x) = 1−µA(x)− νA(x) quantifies the degree
of indeterminacy associated with element x and predicate A.

To make IFS theory operational, it must be furnished with faithful
and adequate extensions of corresponding fuzzy set operations: that is,
when applied to fuzzy sets these extensions must yield the same result as
before, yet they should also take into account the particular challenges
raised by IFS theory. This process is illustrated nicely for instance by
the various approaches to the definition and classification of basic set–
theoretical operations such as complement, intersection and union of
IFSs: “standard” operations were introduced in [1] right at the outset
of the theory, but later on various alternatives and modifications (see
e.g. [3, 8, 10]) refining and enriching the original proposal have sprung
up.

In [1], a notion of subsethood of IFSs was also introduced. In this
paper, by application of extended modal operators [2] over IFSs, we first
show that there are in fact many different ways to construct faithful ex-
tensions of Zadeh’s inclusion of fuzzy sets, in agreement with various
perceptions one may have about IFSs. Secondly, bearing in mind the
principle that a two–valued solution to the subsethood assessment prob-
lem may be overly restrictive as we may wish to talk about one IFS being
a subset of another one up to a certain degree only, we launch a proposal
for the definition of graded inclusion measures, nicely encapsulating our
findings from the two–valued setting. We briefly relate our work to [6],
where the notion of graded inclusion measures over IFSs was obtained
by direct generalization of corresponding fuzzy approaches.

2 Preliminaries

A fuzzy set F in a universe X is defined as a mapping from X to [0, 1],
such that for each x ∈ X, F (x) (which is sometimes also denoted µF (x),
referring explicitly to the membership function µF of F ) expresses the
degree to which x is a member of F . The class of all fuzzy sets in X is
denoted F(X).
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[1] gives the following definition of an IFS A in X:

A = {(x, µA(x), νA(x)) | x ∈ X} (1)

where µA and νA are called membership and non–membership function
of A respectively. They satisfy µA(x) + νA(x) ≤ 1 for every x ∈ X. The
class of all IFSs in X is denoted IF(X).

An equivalent and more concise way of defining an IFS A in X is
as a mapping from X to the set L∗ = {(x1, x2) ∈ [0, 1]2 | x1 + x2 ≤ 1}
shown as a triangle in figure 1. Indeed one may verify that, for x ∈ X,
A(x) = (µA(x), νA(x)) ∈ L∗.

Equipping L∗ with an ordering ≤L∗ defined as (x1, x2) ≤L∗ (y1, y2) ⇔
x1 ≤ y1 and x2 ≥ y2, (L∗,≤L∗) assumes the structure of a complete,
bounded lattice with greatest element 1L∗ = (1, 0) and smallest element
0L∗ = (0, 1). The sup and inf operations on this lattice are derived from
≤L∗ as:

sup((x1, y1), (x2, y2)) = (max(x1, x2), min(y1, y2)) (2)

inf((x1, y1), (x2, y2)) = (min(x1, x2), max(y1, y2)) (3)
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Figure 1: A graphical representation of L∗

Thus, IFSs are a special case of L–fuzzy sets in the sense of Goguen [12],
with L = L∗.

The (standard) intersection, union and complement of A and B ∈
IF(X) are defined by, for x ∈ X, A∩B(x) = inf(A(x), B(x)), A∪B(x) =
sup(A(x), B(x)), co(A)(x) = (νA(x), µA(x)). Standard subsethood for
IFSs A and B in X is defined by:

A ⊆ B ⇐⇒ (∀x ∈ X)(µA(x) ≤ µB(x) and νB(x) ≥ νA(x))

⇐⇒ (∀x ∈ X)(A(x) ≤L∗ B(x)) (4)
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This definition is faithful, i.e. it extends Zadeh’s traditional notion of
inclusion for fuzzy sets.

The necessity �A and possibility ♦A of an IFS A in X are fuzzy sets
in X defined by, for x ∈ X, (�A)(x) = µA(x) and (♦A)(x) = 1− νA(x).
In [2], a class of generalized modal operators Dα, α ∈ [0, 1], transforming
IFSs to fuzzy sets, was defined by

Dα(A)(x) = µA(x) + απA(x) (5)

It is immediately clear that � = D0 and ♦ = D1. The (elementwise)
effect of these operators is shown graphically in figure 2.

Intuitively, α can be seen as a parameter of optimism: the operator
Dα actually distributes the indeterminacy, captured by πA, among the
membership and non–membership functions of A, in proportions deter-
mined by α. The voting example from the introduction may help to
visualize this process: if the persons who originally abstained from cast-
ing their vote, were somehow forced to express a preference in favour
or against the proposal, what may we expect their opinion will be like?
The necessity of A represents the one extreme situation where pessimisti-
cally all indeterminacy is attributed to the non–membership component
(everyone not explicitly in favour of the proposal is against it), while
in the other limit case of possibility, we (optimistically) conjecture that
the indeterminacy, once resolved, will move entirely to the membership
component (all not explicitly against the proposal are in favour).
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Figure 2: A graphical representation of �A, ♦A and DαA
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3 A New Class of Inclusion Indicators

Definition 1 (α–inclusion) Let A,B be IFSs in X, α ∈ [0, 1]. We say
that A is α–included into B, denoted A ⊆α B if and only if Dα(A) ⊆
D1−α(B). Equivalently,

A ⊆α B ⇐⇒ (∀x ∈ X)(µA(x) + απA(x) ≤ µB(x) + (1 − α)πB(x))

As with the extended modal operators, these newly defined operators
represent a range of possible attitudes between total pessimism and total
optimism in resolving the indeterminacy: in the one limit case of ⊆1

all the elements are treated as belonging maximally (i.e. as far as the
indeterminacy allows to stretch) to A and minimally to B, while ⊆0

represents the dual optimistic case. We proceed to study some properties
of this class of two–valued inclusion indicators and compare them with
Atanassov’s definition (4).

Theorem 1 Let A,B be IFSs in X. Then the following statements
hold:

1. If A and B are fuzzy sets, then (∀α ∈ [0, 1])(A ⊆α B ⇐⇒ A ⊆ B)
(⊆α is a faithful extension of inclusion for fuzzy sets)

2. (∀α1, α2 ∈ [0, 1])((A ⊆α1
B and α1 ≥ α2) ⇒ A ⊆α2

B)

3. A ⊆1 B ⇒ A ⊆ B

A ⊆ B ⇒ A ⊆0.5 B

Proof:

1. When A and B are fuzzy, πA(x) = πB(x) = 0 holds for every
x ∈ X, so the claim obviously holds.

2. Obvious.

3. First, assume A ⊆1 B and let x ∈ X. Then µA(x) + πA(x) ≤
µB(x), hence µA(x) ≤ µB(x). Moreover, since µA(x) + πA(x) =
1 − νA(x) and µB(x) ≤ 1− νB(x), we also have νA(x) ≥ νB(x), so
A ⊆ B.

Next, note that A ⊆0.5 B can be rewritten as:

A ⊆0.5 B ⇐⇒ (∀x ∈ X)(µA(x) + 0.5πA(x) ≤ µB(x) + 0.5πB(x))

⇐⇒ (∀x ∈ X)(µA(x) − νA(x) ≤ µB(x) − νB(x))

The latter formula clearly holds given A ⊆ B. �
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On the other hand, from A ⊆α B, α ∈ [0, 1[ in general does not
follow A ⊆ B. In particular, choose IFSs A and B in X = {x} such that
µA(x) = µB(x) + 1−α

2
πB(x), πA(x) = 0 and πB(x) > 0 (A is fuzzy, B is

not). Then clearly µA(x) + απA(x) ≤ µB(x) + (1−α)πB(x), so A ⊆α B

but µA(x) > µB(x) since α < 1, so A 6⊆ B.

4 Graded Inclusion Indicators

Just like definition (4), the inclusion indicators that we introduced in
the last section are two–valued: either A is a subset of B, or it isn’t.
While in many theoretical and practical settings such a characterization
is quite sufficient, it could be argued that it is overly restrictive; hence it
may be useful to relax the rigid two–valued definitions and allow that A

can be a subset of B up to a certain extent. This idea of graded inclusion
indicators is relevant for instance in the definition of similarity and non–
probabilistic entropy measures, and in approximate reasoning [5].

We can draw much inspiration from fuzzy set theory in this respect,
where this problem has already been dealt with extensively. Many re-
searchers [4, 7, 11, 13, 14, 15, 16] have proposed concrete operators Inc

that take a couple of fuzzy sets (A,B) in the same universe X as their
input and return a value Inc(A,B) in [0, 1] indicating the degree of
subsethood of A to B.

A reasonable solution to the subsethood determination problem for
IFSs A and B in X seems the following: by applying the extended modal
operators from (5) to A and B we obtain couples (Dα(A),Dβ(B)) for
every α, β ∈ [0, 1]. Let Inc be a fuzzy inclusion measure that satisfies
the following basic monotonicity conditions (F,F1, F2, G,G1 and G2 are
all fuzzy sets in the same universe X):

F1 ⊆ F2 ⇒ Inc(F1, G) ≥ Inc(F2, G) (6)

G1 ⊆ G2 ⇒ Inc(F,G1) ≤ Inc(F,G2) (7)

Clearly,

Inc(♦A,�B) ≤ Inc(Dα(A),Dβ(B)) ≤ Inc(�A,♦B) (8)

holds for every choice of α and β in [0,1]. So, a convenient way for aggre-
gating all the available information on A and B (in particular, on all the
“fuzzy” situations that may emerge by resolving their indeterminacy) is
to define INC(A,B) = [Inc(♦A,�B), Inc(�A,♦B)]. Since the latter
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is an interval in [0, 1], we may equivalently (see e.g. [9]) write

INC(A,B) = (Inc(♦A,�B), 1 − Inc(�A,♦B)) (9)

where INC is thus regarded as an IF(X)×IF(X) → L∗ mapping. This
transformation is particularly interesting as it allows us to compare (9)
with an earlier proposal from [6] of L∗–valued inclusion indicators over
IFSs.

One of the ideas advanced in [6] was to consider a direct general-
ization of certain fuzzy inclusion measures to IFS theory. It is called
“direct” in a sense that operations on the unit interval featuring in the
definitions of suitable fuzzy inclusion measures are replaced by some of
their extensions to L∗. For hints on how to obtain a suitable fuzzy in-
clusion measure, we refer to e.g. [6, 7] and [16]. Let us suffice to mention
that a good candidate in many situations is the  Lukasiewicz inclusion
measure, defined by, for F and G fuzzy sets in X:

IncL(F,G) = inf
x∈X

min(1, 1 − F (x) + G(x)) (10)

In [6], the following two alternative generalizations of (10) to IFSs A

and B in X were proposed:

INC1(A,B) =

(

inf
x∈X

min(1, µB(x) + 1 − µA(x), νA(x) + 1 − νB(x)),

sup
x∈X

max(0, µA(x) + νB(x) − 1)

)

(11)

INC2(A,B) =

(

inf
x∈X

min(1, νA(x) + µB(x)),

sup
x∈X

max(0, µA(x) + νB(x) − 1)

)

(12)

with a marked preference of (11) over (12) as the latter exhibits the
following “unusual” behaviour:

A ⊆ B 6⇒ INC2(A,B) = 1L∗ (13)

So, it is not an extension of standard inclusion over IFSs (but it does
faithfully generalize both IncL and Zadeh’s inclusion over fuzzy sets).
As we have seen in the previous section that formula (4) is not the only
reasonable option for defining two–valued subsethood over IFSs, (13)
seems at once a much less compelling argument to dismiss INC2. The
following theorem sheds some more light on the matter.
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Theorem 2 When INC is defined by means of the fuzzy inclusion mea-
sure IncL, it coincides totally with INC2, i.e. for arbitrary IFSs A and
B in X, INC(A,B) = INC2(A,B).

Proof: we may rewrite INC(A,B) as follows:

INC(A,B) = (IncL(♦A,�B), 1 − IncL(�A,♦B))

=

(

inf
x∈X

min(1, 1 − (♦A)(x) + (�B)(x)),

1 − inf
x∈X

min(1, 1 − (�A)(x) + (♦B)(x))

)

=

(

inf
x∈X

min(1, 1 − (1 − νA(x)) + µB(x)),

sup
x∈X

1 − min(1, 1 − µA(x) + 1 − νB(x))

)

=

(

inf
x∈X

min(1, νA(x) + µB(x)),

sup
x∈X

max(0, µA(x) + νB(x) − 1)

)

= INC2(A,B)

�

Theorem 3 For arbitrary IFSs A and B in X,

A ⊆1 B ⇒ INC2(A,B) = 1L∗ (14)

Proof: from A ⊆1 B follows, for u in U , 1− νA(u) ≤ µB(u), or νA(u) +
µB(u) ≥ 1, so min(1, νA(u)+µB(u)) = 1, and hence INC2(A,B) = 1L∗ .

�

So, INC2 extends the strong inclusion indicator ⊆1 rather than the
standard inclusion indicator, and thus stands as a reasonable alternative
to INC1.

5 Conclusion

In this paper, by introducing a class ⊆α of two–valued inclusion indi-
cators whose semantics were motivated in terms of the extended modal

34



operators and the indeterminacy of IFSs, we have shown that many rea-
sonable alternatives exist to the original definition of inclusion over IFSs.
This observation has also important repercussions for the definition of
graded inclusion measures over IFSs; in particular, we could establish
links between earlier results on direct generalizations of fuzzy inclusion
measures, and a novel approach based on the newly defined class.
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